An M4(26,5,10,6)
10000*00000*00000*00000*00000*00000*00000*00000*00000*00000*10000*00000*10000*00000*10000*10000*10000*00000*10000*10000*10000*00000*10000*10000*10000*10000
00000*10000*00000*00000*00000*00000*00000*00000*00000*00000*00000*10000*00000*10000*20000*20000*00000*10000*30000*30000*21000*10000*21000*21000*21000*21000
00000*00000*10000*00000*00000*00000*01000*01000*01000*01000*10000*00000*10000*20000*30000*01000*11000*30000*20000*01000*20000*11000*30000*00000*10000*20000
00000*00000*00000*10000*01000*01000*01000*01000*00000*03000*01000*11000*21000*30000*01000*20000*30000*21000*01000*30000*10000*22000*21000*10000*12000*12000
00100*00100*01000*01000*10000*02000*01000*02000*02100*01000*10000*23000*30000*01000*30000*10000*22000*02000*21000*00000*10000*20000*30000*11000*20000*33000
01000*01000*00100*01000*03000*10000*01100*01100*02000*01100*21000*32000*02000*33010*20100*32000*03000*20000*00000*33000*01000*11000*03000*10000*31000*10000
02000*01000*03100*02100*03100*01100*10000*03210*01210*03310*33100*02100*33100*20100*13000*03100*20100*02100*23100*12100*03100*02100*11100*12100*32100*23100
01110*01110*03010*00110*02310*01210*02210*10000*03121*01321*00110*30210*21110*11100*01110*30210*01210*23110*30110*23310*02310*01110*12210*21210*32210*32210
02131*03121*03211*01231*01111*02311*03111*01311*10000*00112*31121*20221*10211*03111*13131*02111*22111*33311*12211*03211*02111*01311*02221*00231*12311*30311
03121*02323*01212*01211*01323*01331*01121*03112*03222*10000*02323*02312*03123*02112*02313*03121*02232*02132*03312*03332*12131*11321*11231*21113*11112*22223
'*' separates the blocks.
The prime polynomial used to generate GF(4) is: X2+X+1. The element f=aX+b, a,b in {0,1}, is written as the number a*2+b.