An M4(20,6,11,7)
000000*000000*000000*000000*000000*010000*000000*010000*010000*010000*010000*010000*010000*010000*010000*010000*010000*100000*100000*100000
001000*010000*010000*010000*010000*000000*010000*000000*000000*000000*000000*000000*010000*100000*100000*100000*100000*010000*010000*010000
010000*010000*010000*010000*020000*001000*020000*001000*010000*010000*100000*100000*100000*000000*010000*000000*110000*010000*010000*010000
020000*011000*010000*011000*031000*030000*031000*020000*100000*100000*010000*000000*100000*010000*000000*100000*000000*020000*020000*130000
030000*001000*021000*030000*031000*030000*100000*100000*000000*010000*020000*021000*100000*030000*100000*010000*230000*010000*120000*000000
011000*032000*031100*011100*010000*100000*030000*100000*011000*101000*000100*111000*001000*020100*001000*230100*201000*021000*131000*320100
032100*022100*033200*013000*100000*011100*030100*112000*020100*112000*001000*103000*102000*011000*230100*131000*100100*000100*201000*231000
031210*001210*020110*100000*021100*011000*031000*130100*013000*220100*011000*333100*020100*021000*111000*112010*303000*013000*001100*323000
000121*002111*100000*023110*010110*002110*022110*103110*012110*211110*033110*310110*113110*022110*333110*011100*231110*023110*320110*212110
003111*100000*012021*002131*032131*021121*003211*133311*011121*311231*011211*212121*211121*012121*231121*103111*313121*023121*322131*022211
100000*013121*023322*010232*031313*030323*021231*131132*002131*322133*023312*220212*323131*011131*303131*232312*312131*001131*233232*233231
'*' separates the blocks.
The prime polynomial used to generate GF(4) is: X2+X+1. The element f=aX+b, a,b in {0,1}, is written as the number a*2+b.