An M4(19,3,6,4)
100*012*011*031*031*022*112*233*311*231*031*221*211*332*111*011*112*031*012
031*100*011*001*011*031*111*111*111*231*131*011*231*231*121*131*311*021*221
021*021*100*030*000*000*110*110*130*030*220*100*100*010*200*310*300*310*010
000*010*020*100*010*010*100*100*010*110*110*200*010*100*210*300*210*200*310
010*000*010*010*100*000*100*000*100*100*100*100*000*000*000*100*200*300*300
000*000*000*000*000*100*100*010*000*000*000*010*100*100*100*100*100*100*100
'*' separates the blocks.
The prime polynomial used to generate GF(4) is: X2+X+1. The element f=aX+b, a,b in {0,1}, is written as the number a*2+b.