An M4(18,5,9,6)

00000*00000*00000*01000*00000*01000*01000*00000*01000*01000*00000*01000*01000*10000*10000*10000*10000*10000
00000*01000*01000*00000*01000*00000*00000*01000*00000*10000*10000*10000*10000*01000*01000*01000*01000*11000
01000*01000*00000*01000*02000*00100*00000*10000*10000*00000*01000*10000*20000*02000*03000*10000*20000*02000
01100*03000*01100*02000*03100*10000*10000*02000*01000*02000*03000*10000*13000*02000*10000*03000*20000*13000
02000*01100*03200*02100*10000*03000*12000*01100*11000*01000*13100*01000*01100*02000*03000*03000*11100*31000
03310*00310*01310*10000*02010*00100*13100*01200*13100*01100*12200*11100*31000*01100*10100*30100*30100*03100
03211*03111*10000*01210*01200*01310*13310*01110*20110*02210*30110*00210*23210*02110*23110*11210*31010*00210
01221*10000*00211*00311*01111*01111*10321*00311*22211*01311*33211*12311*02121*03121*32121*30221*32311*22121
10000*01323*03031*02112*01221*03012*11112*00012*30231*00112*21212*22331*11222*00323*20212*32231*21121*22222

'*' separates the blocks.

The prime polynomial used to generate GF(4) is: X2+X+1. The element f=aX+b, a,b in {0,1}, is written as the number a*2+b.


| Some OOA | home |