An M4(17,7,12,8)
1000000*0000000*0000000*0000000*0000000*0000000*0000000*0000000*0000000*1000000*0000000*1000000*1000000*1000000*0000000*0100000*0000000
0000000*1000000*0010000*0010000*0010000*0010000*0010000*0100000*0100000*1000000*0100000*1000000*3000000*0100000*0100000*0000000*0100000
0000000*0000000*1000000*0100000*0000000*0100000*0100000*0010000*0010000*1000000*0100000*3000000*2100000*1000000*0110000*0200000*0110000
0100000*0100000*0100000*1000000*0100000*0000000*0200000*0000000*0100000*1100000*0010000*3100000*1100000*3000000*0100000*0210000*0200000
0000000*0010000*0000000*0000000*1000000*0100000*0200000*0100000*0100000*1110000*0200000*3200000*0100000*2300000*0300000*0310000*1000000
0010000*0100000*0100000*0000000*0320000*1000000*0210100*0011000*0220100*1010000*0020100*2110000*2110000*0210000*0230100*0300100*1300000
0121000*0030100*0110100*0120100*0131000*0220100*1000000*0121000*0231000*1300100*0011000*2220100*3310100*1010100*0011000*0011000*1320100
0132100*0121000*0011000*0231000*0310100*0301000*0131000*1000000*0022000*1301000*0131000*2011000*0221000*3311000*0012000*0131000*1031000
0123000*0232100*0331000*0331200*0221000*0221000*0201000*0230100*1000000*1021000*0112110*0112000*1322000*2131000*0331110*0231110*1111000
0110110*0231010*0122110*0303110*0223110*0021110*0122110*0331110*0111110*1231110*1000000*0133110*3202110*3132110*0002121*0213311*2202110
0212131*0322221*0101211*0222011*0222121*0111121*0113121*0302131*0321211*0331231*0202121*0021121*0133121*0122121*1000000*0103132*1322131
0302313*0203311*0212123*0132212*0011131*0312131*0122323*0333121*0032231*0211211*0322323*0131131*0331212*0221212*0333212*1000000*1212313
'*' separates the blocks.
The prime polynomial used to generate GF(4) is: X2+X+1. The element f=aX+b, a,b in {0,1}, is written as the number a*2+b.