An M4(16,4,7,5)
1000*0231*0221*0231*0223*0012*0131*1021*2131*3212*3021*2331*0221*2031*0121*3321
0311*1000*0131*0111*0311*0211*0021*1111*2221*0111*2111*1311*3031*0011*2111*1131
0121*0311*1000*0010*0210*0010*0310*1210*1110*2110*0110*2010*3110*0310*2210*1010
0110*0300*0300*1000*0100*0300*0000*1200*0100*1200*2100*0200*1200*2300*2000*0100
0200*0010*0210*0200*1000*0100*0100*0000*1100*1300*2100*0100*0100*1300*3300*3300
0100*0100*0000*0100*0000*1000*0100*0100*0100*0100*0100*1100*1000*1100*1100*2100
0000*0000*0100*0000*0000*0100*1000*1000*1000*1000*1000*1000*1000*1000*1000*1000
'*' separates the blocks.
The prime polynomial used to generate GF(4) is: X2+X+1. The element f=aX+b, a,b in {0,1}, is written as the number a*2+b.