An M4(12,5,8,6)
00000*00100*01000*01000*00100*00000*01000*01000*01000*10000*10000*10000
01000*01000*00000*00000*01000*01000*01000*10000*10000*01000*01000*11000
01100*01000*01010*01100*02000*10000*10000*00000*02000*02000*03000*11000
00300*03100*01100*02010*10000*03100*10000*01100*10000*00000*11000*02000
02310*00210*02300*10000*02000*02310*12100*02000*11100*01100*12100*11100
01011*02211*10000*01300*03110*00200*12210*01210*23110*03110*32110*03110
02112*10000*00221*02211*01121*03011*11231*02111*20121*02131*33211*13311
10000*01012*03231*00131*03212*02212*10113*01121*31323*00232*20312*23321
'*' separates the blocks.
The prime polynomial used to generate GF(4) is: X2+X+1. The element f=aX+b, a,b in {0,1}, is written as the number a*2+b.