The starting caps of the computer searches mentioned in The largest cap in AG(4,4) and its uniqueness.
The 3 nonisomorphic affine 10 caps with d=6.
1000110312
0100102211
0010011122
1111111111
1000110213
0100102311
0010011123
1111111111
1000121303
0100102211
0010011122
1111111111
The 4 nonisomorphic affine 13 caps.
1000110212121
0100101122112
0010011111222
1111111111111
1000112121202
0100101221133
0010011112233
1111111111111
1000120212121
0100103301231
0010011122223
1111111111111
1000120212112
0100103301211
0010011122233
1111111111111
The 2 nonisomorphic affine 14 caps.
10001102121212
01001011221122
00100111112222
11111111111111
10001202121212
01001033012311
00100111222233
11111111111111
"nonisomorphic" is to be understand in the way as defined in The largest cap in AG(4,4) and its uniqueness.
The prime polynomial used to generate GF(4) is: X2+X+1. The element f=aX+b, a,b in {0,1},
is written as the number a*2+b.