A 756 cap in PG(7,4)
For more information see: ...
033202033202033202033202033202033202033202033202033202033202033202033202033202033202033202033202033202033202033202033202033202033202033202033202011101033202033202033202033202033202033202033202033202033202033202033202033202033202033202033202011101033202033202033202033202033202033202033202033202033202033202033202033202033202033202033202011101033202033202033202033202033202033202033202033202033202033202033202033202033202033202033202011101033202033202033202033202033202033202033202033202033202033202033202033202033202033202033202011101033202033202033202033202033202033202033202033202033202033202033202033202033202033202033202011101033202033202033202033202033202033202033202033202033202033202033202033202033202033202033202033202033202033202033202033202033202
031130031130031130031130031130031130031130031130031130031130031130031130031130031130031130031130031130031130031130031130031130031130031130031130012310031130031130031130031130031130031130031130031130031130031130031130031130031130031130031130012310031130031130031130031130031130031130031130031130031130031130031130031130031130031130031130012310031130031130031130031130031130031130031130031130031130031130031130031130031130031130031130012310031130031130031130031130031130031130031130031130031130031130031130031130031130031130031130012310031130031130031130031130031130031130031130031130031130031130031130031130031130031130031130012310031130031130031130031130031130031130031130031130031130031130031130031130031130031130031130031130031130031130031130031130031130
000000122313233121000000122313233121000000122313233121000000122313233121000000122313233121000000122313233121000000122313233121000000122313233121233222233121122313000000000000000000122313122313233121000000233121000000122313233121233121122313233222233121122313000000000000000000122313122313233121000000233121000000122313233121233121122313233222233121122313000000000000000000122313122313233121000000233121000000122313233121233121122313233222233121122313000000000000000000122313122313233121000000233121000000122313233121233121122313233222233121122313000000000000000000122313122313233121000000233121000000122313233121233121122313233222233121122313000000000000000000122313122313233121000000233121000000122313233121233121122313311232311232311232311232311232311232
000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000311333233121311232122313122313122313311232311232233121122313233121122313311232233121233121311232311333233121311232122313122313122313311232311232233121122313233121122313311232233121233121311232122111311232122313233121233121233121122313122313311232233121311232233121122313311232311232122313122111311232122313233121233121233121122313122313311232233121311232233121122313311232311232122313233222122313233121311232311232311232233121233121122313311232122313311232233121122313122313233121233222122313233121311232311232311232233121233121122313311232122313311232233121122313122313233121000000000000000000000000000000000000
000000000000122313311232122313311232000000000000122313311232122313311232000000000000122313311232122313311232000000000000122313311232122313311232311333233121311232122313000000000000000000000000122313311232122313311232122313311232311232122313311333233121311232122313000000000000000000000000122313311232122313311232122313311232311232122313311333233121311232122313000000000000000000000000122313311232122313311232122313311232311232122313311333233121311232122313000000000000000000000000122313311232122313311232122313311232311232122313311333233121311232122313000000000000000000000000122313311232122313311232122313311232311232122313311333233121311232122313000000000000000000000000122313311232122313311232122313311232311232122313000000000000000000000000000000000000
000000000000000000000000000000000000122313311232311232233121233121122313233121122313122313311232311232233121311232233121233121122313122313311232000000233121122313311232000000122313122313233121000000122313311232311232000000233121311232233121000000233121122313311232233121311232000000311232122313233121233121000000311232000000122313122313000000311232233121122313000000233121233121311232000000233121122313122313000000311232122313311232000000311232233121122313122313311232122313000000311232000000233121311232233121233121000000122313000000122313311232233121000000311232311232122313000000311232233121233121000000122313233121122313000000122313311232233121122313233121000000233121311232122313122313000000233121000000311232311232122313311232311232233121233121122313
000000000000000000000000000000000000233121122313311232233121122313311232122313311232233121122313311232233121311232233121122313311232233121122313233222122313233121311232311232311232233121233121122313311232122313311232233121122313122313233121311333233121311232122313122313122313311232311232233121122313233121122313311232233121233121311232122111311232122313233121233121233121122313122313311232233121311232233121122313311232311232122313233222122313233121311232311232311232233121233121122313311232122313311232233121122313122313233121311333233121311232122313122313122313311232311232233121122313233121122313311232233121233121311232122111311232122313233121233121233121122313122313311232233121311232233121122313311232311232122313233121122313311232233121122313311232
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111011101111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111011101111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111011101111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111011101111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111011101111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111011101111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
The prime polynomial used to generate GF(4) is: X2+X+1. The element f=a1X+a0, ai in {0,...,1}, is written as the number a1*2+a0.
The weight distribution:
A0= 1,
A504= 45,
A516= 120,
A520= 720,
A528= 1005,
A552= 225,
A560= 10800,
A564= 23040,
A568= 12195,
A576= 7407,
A580= 7560,
A584= 2160,
A592= 180,
A720= 63,
A744= 15,