A 212 cap in PG(4,9)
For more information see: Large caps in small spaces.
00360084102060300036008410206030844863365775844884486336577584484875573641823765487557364182376587457356218457638745735621845763630036004800210088444488663377550048005700480057366312213663122175635673000000000021
08173015608524500817301560852450236582744123317623658274412331760743602770185310074360277018531081264158263587248126415826358724476574563241673128030328560802458216451882164518304776203047762074560328112746460020
02380586421323651046703426813716675442130586081778352681703440521628428704730328324118545608140604730531162874565608620732418537185424782157368462073105864317254287587318544765053106146207280357126438750043861260
08170672716346750817067271634675236558415204830223655841520483024287587370182076428758737018207605310614263554810531061426355481368463484052208317252517371654670351016403510164748235787482357863482517005143437720
11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111011111100
The prime polynomial used to generate GF(9) is: X2+1X1+2. The element f=a1X1+a0, ai in {0,...,2}, is written as the number a1*3+a0.
The weight distribution:
A'0= 1,
A'170= 64,
A'176= 384,
A'178= 256,
A'180= 512,
A'183= 1536,
A'184= 6336,
A'185= 6144,
A'186= 3968,
A'187= 6144,
A'188= 10752,
A'189= 5120,
A'190= 4352,
A'191= 4096,
A'192= 2560,
A'193= 1024,
A'194= 128,
A'195= 1024,
A'196= 512,
A'198= 512,
A'199= 1024,
A'200= 1920,
A'201= 32,
A'204= 512,
A'208= 8,
A'209= 128,