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What are localizations?

Let’s integrate an object α (a function, differentialform, superfunction,
path integrand ..) over some measure space M :∫

M
α

That’s complex; so let us split M into two pieces: M = A tB where A
is ”bigger” then B. ∫

M
α =

∫
A
α+

∫
B
α =

∫
B
α

If
∫
A α = 0 for some miraculous reason. We say that

∫
M α is localized

around B.
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What are super symmetric localizations?

The properties of super integration give us a new way of thinking
about localitazions!

Let M = M (n|m) be a supermanifold with dimension (n|m). Let f be a
function on M and Q a fermionic vectorfield such that:

Q(f) = 0

Further assume that we can find around a point p ∈M local
coordinates (xi, ψj) such that: Q = ∂

∂ψ1

∫
dψ1...dψmf =

∫
dψ2...dψm

(
∂

∂ψ1
f

)
= 0

The integral over a neighbourhood of p does not contribute to the
integral

∫
M f !
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This leads us to the conclusion:∫
M
f =

∫
M−N

f

With:

N =

{
p ∈M

∣∣∣∣Q =
∂

∂ψ1
in a neighbourhood of p

}
This is a supersymmetric localization.
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Equivariant differential Forms

Let M be a compact manifold, G a compact Lie group with algebra g
and an action G×M 7→M on M .
Let:

S(g∗) =

{
f : g 7→ R

∣∣∣∣f is a polynomial

}
With ”f is a polynomial” we mean that f is a polynomial over a basis
{α1, ..., αn} of g∗ for example:

f(·) = 5α1(·)3 + α2(·)α4(·)
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Let’s now consider:

f ∈ S(g∗)⊗ Ω∗(M,R)

f takes an element of g and returns an ordinary differential form:

f : g 7→ Ω∗(M,R)

We want a cohomology theory similar to deRahm’s build on the forms
S(g∗)⊗ Ω∗(M,R). Unfortunately, that does not work. To get a proper
theory we need a subspace of S(g∗)⊗ Ω∗(M,R).

g ∈ G can act on both sides of f :

f(·) 7→ f(Adg(·))

f(·) 7→ g∗f(·)

Where Adg(h) = ghg−1 for g ∈ G and h ∈ g. (For matrix groups.)
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We need the subspace of equivariant f the equivariant differential
forms:

(S(g∗)⊗Ω∗(M,R))G =

{
f ∈ S(g∗)⊗Ω∗(M,R)

∣∣∣∣g∗f(·) = f(Adg(·))∀g ∈ G
}

= Ω∗G(M)

This is the proper space to define the cohomology theory on. We need
a nilpotent operator.
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A nilpotent operator:
Observation: A X ∈ g generates a vectorfield XM on M via:

XM (h)(p) =
d

dt

∣∣∣∣
t=0

h(exp(−tX)p)

For a p ∈M and a h ∈ C∞(M,R).

Now define the nilpotent operator

D : (S(g∗)⊗ Ω∗(M,R))G 7→ (S(g∗)⊗ Ω∗(M,R))G

by:
D(h⊗ α)(X) = h(X)⊗ dα+ h(X)⊗ ιXMα

or:
D = d+ ιXM
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This in nilpotent on Ω∗G(M) because:

D2 = d2 + dιXM + ιXMd+ ι2XM = 0 + £XM + 0 = 0

Due to Cartans magic formula.

The Lie derivative is not 0 for general forms but for α ∈ Ω∗G(M):

£XMα(X) = lim
t→0

(1− tX)∗α(X)− α(X)

t

= lim
t→0

α((1− tX)X(1 + tX))− α(X)

t
= lim

t→0

α(X + t[X,X])− α(X)

t
= 0
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Cartan Model of Equivariant Cohomology

A form f = h(·)⊗ α ∈ Ω∗G(M) with h ∈ S(g∗) and α ∈ Ω∗(M) has the
grading:

deg(f) = deg(α) + 2deg(h)

D = d+ ιXM increases the grading by 1.

Now we can define the equivariant coboundarys B∗G and the
equivariant cocycles Z∗G:

Z∗G = kern(D)

B∗G = Im(D)

And finally the equivariant cohomology:

H∗G(M) =
Z∗G
B∗G
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Final Remarks:
⊗ There are more models of equivariant cohomology like the Weil and
BRST model.

⊗ The equivariant cohomology is usually defined in a more general way
by the means of universal bundles. That is complex because the
definition involves infinite dimensional manifolds.

For more detailes see [2] and [1]
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The Atiyah Bott Localization:

Theorem:
Let G be a compact Lie group, g its algebra. M is an even dimensional
compact manifold with dimension dim(M) = n = 2l
The Atiyah Bott Localization formula:∫

M
α(X)[n] = (−2π)l

∑
p∈M0(X)

α(X)[0](p)

eF (X)(p)

Where X ∈ g, α an equivariantly closed differential form, M0(X) the
set of isolated zeros of XM .

eF (X)(p) is the so called equivariant Euler class of the normal bundle
of the point p.
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Lemma: α(X)[n] is d-exact outside M0(X).

We can find a form θ (with the use of a G invariant metric) such that
£XM θ = 0 and Dθ is invertibel on M −M0(X). Then we have on
M −M0(X):

α(X)[n] = d

(
θ ∧ α(X)

Dθ

)
[n−1]

because:

d

(
θ ∧ α(X)

Dθ

)
[n−1]

= D

(
θ ∧ α(X)

Dθ

)
[n−1]

=

(
Dθ

Dθ
α(X)

)
[n]

= α(X)[n]

(We have no element of order [n+ 1] so we don’t get a contribution by
the ιXM )
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Lemma:
XM rotates around p ∈M0(X). We can find local coordinates xi such
that:

XM = λ1(x2∂1 − x1∂2) + ....

And we define a 1 form θp via:

θp = λ−1
1 (x2dx1 − x1dx2) + ...

Properties:
⊗ £XM θ

p = 0
⊗ θp(XM ) = Σx2

i = ||x||2 (In the local trivial metric given by the
coordinates)
⊗ We can find a θ as above such that near p: θ = θp
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Let Bp
ε be the ε ball around the p ∈M0(X)∫
M
α(X) = lim

ε→0

∫
M−∪Bpε

α(X) = lim
ε→0

∫
M−∪Bpε

d

(
θ ∧ α(X)

Dθ

)

= −
∑
p

lim
ε→0

∫
Spε

θ ∧ α(X)

Dθ

Rescaling: x 7→ εx
⊗ ε-sphere Sε becomes the unit sphere S1

⊗ θ
Dθ remains unchanged

⊗ limε→0 αε(X) = α[0](X)(p)∫
Spε

θ ∧ α(X)

Dθ
=

∫
Sp1

θ ∧ αε(X)

Dθ
= α[0](X)(p)

∫
S1

θ

Dθ
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−
∫
S1

θ

Dθ
=

∫
S1

θ

1− dθ
=

∫
S1

θdθl−1 =

∫
B1

dθl = RHS

And:
(dθ)l = (−2)ll!(λ1...λl)

−1dx1 ∧ ...dxn

2l dimensional unit ball has volumeπ
l

l!
Define the equivariant Euler class (for points!):

eF (X)(p) = λ1 . . . λl

⇒
RHS =

(−2π)l

eF (X)(p)

QED
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Remark:
⊗ There is also a more general formula for the case in which M0(X) is
a submanifold N and not just a set of isolated points

⊗ We obtain it in in a similar process by integration over
{M − tubular neigbourhood of N} and manipulationg the integral.∫

M
α(X) =

∫
N

α(X)

eF (X)

Where eF (X) is the equivariant Euler form of the normal bundle
of N in M . (In our case it was the eF (X)(p = λ1 . . . λl))
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Duistermaat Heckman Localization

Let (M,ω) be a symplectic manifold of dimension 2l.

(ω ∈ Ω2(M); dω = 0 and ω is invertible)

Let G be a symplectomorphic action (g∗ω = ω) on M .
A moment map is a function µ : g×M 7→ R such that:

⊗ µ(X) is linear in X ∈ g
⊗ XM is the Hamiltonian vector field generated by µ(X)

dµ(X)(·) = ω(XM , ·)

⊗ µ(X) is equivariant: g∗µ(X) = µ(Adg(X)) ∀g ∈ G
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Let’s add µ and ω:
X 7→ Ω(X) = µ(X)− ω

is an equivariant closed differential form.

DΩ(XM ) = dµ(X)− ω(XM , ·) = 0

We had a nice formula for integrals over equivariantly closed
differential forms!
Ω(X) has maximally degree 2 so we integrate over:

eiΩ[n] = eiµ(X)+iω
[n] = eiµ(X)eiω [n] = eiµ(X)ω

lil

l!

Is also equivariantly closed.
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Atiyah Bott ⇒ The Duistermaat Heckmann localization∫
M
eiµ(X)ω

l

l!
= (2πi)l

∑
p∈M0(X)

eiµ(X)(p)

eF (X)(p)

Example: S2 with S1 rotation around z localizes to a sum over the
poles.

This is the so called exact stationary phase approximation.

We can use Duistermaat Heckman to proof that the stationary phase
approximation of certain path integrals is exact!
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Supersymmetric localizations

Atiyah Bott localizations in susy language:

We saw in the last talk that integration of a differential form over a
(bosonic) manifold is a special case of supergeometric integration:

(xi, dxi)→ (xi, ψi)∫
M
dxi1 ∧ ... ∧ dxinαi1...in =

∫
ΠTM

dx1...dxndψ1...dψnα(x, ψ)

= (−2π)l
∑

p∈M0(X)

α(X)[0](p)

eF (X)(p)
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∫
M
dxi1 ∧ ... ∧ dxinαi1...in =

∫
ΠTM

dx1...dxndψ1...dψnα(x, ψ)

D = d+ ιXM = ψi
∂

∂xi
+Xi

M (p)
∂

∂ψi

D2 = £XM

⊗ α(x, ψ) is a superfunction
⊗ D is a fermionic vectorfield
⊗ D2 = £XM is a bosonic vectorfield
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Dα = 0 is one of the conditions of the supersymmetric localization
from the beginning of the talk.

Is the Atiyah Bott localization formula a special case of the
supersymmetric localization formula?

We have to check whether we can write:

D = d+ ιXM = ψi
∂

∂xi
+Xi

M (p)
∂

∂ψi

as:

D =
∂

∂ψ′1

Is this possible?
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Problem: That’s not possible!

Theorem:
Let Q be a fermionic vectorfield on a sumpermanifold M that does not
vanish at x0. Then we can write Q in local coordinates (xi, ψj) around
x0 as:
⊗ Q = ∂

∂ψ1 ⇔ Q2 = 0

The proof can be found in [1], chapter 4 §4 section 2.

But: D2 = £XM 6= 0

⇒ Atiyah Bott is not a special case of the susy localization from the
beginning of the talk!
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We now have susy localizations with fermionic vectorfields Q of the
form ∂ψ1 and D = ψi∂xi +Xi

M∂ψi .

⇒ There could be a more general localization formula for fermionic
vectorfields!

To formulate the localization theorem for supermanifolds we have to
define more structures on them.
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Reminder: Facts about supermanifolds:
⊗ A real supermanifold M = M (n+|n−) can be seen as a outer product
bundle Πα(N) over some bosonic manifold N .

⊗ N = m(M) is called the body of M

⊗ We can find local coordinates (x1, . . . , xn+ , ψ1, . . . ψn−)

⊗ A bosonic vector field A on M has a number part m(A)

A = Ai(x, ψ)∂xi +Aι(x, ψ)∂ψι ⇒ m(A) = Ai(x, 0)∂xi
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⊗ The number part of an fermionic vector field Q is a section in
the bundle determined by (q1(x, 0), . . . , qn−(x, 0)).

Q = κi(x, ψ)∂xi + qι(x, ψ)∂ψι

⊗ Diffeomorphisms on M are automorphisms on α(N)

⊗ Bosonic vectorfiels A on M are infinitesimal diffeomorphisms on
M ⇔ infinitesimal automorphisms Ā on αN

⊗ A bosonic vectorfield is compact, if it is generated by the action of
a 1 parameter subgroup of a compact Lie group.

⊗ The set of compact vector fields on M is denoted by K(M)
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Superdivergence:
⊗ The bosonic divergence div(X) of a bosonic vectorfield X on a
bosonic manifold M tells us how the volume form dV on the manifold
changes with the flow of X.

⊗ That’s hard to define for supermanifolds!

⊗ Lets just define the super divergence divdV by its action unter
superintegration:∫

M
dV Q(f) = −

∫
M
dV divdV (Q)f ∀f

Where M is a supermanifold, dV is a supervolume form on M , Q is a
fermionic vectorfield and f a test function.
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Supersymmetric localization Theorem:
Let M be a compact supermanifold with volumeform dV . Let Q be a
fermionic vectorfield on M such that:

divdVQ = 0

Q2 ∈ K(M)

For any neighbourhood U of M0(Q) exists an bosonic, Q invariant
function g0, that is equal to 1 in a neighbourhood O ⊂ U of M0(Q) and
vanishes outside. For every function h with Q(h) = 0 on M and every
g0 that satisfies this condition we have:∫

M
dV h =

∫
M
dV g0 · h
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Special cases

∂ψ1 Localization:
⊗ ∂2

ψ1 ∈ K(M) (
∂

∂ψ1

)2

= 0 ∈ K(M)

⊗ divdV (∂ψ1) = 0 ∫
dψ1 . . . dψn−divdV

(
∂

∂ψ1

)
φ =

−
∫
dψ1 . . . dψn− ∂

∂ψ1
φ = −

∫
dψ2 . . . dψn−

(
∂

∂ψ1

)2

φ = 0

For every function φ.
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Atiyah Bott Localization:
⊗ divdV (D) = 0 ∫

M
dV divdV (D)φ = −

∫
M
dV D(φ)

= −
∫
m(M)

dφ+ ιX(φ) = 0

due to stokes and the nonexistence of a n+ 1 form on m(M)

⊗ D2 = £X ∈ K(ΠTM)
Because X is generated by the action of a 1 parameter subgroup of a
compact Lie group and so is £X .
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Proof of the Theorem

Lemma 1:
∃ a fermionic, Q2 invariant function σ on M such that:

m(Qσ)(x) 6= 0 ∀x /∈M0(Q)

Proof:
⊗ Local coordinates: z = (xi, ψα)

Q =

n+∑
i=1

aiα(z)ψα
∂

∂xi
+

n−∑
α=1

bα(z)
∂

∂ψα

Where: aiα(z) = aiα(x) + . . . and bα(z) = bα(x) + . . .
Where the dots denote higher orders in ψα
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⊗ We can write in a similar manner:

Q2 = ki(z)
∂

∂xi
+ lαβψ

β ∂

∂ψα

With some coefficients ki(z) = ki(x) + . . . and lαβ (z) = lαβ (x) + . . .

depending on aiα and bα

⊗ [Q,Q2] = 0 ⇒

ki(x)
∂bα(x)

∂xi
− lαβ (x)bβ(x) = 0

The section in α generated by the number part bα(x) of Q is therefore
invariant under the infinitesimal automorphism Q2
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⊗ We assumed that Q2 is generated by a 1 parameter subgroup of a
compact group G.

⊗ We can find a G invariant metric gαβ on the fibers of the bundle α
because G is compact.

⊗ Define:
σ(z) = gαβ(x)bα(x)ψβ

⊗ bα(x) and gαβ are Q2 invariant ⇒ Q2σ = 0

⊗ m(Qσ)(x) = gαβ(x)bα(x)bβ(x) 6= 0 ∀x /∈M0(Q)

That completes the proof of the Lemma 1.
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⊗ Lets define:

β(z) =
σ(z)

Qσ(z)
∀z /∈M0(Q)

⊗ Qβ = 1 (Does this look familiar? Compare to θ
Dθ )

Lemma 2:
We can find a partition of unity

∑
gi = 1 such that:

supp(g0) ⊂ U

g0|O = 1

Qgn = 0 and gn = Q(ρn) if n 6= 0

Where O ⊂ U are the neigbourhoods of M0(Q) from the Theorem.
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Proof:
⊗ Choose an open covering (Un) such that:

M0(Q) ⊂ U0 and M0(Q) ∩ Un = ∅ ∀n > 0

⊗ Choose a partition of unity fn on this set.

⊗ The partition fn is G-invariant. (We can always choose this because
G is compact). It is also Q2 invariant.

⊗ Define:
gn = Q(βfn) ∀n > 0

g0 = 1−
∑
n>0

gn
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gn = Q(βfn) ∀n > 0

g0 = 1−
∑
n>0

gn

Does this satisfy all conditions?∑
n>0

gn =
∑
n>0

Q(βfn) =
∑
n>0

fn + βQ(
∑
n>0

fn)

That’s 0 in a neighbourhood of M0(Q) and 1 in M − U0

Further: Q(gn) = Q(Q(βfn)) = 0 since Q2(fn) = 0
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Proof of the Theorem:
Let h be an function that is invariant under Q.∫

M
dV h =

∑
n

∫
M
dV gnh =

∑
n>0

∫
M
dV Q(ρn)h+

∫
M
dV g0h

=
∑
n>0

∫
M
dV Q(ρnh) +

∫
M
dV goh =

∫
M
dV goh

Because divdV (Q) = 0
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Is this independend from the choise of g0?
⊗ Assume that we have another function g̃0 with the same properties
as g0

g0 − g̃0 = 0 in a small nbhd of M0(Q)

⇒
(g0 − g̃0) = Q(β(g0 − g̃0))

⇒∫
M
dV g0h−

∫
M
dV g̃0h =

∫
M
dV Q(β(g0− g̃0))h =

∫
M
dV Q(βh(g0− g̃0))

= 0

That completes the proof of the supersymmetric localization theorem.

A more general result can be found in [5]
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Some Applications

⊗ Wittens proof of the Morse inequalities [6]

⊗ Calculation of some QFT partition functions and even some
correlation functions [4]
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Summary:

⊗ The Atiyah Bott theorem can be proven with the means of
equivariant differentialforms.

⊗ The Duistermaat Heckman theorem is a corollary of the Atyiah Bott
theorem. It provides the exactness of the stationary phase
approximations in some cases.

⊗ The Atiyah Bott theorem can be rephrased as a localization theorem
on certain supermanifolds.

⊗ The Atiyah Bott is a special case of a localization theorem on
general supermanifolds.

⊗ The proof of the general theorem shows astonishing parallels to the
proof of Atiyah Bott.
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