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1 Supermanifolds: Algebro-Geometric Approach
We will still start with the formal definition and explain it step by step:

Definition 1.1. A supermanifold of dimension (p|q) is a manifold M of dimension p,
together with a sheaf of superalgebras A. These superalgebras should be locally isomorphic
to the space ΛRq := C∞(Rp)⊗ Λ•(ξ1, ..., ξq), meaning the exterior (grassmann) algebra
of q-generators.

At first this does not seem like a intuitive definition. So we first start by recalling
definitions:

Definition 1.2. A Z2-graded ring is a ring, s.t. the ring is decomposed into a direct
sum

R = R0 + R1

of additive groups, such that RmRn ⊆ Rm+n modulo 2.

Definition 1.3. An algebra is a Z2-graded algebra if the underlying ring is a Z2-
graded ring. It is called a superalgebra. Also for the commutator the following relation
holds: a ∈ Ai , b ∈ Aj ⇒ ab = (−1)ij ba

These definitions were already given. Now we need the definition of a sheaf:

Definition 1.4. A Sheaf [4] is a functor F from the category of open sets on a topo-
logical space X to the category of groups/rings/algebras, s.t.

1. ∀U ⊂op X ∃ a set F(U ). These sets are called sections.

2. For every open sets U ,V s.t. V ⊂ U ∃ a restriction homomorphism resV ,U :
F(U )→ F(V ), s.t.

a) resU ,U : F(U )→ F(U ) is the identity
b) for W ⊂ V ⊂ U : resW ,U = resW ,V ◦ resV ,U

Then F is called a presheaf. If additionally

3. For an open covering {Ui}i∈I of U and s , t ∈ F(U ), such that s|Ui = t |Ui ∀i ∈ I
⇒ s = t (Uniqueness)

4. If for an open covering {Ui}i∈I of U there exists an si ∈ F(Ui), s.t. si |Ui∩Uj =
sj |Ui∩Uj for all i , j ∈ I , (i 6= j ) ⇒ ∃ s ∈ F(U ), s.t. s|Ui = si for all i ∈ I (Gluing)

are fullfilled, then F is called a sheaf.
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An example for sheaves is:
Example 1.1. Let M be a smooth manifold, then it also is a topological space, and
C∞(M ) be the set of smooth functions on M. Then F is a sheaf, with F(U ) for U ⊂op M
sections being C∞(U ). For U ,V ⊂op M with V ⊂ U , then

resV ,U : C∞(U )→ C∞(V )
f 7→ f |V

For f ∈ C∞(U ) and W ⊂ V ⊂ U open

f |U = f

and
f |V |W = f |W

hold.
Therefore F is a presheaf. A well-defined function is completely defined by its values on
an open covering and therefore uniqueness is fulfilled. Gluing is also easy to see, since
if two functions agree on an open subset i.e. the intersection, then it can be continued
on the open subsets. Therefore one can glue different differentiable functions together if
they agree on all intersections of an open covering.
F is a sheaf.

Figure 1: Gluing of functions on R

With this definition clear, we continue with the definition of the exterior algebra:
Definition 1.5. Given a vector space V over a field K, with dim(V ) = q. Let

T •(V ) =
⊕
k≥0

V ⊗k

be a tensor space and a Z graded algebra. Let J (V ) be the homogeneous ideal generated
by

< v ⊗ w + w ⊗ v |v ,w ∈ V >

Then
Λ•(V ) = T •(V )/J (V )

is a Z2-graded-commutative and the exterior algebra.
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Example 1.2. An easy example for an exterior algebra are differential forms. This will
be explained later.

Here one begins to see why a supermanifold is actually called manifold, since we have
the chart from A to C∞(M )⊗ Λ(Rq) This example is actually used on supermanifolds.
One can understand those graded algebras as splitted into two parts, the first one are
the even numbered rings and the second part are the odd numbered rings. This makes
sense since the even numbered grassmann forms commute, while the odd anticommute.

2 Supermanifolds: Concrete approach
There is a second maybe more intuitive approach to supermanifolds. It is comparable
to the definition of smooth manifolds:

Definition 2.1. A topological space M is a supermanifold of dimension (p|q) if there
exists a complete atlas mapping to the superspace R(p|q).

This atlas has to fulfill the same requirements as the atlas for a common smooth
manifold:

Definition 2.2. Let M be a topological space. A complete Atlas A is a collection of
tupels (Ui , φi), s. t.:

1. Ui ⊂op M ∀i ∈ I

2. φi : Ui → V ⊂op R(p|q) is a diffeomorphism

3. M = ⋃
i∈I

Ui

Now one may have already seen a problem. We did not define smoothness as a concept
on superspaces yet and also one would have to take a look at topology on grassmann
numbers.
Since all of this could take some time, we will skip this approach. The equivalence of
the two definitions is not easy to see, but is explained here [2], and also smoothness and
topology on this spaces is still an active topic of discussion. The elegant way to handle
this is to use the algebro-geometric definition, even if it seems a little less intuitive. If
you want to learn more about this topic chapter 4 of [4] explains the smoothness and
topology of this definition quite well.

3 Examples
We will talk about some examples of supermanifolds:

Example 3.1. Obviously a superspace of dimension (p|q) is a trivial example of a
supermanifold.
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Example 3.2. Another example is the (m|0) dimensional supermanifold constructed on
(M ,C∞(M )). Here the sheaves of smooth functions on the m dimensional manifold M,
are the supermanifold.
Definition 3.1. If E is vector bundle of a manifold M and

π : E → M

is the projection of to vector bundle onto the manifold, then a section of E is a continuous
map

σ : M → E

s.t. π(σ(x )) = x ∀x ∈ M . The sections on E are denoted by Γ(E ).
Example 3.3. All other not trivial examples can be put in the form (M ,Γ(Λ(E ))),
with E smooth vector bundle over manifold M . The dimension of this supermanifold is
then (dim(M ), dim(E )). The name split manifold comes from the splitting in an exact
sequence of sheaves:

0→ P2 → A→ C∞ ⊕ E → 0
Example 3.4. Let M be a manifold of dimension m (m even). Then T ∗M is the co-
tangential bundle and a vector bundle of dimension n.
Now take a look at the the exterior product of the T ∗M i.e. the set of differential forms
on M :

Λ(T ∗M )
From there we can take a look at the sections of differential forms:

Γ(Λ(T ∗M ))

We now take sheaves from M to C∞(M ) ⊗ Λ(T ∗M ). We can find open neighborhoods
Ui , s.t. the sheaves can locally isomorphic to

C∞(Ui)⊗ Λ(Rm)

We can then identify the superalgebra by:

A0 = C∞(M )⊗ Λ2(T ∗M )⊗ ...⊗ Λm(T ∗M )

A1 = Λ1(T ∗M )⊗ ...⊗ Λm−1(T ∗M )
And we find local isomorphisms:

A0|Ui → C∞(M )⊗ Λ2(Rm)⊗ ...⊗ Λm(Rm)

A1|Ui → Λ1(Rm)⊗ ...⊗ Λm−1(Rm)
To look at T ∗pM at different points, we need a change of chart for the co-tangent

space. Since the tangent space induces the co-tangent space, it is enough to trans-
form the tangent space. One finds, that the tangent space is changed via Gl(m) with
C∞(M )-functions as entries(as well as all other m-dimensional vector bundles). But
T ∗M induces the sheaf of differential forms, which is why Gl(m) also represents the
automorphisms between differential forms.
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4 Batchelor’s Theorem
The previous example leads to the main theorem of this talk:

4.1 The Statement
The Main Theorem 1. If E is a real vector bundle over a manifold M , let Λ(E ) be
the associated exterior bundle and let Γ(Λ(E )) be the sheaf of sections of Λ(E ). Then
every supermanifold over M is isomorphic to Γ(Λ(E )) for some vector bundle E over
X .[1]
Remark 1. This statement only holds for a smooth, real manifold M , C∞,R, but this
will be topic of a later talk.

4.2 Explanation
While the statement, especially if one is not that familiar with sheaves, also seems
confusing in the beginning, the idea is as useful, as it is surprising.
As already mentioned earlier in the direct approach to supermanifolds problems arise
concerning smoothness and topological properties of the superspace. Here it becomes
more clear, why the algebro-geometric approach is superior. We know exactly how vector
bundles of a manifold transform and how stuff acts on them.
E.g. the transformation of a vector bundle E on different points of the underlying
manifold M , is given by Gl(q) dim(E ) = q . This way we reduced a not at all trivial or
rigorous problem of a supermanifold to a simple problem we already know well. Vector
bundles and sheaves of exterior algebras on them.

4.3 Cohomology on Sheaves
We will start by introducing some cohomology, in particular the Čech-Cohomology.
The Čech-Cohomology is a rather handy definition of cohomology on sheaves, but is
equivalent to the abstract definition for separable Hausdorff spaces, e.g. manifolds.

Let M be a manifold and F a presheaf of abelian groups on M . Let U be an open
cover of M .
Definition 4.1. A q-simplex σ is a collection of q + 1 ordered sets chosen from U ,
s.t the intersection of all those sets is not empty. The intersection of those sets is then
called the support and is denoted |σ|.
Definition 4.2. Now let σ = {Ui}i∈{0,1,...,q} be such a simplex. Then the j-th partial
boundary of σ is defined to be the (q − 1)-simplex

∂jσ = {Ui}i∈{0,1,..,q}/{j}
The boundary is defined as:

∂σ =
q∑

j=0
(−1)j+1∂jσ
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This can be viewed as an element of the free abelian group spanned by the simplices of
U .

Definition 4.3. A q-cochain of U with coefficients in F is a map which associates
with each element σ a map F(|σ|) and we denote the set of all q-cochains of U with
coefficients in F by C q(U ,F).

Definition 4.4. We can make this into a cochain-complex with (C •(U ,F) by defining

δq : C q(U ,F)→ C q+1(U ,F)

δq f (σ) =
q+1∑
j=0

(−1)j res |∂jσ||σ| f (∂jσ)

One can show, that δq+1 ◦ δq = 0

Definition 4.5. The q-cocycles are Zq(U ,F) = ker(δq) ⊂ C q(U ,F).

Definition 4.6. The q-cobounds are Bq(U ,F) = im(δq−1) ⊂ C q(U ,F)

Definition 4.7. Since δq+1 ◦ δq = 0, it makes sense to define

Ȟ q(U ,F) := H q((C •(U ,F), δ)) := Z q(U ,F)/B q(U ,F)

Now one chooses refinement and defines:

Ȟ q(F) = limU→Ȟ
q(U ,F)

Here we only discussed abelian cohomology. Non-abelian cohomology gets even more
complicated and results in having only the Ȟ 1(F)-class and it being a pointed set.

4.4 Sketch of the Proof
Since the proof of the theorem gets complex very fast, we will just sketch the idea behind
the proof. If you are interested in a more detailed proof, you can find it in Batchelor‘s
original paper [1].

We make use of the local triviality of sheaves on supermanifolds and then we can use
results from cohomology.

We denote by

Aut(ΛRq) = {Automorphisms of the sheaf of Z2-graded algebras ΛRq |U}

Recall that vector bundles are locally trivial fibrations in Rq such that the transition
functions are

Ui ∩ Uj
C∞
→ Glq(R)

Meaning Glq(R) is the structure group. Therefore we can identify:{
vector bundles on M
of dimension k

}
/isomorphisms ←→ Ȟ 1(M ,Gl q)

A standard result from cohomology is:
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Theorem 4.1. There is a bijection between the set H 1(M ,Aut(ΛRq)) and the set of
isomorphism classes of supermanifolds over M of odd-dimension q.

The proof can be found in [3], p.44.
This theorem already proves useful, since if we can find a bijection to the first cohomology
class of a vector bundle, then we find that the isomorphism classes are the same. This
is exactly what we will do.
We define two sheaves, which will prove useful later:

Definition 4.8.
C(U ) = Der(U )⊗ ΛRq(e, 2)

Where the ΛRq(e, r) = ⊕
2i≥r Λ2iR and Der(U ) is the sheaf of derivations on C∞(U )(i.e.

the set of sections of the tangent bundle of U).

D(U ) = GL(q)(U )× Hom(Rq ,ΛRq(o, 3))

Here Gl(q)(U ) is the sheaf of invertible q × q matrices with entries in C∞ and
ΛRq(o, 3) = ⊕

2i+1≥r Λ2i+1R.

This way we get another theorem, whichs proof is very technical and can also be found
in [1].

Theorem 4.2. Let P be the sheaf given by

P(U ) = C(U )×D(U )

. Then there is an isomorphism of sheaves of sets:

Φ : P → Aut(ΛRq)

Now one can define a filtration on P .
Define:

Definition 4.9.

Pi(U ) = {α ∈ Aut(ΛRq)(U )|α(x )− x ∈ ΛRq(i)(U )∀x ∈ ΛRq)(U )}

With ΛRq(i)(U ) = ⊕
j≥i ΛiR

We can see from the definition, that

id = Pq+1 ≤ Pq ≤ ... ≤ P0 = Aut(ΛRq)
This is because the definition only gets stricter for bigger i .
Another theorem states:

Theorem 4.3. Identifying P with Aut(ΛRq) via Φ for every U ⊂op M , we get:

1. Pi is a normal subgroup of P for i ∈ {0, ..., q + 1}
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2. Pi(U ) '
{

Der(U )⊗ ΛRq(e, i)× Hom(Rq ,ΛRq(o, i)) for i ≥ 2
P(U ) for i = 0, 1

3. Pi/Pi+1(U ) '


Der(U )⊗ ΛiRq for i ≥ 2, even

Hom(Rq ,C∞(U )⊗ ΛiRq) for i ≥ 3, odd
Gl(q)(U ) for i = 1

4. From 2., we can define an action of C∞(U ) on Pi for i ∈ {0, ..., q}, which coincides
with the standard action of C∞(U ) on the quotients Pi/Pi+1(U ). Moreover, if z
is an automorphism of Pi/Pi+1(U ) arising from a conjugation by an element in
P(U ), then z is an automorphism of a C∞(U ) module.

From that we get a restatement of the main theorem, which connects all the theorems
we used:

Theorem 4.4. The map of sheaves

p : P → P/P2 ' GL(q)

induces an isomorphism on cohomology

p∗ : H 1(M ,P)→ H 1(M ,P/P2) = H 1(M ,Gl(q))

Whats now left to proof is the bijectivity of p∗. Since this is too much for the length
of this talk and it will not contribute to deeper understanding, the rest can be found
here [1].

Remark 2. The idea behind this reformulation is comparing the group of automorphisms
on a supermanifold as a sheaf of groups on M (2). While obviously P1(U ) = P(U ) =
Aut(ΛRq) are the group of automorphisms on a supermanifold.
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Figure 2: Automorphisms between a Vectorbundle
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