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Graded symmetric tensor algebra

• X =
⊕

i∈Z Xi : integer graded vector space

• graded symmetry: for

x1, x2, ..., xn ∈ Xx1 ∧ ... ∧ xn = ε(σ, x)xσ(1) ∧ ... ∧ xσ(n)

• S(X ) =
⊕∞

i=1 S
nX : graded symmetric tensor algebra

• for {Ta} a basis of X , S : space of polynomials in Ta



Coproduct

• define the operator: ∆ : S → S ⊗ S , by:

∆(x1 ∧ ... ∧ xn) = Σn−1
i=1 Σσ∈(i ,n−i)ε(σ, x)

(xσ(1) ∧ ... ∧ xσ(i))⊗ (xσ(i+1) ∧ ... ∧ xσ(n))

• examples:
• ∆(x) = 0
• ∆(x1 ∧ x2) = x1 ⊗ x2 + (−1)|x1||x2|x2 ⊗ x1

• ∆(x1 ∧ x2 ∧ x3) = x1 ⊗ (x2 ∧ x3) + (−1)|x1||x2|x2 ⊗ (x1 ∧ x3) +
(−1)|x3|(|x1|+|x2|)x3 ⊗ (x1 ∧ x2) + (x1 ∧ x2)⊗ x3(−1)|x2||x3|(x1 ∧
x3) ∧ x2 + (−1)(|x2|+|x3|)|x1|(x2 ∧ x1)⊗ x1



Coproduct

• applying the coproduct twice we have coassiativity:

S

∆

��

∆ // S ⊗ S

∆⊗1

��

S ⊗ S
1⊗∆

// S ⊗ S ⊗ S

or equivalently:

(∆⊗ 1)∆ = (1⊗∆)∆

• Remark on Notation:

(1⊗ f )(g ⊗ 1) = (−1)|f ||g |(g ⊗ f )



Coderivation

• Define a map D : S → S of odd degree, by:

D(x1∧...∧xn) = Σi+j+1
1≤i<J≤n[ xi , xj ] ∧x1∧...∧ x̂i ∧...∧ x̂j∧...∧xn

for
x1 ∧ ... ∧ xn ∈ S

• examples:
D(x1 ∧ x2) = [ x1, x2]

D(x1 ∧ x2 ∧ x3) = [ x1, x2] ∧ x3 + [ x2, x3] ∧ x1− [ x1, x3] ∧ x2

• then the Jacobi identity is included in: D2 = 0



Coderivation

• Combining the coderivation with the coproduct we get the
Co-Leibnitz-property:

S

∆

��

D // S

∆

��

S ⊗ S
1⊗∆+∆⊗1

// S ⊗ S

• or equivalently:

∆D = (1⊗ D + D ⊗ 1)∆



Definition of L∞-Algebras

• A L∞-Algebra is defined as:
• A Z graded vector space
• equipped with multilinear maps:

bi : X i → X ,

of intrinsic degree −1 such that D = Σ∞
i=1bi defines a

coderivation, with D2 = 0



Definition of L∞-Algebras

• in the lowest orders D is then given by b1 = ∂, b2 = [., .] and

bi (x1∧...∧xj) = Σσ∈(i ,j−i)ε(σ, x)bi (xσ(1), ...xσ(j))∧(xσ(i+1)∧...∧xσ(j))

• D2 = 0 in the lowest orders is them given by: b2
1 = ∂2 = 0,

b1b2 +b2b1 = 0 ⇐⇒ ∂[x1, x2] = −[∂x1, x2]−(−1)|x1|[x1, ∂x2]
and the graded Jacobiator plus its failure :
b2

1 + b1b3 + b3b1 = 0



Cyclic L∞ and chain complexes

• equipped with an inner product: κ : X ⊗ X → R the
L∞-Algebra is called cyclic

• the L∞-Algebra can also be viewed as a homology chain, as
the coderivation is of deg − 1 and nilpotent



Dual of the graded symmetric algebra

• consider an L∞-Algebra and basis Ta with each element of
degree deg(Ta) = |a|
• then bn can be written in terms of some structure constants

C a
c1...cn by:

bn(Tc1 , ...,Tcn) = C a
c1...cnTa

• define a dual basis za, of the space X∗ of linear functions on
X , with za(Tb) = δab
• basis of S(X ) given by graded symmetric monomials Tb1 ...Tbm

• the dual space S(X )∗ is then space of power series in za



Dual of the coproduct

• define the product of two functions f1(za) and f2(za):

m : S∗ ⊗ S∗ → S∗

m(f1 ⊗ f2) = f1f2

• the duality to the coproduct is given by:

< m(f1 ⊗ f2), x >=< f1 ⊗ f2,∆(x) >

• associativity:

(f1f2)f3 = f1(f2f3) ⇐⇒ m(m ⊗ 1) = m(1⊗m)



Dual of the coderivation

• Define a derivation on S∗ by:

Q = Σ∞n=1

1

n!
C a
b1,...,bnz

b1 ...zbn
∂

∂za

• duality to D, easily seen by using

< zb1 ...zbn ,Tc1 ...Tcm >= n!δ
(a1

b1
...δ

an)
bn

to show
< Qza,Tc1 ...Tcm >=< za,Σ∞n=1bn(Tc1 ...Tcm) >

• the nilpotency of D thus also implies the nilpotency of Q



Dual of the Leibniz rule

• Q is of deg1

• for p1, p2 ∈ S∗, Q as a derivation satisfies the Leibniz rule

Q(p1p2) = Q(p1)p2 + (−1)deg(p1)p1Q(p2)

⇐⇒ Qm = m(Q ⊗ 1 + 1⊗ Q)



Cylic L∞, antibrackets and classical master equations

• an L∞-Algebra is called cyclic when equipped with an inner
product:

κ(x1, bn(x2, x3, ..., xn+1)) = (−1)|x1||x2|κ(x2, bn(x1, x3, ..., xn+1))

• only non-zero component between spaces Xn and X−n+1 and
κab = κ(Ta,Tb) = (−1)(a+1)(b+1)κba, we have κab = κba
• assuming non-degeneracy and with the inverse κab, the

antibracket can be defined:

(f , g) = (−1)(degf )(za) ∂f

∂za
κab

∂g

∂zb

• thus the BV master action can be defined:

Θ = Σ∞n=1

1

(n + 1)!
Cab1...bnz

azb1 ...zbn

• then Q can be written as Q = (Θ, .) and the nilpotency,
containing all L∞ relations, as the classical master equation:

(Θ,Θ) = 0



Link to Field Theories

• assume BV Supermanifold M with fields and anti-fields
providing local (Darboux) coordinates: Φa = (φi , φ∗i )

• an odd symplectic form is then given by:

ω =
1

2
dΦa ∧ ωabdΦb = (−1)idφi ∧ dφ∗i

• thus the antibracket is (with ∂r
∂Φa = (−1)a(f +1) ∂f

∂Φa ):

(f , g) =
∂r f

∂φi
∂g

∂φ∗i
− ∂r f

∂φ∗i

∂g

∂φi



Link to Field Theories

• Q is a hamiltonian vector field with hamiltonian function Θ

• the components are given by: Qa = ωabQ
b = ∂aΘ

• given a solution (of the classical master equation) around
Φ = 0 the vector field Q can be expanded around it:

Q(Φ) = Σ∞n=1

1

n!
C a
b1...bnΦb1 ...Φbn ∂

∂a

• the master action is then:

Θ = Σ∞n=2

1

n!
Cb1...bnΦb1 ...Φbn

• and the coefficients:

Cb1...bn =
∂nΘ

∂bn ...∂b1
|Φ=0

give structure constants that fulfill generalised Jacobi
identities



Link to Field Theories

• with a graded vertor space, isomorphic to the tangent space
of the BV -manifold at Φ = 0, with a basis Ta, the structure
constants and the two form ω we get a cyclicL∞-Algebra

• the connection of BV and the algebraic formulation is given
by the replacement Φa → za and thus Q(Φ)→ Q(za)

• while Q(Φ) is given on the BV manifold M Q(z) is given on
S∗

• the brackets of fields can then be defines with Φ = ΦaTa, as:

Bn(Φ1, ...,Φn) = Φc1
1 ...Φ

cn
n bn(Tc1 , ...,Tcn)



Link to Field Theories

• the BV manifold is locally isomorphic to a super vectors pace
V = Rm|n

• for a function on V , f = Σnab1...bnΦb1 ...Φbn , consider the map

Λ : Σnab1...bnΦb1 ...Φbn → Σnab1...bnz
b1 ...zbn

• then we have Q(z) = ΛQ(Φ)Λ−1

• Λ is the map taking the BV structure, like the antibracket,
master equation and the two form to S∗



Quantum Master equation

• assuming the functional integral∫
Σ
dΦa exp

i

h
(Θ)

• with the gauge function Ψ the antifields are then given by:
φ∗i = ∂Ψ

∂φi

• with ∆ = ∂r
∂φi

∂l
∂φ∗i

the quantum master equation is given by:

(Θ,Θ) = 2ih∆Θ



Example: Scalar field theory

• Consider field theory, given by the action

S [φ] =
1

2
Aijφ

iφj + Σ∞k=2

1

k!
Ai1...ikφ

i1 ...φik

• with the fields and antifields (φi , φ∗i ) ∈ Rn|n the BV structure
is then given by the symplectic form κij = δij and the
antibracket:

(f , g) =
∂r f

∂φi
∂g

∂φ∗i
− ∂r f

∂φ∗i

∂g

∂φi



Example: A scalar field theory

• master action and the corresponding homologous vector field
are given by:

Θ = Σ∞k=2

1

k!
Aj1...jkφ

j1 ...φjk

,

Q = Σ∞k=1

1

k!
Aij1...jkφ

j1 ...φjk
∂

∂φ∗i
,

• as there are no gauge symmetries the L∞ the is on X0 ⊕ X−1,
with Basis elements Ti and T ∗i

• we can get to the coalgebra picture by considering the
equations of motion:

∂S

∂φi
= Aijφ

j + Σ∞k=2

1

k!
Aij1...jkφ

j1 ...φjk = 0

• the nonzero brackets are given by:

bn(Ti1 , ..., tin) = Ai1...inin+1T
∗in+1



Example: A scalar field theory

• we can also get to the algebra picture by φ→ ζ, with a dual
basis za = (ζ i , ζ∗i ):

Θ = Σ∞k=2

1

k!
Aj1...jk ζ

j1 ...ζ jk

,

Q = Σ∞k=1

1

k!
Aij1...jk ζ

j1 ...ζ jk
∂

∂φ∗i
,
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