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Overview
There are at least two ways to motivate p-adic Hodge theory: At first, it provides tools
for classifying p-adic Galois representations depending on how “nice” they are. A second
motivation lies in the comparison of different cohomology theories.

Let us start with the following basic example: Let K/Qp be a finite extension and Qp(r)
be the r-th Tate-twist of Qp, i.e. the one-dimensional Qp-representation defined by the r-
th power of the cyclotomic character. These and similar representations appear naturally
when studying e.g. elliptic curves and contain deep information about their geometry. The
philosophy of p-adic Hodge theory is to get rid of the group action on the representations
by turning them into objects of linear algebra with some extra structure, e.g. gradings or
filtrations. To do this, we use so-called period rings, which are large rings that can “absorb”
the action of the given representation.

As an example, let’s consider the graded ring BHT :=
⊕

q∈ZCp(q), where Cp denotes the
completion of Qp. It holds

(BHT ⊗Qp Qp(r))
GK = (Cp(−r)⊗Qp Qp(r))

GK = K,

where the K on the right hand side lives in degree −r of the grading induced by BHT. Note
that this K doesn’t carry a GK-action anymore, but still we can deduce from the grading,
from which Qp(r) it comes.

However, for a larger class of representations this fails: BHT cannot “absorb” all GK-
actions, and even if we restrict to the class of the representations V for which BHT can, we
cannot regain V from the graded vector space (BHT⊗Qp V )GK . A first remedy of this will be
to replace gradings by the finer structure of filtrations. This leads to the construction of the
bigger ring BdR. We can prove that V 7→ (BdR ⊗Qp V )GK is faithful, but it’s not full: The
category of filtered K-modules has too many morphisms. So we need to refine our structures
once more, which leads to the construction of the rings Bcris and Bst. For the class of so-called
crystalline representations, we then finally obtain the following category equivalence that will
be (together with its semi-stable version) the main result of the seminar:
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Theorem. The functors
RepcrisQp

(GK) −→MFφ,wa
K

V 7−→ (Bcris ⊗Qp V )GK

Fil0(Bcris ⊗K0 D)φ=1 ←− [ D
describe an equivalence between the category RepcrisQp

(GK) of crystalline, Qp-linear represen-
tations of GK and the category of weakly admissible, filtered ϕ-modules MFφ,wa

K over the
maximal unramified subextension of K/Qp.
One of many applications of p-adic Hodge theory lies in the comparison of different cohomol-
ogy theories. Recall from complex geometry that, for a smooth proper variety X over Q, we
have the so-called de Rham isomorphism

Hn
dR(XC)

∼→ Hn
sing(X(C),C) = Hn

sing(X(C),Z)⊗Z C

that is given by sending the class of a differential form ω to the class of the map γ 7→
∫
γ ω.

Here, XC := X ×Q C denotes the base extension of X to C and X(C) the set of C-valued
points, equipped with its natural topology as a complex manifold.

Let’s illustrate this by considering the example of an elliptic curve E over Q: From
the theory of elliptic curves it is well-known that there exists a lattice Λ ⊆ C such that
E(C) ∼= C/Λ. In particular, E(C) is topologically isomorphic to a torus S1×S1 and we have
Hsing

1 (E(C),Z) = Zα ⊕ Zβ. On the other hand, suppose that we have given a Weierstraß
equation for E. Then the so-called invariant differential is given by ω = (X/Z)/d(Y/Z). It is
a closed but non-exact 1-form. Its class, together with the class of its conjugate ω̄, generate
H1

dR(EC). Integrating ω and ω̄ against α and β gives the so-called periods

λ1 :=

∫
α
ω, λ2 :=

∫
β
ω ∈ C

and similarly λ̄1 and λ̄2. If we take the duals α∗ and β∗ as a Z-basis of H1
sing(X(C),Z) (resp.

α∗⊗1 and β∗⊗1 as a C-basis of H1
sing(X(C),Z)⊗ZC) and ω and ω̄ as a C-basis of H1

dR(XC),
then the de Rham isomorphism from above is described by the matrix(

λ1 λ̄1

λ2 λ̄2

)
.

If we want to build a bridge from de Rham cohomology to integral singular cohomology, one
can therefore say: Up to these periods, the image of the Z-span of ω and ω̄ lies in integral
singular cohomology. Going the other way around from integral singular cohomology to de
Rham cohomology, one can say: C is a ring big enough to contain all periods to make both
cohomologies isomorphic.

Now, let’s go over to the p-adic world. Let X be a proper smooth scheme over a finite
extension K of Qp. We can then associate to X its de Rham cohomology groups Hn

dR(X/K)
as well as its étale cohomology groups Hn

ét(X ⊗K K). In 1988 Faltings proved that there also
exists a (GK-equivariant) comparison isomorphism between these cohomologies using the ring
BHT that we have defined above:

BHT ⊗K grHn
dR(X/K) ∼= BHT ⊗Qp H

n
ét(XK ,Qp).

The ring BHT here has a similar purpose as R in the real case above: It adds enough periods
to the base ring such that both modules become isomorphic. We can even improve this
statement (more precisely: get rid of the gr(·)) by using the other period rings from above!
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The seminar
We will start the seminar with some basics about Galois representations and give an intro-
duction to continuous Galois cohomology, Witt vectors and tilting. We will then introduce
the formalism of admissible representations, i.e., the groundwork for our treatment of period
rings.

The first of these rings (besides BHT) is BdR, then Bcris and finally Bst. Introducing some
more notions and techniques, we can then formulate and sketch the proof of the category
equivalences mentioned above.

In the end, we want to take a closer look at some examples from geometry. There are also
some optional topics, e.g. about the connection to (ϕ,Γ)-modules or an overview talk about
the comparison of different cohomologies.

Requirements
For this seminar you should have done a basic course on algebraic number theory. In particular
you should know how to work with p-adic numbers and their Galois theory. Depending on
which of the optional talks will be given in the end, there might be one or two talks for which
some algebraic geometry and the theory of (ϕ,Γ)-modules can be helpful. But for the rest
of the seminar we won’t use techniques from these areas. In particular, neither knowledge
about étale cohomology or de Rham cohomology, nor an attendance at last semester’s seminar
about (ϕ,Γ)-modules is required.

The seminar will be held in English. The literature for some of the optional (!) talks at the
very end is in French.

The Talks
Talk 1: Overview – ??? (17.10.)

This talk serves as a guideline for the seminar. Go through the talks down below and briefly
summarize their main results. Focus on answering the why and not the how.

Talk 2: `-adic Galois representations and Galois cohomology – ??? (24.10.)

The main objects of p-adic Hodge theory are continuous p-adic Galois representations. The
goal of this talk is to define them and their cohomology and show some basic properties. The
main difference to what you might already know from your algebraic number theory course
is, that we allow a possibly non-discrete topology on G-modules. Without further restriction
this is technically quite bad, as the category that we receive doesn’t have enough injectives.
But as we will see in this talk, there is at least some remedy for this issue.

Start the talk by going through [FO, §2.1.1]: Define continuous (`-adic) G-representations
and Zℓ-representations. State, but not prove Lemma 2.7. Write down the constructions of
Definition 2.9 (i.e. how to build direct sums, duals, etc. of representations). Pick one or
two examples from §2.1.2 and present them. In any case define Tate twists (the very end of
example (1)).
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Go through [FO, §1.5] and define continuous group cohomology. Point out the main differ-
ences to the discrete situation. State Proposition 1.112 (a remedy for the long exact sequence)
and Theorem 1.114 (Hilbert 90). If time permits, give a proof of the latter statement.

Talk 3: The formalism of admissible representations – ??? (31.10.)

In this talk we want to learn about the formalism of B-admissible representations. The basic
idea is, that we want to construct large rings B which can “absorb” the G-action on a certain
class of representations. More precisely, for a representation V of this class, we want B⊗F V
to be trivial, i.e. isomorphic to the G-module Bn. If this is the case, we can recover B ⊗F V
from the module D(V ) := (B ⊗F V )G and sometimes, in more restricted situations, even V .

Go through [FO, §3.1.1]: Define B-representations and what it means if such a represen-
tation is trivial. Explain the relationship to cohomology (Proposition 3.7). Then go through
§3.1.2 and define regular (F,G)-rings and the functor DB. Sketch the proof of Theorem 3.14.

Talk 4: The ring BHT and graded vector spaces – ??? (7.11.)

In this talk, we will define our first period ring BHT :=
⊕

q∈ZCp(q). By definition, this ring
can trivialize the action of twists by powers of the cyclotomic character (and more). It is
equipped with a grading and therefore induces a grading on DHT(V ) := (BHT ⊗Qp V )GK =⊕

q∈Z(Cp(q)⊗QpV )GK . The non-zero indices of the non-zero entries as well as their dimension
are important invariants of V .

Start the talk by going through [FO, §6.1]: Define BHT and proof that it is (Qp, GK)-
regular. Define the category of Hodge-Tate-representations RepHT

Qp
(GK) and explain the state-

ment of Falting’s theorem in this context. Introduce the category of graded K-vector spaces
GrK and explain the grading on DHT(V ). Define Hodge-Tate numbers (more commonly called
Hodge-Tate weights).

At the end of the talk, show [BC, Theorem 2.4.11]: Denote by Gr<∞
K the category of

finite-dimensional graded K-vector spaces and, for A =
⊕

i∈ZAi a graded vector space,
gr0(A) := A0. Then the functors

RepHT
Cp

(GK) ⇄ Gr<∞
K

V 7→ DHT(V ) := (BHT ⊗Cp V )GK

gr0(BHT ⊗K W ) =: VHT(W )← [ W
are quasi-inverses to each other. Show, that we cannot have a similar equivalence for
RepHT

Qp
(GK).

Talk 5: Witt vectors and tilting – ??? (14.11.)

To build other period rings of Fontaine, we need to understand Witt vectors and tilting.
Roughly speaking, Witt vectors turn a characteristic p ring A into a characteristic 0 ring
W (A), that modulo p reduces to A (under some mild conditions on A). On the other hand,
if we tilt a characteristic 0 ring A, we receive a “characteristic p version” of A.

Start the talk with [Sch, §1.1]: Define (ramified) Witt vectors and summarize their basic
properties. Especially focus on explaining Proposition 1.1.21. Next, go through §1.4 of loc.
cit. and give an overview over perfectoid fields and tilting. Mention, that W (_) and (_)♭ are
adjoint to each other. While the unit of this adjunction is given by the identity map (W (A)♭ is
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canonically isomorphic to A), the counit is given by θ (introduced in Lemma 1.4.18). Explain
Lemma 1.4.19 resp. Proposition 2.1.19 in the cyclotomic case, namely that the element

ω :=
[ε]− 1

[ε1/p]− 1
= 1 + [ε1/p] + . . .+ [ε1/p]p−1 ∈W (Q̂p(ζp∞)♭),

with ε = (ζpn) ∈ Q̂p(ζp∞)♭ (cf. [Poy, p. 2]) generates ker θ. State but not prove the tilting
equivalence ([Sch, Theorem 1.4.24]). Introduce the field C♭

p and explain Proposition 1.4.27
which says, that C♭

p is the completion of the separable closure of the Laurent series ring Fp((t)).
Note, that this talk should give the audience a rough feeling for the above functors. Schnei-

der’s book however contains way more details than we need. In particular, he does every-
thing in the “Lubin-Tate setting”, i.e. he uses a generalized version of the cyclotomic tower
Qp ⊆ Qp(ζp) ⊆ Qp(ζp2) ⊆ . . . ⊆ Qp(ζp∞) – the only tower, we will need in this seminar. You
should either roughly explain the Lubin-Tate setting or adapt the notations to the cyclotomic
case. In any case, feel free to use other references as well. E.g. [BC, §4.2] and [FO, 1.2]
also contain a summary on Witt vectors and tilting (while not giving a name to the latter
construction).

Talk 6: The ring BdR and filtered vector spaces – ??? (21.11.)

With the tools from the last talk, we can define the more sophisticated period ring BdR: Let
B̃ := W (C♭

p)[
1
p ] and B+

dR := lim←−n
B̃/(ker θ)n. In this ring, the power series

t := log[ε] =
∑
n≥1

(−1)n−1 ([ε]− 1)n

n

converges (as in the last talk: ε := (ζpn) ∈ Q̂p(ζp∞)♭). This period has the property that
GK acts on it via g · t = χcyc(g)t (the logarithm turns powers into factors). By defining
BdR := B+

dR[
1
t ], we therefore obtain a period ring that again is able to absorb the action of

powers of the cyclotomic character.
While BdR has a smaller class of admissible representations than BHT, it gives more struc-

ture to the modules DdR(V ). Namely, FiliBdR = tiB+
dR defines an exhausting, decreasing

filtration on BdR, which induces one on DdR(V ). A filtration always gives rise to a grading
(just sum up the quotients of the filtration steps, e.g.

⊕
i∈Z t

iBdR/t
i+1BdR = BHT) but doing

so, we loose information.
A good reference for the talk is [FO, §6.2], but feel free to use other references as well.

Start with the construction of B+
dR and BdR and their basic properties (§6.2.2). Show that

t := log[ε] converges in B+
dR, that GK acts on t via the cyclotomic character and that B+

dR is
a complete discrete valuation ring with uniformizer t (§6.2.3). Introduce the category of de
Rham representation RepdRQp

(GK), the category of filtered K-vector spaces FilK and summarize
the results of §6.2.4. Explain, how the filtration on BdR induces one on DdR(V ). Define the
functor gr : FilK → GrK and show that RepdRQp

(GK) ⊆ RepHT
Qp

(GK). Give an example for the
properness of this inclusion.

By the end of this talk, we want to prove the following statement (Theorem 6.34 in loc.
cit.): The functor

DdR : RepdRQp
(GK)→ FilK

V 7→ (BdR ⊗F V )GK ,
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is an exact, faithful tensor functor. In other words, restricted to its essential image, this func-
tor is almost a category equivalence, but we have too many homomorphisms in the target
category (e.g. HomRepQp

(GK)(Qp(1),Qp) = 0 while HomFilK (DdR(Qp(1)),DdR(Qp)) = Qp).
We will remedy this in the subsequent talks by restricting to the smaller categories of crys-
talline and semi-stable representations and by adding more structure to the modules.

Talk 7: The rings Bcris, Bmax and Bst – ??? (28.11.)

In this talk, we want to construct finer period rings, that will give rise to an equivalence of
categories, as we will see in the next talks. A very good reference for this talk is the survey
article [Poy], which contains very much all constructions, statements and examples that you
need for this talk.

A first observation is, that we can’t extend the Frobenius operator of W (C♭
p) to BdR as it

is not continuous for the (ker θ)-adic topology (explain why!). We therefore want to complete
W (C♭

p) in a more subtle way, such that t = log[ε] still converges, but such that we can extend
ϕ. This gives rise to the ring Bcris. However, the topology on Bcris is quite bad, so in more
modern articles authors often prefer to work with the ring Bmax, which is slightly larger, but
has the same class of admissible representations. Define both rings, the associated functor
and the category of crystalline representations RepcrisQp

(GK). Explain, how Bcris resp. Bmax

induces a Frobenius operator on Dcris(V ) (and how it becomes a filtered K0-module).
Sketch the example of §1.3 in loc. cit. It shows that the category of crystalline representa-

tions is too small to include all the representations that e.g. appear in the theory of elliptic
curves. We therefore enlarge Bcris slightly by adjoining another logarithm, namely log[p̃],
where p̃ ∈ Q̂p(ζp∞)♭ is an element with θ([p̃]) = p. The ring we obtain is denoted by Bst,
where “st” means “semi-stable”. It is equipped with a so-called monodromy operator N . De-
fine the category of semi-stable representations and explain, how Bst induces a monodromy
operator on Dst(V ).

Show the properties of Proposition 1.16 and stress that Bcris and Bst are K0- but not
K-algebras, where K0 denotes the maximal unramified subextension of K/Qp. End the talk
with Remark 1.18, i.e. show that RepcrisQp

(GK) ⊆ RepstQp
(GK) ⊆ RepdRQp

(GK). The example
from before showed that the first inclusion is proper. Give an example for the properness of
the second inclusion.

Talk 8: Filtered ϕ- and (ϕ,N)-modules – ??? (5.12.)

We have seen in the previous talk that, for a given (semi-stable) representation V , the module
Dst(V ) is equipped with a filtration, a Frobenius and a monodromy operator. In this talk,
we want to learn more about the category of such modules.

Start by defining the category Modφ
K0

of isocrystals over K0 ([BC, Definition 7.3.1]).
Roughly speaking, these are the objects we obtain by forgetting about all but the Frobenius
on Dst(V ). The main goal of the talk is to explain (not prove!) the classification theorem of
Dieudonné-Manin ([BC, Theorem 8.1.4] or [FO, Theorem 8.25]). Feel free to mention Newton
polygons and their slopes, but don’t go into detail: We will cover these objects in the talk
next week.

Now, add the structure of the filtrations: Define the category of filtered ϕ-modules MFφ
K

over K0 ([BC, Definition 7.3.4]) and the category of filtered (ϕ,N)-modules (Definition 8.2.5
in loc. cit.). Don’t be confused by the K in the index: The modules still live over K0, but the
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filtrations are data on the modules obtained by tensoring with K. Show that the monodromy
operator on filtered (ϕ,N)-modules is nilpotent (Lemma 8.2.8 in loc. cit.).

Talk 9: Hodge and Newton polygons – ??? (12.12.)

The Frobenius-operator and the filtration of a general ϕ-module don’t have to fulfill any
relations. For a given semi-stable representation V however, the Frobenius and the filtration
of Dst(V ) are related by some technical property, which is called weak admissibility. It can
be described by the use of Hodge-polygons (polygons built from the indices of the filtration
steps, i.e. the Hodge-Tate weights of a filtered K-module) and Newton-polygons (polygons
built from the Dieudonné-Manin decomposition of an isocrystal).

In this talk, you can follow [BC, §8.1]: Start by defining the Hodge polygon and Hodge
number. Show their behavior under determinants, tensor products, duals and short exact
sequences. Give at least one example. Then do the same for the Newton polygon and Newton
number associated to an isocrystal over K0. End the talk with a definition and explanation
of weak admissibility (Definition 8.2.1).

Talk 10: The category equivalences RepcrisQp
(GK)

∼→MFφ,wa
K and

RepstQp
(GK)

∼→MFφ,N,wa
K – ??? (19.12.)

The goal of this talk is to sketch a proof of the above category equivalences (the functors for
the crystalline case were described in the introduction). For simplicity, in this description we
only consider the semi-stable case and do not always mention the crystalline case separately.
Then there are three statements that we have to show:

(i) The above functors are well-defined. (yet, we havn’t seen that, for a semi-stable V , its
filtered (ϕ,N)-module is weakly admissible, i.e. “admissible implies weakly admissible”).

(ii) The functor Dst : RepstQp
(GK) → MFφ,N,wa

K is fully faithful. Here MFφ,N,wa
K denotes

the subcategory of those filtered (ϕ,N)-modules that are weakly admissible.

(iii) The functor Dst is essentially surjective.

Stament (iii) is a very deep result (“Theorem B”) that we cannot show in this seminar (but we
might talk about some ideas of the proof in an optional talk). Statement (i) is Theorem 9.3.4,
statement (ii) is Proposition 9.1.11 and 9.2.14 in [BC]. Gather all the results that we need
and then give a detailed proof of both statements. In particular, explain the quasi-inverse
functor Vst and give an example.

Talk 11: (Optional) Relation to (ϕ,Γ)-modules – ??? (9.1.)

In [Ber] Berger explains how to recover Dcris(V ) and Dst(V ) from the (ϕ,Γ)-module (over
the Robba ring) associated to V . Define the functors Dcris and Dst for (ϕ,Γ)-modules and
explain how they can be compared to the functors on Galois representations. Outline that
these constructions can be used to show Theorem A and B.
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Talk 12: (Optional) Theorem A: RepdRQp
(GK) = ReppstQp

(GK) (p-adic monodromy
conjecture) – ??? (16.1.)

Introduce the category of potentially semi-stable p-adic Galois representations, i.e. represen-
tations that become semi-stable after restricting the action of GK to the action of GK′ for a
finite field extension K ′/K. In this talk, we want to learn about the p-adic monodromy con-
jecture (which is a theorem now). It states that every de Rham representation is potentially
semi-stable (the other implication is relatively easy, cf. [FO, Proposition 8.48]). Sketch the
main ideas of the proof of [Ber, Corollaire 5.22].

Talk 13: (Optional) Theorem B: Weak admissibility implies admissibility – ???
(23.1.)

As a result of the previous talks, we were able to show that there exists a fully faithful functor
RepcrisQp

(GK) ↪→MFφ,wa
K . That the essential image of this functor is actually the full category

is the statement of Theorem B. Sketch the main ideas of [Col] (in particular Remarque 2.43)
that lead to a proof of this theorem.

Talk 14: (Optional) Comparison isomorphisms between different cohomology
theories and the Fontaine-Mazur conjecture – ??? (30.1.)

So far we have used the comparison isomorphisms for different cohomologies only as a mo-
tivation, but we have never seen any details. Use this talk to give a survey about étale
cohomology and de Rham cohomology of varieties, and explain the rough ideas behind Falt-
ing’s theorem. A good survey paper is [Niz], but feel free to use other references as well.
Explain the Fontaine-Mazur conjecture (see e.g. [Car, §4]) and its relation to the comparison
of cohomologies.
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