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Abstract. It’s known from [11, 10, 2] that in a contact manifold equipped with either a nondegenerate

or Morse-Bott contact form, a finite-energy pseudoholomorphic curve will be asymptotic at each of its

nonremovable punctures to a single periodic orbit of the Reeb vector field and that the convergence is
exponential. We provide examples here to show that this need not be the case if the contact form is

degenerate. More specifically, we show that on any contact manifold (M, ξ) with cooriented contact structure

one can choose a contact form λ with kerλ = ξ and a compatible complex structure J on ξ so that for the
associated R-invariant almost complex structure J̃ on R×M there exist families of embedded finite-energy

J̃-holomorphic cylinders and planes having embedded tori as limit sets.
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1. Introduction and statement of results

The study of punctured pseudoholomorphic curves in symplectizations of contact manifolds was introduced
by Hofer in [7]. Specifically, considering a contact manifold (M, ξ = kerλ), Hofer introduced a class of R-
invariant almost complex structures and a notion of energy for a pseudoholomorphic map ũ = (a, u) : C →
R×M and showed that if the energy of a pseudoholomorphic plane is finite, then there are sequences sk →∞
so that the sequence of loops

t ∈ S1 ≈ R/Z 7→ u(e2π(sk+it))

converge in C∞(S1,M) to a periodic orbit γ of the Reeb vector field of the contact form λ.
In [11, Theorem 1.2/1.3], Hofer, Wysocki, and Zehnder further show that if the periodic orbit γ is

nondegenerate, then the maps u(s) : S1 →M defined by u(s)(t) = u(es+it) satisfy

lim
s→∞

u(s) = γ in C∞(S1,M)

and in fact the convergence is exponential [11, Theorem 1.4]. There, immediately following the statement of
Theorem 1.2, the authors mention that they expect this need not be the case in the event that the periodic
orbit γ is degenerate, but that they didn’t know of an explicit example. To date no examples have appeared
in the literature, and whether or not it is possible for a finite-energy plane to have multiple periodic orbits
as asymptotic limits has remained an open question.1 We present some examples here. The examples we
construct can be localized to any arbitrarily small neighborhood of a standard model of a transverse knot
and since transverse knots exist in abundance in any contact manifold, we can prove the following.

Date: July 1, 2016.
1In fact, a claimed proof that no such examples exist has appeared in a recent (now-withdrawn) arXiv preprint.
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Theorem 1.1. Let (M, ξ) be a contact manifold. Then there exists a contact form λ on M and a compatible
complex structure J on ξ so that there exist finite-energy pseudoholomorphic planes and cylinders for the
data (λ, J) whose limit sets have image diffeomorphic to the 2-torus.

We give a brief outline of what follows. In Section 2 we begin by recalling some basic notions from
contact geometry and pseudoholomorphic curves. Then, in Section 3, we explain a correspondence between
gradient flow lines on exact symplectic manifolds and pseudoholomorphic cylinders in contact manifolds
constructed as circle bundles over those symplectic manifolds. From this construction it is clear that one
can construct pseudoholomorphic cylinders having more than one limit orbit by constructing gradient flow
lines in a symplectic manifold having an alpha or omega limit set consisting of more than a single point. To
this end, we construct in Section 4 a function on the cylinder R× S1 which will have the circle {0} × S1 as
the omega limit set of any nontrivial gradient flow line with respect to any Riemannian metric and which
can be chosen to be linear in the R-variable and independent of the S1-variable outside of any desired
neighborhood of {0} × S1. Finally, in Section 5, we apply the results of Sections 3 and 4 to construct
finite-energy pseudoholomorphic cylinders and planes having tori as limit sets. We comment that while the
construction of a pseudoholomorphic cylinder with tori as limit sets is a straightforward application of the
results in Sections 3 and 4, applying these results to construct a plane with multiple limit orbits is a bit
trickier and requires finding a situation where these results can be applied to construct a cylinder with a
removable singularity.

We close this section with a remark about notation. In most of what follows we find it convenient to
consider the circle as R/2πZ, although at some points — specifically when considering domains of pseudo-
holomorphic cylinders or periodic orbits — we will find it more convenient to consider the circle to be R/Z.
To avoid ambiguity we will use the notations S1 = R/2πZ and S1 = R/Z to distinguish between the two.

Acknowledgements. I would like to thank Luis Diogo and Urs Frauenfelder for helpful discussions. I also
gratefully acknowledge financial support from DFG grant BR 5251/1-1 and the Fakultät für Mathematik at
the Ruhr-Universität Bochum.

2. Pseudoholomorphic curves in contact manifolds

Here we recall some basic notions, primarily for the purpose of fixing notation. Let M be an oriented
(2n+ 1)-dimensional manifold. A 1-form λ is said to be a contact form on M if

(1) λ ∧ dλn is a nowhere vanishing.

A contact form on M determines a splitting

(2) TM = RXλ ⊕ ξ
where ξ = kerλ is a hyperplane distribution, called the contact structure, and Xλ is the Reeb vector field,
defined by

iXλdλ = 0 and iXλλ = 1.

We recall that if λ is a contact form on M and f : M → R is a smooth function, then efλ is also a contact
form since d(efλ) = ef (df ∧ λ+ dλ) and hence

(efλ) ∧ d(efλ)n = e(n+1)fλ ∧ dλ.
We note for later reference that a straightforward computation shows that the Reeb vector field for the
contact form efλ is related to the Reeb vector field for λ by

(3) Xefλ = e−f (Xλ −Xf )

where Xf is the unique section of ξ satisfying

(4) iXf dλ = −df + df(Xλ)λ.

That there is a unique section Xf of ξ satisfying (4) follows from nondegeneracy of dλ on ξ and the fact that
both sides of (4) vanish on Xλ.

Given a symplectic vector bundle (E,ω) over a given manifold W , a complex structure J ∈ End(E) is
said to be compatible with ω if the section of E∗ ⊗ E∗ defined by gJ := ω(·, J ·) is symmetric and positive
definite on E. It is well known that the space of such J is nonempty and contractible (see e.g. the discussion
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following Proposition 5 in Section 1.3 of [13]). Given a contact manifold, (M, ξ = kerλ), we then define the
set J (M, ξ) to be the set of complex structures on ξ compatible with dλ|ξ×ξ. We observe that if a complex
structure J ∈ End(ξ) is compatible with dλ, then it is also compatible with d(efλ) since

d(efλ)− efdλ = efdf ∧ λ
which vanishes on ξ × ξ = kerλ × kerλ. Therefore, the set J (M, ξ) depends only on a choice of conformal
symplectic structure on ξ, and not on the choice of a specific contact form inducing that structure.

Given a manifold M with contact form λ and a compatible J , we can extend J to an R-invariant almost
complex structure J̃ on R×M by requiring

(5) J̃∂a = Xλ and J̃ |π∗
Mξ

= π∗MJ

with a the coordinate along R and πM : R ×M → M the coordinate projection. We consider quintuples
(Σ, j,Γ, a, u) where (Σ, j) is a closed Riemann surface, Γ ⊂ Σ is a finite set, called the set of punctures, and
a : Σ \ Γ→ R and u : Σ \ Γ→M are smooth maps. We say such a quintuple is pseudoholomorphic map for
the data (λ, J) on M if ũ = (a, u) : Σ \ Γ→ R×M satisfies the equation

(6) dũ ◦ j = J̃ ◦ ũ
or, equivalently, if u and a satisfy

(7)
πλ ◦ du ◦ j = J ◦ πλ ◦ du

u∗λ ◦ j = da

where πλ : TM ≈ RXλ ⊕ ξ → ξ is the projection of TM onto ξ along Xλ. The Hofer energy E(u) of a
pseudoholomorphic map (Σ, j,Γ, a, u) is defined by

(8) E(u) = sup
ϕ∈Ξ

∫
Σ\Γ

ũ∗d(ϕλ) = sup
ϕ∈Ξ

∫
Σ\Γ

d(ϕ(a)u∗λ)

where Ξ ⊂ C∞(R, [0, 1]) is the set of smooth functions ϕ : R → [0, 1] with ϕ′(t) ≥ 0 for all s ∈ R,
lims→−∞ ϕ(s) = 0, and lims→∞ ϕ(s) = 1.

To each puncture in a pseudoholomorphic map we will a assign a quantity called the mass of the puncture.
First, we will call a holomorphic embedding ψ : [0,+∞) × S1 ⊂ C/iZ → Σ \ Γ a holomorphic cylindrical
coordinate system around z0 ∈ Γ if lims→∞ ψ(s, t) = z0. Given a holomorphic cylindrical coordinates ψ
around z0 ∈ Γ, we consider the family of loops v(s) = (u ◦ ψ)(s, ·) : S1 → M and define the mass m(z0) of
the puncture z0 by

(9) m(z0) = lim
s→∞

∫
S1
v(s)∗λ.

The limit in this definition is well-defined as a result the compatibility of J with dλ. Indeed, for s1 > s0 we
apply Stokes’ theorem to compute∫

S1
v(s1)∗λ−

∫
S1
v(s0)∗λ =

∫
[s0,s1]×S1

(u ◦ ψ)∗dλ(10)

=

∫
[s0,s1]×S1

dλ(us, ut) ds ∧ dt

=

∫
[s0,s1]×S1

dλ(πλ(us), πλ(ut)) ds ∧ dt iXλdλ = 0

=

∫
[s0,s1]×S1

dλ(πλ(us), Jπλ(us)) ds ∧ dt (7)

and the integrand in the final line above nonnegative by compatibility of J with dλ. Thus the integral in
the definition (9) of mass is an increasing function of s, which lets us conclude the integral is well-defined
(although possibly infinite). It can, moreover, be shown that the mass is independent of the choice of
holomorphic cylindrical coordinates near z0.

If is a straightforward exercise using (10) and definition of Hofer energy to show that if a pseudoholomor-
phic map has finite Hofer energy, then all punctures have finite mass. Furthermore, punctures with mass 0
can be shown to be removable, that is, one can find a pseudoholomorphic extension of the map ũ over any
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puncture with mass 0 (see [9, pgs. 272-3]). The behavior near punctures with nonzero mass is described by
the following now well-known theorem of Hofer from [7].2

Theorem 2.1. Let M be a compact manifold equipped with a contact form λ and compatible complex structure
J ∈ J (M, ξ) on ξ = kerλ. Let (Σ, j,Γ, a, u) be a solution to (7) and assume that z0 ∈ Γ has mass
m(z0) = T 6= 0. Then for every holomorphic cylindrical coordinate system ψ : [0,∞) × S1 → Σ \ Γ around
z0, and every sequence sk → ∞ there exists a subsequence skj and a smooth map γ : S1 = R/Z → M with

γ̇ = T ·Xλ ◦ γ so that the sequence of loops u ◦ ψ(skj , ·) : S1 →M converge in C∞(S1,M) to γ.

We will refer to the collection of periodic orbits obtained as limits of a given finite-energy pseudoholo-
morphic map as the limit set of that map. As mentioned in the introduction, it can be shown under some
suitable nondegeneracy assumptions that a puncture has a unique periodic orbit (up to reparametrization)
in its limit set and that the convergence to that orbit is exponential [11, 10, 2, 14]. To date no example of
a finite-energy pseudoholomorphic map with a puncture admitting multiple periodic orbits as asymptotic
limits has appeared in the literature.

3. Prequantization spaces, gradient flows, and pseudoholomorphic cylinders

In this section we explain a correspondence between gradient flows on symplectic manifolds and certain
pseudoholomorphic cylinders in an associated prequantization space, that is, a contact manifold constructed
as a principal S1-bundle over the given symplectic manifold with the contact structure being given as the
horizontal distribution determined by an appropriate connection on the bundle. For simplicity we focus on
the case of trivial S1-bundles over exact symplectic manifolds, since that is all we require for the proof of our
main theorem, but we point out that the construction of pseudoholomorphic cylinders in a prequantization
space from gradient flow lines in the base can be generalized to any prequantization space.

Let (W,ω = dβ) be an exact symplectic manifold and consider S1(≈ R/2πZ) ×W equipped with the
1-form

(11) λ = dθ + π∗β.

where π : S1×W →W is the canonical projection onto the second factor. The 1-form λ defined in this way
is a contact form on S1 ×W since

λ ∧ (dλ)n = (dθ + π∗β) ∧ π∗ωn

= dθ ∧ π∗ωn > 0.

We will refer to a pair (S1×W,dθ+π∗β) consisting of a trivial S1-bundle and a contact form arising in this
way as a prequantization space over the symplectic manifold (W,ω = dβ).

We observe that the Reeb vector field of the contact form (11) is given by ∂θ and hence the splitting (2)
induced on TM by the contact form is given by

T (S1 ×W ) ≈ TS1 ⊕ ξ.
Thus ξ is an S1-invariant horizontal distribution of the bundle S1 ×W → W which gives us a one-to-one
correspondence between the space Γ(TW ) of vector fields on W and the space ΓS1(ξ) of S1-invariant sections
of the contact structure ξ. This correspondence is given explicitly by the maps

(12) X ∈ TpW 7→ X̃ := −β(X) ∂θ +X ∈ ξ(θ,p) ⊂ T(θ,p)(S
1 ×W )

and

Ỹ ∈ ξ(θ,p) 7→ dπ(Ỹ ) ∈ TpW,
where the plus sign in (12) is to be interpreted relative to the natural splitting

T(θ,p)(S
1 ×W ) ≈ TθS1 ⊕ TpW

2 Hofer only considered planes in [7] and proves the slightly weaker statement that there exists a sequence sk →∞ so that

corresponding loops u ◦ ψ(sk, ·) converge to a periodic orbit, but the generalization of the proof to the result we state here is

straightforward. In the survey [12, Theorem 3.2], the appropriate result is proven for a general pseudoholomorphic half-cylinder,
albeit under a different notion of energy. The fact that this different notion of energy implies finite Hofer energy as defined by

(8) is addressed in Theorem 5.1 of the same paper.
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arising from the canonical projection onto the factors of the Cartesian product. The correspondence between
vector fields on W and S1-invariant sections of ξ generalizes to arbitrary tensor fields on W . In particular
an endomorphism A ∈ End(TW ) ≈ TW ∗ ⊗ TW of the form

A =
∑
i

αi ⊗Xi

lifts to an S1-invariant endomorphism Ã ∈ End(ξ) ≈ ξ∗ ⊗ ξ

Ã =
∑
i

π∗αi ⊗ X̃i.

Equivalently, we can define Ã to be the unique section of End(ξ) satisfying

ÃX̃ = ÃX

for every vector field X on TW .
We define J (W,ω) to be the set of almost complex structures on W compatible with the symplectic

form ω, that is, those j ∈ End(TW ) which square to negative the identity and for which gj := ω(·, j·) is a
Riemannian metric on W . According to the remarks of the previous paragraph, j lifts to an S1-invariant
endomorphism j̃ of ξ characterized by

j̃X̃ = j̃X

for every vector field X on W . From this equation together with the linearity of the map X 7→ X̃ and the
fact that

dλ = d(π∗β) = π∗(dβ) = π∗ω

it follows that the S1-invariant lift j̃ ∈ End(ξ) of a compatible almost complex structure j ∈ J (W,ω) on W
is an element of J (S1 ×W, ξ), i.e. a complex structure on ξ compatible with dλ.

Given a choice of compatible j ∈ J (W,ω) we can associate two vector fields on W to any smooth real-
valued function f on W : the Hamiltonian vector field Xf and the gradient ∇f defined respectively by

iXfω = −df and gj(∇f, ·) = df.

These vector fields are related by the equations

Xf = j∇f and ∇f = −jXf

since we can use the definition of gj and the antisymmetry of ω to compute

ij∇fω = ω(j∇f, ·) = −ω(·, j∇f) = −gj(·,∇f) = −df.

From the observations of the previous paragraph, the respective S1-invariant lifts of j̃, ∇̃f , and X̃f of j, ∇f
and Xf satisfy

(13) X̃f = j̃∇̃f and ∇̃f = −j̃X̃f .

Continuing to let f : W → R denote a smooth function on W , we can pull f back to an S1-invariant
smooth function π∗f on S1 ×W and consider the contact form λf defined by

λf = eπ
∗fλ = eπ

∗f (dθ + π∗β).

Since

iX̃f dλ = iX̃fπ
∗ω

= π∗(iXfω)

= −π∗df
= −d(π∗f) + d(π∗f)(∂θ)λ

it follows from (3)-(4) that

(14) Xλf = e−π
∗f (∂θ − X̃f ).

From this and (13) we note at any point p ∈W where f has a critical point, Xλf (θ, p) = e−f(p)∂θ, and thus

the fiber in S1 ×W over p is a periodic orbit of the Reeb vector field with period 2πef(p).
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We are now ready to state the main theorem of the section, which establishes a correspondence between
gradient flows on a symplectic manifold (W,ω = dβ) and pseudoholomorphic cylinders in the corresponding
prequantization space (S1 ×W,dθ + π∗β). The idea of relating gradient flow lines of a Morse function to
pseudoholomorphic cylinders in a contact manifold originates in [2] (see also [4, 1]). In the present context
this relationship can be seen as a generalization to the contact setting of an idea of Floer from [5] (see also
[16, 8]).

Theorem 3.1. Let (S1 ×W,λ = dθ + π∗β) be a prequantization space over an exact symplectic manifold
(W,ω), let j ∈ J (W,ω = dβ) be a compatible almost complex structure on W , and let J = j̃ ∈ J (S1 ×W, ξ)
be the corresponding S1-invariant compatible complex structure on ξ = kerλ. Given a smooth function
f : W → R, consider smooth maps γ : R→W , θ : R→ S1, and a : R→ R satisfying the system of o.d.e.’s

γ̇(s) = 2π∇f(γ(s))(15)

θ̇(s) = −2πβ(∇f(γ(s)))(16)

ȧ(s) = 2πef(γ(s))(17)

with ∇f denoting the gradient with respect to the metric gj = ω(·, j·). Then the map ũ = (a, u) : R× S1(≈
R/Z)→ R× S1(≈ R/2πZ)×W defined by

ũ(s, t) = (a(s, t), u(s, t)) = (a(s), θ(s) + 2πt, γ(s))

is a pseudoholomorphic cylinder for the data (eπ
∗fλ, J) with Hofer energy3

(18) E(u) = 2π lim
s→∞

ef(γ(s)) ∈ [0,+∞].

Proof. We compute using (12)

ũs(s, t) = ȧ(s) ∂a + θ̇(s) ∂θ + γ̇(s)

= 2πef(γ(s)) ∂a − 2πβ(∇f(γ(s))) ∂θ + 2π∇f(γ(s))

= 2π
(
ef(γ(s)) ∂a + ∇̃f(u(s, t))

)
and similarly using (14)

ũt(s, t) = 2π∂θ

= 2π
(
∂θ − X̃f

)
(u(s, t)) + 2πX̃f (u(s, t))

= 2π
(
ef(γ(s))Xefλ(u(s, t)) + X̃f (u(s, t))

)
.

It then follows from the definition (5) of the R-invariant extension of J to an almost complex structure on
R× S1 ×W and from (13), that ũ satisfies the pseudoholomorphic map equation (6).

It remains to compute the Hofer energy. To do that, we first compute

u∗λ = λ(us) ds+ λ(ut) dt

= λ(∇̃f) ds+ λ(2π∂θ) dt

= 2πdt.

3 We remark that finiteness of the energy here does not immediately imply that the cylinders approach periodic orbits

because W , being equipped with an exact symplectic form, is necessarily noncompact. Consider, for example, the symplectic

manifold (R2, dx ∧ dy = d(x dy)) and the function f(x, y) = arctanx. The pseudoholomorphic cylinders in the appropriate
prequantization space covering gradient flow lines in the base have finite energy as a result of (18) since the function f is

bounded, but the cylinders do not approach periodic orbits since the function f has no critical points.

6



We then consider a smooth, increasing function ϕ : R→ [0, 1] with lims→∞ ϕ(s) = 1 and lims→−∞ ϕ(s) = 0,
and compute

(19)

∫
[s0,s1]×S1

ũ∗d(ϕeπ
∗fλ) =

∫
[s0,s1]×S1

d(ϕ(a)ef(γ)2πdt)

=

(∫
{s1}×S1

−
∫
{s0}×S1

)
2πϕ(a)ef(γ) dt

= 2π
(
ϕ(a(s1))ef(γ(s1)) − ϕ(a(s0))ef(γ(s0))

)
.

From (15) and (17) we know that the function ef◦γ is increasing and a is strictly increasing with increasing
derivative. Thus lims→∞ a(s) = +∞ and we can conclude that

lim
s1→∞

ϕ(a(s1))ef(γ(s1)) =

(
lim
s1→∞

ϕ(a(s1))

)(
lim
s1→∞

ef(γ(s1))

)
= ϕ(+∞) lim

s1→∞
ef(γ(s1)) = lim

s1→∞
ef(γ(s1)).

Again using that ef◦γ is increasing we can know that lims0→−∞ ef(γ(s0)) exists and is either positive or
zero. If the case that this limit is positive, we know from (17) that lims0→−∞ a(s0) = −∞ and hence that
lims0→−∞ ϕ(a(s0)) = 0. In either case, we conclude that

lim
s0→−∞

ϕ(a(s0))ef(γ(s0)) = 0

because it’s a product of increasing, positive functions, at least one of which limits to 0 as s0 → −∞. Hence,
taking limits in (19) above leads to ∫

R×S1
ũ∗d(ϕefλ) = 2π lim

s→∞
ef(γ(s))

for any ϕ ∈ Ξ, which establishes E(u) = 2π lims→∞ ef(γ(s)) as claimed. �

4. A gradient flow with a 1-dimensional limit set

In this section we construct a function so that the omega limit set of all of its nontrivial gradient flow
lines is diffeomorphic to a circle. This function will be used in the next section in conjunction with Theorem
3.1 above to construct finite-energy cylinders and planes localized near a transverse knot which have tori as
limit sets.

The main theorem of this section is the following.

Theorem 4.1. For any δ > 0, there exists a smooth function Fδ : R× S1(≈ R/2πZ)→ R so that

• Fδ(s, t) = s for s ≤ δ,
• s ≤ Fδ(s, t) < 0 for s ∈ (−δ, 0),
• Fδ(s, t) = 0 for s ≥ 0,
• dFδ(s, t) 6= 0 for s < 0,

and so that for any choice of Riemannian metric on R× S1, the solution to the initial value problem

γ(τ) = ∇Fδ(γ(τ)) γ(0) = (s0, t0) with s0 < 0

exists for all τ ≥ 0 and has the circle {0} × S1 as its omega limit set.

Remark 4.2. The fact that there exist gradient flows with omega limit sets consisting of more than a single
point has been known for some time and a qualitative description of a function like the one we construct
below is given in [3, pg. 261]. In [15, Example 3, pgs. 13-14] a function in R2 is given for which it can be
shown that there is at least one gradient flow line whose omega limit set is a circle.

An interesting feature of the functions Fδ provided by our theorem is that every nontrivial flow line,
independent of the metric, has the circle {0}×S1 as its omega limit set. Since the behavior of the functions
Fδ is especially simple outside of a neighborhood of this limit set, this allows for a good deal of flexibility in
constructing functions on a given Riemannian manifold whose gradients will have flow lines having a circle
as an omega limit set. For example, it is a straightforward corollary of this theorem that one can construct
smooth functions on any Riemannian 2-manifold (M2, g) having any desired embedded circle as the limit
set of some gradient flow line. Indeed, we can either identify a neighborhood of a given embedded circle
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with (−ε, ε)×R/2πZ or, in the nonorientable case, we can identify a double cover of a neighborhood of the
circle with (−ε, ε) × R/2πZ with the nontrivial deck-transformation of the cover being given by the map
(s, t) 7→ (−s, t+ π). We then consider the function G(s, t) := Fε/2(s, t) + Fε/2(−s, t+ π) which is invariant
under the action of the deck transformation in the nonoriented case, agrees with − |s| for |s| ∈ (ε/2, ε),
and which will have {0} × S1 as the omega limit set of any gradient flow line starting in the neighborhood.
The function can then be extended to a smooth function on the entire surface using an appropriate cutoff
function.

We will construct the function in the following paragraph and prove that it has the required properties in
a series of lemmas. Throughout this section we will make no notational distinction between smooth functions
with domain R× S1 ≈ R× R/2πZ and functions on R2 which are 2π-periodic in the second variable.

We consider the function G : R× R/2πZ = {(s, t)} → R defined by4

G(s, t) =

{
e1/s (sin(1/s+ t)− 5/4) s < 0

0 s ≥ 0

and we note that G is smooth and that5

(20) s < − 9
4e

1/s ≤ G(s, t) ≤ − 1
4e

1/s for all s < 0.

For a given value δ > 0 we let η : R→ [0, 1] be a smooth cut-off function satisfying

η(t) =

{
0 s < −δ
1 s > −δ/2

and η′(t) ≥ 0 everywhere and define the function F : R× R/2πZ→ R by

(21) F (s, t) = (1− η(s))s+ η(s)G(s, t).

We observe that this definition with (20) implies that

(22) s ≤ F (s, t) ≤ − 1
4e

1/s for all s < 0

so the first three properties required of Fδ in the theorem are clearly satisfied. The fourth property, concerning
the critical set, is then addressed by the following lemma.

Lemma 4.3. The set of critical points of the above defined function F is s ≥ 0.

Proof. We first compute for s < 0

(23)
Gs(s, t) = −1/s2e1/s

(
sin(1/s+ t) + cos(1/s+ t)− 5

4

)
= −1/s2e1/s

(√
2 sin(1/s+ t+ π

4 )− 5
4

)
and

(24) Gt(s, t) = e1/s cos(1/s+ t)

and note then that

dG(s2 ∂s + ∂t) = s2Gs +Gt

= −G
which is everywhere positive for s < 0. We then compute

dF (s, t) = η′(s)(G(s, t)− s) ds+ (1− η(s)) ds+ η(s)dG(s, t)

and thus
dF (s2 ∂s + ∂t) = s2η′(s)(G(s, t)− s) + (1− η(s))s2 + η(s)(−G),

4 As will become clear from our proof, the 5/4 in our example can be replaced with any constant strictly bigger than 1 and

strictly less than
√

2.
5 The left-most part of this inequality can be seen from the following argument. To show that − 9

4
e1/s − s is positive for all

s < 0, it suffices to show that g(t) = 9
4
tet + 1 is positive for all t < 0. A straightforward argument using single-variable calculus

then shows that g(−1) = − 9
4
e−1 + 1 > 0 is the absolute minimum of the function g on R.
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which we claim is always positive for s < 0. Indeed the first term is always nonnegative since, as observed
above in (20), G(s, t) ≥ −9

4e
1/s > s for all s < 0. Meanwhile the second two terms are the convex sum

of positive quantities and thus always positive. We’ve thus found a vector field v = s2 ∂s + ∂t for which
dF (v) > 0 for s < 0 which shows that F has no critical points for s < 0, and hence the critical set of F is
s ≥ 0 where F vanishes identically. �

As an immediate corollary we are able to show that the R-component of any nontrivial gradient flow line
of F converges to 0 in forward time.

Lemma 4.4. For an arbitrary Riemannian metric g on R× S1 and a point (s0, t0) ∈ R− × S1, the solution
γ(τ) = (s(τ), t(τ)) ∈ R× S1 to

(25) γ′(τ) = ∇gF (γ(τ)) γ(0) = (s0, t0)

exists for all τ ≥ 0 and limτ→∞ s(τ) = 0.

Proof. Since dF (s, t) = 0 for s ≥ 0 and F (s, t) = s agrees with s for s < −δ, we know that any solution
to (25) stays bounded in a set of the form [a, 0]× S1 in forward time which implies that the solution exists
for all τ ≥ 0. Given that the solution γ(τ) exists and is bounded in forward time, we know from general
properties of gradient flows that limτ→∞ F (γ(τ)) exists and is equal to a critical value of F . Since we have
just seen in Lemma 4.3, that 0 is the unique critical value of F , we conclude limτ→∞ F (γ(τ)) = 0. This with
(22) implies that limτ→∞ s(τ) = 0. �

The key step to proving the claim about the omega limit sets of flow lines of F is the following lemma.

Lemma 4.5. Let γ(τ) = (s(τ), t(τ)) be a solution to (25), and let t̃ : R+ → R be a choice of lift of
t : R+ → S1. Then the function z : R+ → R defined by

z(τ) =
1

s(τ)
+ t̃(τ)

is bounded.

Proof. Let [
A(s, t) B(s, t)
B(s, t) C(s, t)

]
be the matrix of the dual metric to g with respect to the coordinate basis {ds, dt} for T ∗(R× S1), and note
positive definiteness tells us that A(s, t) and C(s, t) are positive for all (s, t) ∈ R × S1. Furthermore, since
γ(τ) remains in a compact region for all τ ≥ 0, we can conclude that the functions A(τ) := A(s(τ), t(τ)),
B(τ) := B(s(τ), t(τ)), and C(τ) := C(s(τ), t(τ)) are bounded and that A(τ) and C(τ) are bounded away
from zero (or, equivalently that A−1(τ) and C−1(τ) are bounded).

From Lemma 4.4 and the definition (21) of F it follows that F (γ(τ)) = G(γ(τ)) for sufficiently large τ .
For such values of τ we use (23)-(24) with the boundedness of A(τ), B(τ), C(τ), and A−1(τ) to compute

s′ = A(s, t)Gs(s, t) +B(s, t)Gt(s, t)

= −s−2e1/sA(s, t)
(√

2 sin(1/s+ t+ π
4 )− 5

4 +O(s2)
)

and

t̃′ = t′

= B(s, t)Gs(s, t) + C(s, t)Gt(s, t)

= s−4e1/sA(s, t)O(s2)
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with O(s2) denoting, as usual, a function h for which s−2h(s, t) remains bounded on a neighborhood of
s = 0. We then have that

z′ = −s−2s′ + t̃′

= s−4e1/sA(s, t)
(√

2 sin(1/s+ t+ π
4 )− 5

4 +O(s2)
)

= s−4e1/sA(s, t)
(√

2 sin(z + π
4 )− 5

4 +O(s2)
)

and so, for sufficiently large values of τ (and thus sufficiently small values of s(τ)), we’ll have that

(26)
√

2 sin(z(τ) + π
4 )− 11

8 ≤
(
s(τ)−4e1/s(τ)A(τ)

)−1

z′(τ) ≤
√

2 sin(z(τ) + π
4 )− 9

8 .

We claim this lets us conclude that z(τ) is bounded. Indeed, since
√

2 < 9
8 , the solution set to the inequality

√
2 sin(z + π

4 )− 9
8 < 0

is a countable union of intervals which is invariant under translation by 2πZ. By (26), z(τ) can’t cross these

intervals in the positive direction once τ is sufficiently large for (26) to hold. Similarly, since
√

2 < 11
8 , z(τ)

can’t cross the intervals where √
2 sin(z + π

4 )− 11
8 > 0

in the negative direction once τ is sufficiently large. We conclude that z(τ) is bounded for τ ∈ [0,∞). �

We now complete the proof of the main theorem of the section

Proof of Theorem 4.1. By construction and Lemma 4.3, F satisfies all required properties, and it remains to
show that the omega limit set of a solution to (25) is the circle {0}×S1. Let γ(τ) = (s(τ), t(τ)) be a solution
to (25) and let t̃ : R+ → R be a lift of t : R+ → S1. We have shown in Lemma 4.5 above that the function
z = 1/s+ t̃ is bounded on [0,∞). Since we know from Lemma 4.4 that limτ→∞ s(τ) = 0 and since s(τ) < 0
for all τ ≥ 0, we can conclude that limτ→∞

1
s(τ) = −∞. This in turn lets us conclude t̃(τ) approaches +∞

as τ → ∞ or else z would not be bounded. By continuity, the equation t̃(τ) = c has a solution τc for all
c ≥ t̃(0). We then conclude that for any τ0 ∈ R and any t0 ∈ S1, there exists a τt0 > τ0 so that t(τt0) = t0.
This with the fact that s(τ)→ 0 as τ →∞ shows that {0} × S1 is the omega limit set of γ. �

5. Finite-energy cylinders and planes with tori as limit sets

Here we prove our main theorem, Theorem 1.1, that is, we construct examples of finite-energy cylinders
and finite-energy planes having tori as limit sets. The constructions take place in an arbitrarily small
tubular neighborhood of a standard model of a transverse knot, so we begin by recalling some basic facts
about transverse knots and explaining why this construction suffices to prove the main theorem.

Let (M2n+1, ξ = kerλ) be a contact manifold. An embedding γ : S1 →M is said to be a transverse knot
if γ is everywhere transverse to ξ or equivalently, if λ(γ̇) is never zero. Transverse knots exist in abundance
in any contact manifold. Indeed, by the well-known Darboux theorem for contact structures, there exists a
contactomorphism — that is a diffeomorphism preserving the contact structure — between a neighborhood
of any point in a contact manifold (M2n+1, ξ) and a neighborhood of 0 in R2n+1 = {(z, xi, yi)} equipped
with the contact structure ξ0 = kerλ0 where λ0 is the contact form

λ0 = dz + αn

with

(27) αn =

n∑
i=1

xi dyi − yi dxi

(see e.g. [6, Theorem 2.24]). Since, for a given k ∈ Z ∩ [1, n] and any constants r > 0, ci, di ∈ R, circles of
the form

x2
k + y2

k = r2, and xi = ci, yi = di, for i 6= k

are easily seen to be transverse to the contact structure, we can conclude that transverse knots exist in every
contact manifold and, indeed, that transverse knots exist in any neighborhood of a given point in a contact
manifold.
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We next recall that one can use a Moser argument to prove a neighborhood theorem for transverse knots
which tells us that there exists a contactomorphism between some neighborhood of any given transverse knot
and a neighborhood of S1 × {0} in S1 × R2n = {(θ, xi, yi)} equipped with the contact structure ξ0 = kerλ0

where

(28) λ0 = dθ + αn

with αn as defined in (27) above (see e.g. [6, Theorem 2.32/Example 2.33]). We will refer to S1 × {0} ⊂
(S1 × R2n, ξ0) as the standard model of a transverse knot in S1 × R2n.

Given the facts recalled in the previous two paragraphs, it suffices for the proof of our main theorem to
construct the desired finite-energy planes and cylinders in any given neighborhood of the standard model of
a transverse knot in S1×R2n. Since dαn = 2

∑n
i=1 dxi∧dyi is a symplectic form on R2n, S1×R2n equipped

with the contact form (28) has the structure of a prequantization space. We can thus apply Theorems 3.1
and 4.1 to construct a finite-energy cylinder having tori of periodic orbits as its limit sets.

Theorem 5.1. Let r+ > r− > 0. Then there exists a smooth function F : S1 × R2n and an almost
complex structure J ∈ J (S1 × R2n, ξ0) so that passing through every point (θ0, p, z) ∈ S1 × R2(n−1) × R2

with |z| ∈ (r−, r+) is a finite-energy cylinder for the data (eFλ, J) with limit sets equal to the union of tori
S1 × {p} × {|z| = r−} ∪ {|z| = r+} ∈ S1 × R2(n−1) × R2.

Proof. With Fδ a function with the properties stated in Theorem 4.1, we consider a function G : R×S1 → R
defined by

G(ρ, φ) =

{
F1/4(ρ, φ) ρ > −3/4

−F1/4(−ρ− 1, φ)− 1 ρ < −1/4

which defines a smooth function since F1/4(ρ, φ) = ρ = −F1/4(−ρ− 1, φ)− 1 for ρ ∈ [−3/4,−1/4]. For any

initial condition (ρ0, φ0) ∈ [−3/4,−1/4]× S1 the forward gradient flow of G for any metric agrees with that
of F1/4 and thus limits to {0} × S1. Similarly, for any initial condition (ρ0, φ0) ∈ [−3/4,−1/4] × S1 the
backward gradient flow of G for any metric agrees with that of −F1/4(−ρ− 1, φ)− 1 which is conjugated to

the forward gradient flow of F1/4 by reflection and translation and thus limits in backward time to {−1}×S1.

We consider the diffeomorphism p : R× R/2πZ→ R2 \ {0} defined by

p(ρ, φ) = (r+(r+/r−)ρ cosφ, r+(r+/r−)ρ sinφ)

which maps the circles {−1} × S1 and {0} × S1 to the circles |z| = r− and |z| = r+ respectively. We then
define a function F : R2n → R by

F (x1, y1, . . . , xn, yn) =

{
G(p−1(xn, yn)) (xn, yn) 6= 0

−1 (xn, yn) = 0

which defines a smooth function since G(ρ, φ) = −F1/4(−ρ− 1, φ)− 1 for ρ ≤ −1 and hence G(p−1(z)) = −1

for |z| < r−. We observe that for any metric on R2n ≈ R2(n−1) × R2 for which the last TR2 is everywhere
orthogonal to TR2(n−1) we will have that ∇F = (0,∇G) ∈ R2(n−1) ×R2 and thus the gradient flow of F for
initial points (p, z) ∈ R2(n−1) × R2 with |z| ∈ (r−, r+) will have the circles |z| ∈ {r−, r+} as limit sets.

Choosing then an almost complex structure J ∈ J (R2n, dαn) on R2(n−1) × R2 which preserves the two
factors (for example the standard J0 defined by J0∂xi = ∂yi), we know from Theorem 3.1 that gradient flow
lines of F on R2n with respect to the metric dβ(·, J ·) lift to finite-energy cylinders in R× S1 × R2n for the
data (eπ

∗Fλ, J). Since the nonconstant gradient flow lines for the function F will have the circles |z| = r±
as limit sets, the corresponding finite-energy cylinders in S1 × R2n will have the tori S1 × {p} × {|z| = r±}
as limit sets. �

Using Theorem 3.1 to construct finite-energy a plane with a torus as a limit set is somewhat more subtle
since the Theorem only tells us how to construct a cylinder from a gradient flow line. To construct a plane
we will use the theorem to construct a cylinder with a removable singularity.

Theorem 5.2. Let r0 > 0. Then there exists a smooth function F̃ : S1 × R2n and an almost complex
structure J ∈ J (S1×R2n, ξ0) so that passing through every point (θ0, 0, z) ∈ S1×R2(n−1)×R2 with |z| < r0
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is a finite-energy plane for the data (eF̃λ0, J) with limit set equal to the embedded torus S1×{0}×{|z| = r0} ∈
S1 × R2(n−1) × R2.

The strategy of the proof is to consider a set which is contactomorphic to the complement of the xn =
yn = 0 locus of a standard model of a transverse knot and show that this can be given the structure of
a prequantization space with respect to the angular variable on {(xn, yn)} \ {0}. We then use Theorems
3.1 and 4.1 to construct a pseudoholomorphic cylinder which has a removable puncture mapped to the the
xn = yn = 0 locus.

We begin with a computational lemma.

Lemma 5.3. Consider W := S1 × R2(n−1) × R = {(θ, xi, yi, ρ)} equipped with the 1-form

(29) β = e−2ρ (dθ + αn−1)

with αn−1 as defined in (27). Then:

• dβ is a symplectic form on W .
• Consider the corresponding prequantization space (S1 × W,λ := dφ + π∗β) over W . With λ0 as

defined in (28), the map

Φ : (S1 ×W, ξ = kerλ)→ (S1 × R2(n−1) × (R2 \ {0}), ξ0 = kerλ0)

defined by

(30) Φ(φ, θ, xi, yi, ρ) = (θ, xi, yi, e
ρ cosφ, eρ sinφ)

is a contactomorphism and, in particular,

(31) Φ∗λ0 = e2ρλ.

• For any choice of j0 ∈ J (R2(n−1), dαn−1) the endomorphism j1 ∈ End(TW ) defined by

(32)
j1(θ, p, ρ)∂ρ = −e2ρ∂θ, j1(θ, p, ρ)∂θ = e−2ρ∂ρ, and

j1(θ, p, ρ)v = j0(p)v − αn−1(j0(p)v) ∂θ + αn−1(v)e−2ρ ∂ρ for v ∈ TR2(n−1).

is an almost complex structure on W compatible with dβ, i.e. j1 ∈ J (W,dβ), and the corresponding
metric gj1 := dβ ◦ (I × j1) on W is given by

(33) gj1 = 2 dρ⊗ dρ+ 2e−4ρ(dθ + αn−1)⊗ (dθ + αn−1) + e−2ρdαn−1 ◦ (I × j0).

• Let j̃1 ∈ J (S1×W, ξ) be the S1-invariant complex structure on ξ determined by j1 as defined above,

i.e. j̃ is the complex structure characterized by j̃1v = j̃1ṽ with

(34) ṽ = −β(v)∂φ + v = −e−2ρ (dθ(v) + αn−1(v)) ∂φ + v

the lift of v to an S1-invariant section of ξ from (12). Then Φ∗j̃1 = dΦ ◦ j̃1 ◦ dΦ−1 ∈ J (S1 ×
R2(n−1) × R2 \ {0} , ξ0) has smooth extension to a compatible J ∈ J (S1 × R2n, ξ0).

Assuming for the moment the results of the lemma, we proceed with the proof of Theorem 5.2.

Proof of Theorem 5.2. Given r0 > 0 we define a smooth function G : W → R by

G(θ, p, ρ) = 2(F1(ρ− log r0, θ) + log r0)

with F1 a function satisfying the properties given in Theorem 4.1 with δ = 1. We note that as a result of
the definition and of Theorem 4.1, G(θ, p, ρ) = 2ρ for ρ < log r0 − 1 and G(θ, p, ρ) = 2 log r0 for ρ ≥ log r0.
Moreover, since αn−1 = 0 along the p = (x1, y1, . . . , xn−1, yn−1) = 0 locus, we have that

(35) ∇G(θ, 0, ρ) =
1

2

(
Gρ∂ρ +Gθe

4ρ∂θ
)

= ∂ρF1(ρ− log r0, θ)∂ρ + ∂θF1(ρ− log r0, θ)e
4ρ∂θ

where ∇G is the gradient with respect to the metric (33) on W . Therefore, for any initial point w0 =
(θ0, 0, ρ0) ∈ S1 × R2(n−1) × R with ρ0 < log r0, the solution γ(s) to the equation

(36) γ̇(s) = 2π∇G(γ(s))

stays within the embedded cylinder S1 × {0} × R ⊂ S1 × R2(n−1) × R and agrees with a gradient flow for
the function (ρ, θ) ∈ R× S1 7→ 2(F1(ρ− log r0, θ) + log r0) for an appropriate metric on the cylinder. Thus
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the flow exists in forward time and has the circle S1 × {0} × {log r0} ∈ S1 ×R2(n−1) ×R as its omega limit
set. Meanwhile, using the fact that F1(ρ− log r0, θ) = ρ− log r0 for ρ < log r0 − 1, we have from (35) that

∇G(θ, 0, ρ) = ∂ρ for ρ < log r0 − 1

and thus that the solution γ to (36) is given by γ(s) = (θ1, 0, 2πs+ s1) for sufficiently small s with θ1 ∈ S1

and s1 ∈ R appropriate constants. Thus the flow exists indefinitely in backward time as well. Applying
Theorem 3.1 we know that the map ũ(s, t) = (a(s), φ(s) + 2πt, γ(s)) ∈ R × S1 ×W where a : R → R and

φ : R → S1 satisfy ȧ(s) = 2πeG(γ(s)) and φ̇(s) = 2πβ(∇G(γ(s))) is a finite-energy cylinder for the data
(eπ

∗
WGλ, j̃1) with energy 2π lims→∞ eG(γ(s)) = 2πe2 log r0 = 2πr2

0 and the torus S1 × S1 × {0} × {log r0} as
its limit set. Moreover, since G(θ, p, ρ) = 2ρ and ∇G(θ, p, ρ) = ∂ρ for ρ < log r0 − 1, there exist constants
a1 ∈ R, θ1 ∈ S1, s1 ∈ R, and t1 ∈ S1 so that

(37) ũ(s, t) = (πe4πs + a1, t1 + 2πt, θ1, 0, 2πs+ s1) ∈ R× S1 × S1 × R2(n−1) × R = R× S1 ×W.
for sufficiently negative s.

We next show that the map ṽ := (a,Φ ◦ u) : R × S1 → R × S1 × R2n, with Φ : (S1 ×W, ξ) → (S1 ×
R2n, ξ0) the contactomorphism defined in (30), has a removable singularity at −∞ and thus extends to a
pseudoholomorphic plane. We first note that (31) gives us

[Φ−1]∗
(
e(π∗

WG)λ
)

= e(π∗
WG−2ρ)◦Φ−1

λ0

and, since G(θ, p, ρ) = 2ρ for ρ < log r0 − 1, we’ll have that F̃ := (π∗WG − 2ρ) ◦ Φ−1 extends to a smooth

function on S1 × R2n and thus [Φ−1]∗
(
e(π∗

WG)λ
)

= eF̃λ0 defines a contact form on S1 × R2n. Since, by

Lemma 5.3, the pushed-forward complex structure Φ∗j̃1 = dΦ ◦ j1 ◦ dΦ−1 has a smooth extension to a
J ∈ J (S1 ×R2n, ξ0), it suffices to show that the map ṽ = (a,Φ ◦ u) has a smooth extension. To see this, we
use the definition (30) with (37) to compute that

ṽ = (a,Φ ◦ u) = (πe4πs + a1, θ0, 0, e
2πs+s1 cos(t1 + 2πt), e2πs+s1 sin(t1 + 2πt)) ∈ R× S1 × R2(n−1) × R2

for sufficiently negative s. Precomposing with the biholomorphic map ψ : C \ {0} → R× S1 = C/iZ defined
by

ψ(z) = (log |z| /2π, arg z/2π)

we find that
ṽ(ψ(z)) = (π |z|2 , θ0, 0, e

s1+it1z) ∈ R× S1 × R2(n−1) × R2(≈ C)

which clearly extends smoothly over z = 0. We note moreover that the limit set S1 × S1 × {0} × {log r0} ⊂
S1×S1×R2(n−1)×R gets mapped by Φ to the embedded torus S1×{0}× {|z| = r0} ∈ S1×R2(n−1)×R2,
while the set of points (φ, θ, 0, ρ) ∈ S1 × S1 × R2(n−1) × R with ρ < log r0 gets mapped by Φ to the set
(θ, 0, z) ∈ S1 × R2(n−1) × R2 with |z| ∈ (0, r0). Thus, since we were able, by appropriate choice of initial
point of the flow of ∇G, to construct a pseudoholomorphic cylinder for the data (eπWGλ, j̃1) through any

point (φ, θ, 0, ρ) ∈ S1×S1×R2(n−1)×R, we can construct a pseudoholomorphic plane for the data (eF̃λ0, J)
through any point (θ, 0, z) ∈ S1 × R2(n−1) × R2 with |z| < r0 as desired. This completes the proof. �

Remark 5.4. If we choose an initial point in the proof of theorem to be a point (θ0, p0, ρ0) ∈ S1×R2(n−1)×R
with p0 6= 0, one can still construct a finite-energy plane from the resulting flow line with a limit set consisting
of more than a single orbit, although the limit set may be more complicated than a torus. Indeed, for a
given choice of j0 ∈ J (R2(n−1), dαn−1), we let gj0 = dαn−1(·, j0) denote the associated metric and observe
that

αn−1(p)(v) =
1

2
dαn−1(p, v) = −1

2
dαn−1(v, p) =

1

2
gj0(v, j0p).

Using this, one can compute the gradient of the function G with respect to the metric (33) to be given by

∇G(θ, p, ρ) = 2−1
(
Gρ ∂ρ + e2ρGθ

(
e2ρ + |p|j0

)
∂θ − e2ρGθj0p

)
= ∂ρF1(ρ− log r0, θ) ∂ρ + ∂θF1(ρ− log r0, θ)e

2ρ
(
e2ρ + |p|j0

)
∂θ − ∂θF1(ρ− log r0, θ)e

2ρj0p.

with |·|j0 the norm with respect to the metric gj0 . We note the the R2(n−1)-component of ∇G(θ, p, ρ) is

always orthogonal to p. If the almost complex structure j0 is constant, we can thus conclude that |p|j0 is
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constant along the flow. Thus, ρ- and θ-components of the gradient flow for G agree with a gradient flow
for a shift of the function F on R × S1 for an appropriate metric (specifically the metric g = dρ ⊗ dρ +

e−2ρ
(
e2ρ + c2

)−1
dθ⊗ dθ with c2 equal to the constant value of |p|j0 along the flow line). From this one can

argue that under the projection S1 × R2(n−1) × R2 → S1 × {0} × R2 the limit set of any plane obtained as
a lift of a gradient flow of the function G in our theorem will project to a torus.

Finally, to complete the proof of Theorem 5.2, we give the proof of Lemma 5.3 above.

Proof of Lemma 5.3. We first show that dβ is a symplectic form. Computing, we have that

(38) dβ = e−2ρ(−2 dρ ∧ dθ − 2 dρ ∧ αn−1 + dαn−1)

and hence

dβn = e−2nρ(−2 dρ ∧ dθ − 2 dρ ∧ αn−1) ∧ (dαn−1)n−1

= −2e−2nρ dρ ∧ dθ ∧ (dαn−1)n−1

which is nowhere vanishing on W = S1 × R2(n−1) × R. Hence dβ is a symplectic form on W as claimed.
Next, we show that the map Φ : (W, ξ = kerλ)→ (S1×R2(n−1)× (R2 \{0}), ξ0 = kerλ0) defined in (30) is

a contactomorphism satisfying (31). From the definition (30) of the map, it’s clear that Φ is a diffeomorphism
and that

Φ∗dθ = dθ Φ∗dxi = dxi Φ∗dyi = dyi

for i ∈ Z ∩ [1, n− 1], while a straightforward computation shows that

(39) Φ∗(xn dyn − yn dxn) = e2ρ dφ Φ∗(xn dxn + yn dyn) = e2ρ dρ.

Computing then gives

Φ∗λ0 = dθ + αn−1 + Φ∗(xn dyn − yn dxn)

= dθ + αn−1 + e2ρ dφ

= e2ρλ

which shows that Φ is a contactomorphism and establishes (31) as claimed.
We next address the third point. The fact that j2

1∂ρ = −∂ρ and j2
1∂θ = −∂θ is immediate from the

definition (32). Meanwhile for v ∈ T (R2(n−1)), we use (32) twice with j2
0v = −v to compute

j2
1v = j1

(
j0v − αn−1(j0v) ∂θ + αn−1(v)e−2ρ ∂ρ

)
= j1(j0v)− αn−1(j0v)j1∂θ + αn−1(v)e−2ρj1∂ρ

= j2
0v − αn−1(j2

0v) ∂θ + αn−1(j0v)e−2ρ ∂ρ

− αn−1(j0v)(e−2ρ ∂ρ) + αn−1(v)e−2ρ(−e2ρ∂θ)

= −v

which shows that j1 is an almost complex structure on W . To check compatibility of j1 with dβ we compute
from (32) that

dρ ◦ j1 = e−2ρ (dθ + αn−1)

dθ ◦ j1 = −e2ρ dρ− αn−1 ◦ j0 ◦ dπR2(n−1) .

dxi ◦ j1 = dxi ◦ j0 ◦ dπR2(n−1)

dyi ◦ j1 = dyi ◦ j0 ◦ dπR2(n−1)

which with (38) gives us

dβ ◦ (I × j1) = 2 dρ⊗ dρ+ 2e−4ρ(dθ + αn−1)⊗ (dθ + αn−1) + e−2ρdαn−1 ◦ (I × j0).

as claimed. By the assumption that j0 is compatible with dαn−1, this is clearly symmetric and positive
definite, and thus j1 ∈ J (W,dβ) as claimed.
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Finally, we show that Φ∗j̃1 has a smooth extension to a compatible complex structure J ∈ J (S1×R2n, ξ0).
The contact structure ξ0 = kerλ0 is spanned by the smooth sections

−αn(∂xi)∂θ + ∂xi − αn(∂yi)∂θ + ∂yi

so it suffices to check that Φ∗j̃1 times each of these sections has a smooth continuation. We first observe
that from the definition (30) of Φ we immediately have

(40) Φ∗∂θ = ∂θ Φ∗∂xi = ∂xi Φ∗∂yi = ∂yi

for i between 1 and n− 1, while (39) give us

(41) Φ∗∂ρ = xn ∂xn + yn ∂yn Φ∗∂φ = xn ∂yn − yn ∂xn .

Thus, for v ∈ T (R2(n−1)) = span {∂xi , ∂yi}
n−1
i=1 , a straightforward computation using that dθ(v) = 0 along

with (34) and (40) shows that

−αn(v)∂θ + v = Φ∗(−αn−1(v)∂̃θ + ṽ).

Computing further with this, the definition (32) of j1, and j̃1ṽ = j̃1v then shows that

(Φ∗j̃1)(−αn(v)∂θ + v) = (Φ∗j̃1)Φ∗(−αn−1(v)∂̃θ + ṽ)

= Φ∗(−αn−1(v)j̃1∂θ + j̃1v)

= Φ∗(−e−2ραn−1(v)∂̃ρ + j̃0v − αn−1(j0v)∂̃θ + αn−1(v)e−2ρ∂̃ρ)

= Φ∗(−αn−1(j0v)∂̃θ + j̃0v)

= −αn−1(j0v)∂θ + j0v

which clearly extends smoothly over the xn = yn = 0 locus since there is no xn- or yn-dependence. Meanwhile,
a straightforward computation using (30) and (41) shows that

∂xn = Φ∗
(
e−ρ (cosφ∂ρ − sinφ∂φ)

)
and ∂yn = Φ∗

(
e−ρ (sinφ∂ρ + cosφ∂φ)

)
and using this with (30), (40), and (34) shows that

−αn(∂xn)∂θ + ∂xn = yn ∂θ + ∂xn = Φ∗(e
ρ sinφ ∂̃θ + e−ρ cosφ ∂̃ρ)

and

−αn(∂yn)∂θ + ∂yn = −xn ∂θ + ∂yn = Φ∗(−eρ cosφ ∂̃θ + e−ρ sinφ ∂̃ρ).

Computing further using the definition (32) of j1 with j̃1ṽ = j̃1v shows that

Φ∗j̃1(−αn(∂xn)∂θ + ∂xn) = −αn(∂yn)∂θ + ∂yn = −xn ∂θ + ∂yn

and

Φ∗j̃1(−αn(∂yn)∂θ + ∂yn) = αn(∂xn)∂θ − ∂xn = −yn ∂θ − ∂xn
which also extend smoothly over xn = yn = 0. This completes the proof. �
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[14] Eduardo Mora-Donato. Pseudoholomorphic cylinders in symplectisations. PhD thesis, New York University, 2003,
MR2704613.

[15] Jacob Palis, Jr. and Welington de Melo. Geometric theory of dynamical systems. Springer-Verlag, New York-Berlin, 1982,

MR669541, Zbl 0491.58001. An introduction, Translated from the Portuguese by A. K. Manning.
[16] Dietmar Salamon and Eduard Zehnder. Morse theory for periodic solutions of Hamiltonian systems and the Maslov index.

Comm. Pure Appl. Math., 45(10):1303–1360, 1992, MR1181727, Zbl 0766.58023.

Fakultät für Mathematik, Ruhr-Universität Bochum, 44780 Bochum, Germany

URL: http://homepage.ruhr-uni-bochum.de/richard.siefring
E-mail address: richard.siefring@ruhr-uni-bochum.de

16

http://dx.doi.org/10.1007/BF01895669
http://dx.doi.org/10.1007/BF01895669
http://www.ams.org/mathscinet-getitem?mr=1334869
http://zbmath.org/?q=an:0845.57027
http://www.ams.org/mathscinet-getitem?mr=1432460
http://zbmath.org/?q=an:0868.53043
http://eudml.org/doc/78386
http://www.ams.org/mathscinet-getitem?mr=1395676
http://zbmath.org/?q=an:0861.58018
http://dx.doi.org/10.1016/S1874-575X(02)80017-0
http://www.ams.org/mathscinet-getitem?mr=1928532
http://zbmath.org/?q=an:1052.53063
http://dx.doi.org/10.1007/978-3-0348-8540-9
http://www.ams.org/mathscinet-getitem?mr=1306732
http://zbmath.org/?q=an:0837.58013
http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3089419
http://www.ams.org/mathscinet-getitem?mr=2704613
http://www.ams.org/mathscinet-getitem?mr=669541
http://zbmath.org/?q=an:0491.58001
http://dx.doi.org/10.1002/cpa.3160451004
http://www.ams.org/mathscinet-getitem?mr=1181727
http://zbmath.org/?q=an:0766.58023
http://homepage.ruhr-uni-bochum.de/richard.siefring
mailto:richard.siefring@ruhr-uni-bochum.de

	1. Introduction and statement of results
	2. Pseudoholomorphic curves in contact manifolds
	3. Prequantization spaces, gradient flows, and pseudoholomorphic cylinders
	4. A gradient flow with a 1-dimensional limit set
	5. Finite-energy cylinders and planes with tori as limit sets
	References

