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Abstract. We prove a result which establishes restrictions on the pseudoholomorphic curves which can exist

in a stable Hamiltonian manifold in the presence of certain R-invariant foliations of the symplectization by

holomorphic hypersurfaces. This result has applications in the first author’s work [7, 6] on algebraic torsion
in higher dimensional contact manifolds.
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1. Background and main result

Our main results here are motivated by the study of algebraic torsion in contact manifolds [7, 6] and
concern finding restrictions on the existence of pseudoholomorphic curves in certain manifolds equipped
with stable Hamiltonian structures. The manifolds we consider will be smooth fibrations over a closed,
oriented surface and we will assume further that the symplectization admits an R-invariant foliation by
pseudoholomorphic hypersurfaces which project to gradient flow lines of a Morse function on the surface.
We are interested in identifying conditions which will guarantee that a punctured pseudoholomorphic curve
is contained in the image of a leaf of a foliation. Before stating the main results we give some definitions.

Let M2n+1 be a closed, orientable manifold. A pair H = (λ, ω) ∈ Ω1(M) × Ω2(M) is said to be a stable
Hamiltonian structure on M if

• λ ∧ ωn is a volume form on M ,
• dω = 0, and
• dλ vanishes on the kernel of the map v 7→ ivω.

A stable Hamiltonian structure on M determines a splitting

TM = RXH ⊕ (ξ, ω|ξ)
of the tangent space of M into a symplectic hyperplane distribution (ξ = kerλ, ω|ξ) and a line bundle
determined by the span of the Reeb vector field XH, which is the unique vector field satisfying

λ(XH) = 1 and iXHω = 0.

We will refer to the triple (M,λ, ω) as a stable Hamiltonian manifold. A stable Hamiltonian structure (λ, ω)
on M is said to be nondegenerate if all periodic orbits of the Reeb vector field are nondegenerate.

A codimension-2 submanifold V ⊂ M is said to be a stable Hamiltonian hypersurface of M if the pair
H′ := (λ′, ω′) defined by

λ′ := i∗λ ω′ := i∗ω,

where i : V ↪→M is the inclusion map, is a stable Hamiltonian structure on V . In this case, the hyperplane
distribution ξ′ := kerλ′ is naturally identified via i∗ with TV ∩ ξ. We say a stable Hamiltonian hypersurface
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V ⊂ M is a strong stable Hamiltonian hypersurface if, in addition, V is invariant under the flow of XH.
This is easily seen to be equivalent to requiring that the push forward by i∗ of the Reeb vector field XH′ of
the stable Hamiltonian structure H′ is equal to XH at all points in V . Along a strong stable Hamiltonian
hypersurface V ⊂M , we thus obtain a splitting of the tangent space of M

TM |V = RXH ⊕ (ξ′, ω′)⊕ (ξ⊥V , ω|ξ⊥V )

into a line bundle spanned by XH and two symplectic vector bundles, where

(1) ξ⊥V = {v ∈ ξ|V |ω(v, i∗w) = 0 ∀w ∈ ξ′} ,
is the symplectic complement of ξ′ ≈ TV ∩ξ in ξ|V . Moreover, since the flow of XH preserves λ and ω, it also
preserves this splitting. Therefore, given a periodic orbit γ of XH lying in V and a symplectic trivialization Φ
of γ∗ξ⊥V , we can assign a normal Conley–Zehnder index µΦ

N (γ) by considering the restriction of the linearized
flow along γ to the symplectic normal bundle ξ⊥V of ξ′ in ξ. We describe this construction in more detail in
Section 2 below.

We consider a manifold M2n+1 equipped with a nondegenerate stable Hamiltonian structure H = (λ, ω),
and we will denote by the triple (Σ, p, Y 2n−1) a smooth fibration p : M → Σ over a closed, oriented surface Σ
with fiber diffeomorphic to Y . Given a Morse function f on Σ we say the fibration (Σ, p, Y ) is f -admissible if
for each critical point w ∈ crit(f) of the function, the fiber Yw = p−1(w) over w is a strong stable Hamiltonian
hypersurface. We will denote f -admissible fibrations by quadruples (Σ, p, Y, f).

Given an f -admissible fibration (Σ, p, Y, f) for (M,H) and a critical point w ∈ crit(f), we note that at
any point y ∈ Yw, the derivative p∗ at y determines a linear isomorphism

p∗(y) : (ξ⊥Yw
)y → TΣw

from the symplectic normal bundle of Yw in M at y ∈ Yw to the tangent space of Σ at w. This map will
either be orientation preserving at every point in Yw or orientation reversing at every point in Yw. This
allows us to define a sign function

sign : crit(f)→ {−1, 1}
on the set of critical points of f by requiring

sign(w) =

{
1 if p∗|ξ⊥Yw

is everywhere orientation preserving

−1 if p∗|ξ⊥Yw
is everywhere orientation reversing.

Choosing at each w ∈ crit(f) with sign(w) = 1 an orientation preserving linear map Φw : TΣw → (R2, ω0)
and at each w ∈ crit(f) with sign(w) = −1 an orientation reversing linear map Φw : TΣw → (R2, ω0) we
obtain a global orientation-preserving trivialization

Φw ◦ p∗|ξ⊥Yw
→ (R2, ω0)

of ξ⊥Yw
which can be homotoped to a symplectic trivialization. Thus in an f -admissible fibration there is a

preferred homotopy class of symplectic trivialization of the symplectic normal bundle to p−1(crit(f)).

Assuming still that M is a stable Hamiltonian manifold, let J̃ be an almost complex structure on R ×
M which is compatible with the stable Hamiltonian structure H = (λ, ω); that is, J̃ is an R-invariant
endomorphism of T (R×M) which squares to negative the identity, and with respect to the splitting

T (R×M) ≈ R∂a ⊕ TM ≈ R∂a ⊕ RXH ⊕ ξ

the action of J̃ is given by

(2) J̃∂a = XH and J̃ |π∗ξ = π∗J

where π : R ×M → M is the canonical projection and J ∈ End(ξ) is a complex structure on ξ for which
the bilinear form ω(·, J ·)|ξ×ξ is symmetric and positive definite. We say that a codimension-2 foliation F of

R×M is an R-invariant, asymptotically cylindrical, J̃-holomorphic foliation if:

• F is invariant under translations in the R-coordinate,

and if there exists a strong stable Hamiltonian hypersurface V ⊂M so that:

• R× V has J̃-invariant tangent space,
• the union of leaves of F fixed by R-translation is equal to R× V ⊂ R×M , and
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• all other leaves of the foliation are J̃-holomorphic hypersurfaces which are asymptotically cylindrical1

over some collection of components of V , and which project by π to embedded submanifolds smoothly
foliating M \ V .

We will refer to the stable Hamiltonian hypersurface V as the binding set of the foliation F . For brevity,
we will from now on refer to R-invariant, asymptotically cylindrical, J̃-holomorphic foliations simply as
holomorphic foliations or J̃-holomorphic foliations when we wish to specify the almost complex structure.

Now assuming the manifold M is equipped with both a holomorphic foliation F with binding V and an
f -admissible fibration (Σ, p, Y, f), we will say that F is compatible with (Σ, p, Y, f) if:

• p−1(crit(f)) is equal to the binding V of the foliation,
• all other leaves of the foliation are diffeomorphic to R × Y and admit smooth parametrizations of

the form

(s, y) ∈ R× Y 7→ (a(s, y),m(s, y)) ∈ R×M
where p(m(s, y)) = γ(s) for some solution γ to the gradient flow equation

γ̇(s) = ∇f(γ(s))

with respect to an appropriate metric gΣ on Σ, and where a(s, y) satisfies

lim
s→±∞

a(s, y) = sign( lim
s→±∞

p(m(s, y)))±∞.

We are interested in understanding the punctured pseudoholomorphic curves in R×M when M is equipped
with a holomorphic foliation compatible with an f -admissible fibration and all asymptotic limits of the given
curve lie in the binding of the foliation. We recall that a asymptotically cylindrical, punctured pseudoholo-
morphic map is a quadruple (S, j,Γ, ũ = (a, u)) where

• (S, j) is a closed Riemann surface
• Γ ⊂ S is a finite set, called the set of punctures
• ũ = (a, u) : S \ Γ→ R×M is a J̃-holomorphic map, i.e. ũ satisfies the equation

dũ ◦ j = J̃(ũ) ◦ dũ,
and

• For each puncture z ∈ Γ there exists a periodic orbit γmz
z so that the map ũ is asymptotic near z

to a half-cylinder of the form R+ × γmz
z or R− × γmz

z . Here γz is a simple periodic orbit of XH and
γmz
z for mz ∈ N denotes the mz-fold cover of the simple orbit γz.

We will use the term pseudoholomorphic curve to refer to an equivalence class C = [S, j,Γ, ũ = (a, u)] of
such maps under the equivalence relation of holomorphic reparametrization of the domain.

We consider now an asymptotically cylindrical, punctured pseudoholomorphic map, (S, j,Γ, ũ = (a, u)) in
a stable Hamiltonian manifold (M,H) equipped with an f -admissible fibration (Σ, p, Y, f), and we assume
that all asymptotic limits γmz

z of the map ũ lie in the strong stable Hamiltonian hypersurface p−1(crit(f)).
In this case, the projection of the map p ◦ u : S \ Γ→ Σ admits a continuous extension v̄ : S → Σ over the
punctures. Our main theorem puts restrictions on the degree of this map in the presence of a holomorphic
foliation and under some assumptions on the normal Conley–Zehnder indices of the asymptotic limits and
tells us that, under these assumptions, the image of the pseudoholomorphic map ũ is contained in a leaf of
the foliation precisely when the degree of this map is zero.

Theorem 1.1. Let (M,λ, ω) be a nondegenerate stable Hamiltonian manifold equipped with a compatible

almost complex structure J̃ , an f -admissible fibration (Σ, p, Y, f) and a J̃-holomorphic foliation F compat-

ible with (Σ, p, Y, f). Let (S, j,Γ, ũ = (a, u)) be an asymptotically cylindrical J̃-holomorphic map with all
asymptotic limits contained in p−1(crit(f)) and let v̄ : S → Σ denote the continuous extension of the map
p ◦ u : S \ Γ→ Σ over the punctures. Assume moreover that

(3) µΦ
N (γmz

z ) ∈ {−1, 0, 1}
for every z ∈ Γ, where Φ is the homotopy class of symplectic trivialization of the symplectic normal bundle
to p−1(crit(f)) determined by the fibration. Then:

1Asymptotically cylindrical will be defined precisely in Section 2.
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• If sign(w) = 1 for all w ∈ crit(f) then the map v̄ has nonnegative degree and has degree zero precisely
when the image of the map ũ is contained in a leaf of the foliation F .

• If sign(w) = −1 for all w ∈ crit(f) then the map v̄ has nonpositive degree and has degree zero
precisely when the image of the map ũ is contained in a leaf of the foliation F .

• If the map sign : crit(f)→ {−1, 1} is surjective then the map v̄ has degree zero and the image of the
map ũ is contained in a leaf of the foliation F .

The proof of our main result here relies heavily on some results from the in-preparation work [8] which
generalizes some of the results from the 4-dimensional intersection theory studied in [10] to higher dimensions.
We will summarize the relevant results in the following section and then apply these results in Section 3
below to prove the main the result.

As an immediate corollary of the above result we have the following.

Corollary 1.2. With (M,λ, ω), J̃ , (Σ, p, Y, f), F , and (S, j,Γ, ũ = (a, u)) satisfying all the assumptions of
Theorem 1.1 above, assume that g(S) < g(Σ). Then the image of the map ũ is contained in a leaf of the
foliation F .

Proof. As observed before the statement of Theorem 1.1, the assumption that all punctures of u : S \Γ→M
are contained in the binding set of the foliation V = p−1(crit(f)) implies that the map p ◦ u : S \Γ→ Σ has
a continuous extension v̄ : S → Σ. A well-known argument from algebraic topology then implies that the
degree of the map v̄ must be zero. Indeed, since for a closed, oriented surface the cup product pairing

H1(Σ)×H1(Σ)
∪−→ H2(Σ)

is nondegenerate, a map v̄ : S → Σ with nonzero degree induces an injection

v̄∗ : H1(Σ) ≈ Z2g(Σ) → H1(S) ≈ Z2g(S)

which is impossible unless g(Σ) ≤ g(S). Since we assume that g(S) < g(Σ) we conclude that v̄ has degree
zero.

Given that det(v̄) = 0, it follows immediately from Theorem 1.1 that the image of ũ is contained in a leaf
of the foliation. �

These results have applications in work of the first author on algebraic torsion in contact manifolds.
In [7, 6], the author introduces a higher-dimensional generalization of the notion of a spinal open book
decomposition (SOBD), as defined in [5] for dimension 3. This geometric structure supports a unique
isotopy class of contact structures in the spirit of Giroux [2] and contains a fibration over a contact manifold
with Liouville fibers (the “pages”). Given a SOBD supporting a contact structure, it induces holomorphic
foliations in the symplectization of the contact manifold lifting the pages of the SOBD, generalizing the
construction of a holomorphic open book as e.g. in [1, 11]. In the case where the leaves of the foliation are
codimension-2 — which is the case where the intersection-theoretic arguments used here are applicable —
it is of the type described above.

In order to develop computational techniques for SFT-type invariants of the contact manifold, in which
the control over holomorphic curves is crucial, the above results are important. In the situation described
above, one can arrange that the relevant holomorphic curves are asymptotic to periodic orbits in fibers lying
over critical points of a Morse function. Moreover, the normal linearized flow along these fibers can be
expressed in terms of the Hessian of the Morse function f . In particular, one can show that given a number
T > 0, every periodic orbit γ ∈ Yw with period less than T has normal Conley–Zehnder index given by the
formula

µΦ
N (γ) = sign(w) (indw(f)− 1) ∈ {−1, 0, 1}

provided the function f is sufficiently C2 close to a constant, so the hypotheses of our main theorem are met.
In the case where the degree of the resulting map v̄ is zero — as it is, for example, in the case considered
in Corollary 1.2 above — then the above theorem reduces the study of certain holomorphic curves in the
ambient symplectization to that of the Liouville completion of the pages, thus reducing the problem by two
dimensions. This fact, when combined with the symmetries of the Morse function f , can be exploited to
obtain information on the contact structure as is done in [7, 6].
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2. Intersection theory of punctured pseudoholomorphic curves and pseudoholomorphic
hypersurfaces

In this section we will review some results from the in-preparation work [8] which are needed in the proof
of our main result.

Let (M2n+1,H = (λ, ω)) be a closed, orientable manifold equiped with a nondegenerate stable Hamiltonian
structure. Recall from that the introduction that a submanifold i : V 2n−1 ↪→M is said to be a stong stable
Hamiltonian hypersurface if H′ = (λ′, ω′) := (i∗λ, i∗ω) is a stable Hamiltonian structure on V and the Reeb
vector field XH of H is everywhere tangent to V . In this case we have a splitting

(4) TM |V = RXH ⊕ (ξ′, ω′)⊕ (ξ⊥V , ω) ≈ RXH′ ⊕ (ξ ∩ TV, ω)⊕ (ξ⊥V , ω)

with ξ⊥V the symplectic complement to ξ′ in ξ|V as defined in (1), and we note that the first two summands
give TV . The linearized flow of XH along V preserves this splitting along with the symplectic structure on
the second two summands.

Let γ : S1 ≈ R/Z→M be a T -periodic orbit of XH, i.e. γ satisfies the equation

γ̇(t) = T ·XH(γ(t))

for all t ∈ S1. Assuming that γ(S1) ⊂ V , we can choose a symplectic trivialization of the hyperplane
distribution ξ = ξ′ ⊕ ξ⊥V |γ(S1) along γ which respects the splitting (4), i.e. one of the form

Φ = ΦT ⊕ ΦN : ξ′ ⊕ ξ⊥V |γ(S1) → S1 × (R2n−2, ω0)⊕ (R2, ω0)

with ΦT and ΦN symplectic trivialization of ξ′|γ(S1) and ξ⊥V |γ(S1) respectively. Given such a trivialization
we can define the Conley–Zehnder index of the orbit γ viewed as an orbit in M as usual by

µΦ(γ) := µCZ(Φ(γ(t)) ◦ dψTt(γ(0)) ◦ Φ(γ(0))−1)

where ψ : R×M →M is the flow generated by XH and where µCZ on a path of symplectic matrices starting
at the identity and ending at a matrix without 1 in the spectrum is as defined in [3, Theorem 3.1]. But
since, as observed above, dψt preserves the splitting (4), we can also consider the Conley–Zenhder indices
that arise from the restrictions of dψt to ξ′|γ and ξ⊥V |γ . In particular we define

µΦT

V (γ) := µCZ(ΦT (γ(t)) ◦ dψTt(γ(0))|ξ′ ◦ ΦT (γ(0))−1)

which is the Conley–Zehnder index of γ viewed as a periodic orbit lying in V , and

µΦN

N (γ) := µCZ(ΦN (γ(t)) ◦ dψTt(γ(0))|ξ⊥V ◦ ΦN (γ(0))−1)

which we will call the normal Conley–Zehnder index of γ relative to ΦN . We note that basic properties of
Conley–Zehnder indices which can be found, e.g. in [3, Theorem 3.1] show that these quantites are related
by

µΦ(γ) = µΦT

V (γ) + µΦN

N (γ).

We now recall that a complex structure J on ξ is said to be compatible with the stable Hamiltonian
structure (λ, ω) if the bilinear form on ξ defined by ω(·, J ·)|ξ×ξ is symmetric and positive definite. We
will denote the set of compatible complex structures on ξ by J (M, ξ). Given a strong stable Hamiltonian
hypersurface V ⊂M and a choice of J ∈ J (M, ξ) we will say that J is V -compatible if J fixes the hyperplane
distribution ξ′ = TV ∩ ξ along V . We will denote the set of such complex structures by J (M,V, ξ). We
claim that a J ∈ J (M,V, ξ) necessarily also fixes ξ⊥V . Indeed, compatibility of J with ω implies that
ω(J ·, J ·)|ξ×ξ = ω|ξ×ξ since we can compute

ω(Jv, Jw) = ω(w, J(Jv)) symmetry of ω(·, J ·)|ξ×ξ
= ω(w,−v) J2 = −I
= ω(v, w)

for any sections v, w of ξ. Thus if v ∈ ξ|V is ω-orthogonal to every vector in ξ′ = ξ ∩ TV , then Jv is
also ω-orthogonal to every vector in ξ′ provided that J fixes ξ′. Thus J fixes ξ⊥V as claimed. We note that
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since both the linearized flow dψt of XH and a compatible J ∈ J (M,V, ξ) preserve the splitting (4), the
asymptotic operator

Aγh(t) := −J d

ds

∣∣∣∣
s=0

dψ−Tsh(t+ s)

of a periodic orbit γ lying in V also preserves the splitting. We will write

Aγ = AT
γ ⊕AN

γ : W 1,2(ξ′)⊕W 1,2(ξ⊥V )→ L2(ξ′)⊕ L2(ξ⊥V )

to indicate the resulting splitting of the operator.
Continuing to assume that V ⊂ M is a strong stable Hamiltonian hypersurface and J ∈ J (M,V, ξ) is a

V -compatible complex structure, we extend J to an R-invariant almost complex structure J̃ on R×M in the
usual way, i.e. so that J̃ satisfies (2). We note that for such an almost complex structure, the submanifold

R×V of R×M is J̃-holomorphic since we assume that XH is tangent to V and that J fixes ξ′ = ξ∩TV . Just
as one can consider holomorphic curves which are asymptotic to cylinders of the form R× {periodic orbit}
one can J̃-holomorphic hypersurfaces which are asymptotic to cylindrindical J̃-holomorphic hypersurfaces
of the form R×V with V a strong stable Hamiltonian hypersurface. Before giving a more precise definition,
we introduce some more geometric data on our manifold.

Given a J ∈ J (M, ξ) we can define a Riemannian metric

(5) gJ(v, w) = λ(v)λ(w) + ω(πξv, Jπξw)

where πξ : TM ≈ RXH ⊕ ξ → ξ is the projection onto ξ along XH. We can extend gJ to a metric g̃J on
R×M by forming the product metric with the standard metric on R, i.e. by defining

(6) g̃J := da⊗ da+ π∗gJ .

We will denote the exponential maps of gJ and g̃J by exp and ẽxp respectively and note that these are
related by

ẽxp(a,p)(b, v) = (a+ b, expp v).

We note that if J is V -compatible for some strong stable Hamiltonian hypersurface V ⊂ M , then the
symplectic normal bundle ξ⊥V is the gJ -orthogonal complement of TV in TM |V , and that π∗ξ⊥V is the g̃J -
orthogonal complement of T (R × V ) in T (R ×M)|R×V . We further note that, since V is assumed to be
compact, the restrictions of exp and ẽxp to ξ⊥V and π∗ξ⊥V respectively are embeddings on some neighborhood
of the zero sections.

Now consider a pair V+, V− of strong stable Hamiltonian hypersurfaces and assume that V := V+ ∪ V− is
also a strong stable Hamiltonian hypersurface, i.e. that all components of V+ and V− are either disjoint or
identical. We let J ∈ J (M,V, ξ) be a V -compatible J with associated R-invariant almost complex structure

J̃ on R × M . We are interested in J̃-holomorphic submanifolds which outside of a compact set can be
described by exponentially decaying sections of the normal bundles to V+ and V−, More precisely, we say

that a J̃-holomorphic submanifold Ṽ ⊂ R×M is positively asymptotically cylindrical over V+ and negatively
asymptotically cylindrical over V− if there exists an R > 0 and sections

η+ : [R,+∞)→ C∞(ξ⊥V+
)

η− : (−∞,−R]→ C∞(ξ⊥V−)

so that

Ṽ ∩ ([R,+∞)×M) =
⋃

(a,p)∈[R,+∞)×V+

ẽxp(a,p)η+(a, p)

Ṽ ∩ ((−∞,−R]×M) =
⋃

(a,p)∈(−∞,−R]×V−

ẽxp(a,p)η−(a, p)

and so that there exist constants Mi > 0, d > 0 satisfying∣∣∣∇̃iη±(a, p)
∣∣∣ ≤Mie

−d|a|
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for all i ∈ N and ±a ∈ [R,+∞), where ∇̃ is the extension of a connection ∇ on ξ⊥V to a connection ∇̃ on

π∗ξ⊥V defined by requiring ∇̃∂aη(a, p) = ∂aη(a, p). We will refer to the sections η+ and η− respectively as

positive and negative asymptotic representatives of Ṽ .
Our main goal here is to understand the intersection properties of punctured pseudoholomorphic curves

with asymptotically cylindrical pseudoholomorphic hypersurfaces. The main difficulty arises from the non-
compactness of the manifolds in question. Indeed a punctured pseudoholomorphic curve whose image is
not contained in the J̃-holomorphic hypersurface Ṽ may have punctures limiting to a periodic orbits lying
in V+ or V−. In this case, it’s not a priori clear that the intersection number between the curve and the
hypersurface is finite. Even assuming this intersection number is finite, it is not homotopy invariant as
intersections can be lost or created at infinity. We will see below that these difficulties can be dealt with via
higher-dimensional analogs of techniques developed in [10].

Before presenting the relevant results it will be convenient to establish some standard assumptions and
notations for the next several definitions and results.

Assumptions 2.1. We assume that:

(a) (M,λ, ω) is a closed, manifold with nondegenerate stable Hamiltonian structure (λ, ω) with ξ = kerλ
and XH the associated Reeb vector field,

(b) V+ ⊂M , V− ⊂M , and V = V+ ∪ V− are strong stable Hamiltonian hypersurfaces of M ,

(c) J ∈ J (M,V, ξ) is a V -compatible complex structure on ξ and J̃ is the R-invariant almost complex
structure on R×M associated to J (defined by (2),

(d) g̃J is the Riemannian metric on R×M defined by (6) and ẽxp is the associated exponential map,

(e) Ṽ ⊂ R×M is a J̃-holomorphic hypersurface which is positively asymptotically cylindrical over V+

and negatively asymptotically cylindrical over V−,
(f) η+ : [R,+∞) → C∞(ξ⊥V+

) and η− : (−∞,−R] → C∞(ξ⊥V−) are, respectively, positive and negative

asymptotic representatives of Ṽ ,
(g) C = [S, j,Γ = Γ+ ∪ Γ−, ũ = (a, u)] is a finite-energy J̃-holomorphic curve, and at z ∈ Γ, C is

asymptotic to γmz
z (with γmz

z indicating the mz-fold covering of a simple periodic orbit γz),
(h) Φ is a trivialization of ξ⊥V along every periodic orbit lying in V which occurs as an asymptotic limit

of C.

The following theorem can be seen as a generalization of Theorem 2.2 in [9]. Proof will be given in [8].

Theorem 2.2. Assume 2.1 and assume that at z ∈ Γ+, C is asymptotic to a periodic orbit γmz
z ⊂ V+. Then

there exists an R′ ∈ R, a smooth map

uT : [R′,∞)× S1 → [R,∞)× V+

and a smooth section

uN : [R′,∞)× S1 → u∗Tπ
∗ξ⊥V+

so that the map

(7) (s, t) 7→ ẽxpuT (s,t)uN (s, t)

parametrizes C near z. Moreover, if we assume that the image of C is not a subset of the asymptotically
cylindrical hypersurface Ṽ , then

(8) uN (s, t)− η+(uT (s, t)) = eµs[e(t) + r(s, t)]

for all (s, t) ∈ [R′,∞)× S1 where:

• µ < 0 is a negative eigenvalue of the normal asymptotic operator AN
γmz
z

,

• e ∈ ker(AN
γmz
z
− µ) \ {0} is an eigenvector with eigenvalue µ, and

• r : [R′,∞)× S1 → u∗Tπ
∗ξ⊥V is a smooth section satisfying exponential decay estimates of the form

(9)
∣∣∣∇̃is∇̃jtr(s, t)∣∣∣ ≤Mije

−d|s|

for some positive contants Mij, d and all (i, j) ∈ N2
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Similarly, if we assume that at z ∈ Γ−, C is asymptotic to a periodic orbit γmz
z ⊂ V−., then there exists

an R′ ∈ R, a smooth map
uT : (−∞, R′]× S1 → (−∞,−R]× V−

and a smooth section
uN : (−∞, R′]× S1 → u∗Tπ

∗ξ⊥V−
so that the map

(s, t) 7→ ẽxpuT (s,t)uN (s, t)

parametrizes C near z. Moreover, if the image of C is not contained in Ṽ , then uN (s, t) − η−(uT (s, t))
satisfies a formula of the form (8) for all (s, t) ∈ (−∞, R′]× S1, where now:

• µ > 0 is a positive eigenvalue of the normal asymptotic operator AN
γmz
z

,

• e ∈ ker(AN
γmz
z
− µ) \ {0}, as before, is an eigenvector with eigenvalue µ, and

• r : (−∞, R′] → u∗Tπ
∗ξ⊥V is a smooth section satisfying exponential decay estimates of the form (9)

for some positive contants Mij, d.

We note that the bundles of the form u∗Tπ
∗ξ⊥V ocurring in the statement of this theorem are trivializable

since they are complex line bundles over a space which retracts onto S1. In any trivialization the eigenvector
e from formula (8) satisfies a linear, nonsingular ODE, and thus is nowhere vanishing since we assume it is
not identically zero. Since the “remainder term” r in the formula (8) converges to zero, we conclude that
the functions uN (s, t)− η±(uT (s, t)) are nonvanishing for sufficiently large |s|. However, since zeroes of this

function can be seen to correspond to intersections between the curve C and the hypersurface Ṽ occuring
sufficiently close to the punctures of C, we conclude that all intersections between C and Ṽ are contained in
a compact set. Moreover, since intersections between C and Ṽ can be shown to be isolated and of positive
local order (see e.g. [4, Lemma 3.4]), we conclude that the algebraic intersection number between C and Ṽ
is finite:

Corollary 2.3. Assume 2.1 and assume that no component of the curve C has image contained in the
J̃-holomorphic hypersurface Ṽ . Then the algebraic intersection number C · Ṽ , defined by summing local
intersection indices, is finite and nonnegative, and C · Ṽ = 0 precisely when C and Ṽ do not intersect.

This corollary deals with the first difficulty in understanding intersections between punctured curves and
asymptotically cylindrical hypersurfaces described above, namely the finiteness of the intersection number.
A second consequence of the asymptotic formula from Theorem 2.2, again stemming from the fact that the
quantities uN (s, t) − η±(uT (s, t)) are nonzero for sufficiently large |s|, is that the normal approach of the
curve C has a well-defined winding number relative to a trivialization Φ of ξ⊥V |γz . This winding will be given
by the winding of the eigenvector from formula (8) relative to Φ, and for a given puncture z of C, we will
denote this quantity by

windΦ
rel((C; z), Ṽ ) = wind(e).

Combining this observation with the characterization of the Conley–Zehnder index in terms of the asymptotic
operator from [3, Definition 3.9/Theorem 3.10] leads to the following corollary.

Corollary 2.4. Assume 2.1, and assume that no component of the curve C = [S, j,Γ+ ∪Γ−, ũ = (a, u)] has

image contained in the holomorphic hypersurface Ṽ . Then:

• If z ∈ Γ is a positive puncture at which ũ limits to γmz
z ⊂ V+ then

(10) windΦ
rel((C; z), Ṽ ) ≤ bµΦ

N (γmz
z )/2c =: αΦ;−

N (γmz
z ).

• If z ∈ Γ is a negative puncture at which ũ limits to γmz
z ⊂ V− then

(11) windΦ
rel((C; z), Ṽ ) ≥ dµΦ

N (γmz
z )/2e =: αΦ;+

N (γmz
z ).

The numbers αΦ;−
N (γ) and αΦ;+

N (γ) are, respectively, the biggest/smallest winding number achieved by an
eigenfunction of the normal asymptotic operator of any orbit γ corollary responding to a negative/positive
eigenvalue. Observe that we have the formulas

(12) µΦ
N (γ) = 2αΦ;−

N (γ) + pN (γ) = 2αΦ;+
N (γ)− pN (γ),

where pN (γ) ∈ {0, 1} is the normal parity of the orbit γ (which is independent of the trivialization Φ).
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We will see in a moment that this corollary can be used to deal with the second difficulty in understand-
ing intersections between punctured curves and asymptotically cylindrical hypersurfaces described above,
namely, the fact that the algebraic intersection number may not be invariant under homotopies. We first
introduce some terminology. Assuming again 2.1 and that no component of C is a subset of Ṽ , we define
the asymptotic intersection number at the punctures of C in the following way:

• If for the positive puncture z ∈ Γ+, γmz
z ⊂ V+, we define the asymptotic intersection number

δ∞((C; z); Ṽ ) of C at z with Ṽ by

(13) δ∞((C; z), Ṽ ) = bµΦ
N (γmz

z )/2c − windΦ
rel((C; z), Ṽ ).

• If for the negative puncture z ∈ Γ−, γmz
z ⊂ V−, we define the asymptotic intersection number

δ∞((C; z); Ṽ ) of C at z with Ṽ by

(14) δ∞((C; z), Ṽ ) = windΦ
rel((C; z), Ṽ )− dµΦ

N (γmz
z )/2e.

• For all other punctures z ∈ Γ± (i.e. those for which γz is not contained in V±), we define

(15) δ∞((C; z), Ṽ ) = 0.

We then define the total asymptotic intersection number of C with Ṽ by

(16) δ∞(C, Ṽ ) =
∑
z∈Γ

δ∞((C; z), Ṽ ).

We observe that as a result of Corollary 2.4 the local and total asymptotic intersection numbers are always
nonnegative.

Continuing to assume 2.1 (but no longer necessarily that no component of the curve C has image contained

in Ṽ ), we can use the trivialization Φ of ξ⊥V along the asymptotic periodic orbits of C lying in V to construct
a perturbation CΦ of C in the following way. For each puncture z ∈ Γ for which the asymptotic limit γmz

z

lies in V , we first extend Φ to a trivialization Φ : ξ⊥V |Uz → Uz × R2 on some open neighborhood Uz ⊂ V of
the asymptotic limit γz. Then we consider the asymptotic parametrization

(s, t) 7→ ẽxpuT (s,t)uN (s, t)

from Theorem 2.2 above for (s, t) ∈ [R,+∞)× S1 or (−∞,−R]× S1 as appropriate, where R > 0 is chosen
large enough so that uT has image contained in the neighborhood Uz of γz on which the trivialization Φ has
been extended. We then perturb the map by replacing the above parametrization of C near z by the map

(s, t) 7→ ẽxpuT (s,t)

(
uN (s, t) + β(|s|)Φ(uT (s, t))−1ε

)
where β : [0,∞)→ [0, 1] is a smooth cut-off function equal to 0 for s < |R|+1 and equal to 1 for |s| > |R|+2,
and ε 6= 0 is thought of as a number in C ≈ R2. Given this, we can then define the relative intersection
number iΦ(C, Ṽ ) of C and Ṽ relative to the the trivialization Φ by

iΦ(C, Ṽ ) := CΦ · Ṽ .
It can be shown that this number is independent of choices made in the construction of CΦ provided the
perturbations are sufficiently small.

Again continuing to assume 2.1, we now define the holomorphic intersection product of C and Ṽ by

C ∗ Ṽ := iΦ(C, Ṽ ) +
∑
z∈Γ+

γz⊂V+

bµΦ
N (γmz

z )/2c −
∑
z∈Γ−
γz⊂V−

dµΦ
N (γmz

z )/2e

The key facts about the holomorphic intersection product are now given in the following theorem which
generalizes [10, Theorem 2.2/4.4].

Theorem 2.5 (Generalized positivity of intersections). With Ṽ and C as in 2.1, assume that C is not

contained in Ṽ , the holomorphic intersection product C ∗ Ṽ depends only on the relative homotopy classes of
C and Ṽ . Moreover, if the image of C is not contained in Ṽ , then

C ∗ Ṽ = C · Ṽ + δ∞(C, Ṽ ) ≥ 0
9



where C · Ṽ is the algebraic intersection number, defined by summing local intersection indices, and δ∞(C, Ṽ )

is the total asymptotic intersection number, defined by (13)–(16). In particular, C ∗ Ṽ ≥ 0 and equals zero

if and only if C and Ṽ don’t intersect and all asymptotic intersection numbers are zero.

The proof of this theorem follows along very similar lines to Theorem 2.2/4.4 in [10]. The essential point
is that the relative intersection number can be shown to be given by the formula

iΦ(C, Ṽ ) = C · Ṽ −
∑
z∈Γ+

γz⊂V+

windΦ
rel((C; z), Ṽ ) +

∑
z∈Γ−
γz⊂V−

windΦ
rel((C; z), Ṽ ).

The result will then follow from Corollary 2.4 above. Detailed proof will be given in [8].
Analogous to the case in four dimensions studied in [10], the R-invariance of the almost complex struc-

ture in the set-up here allows one to compute the holomorphic intersection number and (in some cases)
the algebraic intersection number of a holomorphic curve and a holomorphic hypersurface with respect to
asymptotic winding numbers and intersections of each object with the asymptotic limits of the other.

Before stating the relevant results we will first make some additional assumptions. We will henceforth
assume that:

Assumptions 2.6.

(a) V+ and V− are disjoint,
(b) ξ⊥V of V = V+ ∪ V− is trivializable,
(c) Φ : ξ⊥V → V × R2 is a global trivialization,

(d) Ṽ is connected, and

(e) the projection π(Ṽ ) of Ṽ to M is an embedded codimension-1 submanifold of M \ V .

Under these assumptions, Ṽ has a well-defined winding windΦ
∞(Ṽ , γ) relative to Φ around any orbit

γ ⊂ V = V+∪V− which can be defined by considering the asymptotic representatives η+ or η− as appropriate
and computing

(17) windΦ
∞(Ṽ , γ) = lim

|s|→∞
wind Φ−1η±(s, γ(·)),

or, equivalently by

(18) windΦ
∞(Ṽ , γ) = windΦ

rel((R× γ;±∞), Ṽ ).

As in Corollary 2.4 above, it follows from the asymptotic formula from Theorem 2.2 above and the charac-
terization of the Conley–Zehnder index from [3] that

windΦ
∞(Ṽ , γ) ≤ bµΦ

N (γ)/2c = αΦ;−
N (γ)

if γ ⊂ V+ and

windΦ
∞(Ṽ , γ) ≥ dµΦ

N (γ)/2e = αΦ;+
N (γ)

if γ ⊂ V−.
The following theorem, which can be seen as the higher dimensional version of [10, Corollary 5.11], gives a

computation of the algebraic intersection number of Ṽ and R-shifts of the curve C in terms of the asymptotic
data, and the intersections of each object with the asymptotic limits of the other. Proof will be given in [8]

Theorem 2.7. Assume 2.1 and 2.6 and that the curve C is connected and not equal to an orbit cylinder and
not contained in R× V . For c ∈ R, denote by Cc the curve obtained from translating C in the R-coordinate
by c. Then for all but a finite number of value of c ∈ R, the algebraic intersection number Cc · Ṽ is given by
the formulas:
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Cc · Ṽ = C · (R× V+)

+
∑
z∈Γ+

γz∈V+

(
max

{
mz windΦ

∞(Ṽ , γz),windΦ
rel((C; z),R× V+)

}
− windΦ

rel((C; z),R× V+)
)

+
∑
z∈Γ−

mz(R× γz) · Ṽ

+
∑
z∈Γ−
γz∈V−

(
mz windΦ

∞(Ṽ , γz)−min
{
mz windΦ

∞(Ṽ , γz),windΦ
rel((C; z),R× V−)

})

+
∑
z∈Γ−
γz∈V+

(
windΦ

rel((C; z),R× V+)−mz windΦ
rel(Ṽ , γz)

)

=
∑
z∈Γ+

mz(R× γz) · Ṽ

+
∑
z∈Γ+

γz∈V+

(
max

{
mz windΦ

∞(Ṽ , γz),windΦ
rel((C; z),R× V+)

}
−mz windΦ

∞(Ṽ , γz)
)

+ C · (R× V−)

+
∑
z∈Γ−
γz∈V−

(
windΦ

rel((C; z),R× V−)−min
{
mz windΦ

∞(Ṽ , γz),windΦ
rel((C; z),R× V−)

})

+
∑
z∈Γ+

γz∈V−

(
mz windΦ

∞(Ṽ , γz)− windΦ
rel((C; z),R× V−)

)
with each of the grouped terms always nonnegative.

The nonnegativity of the terms in the above formulas allows us to establish a convenient set of conditions
which will guarantee that the projections π(C) and π(Ṽ ) of the curve and hypersurface to M do not intersect.

Indeed, if π(C) and π(Ṽ ) are disjoint then Cc and Ṽ are disjoint for all values of c ∈ R and hence the algebraic

intersection number of Cc and Ṽ is zero for all values of c ∈ R. Since the formulas from Theorem 2.7 compute
this number (for all but a finite number of values of c ∈ R) in terms of nonnegative quantities, we can conclude
that all terms in the above formulas vanish. We thus obtain the following corollary, which generalizes [10,
Theorem 2.4/5.12].

Corollary 2.8. Assume that all of the hypotheses of Theorem 2.7 hold and that π(C) is not contained in

π(Ṽ ). Then the following are equivalent:

(1) π(C) and π(Ṽ ) are disjoint.
(2) All of the following hold:

(a) None of the asymptotic limits of C intersect π(Ṽ ).
(b) π(C) does not intersect V = V+ ∪ V−.

(c) For any puncture z at which C has asymptotic limit γm lying in V = V+∪V−, windΦ
rel((C; z), V ) =

mwindΦ
∞(Ṽ , γ).

3. Proof of the main result

We now proceed with the proof of our main result, Theorem 1.1. We consider a manifold M2n+1 equipped
with a nondegenerate stable Hamiltonian structure (λ, ω) and an f -admissible fibration (Σ, p, Y, f). Recall
that this means that p : M → Σ is a smooth fibration over a closed surface with fiber diffeomorphic to Y 2n−1,
and V := p−1(crit(f)) is a strong stable Hamiltonian hypersurface. We further recall that each critical point
w of f is assigned a sign sign(w) ∈ {−1,+1} according to whether p∗ : ξ⊥Yw

→ TwΣ is everywhere orientation
preserving or reversing.
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We will let J̃ denote a compatible almost complex structure on R × M and will assume that R × V
has J̃-invariant tangent space. We consider an asymptotically cylindrical, J̃-holomorphic map ũ = (a, u) :
S \ Γ→ R×M so that all asymptotic limits γmz

z of ũ are contained in the binding set V = p−1(crit(f)) of
the foliation. As observed in the introduction, the projected map v := p ◦u : S \Γ→ Σ admits a continuous
extension v̄ : S → Σ over the punctures. The following lemma computes the degree of this map in terms of
the intersection number and relative normal windings of ũ and any given component of the binding set of
the foliation.

Lemma 3.1. Assume the map u : S \ Γ → M does not have image contained in V = p−1(crit(f)). Then,
given a point w ∈ crit(f), the degree of the map v̄ defined above is given by the formula

deg(v̄) = sign(w)

ũ · (R× Yw)−
∑
z∈Γ+

γz⊂Yw

windΦ
rel((ũ; z), Yw) +

∑
z∈Γ−
γz⊂Yw

windΦ
rel((ũ; z), Yw)



= sign(w)

ũ ∗ (R× Yw)−
∑
z∈Γ+

γz⊂Yw

bµΦ
N (γmz

z )/2c+
∑
z∈Γ−
γz⊂Yw

dµΦ
N (γmz

z )/2e


and thus satisfies

(19)

sign(w) deg(v̄) ≥ −
∑
z∈Γ+

γz⊂Yw

bµΦ
N (γmz

z )/2c+
∑
z∈Γ−
γz⊂Yw

dµΦ
N (γmz

z )/2e

=
∑
z∈Γ±
γz⊂Yw

∓αΦ;∓
N (γmz

z )

with equality occurring if and only if u does not intersect Yw and windΦ
rel((ũ; z), Yw) = αΦ;∓

N (γmz
z ) for every

z ∈ Γ± with γz ⊂ Yw.

Proof. Given a point w ∈ crit(f) it’s clear from the definition of the map v̄ that points z ∈ S with v̄(z) = w
coincide with intersection points of the map ũ with R × Yw (or equivalently, intersection points of u with
Yw) and with punctures z ∈ Γ for which the periodic orbit γmz

z is contained in Yw. Since we’ve observed in
Corollary 2.3 this number is finite, we can compute the degree of the map v̄ : S → Σ by summing the local
degree of the map at each point in v̄−1(w).

Assume for the moment that sign(w) = 1. Since in this case the identification of ξ⊥Yw
with TΣw via

the map p∗ is orientation preserving, it’s clear that the local index of the map v = p ◦ u agrees with the
intersection number of ũ with R × Yw. Summing over all such intersection points leads to the first term in
the given formula for the degree. To compute the local degree at a positive puncture we first choose positive
holomorphic cylindrical coordinates (s, t) ∈ [0,∞)× S1 on a deleted neighborhood of the puncture z ∈ Γ+.
Because in such a coordinate system the loop t 7→ (s, t) for fixed s encircles the puncture in the clockwise
direction, the local degree of the map v̄ at z can be computed by identifying a neighborhood of w with TwΣ
and computing

−wind v̄(s, t) = −wind(p ◦ u)(s, t).

But considering the asymptotic representation of the normal component of the map ũ from Theorem 2.2
along with the definition of the normal relative winding, we have that

wind(p ◦ u)(s, t) = windΦ
rel((ũ; z),R× Yw)

which shows the local degree of the v̄ at z is

−windΦ
rel((ũ; z),R× Yw).

At negative punctures, we argue similarly but instead choose negative cylindrical coordinates (s, t) ∈
(−∞, 0]× S1 on a deleted neighborhood of the puncture. Since the loop t 7→ (s, t) encircles the puncture in
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the counterclockwise direction, an argument analogous to that given above tells us that the local degree is
now given by

wind v̄(s, t) = wind(p ◦ u)(s, t) = windΦ
rel((ũ; z),R× Yw).

The first line of the claimed formula for the degree of v̄ now follows in the case that sign(w) = 1. The
case when sign(w) = −1 is identical with the exception of the fact that the map p∗ : ξ⊥Yw

→ TwΣ is now
orientation reversing which introduces a factor of −1 into each of the computations.

The second line in the claimed formula for the degree of v̄ now follows from the definition of the holomor-
phic intersection product, the definition of the asymptotic intersection numbers and Theorem 2.5

Finally, the inequality (19) and the claim about when equality is achieved is an immediate consequence of
local positivity of intersections and the bounds (10) and (11) or, equivalently, as a consequence of Theorem
2.5. �

Now, in addition to the assumptions preceding Lemma 3.1 we assume that M is equipped with a holo-
morphic foliation F compatible with the f -admissible fibration (Σ, p, Y, f). Recall this means that F is

an R-invariant foliation of R ×M all of whose leaves have J̃-invariant tangent spaces and are diffeomor-
phic to R × Y . Moreover the leaves of the foliation fixed by the R-action are precisely those contained in

R × V = R × p−1(crit(f)) and all other leaves project via R ×M π→ M to embeddings smoothly foliating

M \ V , and the leaves of this foliation project under M
p→ Σ to flow lines of the gradient of f with respect

to some metric on Σ. We observe that the assumption that leaves of the foliation project to gradient flow
lines implies that with respect to a trivialization Φ of ξ⊥V in the preferred homotopy class determined by the

fibration, the windings windΦ
∞(Ṽ , γ), defined by (17) or (18), vanish for any leaf Ṽ of the foliation not fixed

by the R-action and any periodic orbit γ lying in the one of the asymptotic limits of Ṽ .
We now proceed with the proof of our main theorem, Theorem 1.1. We will continue to let (S, j,Γ, ũ =

(a, u)) denote a punctured pseudoholomoprhic curve with all punctures limiting to periodic orbits in V =
p−1(crit(f)), and we let v̄ : S → Σ denote the continuous extension of the map p ◦u : S \Γ→ Σ. We further
assume that at each puncture z ∈ Γ the normal Conley–Zehnder index of the asymptotic limits γmz

z satisfies

(20) µΦ
N (γmz

z ) ∈ {−1, 0, 1}
with Φ still denoting a symplectic trivialization of ξ⊥V in the preferred homotopy class determined by the
f -admissible fibration (Σ, j, p, f). We then claim that:

• If sign(w) = 1 for all w ∈ crit(f) then the map v̄ has nonnegative degree and has degree zero precisely
when the image of the map ũ is contained in a leaf of the foliation F .

• If sign(w) = −1 for all w ∈ crit(f) then the map v̄ has nonpositive degree and has degree zero
precisely when the image of the map ũ is contained in a leaf of the foliation F .

• If the map sign : crit(f) → {−1, 1} is surjective then the map v̄ has degree zero and the image of
the map ũ is contained in a leaf of the foliation F .

Proof of 1.1. The condition (20) implies that

αΦ;−
N (γmz

z ) = bµΦ
N (γmz

z )/2c ≤ b1/2c = 0

for all z ∈ Γ+ and

αΦ;+
N (γmz

z ) = dµΦ
N (γmz

z )/2e ≥ d−1/2e = 0

for all z ∈ Γ−1, which together are equivalent to

(21) ∓ αΦ;∓
N (γmz

z ) ≥ 0

for all z ∈ Γ±.
Assuming that sign(w) = 1 for all w ∈ crit(f), using (19) from Lemma 3.1 with (21) shows that deg v̄ ≥ 0

and that deg v̄ = 0 precisely when

(22)
u(Σ \ Γ) and Yw are disjoint for all w ∈ crit(f), and

windΦ
rel((C; z), Ywz

) = ∓αΦ;∓(γmz
z ) = 0 for all z ∈ Γ±.

Similarly if sign(w) = −1 for all w ∈ crit(f), the same argument shows that deg v̄ ≤ 0 and that deg v̄ = 0
precisely when (22) holds.
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In the third case that there exist points w+, w− ∈ crit(f) with sign(w+) = 1 and sign(w−) = −1, applying
(19) and (21) with w = w+ yields deg(v̄) ≥ 0 while applying (19) and (21) with w = w− yields deg(v̄) ≤ 0.
We conclude that deg(v̄) = 0 which once again happens precisely when (22) holds.

To complete the proof of all three cases, it remains to show that deg(v̄) = 0 precisely when the image of
the map ũ is contained in a leaf of the foliation F . Assume that deg(v̄) = 0. Since F is a foliation, and
we assume that the image of u is not contained in the binding V = crit(f), there exists at least one leaf

Ỹ not fixed by the R-action for which ũ intersects Ỹ . Assume Ỹ projects via p ◦ π to a gradient flow line
between critical points w1 and w2 so that Ỹ is asymptotically cylindrical over Yw1 ∪ Yw2 , and recall that

we’ve noted above that with respect to the global trivialization Φ for ξ⊥V we’ve chosen, windΦ
∞(Ỹ , γ) = 0 for

all periodic orbits γ ∈ Yw1
∪Yw2

. We would now like to apply Corollary 2.8 above to prove the image of ũ is

contained in Ỹ . Assume to the contrary that the image of ũ is not contained in Ỹ . By the assumptions that
all asymptotic limits of the map ũ are periodic orbits in the binding V = p−1(crit(f)) we know that none

of these limits intersect π(Ỹ ) since Ỹ is assumed to project to an embedding in M \ V . Moreover, since we
have already observed that in each case, deg(v̄) = 0 is true precisely when (22) holds, we can conclude that
u(S \Γ) does not intersect the asymptotic limit set Yw1

∪Yw2
and that for each z ∈ Γ± with γmz

z ⊂ Yw1
∪Yw2

we’ll have that windΦ
rel((u; z), Yw1

∪ Yw2
) = 0 = mz windΦ

∞(Ỹ , γz). Corollary 2.8 now lets us conclude that

the image of ũ is disjoint from Ỹ in contradiction to the assumption that they intersect. We thus conclude
that the image of ũ is contained in Ỹ as desired. �
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