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GLOBAL SURFACES OF SECTION WITH POSITIVE GENUS

FOR DYNAMICALLY CONVEX REEB FLOWS

UMBERTO L. HRYNIEWICZ, PEDRO A. S. SALOMÃO, AND RICHARD SIEFRING

Abstract. We establish some new existence results for global surfaces of sec-
tion of dynamically convex Reeb flows on the three-sphere. These sections
often have genus, and are the result of a combination of pseudo-holomorphic
methods with some elementary ergodic methods.

Dedicated to Prof. Claude Viterbo on the occasion of his 60th birthday.

1. Introduction and main results

Let (z0, z1) be complex coordinates in C2, S3 = {|z0|2 + |z1|2 = 1}, and α0 be
the standard Liouville form (−i/4) Σj z̄jdzj−zjdz̄j. The standard symplectic form
on C2 is ω0 = dα0. The fibres of the Hopf fibration are the periodic Reeb orbits of
the contact form λ0 on S3 induced by α0. Let us call the Reeb flow of λ0 the Hopf
flow. The contact structure ξ0 = kerλ0 is called standard.

The contact form λ0 is the first example of a dynamically convex contact form.
In S3 a contact form λ is said to be dynamically convex if all periodic orbits have
Conley-Zehnder index ≥ 3 when computed in a global dλ-symplectic frame of kerλ.
This notion was introduced by Hofer, Wysocki and Zehnder (HWZ) in [22].

One can show quite explicitly that all finite collections of periodic orbits of the
Hopf flow span some global surface of section, see [2]. It is natural to ask if this
property remains true for all dynamically convex Reeb flows on S3, in particular
for all strictly convex energy levels in (C2, ω0) ([22, Theorem 3.4]). This might be
too ambitious to try to prove, and one may be led to naively think that it is easy to
find a counter-example. There is, however, another natural way to generalise this
property of the Hopf flow to the Reeb flows of all dynamically convex contact forms
on S3. Since the Hopf fibres are unknotted with self-linking number −1, one might
ask if all finite collections of periodic Reeb orbits of this kind span some global
surface of section. This is our first result.

Theorem 1.1. Let L be any link formed by periodic Reeb orbits of a dynamically
convex contact form on S3 whose components are unknotted with self-linking num-
ber −1. Then L bounds a global surface of section for the Reeb flow.

There are no hidden genericity assumptions on the contact form. The genus of
these sections will typically explode with the number of boundary orbits. Moreover,
there is no need to specify the contact structure since only the standard one can
be defined by a dynamically convex contact form on S3, see [20].

A proof relying exclusively on pseudo-holomorphic curves would be complicated
by the fact, originally observed in [15], that transversality fails for curves with genus
which are everywhere transverse to the flow. The solution proposed to this problem
in [15] is to consider a perturbation of the holomorphic curve equation which cor-
rects the transversality problem, but seriously complicates the compactness theory
(see [1, 6, 7]). However, dealing with genus is unavoidable since the links covered
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by Theorem 1.1 typically have positive Seifert genus. A proof without pseudo-
holomorphic curves seems out of reach since dynamical convexity is an assumption
only on the periodic orbits, and holomorphic curve techniques have proven to be
one of the very few – if not the only – effective methods for finding surfaces of
section under assumptions of this kind.

Let us outline the argument. The main step is the result from [25] stating that
every component of a link L as in Theorem 1.1 bounds a disk-like global surface
of section. At this point ergodic methods come to aid via asymptotic cycles. We
use the statement from [27] refining a celebrated result due to Fried [12]. The disks
can be used to check the hypotheses of [27, Theorem 1.3]. Each disk has uniformly
bounded return time, hence all invariant measures in S3 \L positively hit the sum
of the cohomology classes dual to each disk. Finally, positivity of rotation numbers
follows from dynamical convexity.

Remark 1.2. It was explained to us by Colin, Dehornoy and Rechtman that the
input from pseudo-holomorphic curves from [25] can be used in a more elementary
way, avoiding asymptotic cycles. One can take the union of the disks and “resolve
intersections” to construct the desired sections. This idea is extensively used in [4].

In [13] Ghys introduced the notion of right (left) handed vector field on a ho-
mology three-sphere, and explained that all finite collections of periodic orbits of
such a vector field span a global surface of section. The Hopf flow is the simplest
example of a right handed vector field. Examples of left handed geodesic flows on
negatively curved two-dimensional orbifolds are presented by Dehornoy [5]. Right
handedness provides deep insight on the dynamics. For instance, it follows that
every finite collection of periodic orbits is a fibered link, hence there are strong
knot theoretical restrictions. Moreover, as soon as such a collection is “misplaced”
then Nielsen-Thurston theory might be used to obtain entropy via the study of the
isotopy class of the return map.

Question 1. Is the Reeb flow of every dynamically convex contact form on S3 right
handed?

A positive answer is probably very hard to obtain, even in finite-dimensional
families of interesting flows such as those appearing in Celestial Mechanics. One is
then tempted to look for examples to give a negative answer, but they might not
exist. In the context of the 3-body problem, we refer to [36] for a discussion of a
version of this question, and to the book [11] by Frauenfelder and van Koert for a
discussion on global surfaces of section, including a related conjecture of Birkhoff.
The existence of genus zero global surfaces of section with prescribed binding orbits
has been clarified in [32]. In an upcoming paper [10] it will be shown that geodesic
flows on S2 with curvatures pinched by some explicit constant lift to right handed
Reeb flows on S3.

Remark 1.3. The dynamical convexity assumption is essential in Question 1, as
one can easily check. It is, however, more subtle to rule out specific types of global
surfaces of sections when dynamical convexity is dropped. For instance, in [34] one
finds examples of contact forms on S3 without disk-like global surfaces of section.
The situation in higher dimensions is still wide open, but in [35] there are interesting
new constructions for the spatial circular restricted 3-body problem.

Our second result is closely connected to the following question.

Question 2 (HWZ [22]). Is the minimal period among closed Reeb orbits of a
dynamically convex contact form on S3 equal to the contact area of some disk-like
global surface of section ?
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Starting from a nondegenerate dynamically convex contact form on S3, Hutch-
ings and Nelson [33] were able to implement the construction of the chain complex of
Cylindrical Contact Homology (CCH), originally explained by Eliashberg, Givental
and Hofer in [9]. The arguments from [33] rely on elementary pseudo-holomorphic
curve methods. Invariance of the resulting homology is delicate and requires so-
phisticated technology, for instance, one can use the Polyfold Theory introduced
by Hofer, Wysocki and Zehnder; see [16] for a survey. It will be shown in [31] that
elementary methods are still enough to get invariance of CCH in its lowest degree.
This is enough to get the first spectral invariant cCCH

1 well-defined. Also in [31] it
will be shown that cCCH

1 is the action of some periodic orbit with Conley-Zehnder
index 3 realised as the asymptotic limit of a pseudo-holomorphic plane. Hence we
get the following consequence of a combination of Corollary 1.5 below with some of
the results from [31]: “The spectral invariant cCCH

1 of a nondegenerate dynamically
convex contact form on S3 is the contact area of some global surface of section.”

Theorem 1.4. Let λ be a contact form on S3 that is both non-degenerate and
dynamically convex up to action C. Suppose that a periodic Reeb orbit P = (x, T )
satisfies T ≤ C and is the asymptotic limit of a fast finite-energy plane. Then the
knot x(R) spans a global surface of section for the Reeb flow.

In the theorem above and the corollary below a periodic Reeb orbit is a pair
P = (x, T ) where x is a periodic trajectory of the Reeb flow and T > 0 is a period,
not necessarily the primitive one.

Corollary 1.5. Let λ be a contact form on S3 that is both nondegenerate and
dynamically convex up to action C. Suppose that a periodic Reeb orbit P = (x, T )
satisfies T ≤ C, CZ(P ) = 3, and is the asymptotic limit of a finite-energy plane.
Then the knot x(R) spans a global surface of section for the Reeb flow.

Proof. The equality CZ(P ) = 3 implies that any finite-energy plane asymptotic to
P is fast. Now apply Theorem 1.4. �

The proof of Theorem 1.4 is based on a certain class of pseudo-holomorphic
planes called fast, but also uses ergodic methods (asymptotic cycles) [12,13,27,41,
42]. Fast planes were originally introduced in [26] and later used in [24, 25, 28–30]
to prove several existence results on global surfaces of section. Roughly speaking,
an end of a plane is in some sense a gradient trajectory of the action functional,
and the results from [18] basically say that the approach to the periodic orbit is
governed by an eigenvector of an operator that plays the role of the Hessian of the
action, the so-called asymptotic operator. The term “fast” refers to the fact that
the eigenvalue of this asymptotic eigenvector has the same winding number of the
most negative eigenvalue allowed, hence the approach is roughly the fastest it can
be; see Definition 2.8.

Remark 1.6. The global sections obtained from Theorem 1.4 and Corollary 1.5 may
have genus. Note that P is not assumed to be simply covered, but still the global
sections obtained are Seifert surfaces for the knot x(R).

Acknowledgments. UH would like to thank V. Colin, P. Dehornoy and A. Recht-
man for enlightening discussions leading to Remark 1.2 during the 104e rencontre
entre mathématiciens et physiciens théoriciens held at IRMA (2019), the organisers
of this event for the invitation, and IRMA for the hospitality. UH also thanks Kai
Cieliebak and Urs Frauenfelder for helpful conversations, and the hospitality during
a visit to Universität Augsburg. RS thanks Jungsoo Kang and Urs Frauenfelder for
helpful discussions. We thank the referee for interesting and helpful feedback. RS
was partially supported by the SFB/TRR 191 “Symplectic Structures in Geometry,
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191). PS is partially supported by FAPESP 2016/25053-8 and CNPq 306106/2016-
7. PS acknowledges the support of NYU-ECNU Institute of Mathematical Sciences
at NYU Shanghai.

2. Preliminaries

Let λ be a contact form on a 3-manifold M . The contact structure is denoted
by ξ = kerλ.

2.1. Periodic orbits, asymptotic operators and Conley-Zehnder indices.

The Reeb vector field Xλ of λ is implicitly defined by

iXλ
dλ = 0, iXλ

λ = 1.

Its flow φt is called the Reeb flow. Let us fix a marked point on every periodic
trajectory of φt. A periodic Reeb orbit is a pair P = (x, T ) where x : R → M is a
periodic trajectory of φt such that x(0) is the marked point, and T > 0 is a period.
It is not required that T is the primitive period. The set of periodic orbits will be
denoted by P(λ). If T0 > 0 is the primitive period of x then k = T/T0 ∈ N is called
the covering multiplicity of P . The contact form λ is said to be nondegenerate up
to action C ∈ (0,+∞] if 1 is not in the spectrum of dφT |x(0) : ξ|x(0) → ξ|x(0), for
all P = (x, T ) ∈ P(λ) such that T ≤ C. When C = +∞ we simply say that λ is
nondegenerate.

There is an unbounded operator on L2(x(T ·)∗ξ)

η 7→ J(−∇tη + T∇ηXλ)

associated to a pair (P, J), where P = (x, T ) ∈ P and J : ξ → ξ is a dλ-compatible
complex structure. Here ∇ is a symmetric connection on TM and ∇t denotes the
associated covariant derivative along the loop t ∈ R/Z 7→ x(T t). This is called the
asymptotic operator. It does not depend on the choice of ∇. It is self-adjoint when
L2(x(T ·)∗ξ) is equipped with the inner-product

(η, ζ) 7→

∫

R/Z

dλ(x(T t))(η(t), J(x(T t))ζ(t)) dt

Its spectrum is discrete, consists of eigenvalues whose geometric and algebraic mul-
tiplicities coincide, and accumulates at ±∞. It turns out that λ is nondegenerate
if, and only if, 0 is never an eigenvalue of an asymptotic operator. The eigenvectors
are nowhere vanishing sections of x(T ·)∗ξ since they solve linear ODEs. Hence they
have well-defined winding numbers with respect to a dλ-symplectic trivialisation σ
of x(T ·)∗ξ. The winding number is independent of the choice of eigenvector of a
given eigenvalue. This allows us to talk about the winding number

windσ(ν) ∈ Z

of an eigenvalue ν with respect to σ. For every k ∈ Z there are precisely two
eigenvalues satisfying windσ = k, multiplicities counted and, moreover, ν1 ≤ ν2 ⇒
windσ(ν1) ≤ windσ(ν2). These properties are independent of σ. These properties
of the asymptotic operator have been established in [19]. Given any δ ∈ R we set

α<δ
σ (P ) = max {windσ(ν) | ν eigenvalue, ν < δ}

α≥δ
σ (P ) = min {windσ(ν) | ν eigenvalue, ν ≥ δ}

pδ(P ) = α≥δ
σ (P )− α<δ

σ (P )

Finally we consider the constrained Conley-Zehnder index

(1) CZδ
σ(P ) = 2α<δ

σ (P ) + pδ(P )

Note that this is defined also in degenerate situations.
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A contact form λ is dynamically convex up to action C ∈ (0,+∞] if c1(ξ, dλ)
vanishes on π2 →֒ H2, and every contractible1 P = (x, T ) ∈ P(λ) satisfying T ≤ C
also satisfies CZ0

σdisk
(P ) ≥ 3. Here σdisk is a trivialisation that extends to a capping

disk. If C = +∞ then we say that λ is dynamically convex.

Remark 2.1. Dynamical convexity was introduced by HWZ in [22]. The assumption
that c1(ξ, dλ) vanishes on spheres implies that the homotopy class of σdisk does not
depend on the choice of a capping disk.

2.2. Pseudo-holomorphic curves in symplectisations. From now on we as-
sume M is closed. Let J be a compatible complex structure on the symplectic

vector bundle (ξ, dλ). Hofer [14] considers an almost complex structure J̃ defined
on R×M by

(2) J̃ : ∂a 7→ Xλ J̃ |ξ = J

where Xλ and ξ are seen as R-invariant objects in R×M . Then J̃ is R-invariant.
Consider a closed Riemann surface (S, j), a finite set Γ ⊂ S and a pseudo holomor-
phic map

ũ = (a, u) : (S \ Γ, j) → (R×M, J̃)

satisfying a finite-energy condition

0 < E(ũ) = sup
φ

∫

S\Γ

ũ∗d(φλ) < ∞

where the supremum is taken over the set of φ : R → [0, 1] satisfying φ′ ≥ 0.
The number E(ũ) is called the Hofer energy. Such a map is called a finite-energy
map. Points in Γ are called punctures. A puncture z ∈ Γ is positive or negative
if a(w) → +∞ or a(w) → −∞ when w → z, respectively. It is called removable
if lim sup |a(w)| < ∞ when w → z. It turns out that every puncture is positive,
negative or removable, and that ũ can be smoothly extended across a removable
puncture; see [14].

Let z ∈ Γ and let K be a conformal disk centred at z, i.e. there is a bi-
holomorphism ϕ : (K, j, z) → (D, i, 0). Then K \ {z} admits positive holomor-
phic polar coordinates (s, t) ∈ [0,+∞) × R/Z defined by (s, t) ≃ ϕ−1(e−2π(s+it)),
and negative holomorphic polar coordinates (s, t) ∈ (−∞, 0] × R/Z defined by
(s, t) ≃ ϕ−1(e2π(s+it)).

Theorem 2.2 (Hofer [14]). Let z ∈ Γ be a non-removable puncture, and (s, t) be
positive holomorphic polar coordinates at z. For every sequence sn → +∞ there
exist a subsequence snj

and P = (x, T ) ∈ P such that u(snj
, t) → x(ǫT t + d) in

C∞(R/Z,M), for some d ∈ R, where ǫ = ±1 is the sign of the puncture.

From now on we denote by

(3) πλ : TM → ξ

the projection along Xλ.

Theorem 2.3 (HWZ [18]). Suppose that λ is non-degenerate up to action C, and

that z is a non-removable puncture of a finite-energy curve ũ = (a, u) in (R×M, J̃)
with Hofer energy E(ũ) ≤ C. Let (s, t) be positive holomorphic polar coordinates
at z. There exist P = (x, T ) ∈ P, d ∈ R such that u(s, t) → x(ǫT t + d) in
C∞(R/Z,M) as s → +∞, where ǫ = ±1 is the sign of the puncture.

Remark 2.4. The orbit P is called the asymptotic limit of ũ at z.

1This means that the loop t ∈ R/Z 7→ x(Tt) is contractible.
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Consider the space R/Z × C equipped with coordinates (ϑ, z = x1 + ix2) and
contact form β0 = dϑ+ x1dx2.

Definition 2.5. A Martinet tube for P = (x, T ) ∈ P is a smooth diffeomorphism
Ψ : N → R/Z × D defined on a smooth compact neighborhood N of x(R) such
that:

• Ψ(x(Tϑ/k)) = (ϑ, 0) for all ϑ ∈ R/Z, where k ∈ N is the covering multi-
plicity of P .

• λ|N = Ψ∗(gβ0), where g : R/Z × D → (0,+∞) is smooth and satisfies
g(ϑ, 0) = T/k, dg(ϑ, 0) = 0 for all ϑ ∈ R/Z.

Theorem 2.6 (HWZ [18], Mora-Donato [38], Siefring [40]). Suppose that λ is non-
degenerate up to action C > 0, and that z is a non-removable puncture of sign
ǫ = ±1 of a finite-energy curve ũ = (a, u) with Hofer energy E(ũ) ≤ C. Let
(s, t) be positive or negative holomorphic polar coordinates at z when ǫ = +1 or
ǫ = −1, respectively. Consider any Martinet tube Ψ : N → R/Z × D for the
asymptotic limit P of ũ at z, and s0 ≫ 1 such that |s| ≥ s0 ⇒ u(s, t) ∈ N .
Write Ψ(u(s, t)) = (ϑ(s, t), z(s, t)) for |s| ≥ s0. Up to a rotation, we can assume
u(s, 0) → x(0) as ǫs → +∞.

If z(s, t) does not vanish identically then the following holds. There exist r > 0
and an eigenvalue ν of the asymptotic operator of (P, J) satisfying ǫν < 0, such
that:

• There exist c, d ∈ R and a lift ϑ̃ : R× R → R of ϑ(s, t) such that

lim
ǫs→+∞

sup
t∈R/Z

erǫs
(
|Dβ [a(s, t)− Ts− c]|+ |Dβ [ϑ̃(s, t)− kt− d]|

)
= 0

holds for every partial derivative Dβ = ∂β1

s ∂β2

t , where k is the covering
multiplicity of P .

• There exists an eigenvector of ν, represented as a nowhere vanishing vector
field v(t) in the frame {∂x1

, ∂x2
} along P , such that

z(s, t) = eνs(v(t) +R(s, t))

for some R(s, t) satisfying |DβR(s, t)| → 0 in C0(R/Z) as ǫs → +∞, for

every partial derivative Dβ = ∂β1

s ∂β2

t .

The alternative z(s, t) ≡ 0 can be expressed independently of coordinates as
saying that the end of the domain of ũ corresponding to the puncture is mapped
into the trivial cylinder over the asymptotic limit. In this case we say that ũ has
trivial asymptotic behaviour at the puncture. Otherwise, the asymptotic behaviour
is said to be nontrivial at the puncture.

Remark 2.7. The eigenvalue ν provided by Theorem 2.6 is called the asymptotic
eigenvalue of ũ at the puncture z.

Let us recall some of the invariants introduced in [19] in the R-invariant case.

Let ũ = (a, u) be a finite-energy curve on (R × M, J̃), defined on a connected
domain. Assume that λ is nondegenerate up to action E(ũ). It can be shown
that if πλ ◦ du does not vanish identically then its zeros are isolated and count
positively. Theorem 2.6 further implies that there are finitely many zeros in this
case. HWZ [19] define

(4) windπ(ũ) ≥ 0

to be the algebraic count of zeros in case πλ ◦ du does not vanish identically. Fix
a dλ-symplectic trivialisation σ of u∗ξ. Let z be a puncture of ũ with asymptotic
limit P = (x, T ). The asymptotic behaviour described in Theorem 2.6 allows one



7

to deform σ so that it extends to a trivialisation of x(T ·)∗ξ. Let wind∞(ũ, z, σ) ∈ Z

be defined to be the winding of the asymptotic eigenvalue of ũ at z with respect to
the extension of σ to x(T ·)∗ξ. Finally we consider

wind∞(ũ) =
∑

+
wind∞(ũ, z, σ)−

∑
−
wind∞(ũ, z, σ)

where Σ+ denotes a sum over the positive punctures, and Σ− is a sum over the
negative punctures. Standard degree theory shows that

(5) windπ(ũ) = wind∞(ũ)− χ+#{punctures}

holds provided
∫
u∗dλ > 0. Note that wind∞(ũ) does not depend on the choice of

trivialisation σ of u∗ξ.
Denote by (C = C ∪ {∞}, i) the Riemann sphere. For the next two definitions

consider a finite-energy plane ũ = (a, u) : (C, i) → (R × M, J̃) and assume that
λ is nondegenerate up to action E(ũ). By Stokes theorem, ∞ must be a positive
puncture, and the similarity principle implies that

∫
C
u∗dλ > 0.

Definition 2.8. The plane ũ is said to be fast if wind∞(ũ) = 1.

Definition 2.9. The covering multiplicity cov(ũ) of the plane ũ is the covering
multiplicity of its asymptotic limit.

Fast planes in symplectisations were originally introduced in [24].

Lemma 2.10. If ũ = (a, u) is a fast plane then ũ is somewhere injective and the
map u : C → M is an immersion transverse to Xλ.

Proof. That u is an immersion transverse to Xλ follows from (4) and (5). If ũ
is not somewhere injective then it covers another plane via a polynomial map of
degree ≥ 2, but this forces ũ to have critical points, in contradiction to u being an
immersion; here we used that the Cauchy-Riemann equations force a critical point
to be a zero of the derivative of ũ. �

2.3. Asymptotic cycles. Here we explain the basics on asymptotic cycles, and
state the main result from [27]. Let φt be a smooth flow on a smooth, closed,
oriented and connected 3-manifold M , and let L be a link consisting of (non-
constant) periodic orbits. The set of φt-invariant Borel probability measures on
M \ L is denoted by Pφ(M \ L). Fix an auxiliary Riemannian metric g on M . If
p ∈ M \ L is recurrent and the sequence Tn → +∞ satisfies φTn(p) → p, then we
denote by k(Tn, p) loops obtained by concatenating to φ[0,Tn](p) a g-shortest path
from φTn(p) to p. With µ ∈ Pφ(M \ L) and y ∈ H1(M \ L;R) fixed, one can use
the Ergodic Theorem to show that µ-almost all points p ∈ M \L have the following
properties: p is recurrent, and the limits

lim
n→+∞

〈y, k(Tn, p)〉

Tn

exist independently of Tn and g, and define a µ-integrable function fµ,y. The
integral

µ · y :=

∫

M\L

fµ,y dµ

is, by definition, the intersection number of µ and y.
If γ is the periodic orbit given by a connected component of L, then ξγ =

TM |γ/Tγ is a rank-2 vector bundle over γ. It carries an orientation induced by the
ambient orientation and the flow orientation on γ. A positive frame of ξγ allows
one to identify ξγ ≃ γ×C ≃ R/TγZ×C, where Tγ > 0 is the primitive period. If t
is the coordinate on R/TγZ (given by the flow) and θ ∈ R/2πZ is the polar angle on
C∗ then {dt, dθ} is a basis of H1((ξγ \ 0)/R+;R). With the aid of any exponential
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map the class y induces a class in this homology group that can be written as
pdt+ qdθ. The coefficients p, q ∈ R depend only on y and on the chosen frame. If
u is a nonzero vector in ξγ then using the frame we can write dφt · u ≃ r(t)eiθ(t)

with smooth functions r(t) > 0, θ(t). The rotation number

(6) ρy(γ) :=
Tγ

2π

(
p+ q lim

t→+∞

θ(t)

t

)

is independent of the choice of frame, and of the vector u.
The following statement is a refinement of a result due to Fried [12], see also

Sullivan [42].

Theorem 2.11 ([27]). Let b ∈ H2(M,L;Z) be induced by an oriented Seifert sur-
face with boundary L, and denote by b∗ ∈ H1(M \L;R) the class dual to b. Consider
the following assertions:

(i) L bounds a global surface of section representing b.
(ii) L binds an open book decomposition whose pages are global surfaces of sec-

tion representing b.
(iii) The following hold:

(a) ρb
∗

(γ) > 0 for every connected component γ ⊂ L.
(b) µ · b∗ > 0 for every µ ∈ Pφ(M \ L).

Then (iii) ⇒ (ii) ⇒ (i) holds. Moreover, (i) ⇒ (iii) holds C∞-generically.

3. Proof of Theorem 1.1

The main input in the proof is the following statement proved with pseudo-
holomorphic curves.

Theorem 3.1 ([25]). Let λ be any dynamically convex contact form on (S3, ξ0).
Then a periodic Reeb orbit bounds a disk-like global surface of section if, and only
if, it is unknotted and has self-linking number −1.

Here there are no hidden genericity assumptions, the only assumption is that
of dynamical convexity. A disk-like global surface of section D spanned by some
unknotted, self-linking number −1 periodic orbit γ = ∂D obtained from the above
result has the following property: the first return time

τ : D \ γ → (0,+∞) τ(p) = inf {t > 0 | φt(p) ∈ D}

is bounded, i.e.

(7) sup
p∈D\γ

τ(p) < +∞.

Since D is a global surface of section, it follows from (7) that there exists L > 0
such that φ[0,L](q) ∩D 6= ∅ for every q ∈ S3 \ γ.

Let γ1, . . . , γN be a collection of unknotted, self-linking number −1 periodic
Reeb orbits. These orbits are taken as knots, i.e. primitive orbits, oriented by the
flow. Consider a disk-like global surface of section Di spanned by γi, provided by
Theorem 3.1, oriented in such a way that the identity ∂Di = γi takes orientations
into account. Algebraically counting intersections with Di induces a cohomology
class yi ∈ H1(S3 \ γi;R). Denoting inclusion maps by ιj : S3 \ ∪iγi → S3 \ γj we
get a cohomology class

(8) y =
∑

i

ι∗i yi ∈ H1(S3 \ ∪iγi;R).

Denote also

(9) ℓij = link(γi, γj) ≥ 1
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which are positive integers since all Di are global surfaces of section.
Let Ti denote the primitive period of γi. With i fixed consider a small smooth

compact neighbourhood Ni and a smooth, orientation preserving, diffeomorphism
Ψi : Ni → R/TiZ × D such that Ψi ◦ φ

t ◦ Ψ−1
i (0, 0) = (t, 0). Here D ⊂ C denotes

the unit disk oriented by the complex orientation. Up to twisting, we may assume
that Ψi is aligned with Di, i.e. if ǫ > 0 is small then the linking number of the loop
t 7→ Ψ−1

i (t, ǫ) with γi is equal to zero. Denote by reiθ the polar coordinates on Di.
It follows that with respect to the basis {dt/Ti, dθ/2π} of R/TiZ× (D\ {0}) we can
write

(Ψi)∗y =



∑

j 6=i

ℓij


 dt

Ti
+

dθ

2π

It follows from this and from the definition of the rotation number (6) that

(10)

2πρy(γi) = Ti



∑

j 6=i

ℓij
Ti

+
1

2π
lim

t→+∞

θ(t)

t




=
∑

j 6=i

ℓij + lim
t→+∞

θ(t)/2π

t/Ti

≥ lim
t→+∞

θ(t)/2π

t/Ti

where (9) was used in the third line. We claim that this limit is strictly positive.
This will follow from CZ(γi) ≥ 3 together with sl(γi) = −1. Here we write CZ
for the Conley-Zehnder index in a global dλ-symplectic frame of (ξ0, dλ). In fact,
the global dλ-symplectic frame of ξ0 rotates sl(γi) = −1 turns with respect to a
dλ-symplectic of ξ|γi

aligned with Di. It turns out that there exists αi ∈ R such
that CZ(γk

i ) = 2⌊kαi⌋ + p(γk
i ) for every k ≥ 1, where |p(γk

i )| ≤ 1, and that if
CZ(γi) ≥ 3 then αi > 1. Hence

lim
t→+∞

θ(t)/2π

t/Ti
= lim

k→+∞

CZDi(γk
i )

2k
= lim

k→+∞

CZ(γk
i )− 2k

2k
= αi − 1 > 0.

Hence we are done checking

(11) ρy(γi) > 0 ∀i

which is (iii-a) in Theorem 2.11.
Now we check (iii-b). Let µ ∈ Pφ(S

3 \ ∪iγi) be arbitrary. As explained in
subsection 2.3, there exists a Borel set E ⊂ M \∪iγi contained in the set of recurrent
points such that µ(E) = 1, and for all p ∈ E the limits limn→∞ 〈y, k(Tn, p)〉 /tn
exist independently of the sequence tn → +∞ satisfying φtn(p) → p and define a
function fµ,y ∈ L1(µ) whose integral is µ · y. Since each Di \ γi is transverse to the
flow we conclude that µ(E \∪iDi) = 1. Fix p ∈ E \∪iDi and a sequence tn → +∞
satisfying φtn(p) → p. Then using the (positive) transversality of the flow with all
the surfaces Di \ γi

(12) n ≫ 1 ⇒ 〈y, k(Tn, p)〉 =
∑

i

#{t ∈ [0, Tn] | φ
t(p) ∈ Di}

But

(13) #{t ∈ [0, Tn] | φ
t(p) ∈ Di} ≥

Tn

sup τi
− 1
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where τi is the return time function of Di. Recall that sup τi < +∞ (7). Plug-
ging (13) into (12) we obtain

(14)
〈y, k(Tn, p)〉

Tn
≥

∑

i

(
1

sup τi
−

1

Tn

)

Taking the limit as n → ∞

(15) fµ,y ≥
∑

i

1

sup τi
(µ-almost everywhere) ⇒ µ · y ≥

∑

i

1

sup τi
> 0

and we are done checking (iii-b). A direct application of Theorem 2.11 concludes
the proof of Theorem 1.1.

4. Proof of Theorem 1.4

Let P = (x, T = m0T0) be a periodic Reeb orbit, with multiplicity m0, of a
defining contact form λ on (S3, ξ0). Here T0 denotes the primitive period of x.
Throughout this section we denote by τ a global dλ-symplectic trivialisation of ξ0.
Assume that λ is dynamically convex up to action T , and also that λ is nondegen-
erate up to action T .

Proposition 4.1. If ũ is a fast plane asymptotic to P then there exists a > 0 such
that

(16) #{t ∈ [0, T ] | φt(p) ∈ u(C)} ≥

⌊
T

a

⌋

holds for every p ∈ S3 \ x(R) and every T ≥ 0.

We first show that Proposition 4.1 can be used to check the hypothesis of The-
orem 2.11 for the periodic orbit x(R) and the cohomology class counting linking
numbers with it. Theorem 1.4 follows as a consequence.

Proof that Theorem 1.4 follows from Proposition 4.1. Let y ∈ H1(S3 \ x(R);R) be
the cohomology class that counts linking number of loops in S3 \ x(R) with the
loop t ∈ R/Z 7→ x(T0t) = x(T t/m0). Here we ignore Z-coefficients and work with
R-coefficients. If we compactify C to a disk DC by adding a circle at ∞ then u
induces a capping disk ū : DC → S3 for P such that the class in H1(S3 \ x(R))
dual to ū∗[DC] ∈ H2(S

3, x(R)) is precisely m0y. Here [DC] is the fundamental class
in H2(DC, ∂DC;Z) induced by the complex orientation. Observe that u(C) \ x(R)
has measure zero with respect to any µ ∈ Pφ(S

3 \ x(R)) since it is transverse
to the flow. Hence, in view of the discussion in subsection 2.3, we get a Borel
set E ⊂ S3 \ x(R) such that µ(E) = 1 and every point p ∈ E has the following
properties:

(a) p is recurrent.
(b) The limits

lim
n→+∞

link(k(Tn, p), x(R))

Tn
= lim

n→+∞

〈y, k(Tn, p)〉

Tn

exist independently of Tn → +∞ satisfying φTn(p) → p (and of auxiliary
Riemannian metrics), and define a function in L1(µ) whose integral is equal
to the intersection number µ · y.

(c) p 6∈ u(C).
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Hence, using the transversality between u and the Reeb vector field, for every p ∈ E
we can estimate

(17)

m0 link(k(Tn, p), x(R)) = 〈m0y, k(Tn, p)〉

=
∑

t∈[0,Tn], φt(p)∈u(C)

#{z ∈ C | u(z) = φt(p)}

≥ #{t ∈ [0, Tn] | φ
t(p) ∈ u(C)}

for all n large enough, where Tn → +∞ satisfies φTn(p) → p. With the aid of
Proposition 4.1 we can estimate from (17)

(18) lim
n→+∞

link(k(Tn, p), x(R))

Tn
≥ lim

n→+∞

1

m0Tn

⌊
Tn

a

⌋
=

1

m0a
∀p ∈ E

which implies, by definition of intersection numbers, that

(19) µ · y ≥
1

m0a
> 0 ∀µ ∈ Pφ(S

3 \ x(R))

Condition ρy(x(R)) > 0 follows immediately from CZ(P0) ≥ 3 where P0 = (x, T0)
is the simply covered periodic orbit underlying P . Theorem 1.4 now follows from
a direct application of Theorem 2.11 since y is dual to any Seifert surface for x(R);
here it was used that the ambient space is S3. �

To complete the proof of Theorem 1.4 we need to establish Proposition 4.1. The
rest of this section is concerned with the proof of Proposition 4.1.

Let us denote by P0 = (x, T0) the simply covered periodic orbit underlying P ,
and recall that m0 denotes the covering multiplicity of P = (x, T = m0T0). For
every k ≥ 1 we denote P k

0 = (x, kT0). In particular P = Pm0

0 .
Consider the set Mfast(P, J) of equivalence classes of fast finite-energy planes

asymptotic to P , where two planes ũ, ṽ are equivalent if there exist A ∈ C∗, B ∈ C

and c ∈ R such that ṽc(z) = ũ(Az +B) holds for every z ∈ C. Here ṽc denotes the
translation of ṽ by c in the R-component. Equivalence classes are denoted by [ũ].

It is possible to build a Fredholm theory for Mfast(P, J̄) modelled on sections
of the normal bundle, using Sobolev or Hölder spaces. Fix a number δ < 0 in the
spectral gap of the asymptotic operator associated to (P, J) between eigenvalues
with winding number 1 and 2 with respect to τ . This is possible since CZ0

τ (P ) ≥ 3.
Note that α<δ

τ (P ) = 1 and α≥δ
τ (P ) = 2. Let

(20) ũ = (a, u) : (C, i) → (R× S3, J̃)

be a fast plane representing an element of Mfast(P, J). Consider the space of
sections of the normal bundle of ũ(C) with exponential decay faster than δ. The
Fredholm index of the linearisation Dũ of the Cauchy-Riemann equations at ũ
restricted to this space of sections is

(21) indδ(ũ) = CZδ
τ (P )− 1 = 3− 1 = 2.

An important fact is that automatic transversality holds, i.e. Dũ at a fast plane ũ
is always a surjective Fredholm operator. Let us prove this fact. There is no
loss of generality to deform the normal bundle so that it coincides with u∗ξ0 over
C\BR(0), R ≫ 1. A dλ-symplectic trivialising frame of the normal bundle induces,
up to homotopy, a dλ-symplectic trivialisation σN of x(T ·)∗ξ0 which winds +1 with
respect to the global frame τ . Moreover, a nontrivial section ζ ∈ kerDũ admits
an asymptotic behaviour governed by an eigensection of the asymptotic operator
associated to an eigenvalue ν < δ, see [24, Theorem 6.1] or [40, Theorem A.1].
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Hence, ζ does not vanish near ∞ and the total algebraic count of zeros of ζ is equal
to the winding number of ν with respect to σN , which is equal to

windτ (ν)− 1 ≤ α<δ
τ (P )− 1 = 1− 1 = 0.

But the equation Dũζ = 0 allows us to use Carleman’s similarity principle to
say that zeros are isolated and count positively. The important conclusion is that ζ
never vanishes. Since the Fredholm index is 2, we would find 3 linearly independent
sections of the kernel if Dũ were not surjective. But the normal bundle is two-
dimensional, hence a nontrivial linear combination of them would have to vanish
at some point, contradiction.

Remark 4.2. Arguments like the one used above to prove automatic transversality
statements were explored in [17, 43], see also [26].

It follows from the above discussed automatic transversality that Mfast(P, J) can
be given the structure of a smooth, Hausdorff and second countable one dimensional
manifold.

Remark 4.3. Under our standing assumption that λ is non-degenerate up to ac-
tion T one can show that the topology on Mfast(P, J) inherited from the func-
tional analytic set-up used for the Fredholm theory coincides with the topology
of C∞

loc-convergence. There are situations where this can also be proved dropping
non-degeneracy [25, 30].

Consider a sequence ũn : (C, i) → (R×S3, J̃) of fast finite-energy planes asymp-
totic to P . Since λ is assumed to be nondegenerate up to action T we can apply the
SFT compactness theorem to get, up to selection of a subsequence, that ũn SFT-
converges to a stable holomorphic building u. Since u is a limit of planes it can be
conveniently described as a directed, rooted tree T . Each vertex v corresponds to
a finite-energy map

ũv = (av, uv) : (C \ Γv, i) → (R× S3, J̃)

with a unique positive puncture ∞. The finite set Γv consists of the negative
punctures of ũv. The top level of this building corresponds to the root r, and
consists of a single finite-energy map ũr which is asymptotic to P at its positive
puncture ∞. Edges are always assumed oriented as going away from the root. An
edge e from the vertex v to the vertex v′ corresponds to a negative puncture of ũv.
The asymptotic limit ũv at the negative puncture corresponding to e is equal to the
asymptotic limit of ũv′ at its positive puncture. The leaves correspond precisely to
the vertices v such that ũv is a plane (Γv = ∅).

Lemma 4.4. If v is a vertex of T such that
∫
u∗
vdλ > 0 then wind∞(ũv,∞, τ) ≤ 1.

Proof. SFT compactness allows us to find An ∈ C∗, Bn ∈ C and cn ∈ R such that
the planes w̃n(z) = cn · ũn(Anz +Bn) converge to ũv in C∞

loc(C \ Γv). Here cn · ũn

denotes the translation by cn in the R-component.
Consider components w̃n = (dn, wn) and ũv = (av, uv) in R × S3. Write

w̃n(s, t) = (dn(s, t), wn(s, t)) instead of w̃n(e
2π(s+it)), and similarly ũv(s, t) =

(av(s, t), uv(s, t)). Fix s0 such that z ∈ Γv ⇒ |z| < e2πs0 . By Theorem 2.6 we
can find s1 > s0 such that πλ(∂suv) does not vanish on [s1,+∞) × R/Z and the
winding number wind(πλ(∂suv)(s1, ·)) of t 7→ πλ(∂suv)(s1, t) in the global frame τ
is equal to wind∞(ũv,∞, τ). Since πλ(∂swn) → πλ(∂suv) in C∞

loc we find n0 such
that if n ≥ n0 then πλ(∂swn) does not vanish on {s1} × R/Z and

wind(πλ(∂swn)(s1, ·)) = wind(πλ(∂suv)(s1, ·)) = wind∞(ũv,∞, τ).

The frame τ can be used to represent the maps (s, t) 7→ πλ(∂swn) by smooth maps
ζn : [s0,+∞)×R/Z → C satisfying a Cauchy-Riemann type equation. Carleman’s
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similarity principle implies that either ζn vanishes identically on [s0,+∞) × R/Z,
or its zeros are isolated and count positively. It can not vanish identically since the
w̃n are planes. By Theorem 2.6 ζn(s, t) does not vanish when s is large enough and
for every n we have

lim
s→+∞

wind(ζn(s, ·)) = lim
s→+∞

wind(πλ(∂swn)(s, ·)) = wind∞(w̃n) = wind∞(ũn)

If s > s1 is large enough then wind(ζn(s, ·))−wind(ζn(s1, ·)) is the algebraic count
of zeros of ζn on [s1, s]× R/Z. Since this count is nonnegative we get

wind(πλ(∂swn)(s1, ·)) ≤ wind∞(ũn)

for all n ≥ n0. Hence

n ≥ n0 ⇒ wind∞(ũv,∞, τ) ≤ wind∞(ũn) = 1

as desired. �

Lemma 4.5. If the vertex v is not a leaf then
∫
u∗
vdλ = 0, i.e. ũv is a possibly

branched cover of a trivial cylinder over a periodic orbit.

Proof. Suppose that
∫
u∗
vdλ > 0. At the negative punctures z ∈ Γv of ũv we have

wind∞(ũv, z, τ) ≥ 2 since the asymptotic limits at these punctures are periodic
Reeb orbits with action less than T and hence, by assumption, satisfy CZ0

τ ≥ 3.
By the previous lemma together with (4) and (5) we arrive at

(22) 0 ≤ windπ(ũv) = wind∞(ũv)− 1 + #Γv ≤ 1− 2#Γv − 1 + #Γv = −#Γv

Thus Γv = ∅ and v is a leaf. �

Corollary 4.6. The following dichotomy holds for every vertex v of T :

(i) v is not a leaf,
∫
u∗
vdλ = 0 and ũv is a (possibly branched) cover of a trivial

cylinder.
(ii) v is a leaf,

∫
u∗
vdλ > 0 and ũv is a fast plane asymptotic to a covering

of P0.

Proof. Case (i) is handled by the previous lemma. Let us now argue for (ii). By
Lemma 4.4 if v is a leaf then it is a plane satisfying wind∞(ũv) ≤ 1. Hence
0 ≤ windπ(ũv) = wind∞(ũv)− 1 ≤ 1 − 1 = 0, i.e. wind∞(ũv) = 1 and ũv is a fast
plane. �

For every 1 ≤ k ≤ m0 we consider Mfast(P k
0 , J) the moduli space of fast finite-

energy planes asymptotic to P k
0 , defined as before. For each k there is a suitable

choice of negative weight placed precisely at the spectral gap between eigenvalues
of the asymptotic operator associated to (P k

0 , J) with winding 1 and 2 in a global
frame. With these weights one builds a Fredholm theory as before, and there is
automatic transversality. The spaceMfast(P k

0 , J) becomes a 1-dimensional smooth,
second countable Hausdorff manifold. Moreover, the induced topology coincides
with the topology induced by C∞

loc-convergence.

Corollary 4.7. There exists m ∈ {1, . . . ,m0} such that Mfast(Pm
0 , J) is non-empty

and compact.

Proof. We work under the assumption of Theorem 1.4 that Mfast(P = Pm0

0 , J)
is non-empty. If Mfast(P, J) is compact then there is nothing to be proved. If
Mfast(P, J) is not compact then some sequence in Mfast(P, J), represented by fast
planes ũn, will SFT-converge to a building u with more than one level. This means
that the corresponding tree T does not consist of a single vertex (the root), and

by Corollary 4.6 every leaf v must be a fast finite-energy plane asymptotic to P kv

0 ,
for some kv ∈ {1, . . . ,m0 − 1}. The reason for the strict inequality kv < m0 is that
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the root must have at least two negative punctures: otherwise the root corresponds
to a trivial cylinder, which is ruled out by stability of the limiting building. Pick
any leaf v, denote m1 = kv. Hence the moduli space Mfast(Pm1

0 , J) of fast planes
asymptotic to Pm1

0 is not empty. If Mfast(Pm1

0 , J) is compact then we are done
with the proof. If not we proceed just as above to find 1 ≤ m2 ≤ m1 − 1 such that
Mfast(Pm2

0 , J) is non empty. After a finite number of steps k ≥ 0 this process stops
and we find 1 ≤ mk ≤ m0 such that Mfast(Pmk

0 , J) is non-empty and compact. �

From now on m is given by the previous lemma, that is, Mfast(Pm
0 , J) is a

non-empty, compact, smooth and Hausdorff 1-dimensional manifold, i.e. a finite
collection of circles.

Consider the spaceMfast
1 (Pm

0 , J) of equivalence classes of pairs (ũ, z) where ũ is a
fast plane asymptotic to Pm

0 and z ∈ C. Two pairs (ũ0, z0), (ũ1, z1) are equivalent
if there exist A ∈ C∗, B ∈ C such that ũ1(Az + B) = ũ0(z) for all z ∈ C and
z1 = Az0 +B. Note that (R,+) acts freely on Mfast

1 (Pm
0 , J) by translations in the

symplectisation direction. Hence Mfast
1 (Pm

0 , J)/R is a smooth three-dimensional
manifold. The map

(23) ev : Mfast
1 (Pm

0 , J)/R → S3 ev([ũ = (a, u), z]/R) 7→ u(z)

is smooth.

Lemma 4.8. The map ev is a submersion.

Proof. For every ũ ∈ Mfast(Pm
0 , J) nontrivial sections in the kernel of the linearised

Cauchy-Riemann operator at ũ, with the appropriate weighted exponential decay,
which represent elements in the tangent space, never vanish and u is an immersion.

�

Lemma 4.9. If K ⊂ S3 \ x(R) is compact then ev−1(K) is compact.

Proof. Suppose that [ũn, zn] represents a sequence in ev−1(K). Up to reparametri-
sation, translation in the R-component, and selection of a subsequence, we may
assume that ũn converges in C∞

loc to some plane ũ representing an element of
Mfast(Pm

0 , J). Let N be a neighbourhood of x(R) such that K ∩ N = ∅. One
can then invoke results on cylinders of small contact area from [23] to conclude
that there exists R and n0 such that if n ≥ n0 and |z| ≥ R then ũn(z) ∈ R × N .
This implies that supn |zn| ≤ R. Hence one can assume, up to selection of a subse-
quence, that zn → z for some z. It follows that [ũn, zn]/R → [ũ, z]/R. �

Lemma 4.10. The image of the map ev contains S3 \ x(R).

Proof. By Lemma 4.8 the image is open in S3, hence its intersection with S3 \x(R)
is an open subset of S3 \ x(R). By Lemma 4.9 the intersection of the image of
ev with S3 \ x(R) is a closed subset of S3 \ x(R). The conclusion follows from
connectedness of S3 \ x(R). �

Consider [ũ = (a, u)] ∈ Mfast(Pm
0 , J) and the function

(24) τ : S3 \ x(R) → [0,+∞]

defined by

(25) τ(p) = inf{t > 0 | φt(p) ∈ u(C)}

with the convention that the infimum of the empty set is +∞.

Lemma 4.11. τ takes values on (0,+∞), and sup τ < +∞.
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Proof. From the transversality of u to the Reeb flow, and the asymptotic formula
from Theorem 2.6, we conclude that given any [ṽ = (b, v)] ∈ Mfast(Pm

0 , J) and
p ∈ S3, the set v−1(p) ⊂ C is finite, and also that τ takes values on (0,+∞].

Suppose that p 6∈ x(R) and ω(p) ∩ x(R) 6= ∅. By invariance of x(R) under
the Reeb flow, the trajectory φt(p) will spend arbitrarily long times in the future
arbitrarily and uniformly close to x(R). Hence, the way in which it rotates around
x(R) is governed by the linearised Reeb flow along x. Every plane ṽ = (b, v)
representing an element in Mfast(Pm

0 , J) is asymptotic to Pm
0 according to an

eigenvector of a negative eigenvalue of the asymptotic operator with winding +1 in
a global frame; this information is encoded in wind∞(ṽ) = 1. Hence, in transverse
polar coordinates aligned with the global frame the plane rotates 2π. After one
period T = mT0 the linearised flow rotates every transverse vector by an angle
larger than 2π + ∆ for some uniform ∆ > 0. This information is encoded in
CZ0

τ (P
m
0 ) ≥ 3. Hence after flow time of about ⌊ 2π

∆ + 1⌋T any point nearby P0

already returned once back to the plane. It follows that the return time is bounded
from above for points near P0.

If ω(p)∩x(R) = ∅ then it follows from compactness ofMfast(Pm
0 , J) and transver-

sality of the planes to the Reeb flow that for every [ṽ] ∈ Mfast(Pm
0 , J) the trajectory

φt(p) will hit v(C) in finite time.
So far we have proved that τ takes values on (0,+∞), and that τ is bounded

near x(R). To conclude we note that if

{w1, . . . , wN} = u−1(φτ(p)(p))

then there are N local smooth germs of hitting times τ1, . . . , τN near p. Then τ
can be locally bounded in terms of these germs. �

Proposition 4.1 is a consequence of Lemma 4.11.

Remark 4.12. We observe that the finite energy planes produced by Corollary 4.7
can themselves be thought of as sorts of generalized surfaces of section where we
allow for the possibility that the surface is an immersion rather than embedding.
Indeed our proof shows that the projection to S3 of every such plane is an immer-
sion, transverse to the Reeb flow, and that the flow line through any given point
in S3 \ P0 will hit the surface in forward and backward time. In the case that the
plane is not an embedding, it follows from results in [19,39] that it must intersect its
asymptotic limit, and thus in this case the plane will intersect the flow line through
any given point in S3 including points in P0.

We observe further that, since our proof shows that the evaluation map

ev : Mfast
1 (Pm

0 , J)/R → S3

is an immersion between manifolds of the same dimension, it is also a local diffeo-
morphism, so we can use ev−1 to lift the flow to the moduli space Mfast

1 (Pm
0 , J)/R,

each component of which is diffeomorphic to C × S1. Moreover, since each plane
in Mfast

1 (Pm
0 , J)/R is transverse to the flow, the resulting flow on Mfast

1 (Pm
0 , J)/R

will be transverse to the disk-like fibers of the forgetful map Mfast
1 (Pm

0 , J)/R 7→
Mfast(Pm

0 , J)/R. So although the surface of section provided by our theorem will
in general have genus, the fast finite energy planes that we construct in the proof
can themselves be used to visualize the dynamics as a return map on a disk.
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