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The étale homotopy groups of schemes as defined by Artin and Mazur [AM69]
have the disadvantage of being homotopy invariant only in characteristic zero. This
and other related problems led to the definition of the tame topology which is
coarser than the étale topology by disallowing wild ramification along the boundary
of compactifications, see [HS21]. The objective of this paper is to show that the
associated tame homotopy groups are indeed (A1-)homotopy invariant, at least for
regular schemes.

The author thanks the unknown reviewer of this article for his detailed and
constructive criticism.

1. The tame site

Throughout this article, let S be a (base) scheme and X an S-scheme. We recall
the definition of the tame site (X/S)t from [HS21].

By a valuation on a field we mean a non-archimedean valuation, not necessarily
discrete or of finite rank. The trivial valuation is included. If v is a valuation, we
denote by Ov,mv and k(v) the valuation ring, its maximal ideal and the residue
field. If v is a valuation on K, we denote by Ov,mv and k(v) the valuation ring, its
maximal ideal and the residue field. By Oh

v and Osh
v we denote the henselization

and strict henselization of Ov and by Kh
v and Ksh

v their quotient fields.
Let v be a valuation on K and w an extension of v to a finite separable extension

field L/K. We call w/v unramified if Ov → Ow is étale, i.e., Lsh
w = Ksh

v , and tamely
ramified if the field extension Lsh

w /Ksh
v is of degree prime to the residue characteris-

tic p = char k(v). In this case Lsh
w /Ksh

v is automatically Galois with abelian Galois
group of order prime to p. If L/K is Galois, then w/v is unramified (resp. tamely
ramified) if and only if the inertia group Tw(L/K) (resp. the ramification group
Rw(L/K)) is trivial. (See [Ray70] and [EP05].)

Let f : X → S be a scheme morphism. An S-valuation on X is a valuation v
on the residue field k(x) of some point x ∈ X such that there exists a morphism
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φ : Spec(Ov) → S making the diagram

Spec(k(x)) X

Spec(Ov) S

f

φ

commutative (if S is separated, φ is unique if it exists). The set of all S-valuations
is denoted by ValS X. We denote elements of ValS X in the form (x, v), x ∈ X,
v ∈ ValS(k(x)).

Definition 1.1. The tame site (X/S)t consists of the following data:
The category Cat(X/S)t is the category of étale morphisms p : U → X.
A family (Ui → U)i∈I of morphisms in Cat(X/S)t is a covering if it is an étale
covering and for every point (u, v) ∈ ValS(U) there exists an index i and a point
(ui, vi) ∈ ValS Ui mapping to (u, v) such that vi/v is (at most) tamely ramified.

The small étale site Xet, the tame site (X/S)t and the Nisnevich site XNis all
have the same underlying category. Every Nisnevich covering is a tame covering
and every tame covering is an étale covering. Hence there are natural morphisms
of sites

Xet
α−→ (X/S)t

β−→ XNis,

where α∗ and β∗ are fully faithful. In particular, being an étale sheaf can be viewed
as a property of tame sheaves.

A tame point of X/S is a pair (x̄, v̄) where x̄ : Spec k(x̄) → X is a morphism from
the spectrum of a field to X and v̄ is an S-valuation on k(x̄) such that k(x̄) does
not admit a nontrivial, finite, separable extension to which v̄ has a tamely ramified
extension. In other words, k(x̄) is strictly henselian with respect to v̄ and the
absolute Galois group of k(x̄) is a pro-p group, where p is the residue characteristic
of v̄ (if p = 0 this means that the group is trivial).

If v̄ is the trivial valuation, we call the point (x̄, v̄) trivial point. Note that
(regardless of the residue characteristic) the field k(x̄) of a trivial point is separably
closed.

A tame point (x̄, v̄) induces a morphism of sites

x̄ : (Spec k(x̄)/ SpecOv̄)t −→ (X/S)t.

By [HS21, Lemma 2.5], the inverse image sheaf functor x̄∗ is exact for sheaves of
sets as well as of abelian groups. Since every tame covering of Spec(k(x̄)) splits,
the global sections functor on (Spec k(x̄)/ SpecOv̄)t is exact. Therefore the functor
“stalk at x̄”

F 7−→ Fx̄ := Γ(Spec k(x̄), x̄∗F ),

is a topos-theoretical point of (X/S)t. The trivial points correspond to the usual
geometric points of the étale site (followed by α : Xet → (X/S)t).

We denote the category of tame sheaves of abelian groups by Sht(X/S).

Lemma 1.2. The family of tame points is conservative for the site (X/S)t. In
particular, a tame sheaf of abelian groups F ∈ Sht(X/S) is zero if and only if its
stalks at all tame points are zero.

Proof. See [HS21, Lemma 2.10]. □

The following theorem lists some of the properties of the tame site proven in
[HS21]:



HOMOTOPY INVARIANCE OF TAME HOMOTOPY GROUPS OF REGULAR SCHEMES 3

Theorem 1.3. Let X be an S-scheme and let α : Xet → (X/S)t be the natural
morphism of sites. Then the following hold:

(i) (Topological invariance, [HS21, Proposition 3.1]) If X ′ → X is a universal
homeomorphism of S-schemes, then the sites (X/S)t and (X ′/S)t are isomor-
phic.

(ii) (Comparison with étale cohomology for invertible coefficients, [HS21, Propo-
sition 8.1]) Let F ∈ Shet(X) be an abelian sheaf with mF = 0 for some m
which is invertible on S. Then the natural map

Hn
t (X/S, α∗F ) ∼= Hn

et(X,F )

is an isomorphism for all n ≥ 0.
(iii) (Comparison with étale cohomology for proper schemes, [HS21, Proposition

8.2]) Assume that S is quasi-compact and quasi-separated and that X → S
is proper. Assume moreover that every finite subset of X is contained in an
affine open. Then, for every sheaf F of abelian groups on (X/S)t the natural
map

Hn
t (X/S,F ) → Hn

et(X,α∗F )

is an isomorphism for all n ≥ 0.
(iv) (Finite subcoverings, [HS21, Theorem 4.1]) Assume that S is quasi-compact

and quasi-separated and that X is quasi-compact. Then every tame covering
of X admits a finite subcovering.

(v) (Colimits of sheaves, [HS21, Theorem 4.5]) Assume that S and X are quasi-
compact and quasi-separated and let (Fi) be a filtered direct system of abelian
sheaves on (X/S)t. Then

colim
i

Hn
t (X/S,Fi) ∼= Hn

t (X/S, colim
i

Fi)

for all n ≥ 0.
(vi) (Limits of schemes, [HS21, Theorem 4.6]) Let (fi : Xi → Si)i∈I be a filtered

inverse system of scheme morphisms with affine transition morphisms and
assume that all Si and Xi are quasi-compact and quasi-separated. Denote by
X → S its inverse limit. Assume that i0 ∈ I is a final object and let F0 be
a sheaf of abelian groups on (Xi0/Si0)t. For i ∈ I denote by Fi its pullback
to (Xi/Si)t and by F its pullback to (X/S)t. Then the natural map

colim
i∈I

Hn
t (Xi/Si,Fi) −→ Hn

t (X/S,F )

is an isomorphism for all n ≥ 0.

2. The profinite tame fundamental group

The étale fundamental group of a geometrically pointed, connected scheme (X, x̄)
was defined in [SGA1] as the automorphism group of the fibre functor

Fx̄ : FEtX −→ sets, (Y → X) 7−→ π0(Y ×X x̄),

where FEtX is the Galois category of finite étale X-schemes. This is a profinite
group. To distinguish it from other constructions, we denote it by π̂et

1 (X, x̄) and
call it the profinite étale fundamental group.

A similar procedure yields the profinite tame fundamental group π̂t
1(X/S, x̄) of

a connected S-scheme X:

Definition 2.1. Let X be a connected S-scheme. A finite étale morphisms f : Y →
X is called finite tame cover if for every y ∈ Y and w ∈ ValS k(y) the extension
k(y)/k(f(y)) is at most tamely ramified at w. We define the category FTX/S as
the category with objects the finite tame covers of X and with S-morphisms as
morphisms.
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Remark 2.2. Let Y → X be an étale Galois cover. Since the Galois group acts
transitively on the fibres, we have

Y ∈ FTX/S ⇐⇒ Y → X is a covering in (X/S)t.

Now let (x̄, v̄) be a tame point of X/S. Then

F(x̄,v̄) : FTX/S −→ sets, (Y → X) 7−→ π0(Y ×X x̄)

is a fibre functor on the Galois category FTX/S .

Definition 2.3. We denote the automorphism group of the fibre functor F(x̄,v̄) by
π̂t
1(X/S, (x̄, v̄)). It is a profinite group that we call the profinite tame fundamental

group of X/S.

By the general theory of Galois categories we obtain from [SP, TAG 0BN4]:

Proposition 2.4. Let X be a connected S-scheme and let (x̄, v̄) be a tame point
of X/S. Then the fibre functor induces a natural equivalence between FTX/S and
the category of finite discrete π̂t

1(X/S, (x̄, v̄))-sets.

By topological invariance, π̂t
1(X/S, (x̄, v̄)) only depends on the reduction Xred

of X. The open subgroups of π̂t
1(X/S, (x̄, v̄)) correspond to the connected finite

tame covers of X (Galois if and only if the subgroup is normal). If (ȳ, w̄) is another
tame point, then the groups π̂t

1(X/S, (x̄, v̄)) and π̂t
1(X/S, (ȳ, w̄)) are isomorphic, the

isomorphism being unique up to inner automorphisms. Any commutative diagram

X X ′

S S′

induces a homomorphism π̂t
1(X/S, (x̄, v̄)) → π̂t

1(X
′/S′, (x̄′, v̄′)), where (x̄′, v̄′) is the

point of X ′/S′ induced by (x̄, v̄).

For a geometric point x̄ = (x̄, triv) we obtain a natural surjection

π̂et
1 (X/S, x̄) ↠ π̂t

1(X/S, x̄)

which is an isomorphism if X → S is proper.

Our objective is to show that the profinite tame fundamental group is homotopy
invariant on normal schemes.

Lemma 2.5. Let X be a connected, normal scheme, K = k(X), L/K an alge-
braic field extension and Y = XL the normalization of X in L. Then A1

Y is the
normalization of A1

X in the field extension k(A1
Y )/k(A

1
X).

Proof. We may assume that X = Spec(A) is affine, hence Y = Spec(B), with B =
AL the integral closure of A in L. Then B[T ] ⊂ L(T ) is integral over A[T ] ⊂ K(T ).
On the other hand, by [Bou89, V §1 Cor. 1 to Prop. 13], B[T ] is integrally closed.
This completes the proof. □

Theorem 2.6 (Homotopy invariance of the profinite tame fundamental group of
normal schemes). Let X be a normal connected S-scheme and (ȳ, w̄) a tame point
of A1

X/S with image (x̄, v̄) in X. Then the projection pr : A1
X → X induces an

isomorphism

pr
X/S
∗ : π̂t

1(A
1
X/S, (ȳ, w̄)) −→ π̂t

1(X/S, (x̄, v̄)).
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Proof. Since the fundamental group is independent of the base point, we may as-
sume that ȳ = (ȳ, triv) is a geometric point lying over the generic fibre A1

η of A1
X ,

where η ∈ X is the generic point.
Since the zero section to pr is an S-morphism, we conclude that pr

X/S
∗ is sur-

jective. We have a commutative diagram

πt
1(A

1
η/η, ȳ) πt

1(A
1
η/S, ȳ) πt

1(A
1
X/S, ȳ)

πt
1(η/η, x̄) πt

1(η/S, x̄) πt
1(X/S, x̄).

prη/η
∗ prη/S

∗ prX/S
∗

By definition, every finite separable extension of k(η) is tame with respect to k(η),
hence πt

1(η/η, x̄)
∼= Gal(k(η)/k(η)). The fundamental exact sequence for the étale

fundamental groups immediately implies the exactness of the analogous sequence

1 −→ πt
1(A

1
η̄/η̄, ȳ) −→ πt

1(A
1
η/η, ȳ)

prη/η
∗−→ πt

1(η/η, x̄) −→ 1.

Since the affine line over a separably closed field has no nontrivial tame covers (by
the Hurwitz formula), we see that πt

1(A
1
η̄/η̄, ȳ) = 1. Hence prη/η∗ is an isomorphism.

In order to show that pr
X/S
∗ is an isomorphism, it suffices to show that every

connected tame (with respect to S) finite cover Z → A1
X is the base change A1

Y →
A1

X of a finite tame (with respect to S) cover Y → X. Let K be the function field of
X, hence η = SpecK. We put Zη = Y ×X η and obtain the following commutative
diagram

Spec(k(Z)) Zη Z

Spec(k(A1
X)) A1

η A1
X .

Since tame covers are stable under base change, Zη → A1
η is tame with respect to

S, in particular, tame with respect to η. Since pr
η/η
∗ is an isomorphism, Zη → A1

η

comes by base change from η, i.e., there is a finite separable field extension L/K
such that Zη

∼= A1
L.

As Z → A1
X is an étale cover, Z is the normalization of A1

X in k(Z) = k(Zη) =
k(A1

L). By Lemma 2.5, the normalization of A1
X in k(A1

L) is equal A1
Y , where Y is

the normalization of X in L. We conclude that Z ∼= A1
Y . It remains to show that

the (a priori only integral) morphism Y → X is a finite tame cover with respect to
S. This follows since we recover Y → X as the base change of Z → A1

X along the
zero section. □

3. Comparison with the curve tame fundamental group

In good situations, there is another notion of tameness which can be formulated
without valuation theory only in terms of algebraic geometry. We speak of curve
tameness, which was introduced in [KS10]. We want to compare it with the notion
of tameness of this article. Unfortunately, the statement of [HS21, Proposition 5.2]
is wrong in that the assumption “S = Spec k for a field k and X/S is separated and
of finite type” is missing there. Therefore we take up the subject again and prove
a corrected and slightly generalized statement in Proposition 3.4 below.

Let S be a scheme which is integral, pure-dimensional (i.e., dimS = dimOS,s for
every closed point s ∈ S), separated and excellent. Furthermore, we let X → S be
separated and of finite type. For integral X we put

dimS X := deg.tr.(k(X)/k(T )) + dimKrull T,
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where T is the closure of the image of X in S. If the image of X in S contains
a closed point of T , then dimS X = dimKrull X by [EGA4.4, 5.6.5]. We call X an
S-curve if dimS X = 1. For a regular connected S-curve C, let C̄ be the unique
regular compactification of C over S. Then the finite tame Galois covers of C are
exactly those étale Galois covers which are tamely ramified along C̄ ∖ C in the
classical sense (e.g. [GM71]). We recall the notion of curve-tameness from [KS10]:

Definition 3.1. Let Y → X be a finite étale cover of separated S-schemes of finite
type. We say that Y → X is curve-tame if for any morphism C → X with C a
regular S-curve, the base change Y ×X C → C is tamely ramified along C̄ ∖ C.

Now let X be connected and choose a geometric point x̄. We obtain the profi-
nite curve-tame fundamental group π̂ct

1 (X/S, x̄), which is the quotient of π̂et
1 (X, x̄)

that classifies finite curve-tame covers. This curve-tame fundamental group was
considered in [Sch07], [KS09], [GS16].

For a general base scheme S, our comparison result depends on local uniformiza-
tion:

Definition 3.2. Let S be a noetherian scheme. We say that local uniformization
holds over S, if for any integral scheme X of finite type over S with function field
k(X) and any S-valuation v of k(X) with center on X there exists a connected,
regular scheme X ′ and a morphism X ′ → X inducing an isomorphism k(X ′) ∼=
k(X) and such v has center on X ′.

Remark 3.3. Local uniformization is a weaker property than resolution of singu-
larities. Over fields of characteristic zero it was proven by Zariski [Zar40]. Over
fields of characteristic p > 0, Temkin proved an inseparable variant in [Tem13],
which was used in an essential way in [Sch20] (which we use below).

Proposition 3.4. Let S be an integral, pure-dimensional, separated and excellent
scheme, X → S separated and of finite type and x̄ a geometric point of X. As-
sume that S is the spectrum of a field or that local uniformization hold over S.
Then the profinite curve-tame fundamental group coincides with the profinite tame
fundamental group:

π̂t
1(X/S, x̄) ∼= π̂ct

1 (X/S, x̄).

Proof. If char(S) = 0, the statement of the proposition is true for trivial reasons,
since both sides coincide with the profinite étale fundamental group. Hence we can
assume that S has at least one point of positive residue characteristic. We have to
show that a finite étale Galois cover of X is tame if and only if it is curve-tame.
Both notions coincide for regular S-curves and are stable under base change. Hence
finite tame Galois covers are curve-tame and it remains to show the converse.

So let f : Y → X be a finite étale Galois cover, y ∈ Y a point, x = f(y) and
w ∈ ValS k(y) such that w is wildly ramified in k(y)/k(x). We have to find an
S-curve C and a morphism φ : C → X such that C ×X Y → C is wildly ramified
at some point in C̄ ∖ C.

Let X ′ be the closure of {x} in X with reduced scheme structure and Y ′ =
X ′ ×X Y . In order to find φ : C → X, we can replace X by X ′ and Y by the
connected component of y in Y ′, i.e., we may assume that x and y are the generic
points of the integral schemes X and Y . Replacing X by its normalization X̃ and
Y by its base change along X̃ → X, we may assume that X and Y are normal.

We first assume that Gal(Y/X) is cyclic of order p := char k(w). Then, since w
is ramified, k(y)/k(x) is also of degree p.
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If S = Spec(k) for a field k (necessarily of characteristic p), then, by quasi-purity
of the branch locus [Sch20], we find a geometric discrete rank-one S-valuation v on
k(y) that is ramified in k(y)/k(x) and specializes to w.

In the general case, assume that local uniformization holds over S. Let X̄ be a
proper (over S) normal compactification of X and let z ∈ X̄ be the center of w.
We choose a connected, regular scheme X ′ with a morphism X ′ → X̄ inducing
an isomorphism k(X ′) ∼= k(X) and such w has center z′ on X ′ and let Y ′ be the
normalization of X ′ in k(Y ). Then Y ′/X ′ ramifies over z′ and by the Zariski-
Nagata theorem on the purity of the branch locus we find a ramified divisor on X ′

which contains z′. This gives us a geometric discrete rank-one S-valuation v on
k(Y ) that is ramified in k(Y )/k(X).

In both cases, by [Liu02, §8, Theorem3.26 and Exercise 3.14], we can find a
normal compactification (over S) X̄ of X such that the center D of v on X̄ is of
codimension one. Applying the Key Lemma 2.4 of [KS10] to the local ring of some
closed point of X̄ contained in D and with residue characteristic p, we obtain a
morphism φ : C → X with the property that C ×X Y → C is ramified (hence
wildly ramified) at this point.
It remains to reduce the general case to the cyclic-order-p-case. For this let

A ⊂ Rw(k(Y )/k(X)) ⊂ Gal(k(Y )/k(X))

be a subgroup of order p (here Rw denotes the ramification group) and let X ′ = YA.
Then Y/X ′ is of degree p and wildly ramified at w. By the first part of the proof,
we find a morphism φ : C → X ′ with the required property. Then the composite
of φ with the projection X ′ → X yields what we need. □

4. Locally constant tame sheaves

For an abelian group A we denote by A the Zariski sheafification of the constant
presheaf associated with A on the category Xet. It is an étale sheaf, in particular
a tame sheaf.

Definition 4.1. A sheaf of abelian groups F ∈ Sht(X/S) is locally constant if
there is a tame covering (Ui → X) such that the restriction F |Ui

is isomorphic to
a constant sheaf Ai on Ui for all i.

Since constant sheaves are étale sheaves, the same is true for locally constant
sheaves by Lemma 4.2 below.

Lemma 4.2. Let F ∈ Sht(X/S) and assume there is a tame covering (Ui → X)
such that the restrictions of F to all Ui are étale sheaves. Then F is an étale sheaf.

Proof. Let U ∈ Xet and let (Uj → U)j be an étale covering. Then (Ui×X U → U)i
is a tame covering, (Ui ×X Uj → Ui ×X U)j is an étale covering for all i and
(Ui ×X Uj → Uj)i is a tame covering for all j. Giving a section of F over U is
therefore equivalent to give compatible sections of F over all Ui ×X U , which is
equivalent to give compatible sections of F over all Ui ×X Uj which is equivalent
to give compatible sections of F on all Uj . □

Remark 4.3. We obtain the inclusions:

{l.c. tame sheaves} ⊂ {l.c. étale sheaves} ⊂ {étale sheaves} ⊂ {tame sheaves}.

Proposition 4.4. Let X be a connected S-scheme. A locally constant tame sheaf
F of abelian groups on (X/S)t has finite stalks if and only if it is represented by
an abelian group scheme G → X that is a finite tame cover of X.
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Proof. The if part is obvious. Let F be a locally constant tame sheaf with finite
stalks. By Lemma 4.2, F is an étale sheaf. Hence, by [Mil80, V, Proposition 1.1],
F is represented by an abelian finite étale group scheme f : G → X. Since G is a
G-torsor, it is trivialized by itself, i.e., F |G is a constant sheaf. It remains to show
that f : G → X is a tame cover, i.e., that for every y ∈ G and w ∈ ValS k(y) the
extension k(y)/k(f(y)) is at most tamely ramified at w.

Since F is locally constant, there exists a tame covering (Ui → X)i such that
G×X Ui → Ui is constant for all i. Now let y ∈ G and w ∈ ValS k(y), x = f(y) ∈ X
and v = w|k(x). We can find an index i, ui ∈ Ui, vi ∈ ValS k(ui) such that vi/v is
at most tamely ramified. Now we pick a point yi ∈ G ×X Ui and wi ∈ ValS k(yi)
mapping to (ui, vi) and (y, w). Since G ×X Ui → Ui is constant, we obtain an
inclusion k(y) ⊂ k(ui) such that vi|k(y) = w. Hence w/v is dominated by vi/v and
hence tame. □

Combining Proposition 4.4 with the equivalence of Proposition 2.4, we obtain

Proposition 4.5. Let X be a connected S-scheme and let (x̄, v̄) be a tame point
of X/S. Then there is a natural equivalence between the category of finite discrete
π̂t
1(X/S, (x̄, v̄))-modules and the category of sheaves on (X/S)t which are locally

constant and have finite stalks.

5. Étale and tame homotopy groups

In [AM69], Artin and Mazur defined higher étale homotopy groups. The con-
struction is the following:

A category C admitting finite fibre products is called distributive if it has an
initial object ∅, and if the following condition holds: For every family of objects
Yi, i ∈ I, such that the coproduct

∐
i∈I Yi exists in C, any family of morphisms

Yi → S and for any morphism X → S, the canonical morphism
∐

i∈I X ×S Yi →
X ×S (

∐
i∈I Yi) is an isomorphism.

An object X of a distributive category C is called connected if it is not the initial
object ∅ and has no non-trivial coproduct decomposition. The category C is called
locally connected if every object has a coproduct decomposition into connected
objects. This decomposition is essentially unique then, so we can speak about the
set of connected components of an object of C. The rule associating to an object
its set of connected components is then a functor, denoted by

Π : C −→ sets.

Assume in addition that C is a pointed site. We consider the category HR(C),
whose objects are pointed hypercoverings of C and whose maps are homotopy
classes of morphisms. The category HR(C) is left filtering [AM69, Corollary 8.13].
By applying the connected components functor Π to HR(C), we obtain a pro-object

ΠC = (π(K•))K•

in the homotopy category of pointed simplicial sets. The homotopy pro-groups of
C are defined by

πq(C) = πq(ΠC).

For a locally noetherian S-scheme X, the above applies to the sites Xet and (X/S)t
and one puts for a geometric point x̄ of X, resp. a tame point x̄ = (x̄, v̄) of X/S:

πet
q (X, x̄) = πq(Xet, x̄), πt

q(X/S, (x̄, v̄)) = πq((X/S)t, (x̄, v̄)).

The following Theorem 5.1 verifies properties of the tame homotopy groups that
were proven in [AM69] and [Fri82] in the étale case.
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Theorem 5.1. Let X be a locally noetherian S-scheme and (x̄, v̄) a tame point of
X/S. Then the following holds.

(i) πt
0(X/S, (x̄, v̄)) is the set π0(X) of connected components of X, pointed in the

component of x̄.
(ii) If X0 is the connected component of x̄, then the natural homomorphism

πq((X0/S)t, (x̄, v̄)) −→ πq((X/S)t, (x̄, v̄))

are isomorphisms of pro-groups for all q ≥ 1.
(iii) There is a natural homomorphism of pro-groups

πt
1(X/S, (x̄, v̄)) −→ π̂t

1(X/S, (x̄, v̄))

which is universal for homomorphisms of πt
1(X/S, (x̄, v̄)) to profinite groups.

In other words, π̂t
1(X/S, (x̄, v̄)) is the profinite completion of πt

1(X/S, (x̄, v̄)).
(iv) Assume that X is noetherian and geometrically unibranch (e.g., normal) and

that S is quasi-compact and quasi-separated. Then the pro-groups

πt
q(X/S, (x̄, v̄))

are profinite for all q ≥ 1.

Proof. (i) We show that for any tame hypercovering K• → X the natural map
π0(π(K•)) → π0(X) is a bijection. This shows that πt

0(X/S, (x̄, v̄)) is the constant
pro-object associated with the set π0(X) (pointed in the component of x̄). By
Yoneda, it suffices to show that for any set S the induced map

Sπ0(π(K•)) −→ Sπ0(X)

is bijective. Let S be the constant tame sheaf of sets associated with S. Then
Γ(Y, S) = Sπ0(Y ) for every Y ∈ Xet. Similarly, we obtain Γ(Y•, S) = Sπ0(π(Y•)) for
every simplicial object Y• of Xet. For a hypercovering K• → X, the exact sequence

Γ(K•, S) → Γ(K0, S) ⇒ Γ(K1, S),

and the sheaf property of S show Γ(K•, S) = Γ(X,S), hence Sπ0(π(K•)) = Sπ0(X).
(ii) This follows since the functor π commutes with disjoint unions and because
the homotopy groups of a pointed simplicial set only depend on the connected
component of the base point.
(iii) Recall that the category of profinite groups is the pro-category of the category
of finite groups. Moreover, recall that any pro-object X = (Xi)i∈I of a category C
defines the covariant functor

Hom(X,−) : C −→ sets, Y 7−→ colim
i

Hom(Xi, Y )

and that this construction identifies the category pro-C with the full subcategory
of pro-representable covariant functors from C to sets. For a (discrete) group G
(considered as a constant group scheme over X), we call a G-torsor T → X tame,
if T → X is a tame covering. Let π1

t (X/S,G, (x̄, v̄)) denote the set of isomorphism
classes of pointed (over (x̄, v̄)) tame G-torsors. The profinite tame fundamental
group π̂t

1(X/S, (x̄, v̄)) represents the functor

finite groups −→ sets, G 7−→ π1
t (X/S,G, (x̄, v̄)).

On the other hand, by [AM69, Corollary 10.7], the pro-group πt
1(X/S, (x̄, v̄)) rep-

resents the functor

groups −→ sets, G 7−→ π1
t (X/S,G, (x̄, v̄)).

From this the assertion of (iii) follows formally.
(iv) Since X is noetherian, by Theorem 1.3(iv), the noetherian hypercoverings (i.e.,
those K• → X with Kq noetherian for all q) are cofinal among all hypercoverings
of X. Therefore it suffices to show that for every noetherian tame hypercovering
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K• → X all homotopy groups of the simplicial set π(K•) are finite. Since tame
hypercoverings are étale hypercoverings, this follows from [AM69, Theorem 11.2].

□

6. Homotopy invariance of tame homotopy groups

Definition 6.1. Let S be a noetherian scheme. We say that resolution of singular-
ities holds over S if for any reduced scheme X of finite type over S there is a locally
projective birational morphism X ′ → X such that X ′ is regular and X ′ → X is an
isomorphism over the regular locus of X. (By [EGA4.2, IV, 7.9.5], this particularly
implies that S is quasi-excellent.)

The following theorem was proven in [HS21, Theorem 15.2]:

Theorem 6.2 (Homotopy invariance of tame cohomology). Let S be an affine noe-
therian scheme of characteristic p > 0 and X a regular scheme which is essentially
of finite type over S. Assume that resolution of singularities holds over S. Then
for every locally constant torsion sheaf F ∈ Sht(X/S) the natural map

Hq
t (X/S, F ) −→ Hq

t (A
1
X/S, pr∗F ),

where pr : A1
X → X is the natural projection, is an isomorphism for all q ≥ 0.

Together with our results on the fundamental group, this implies

Theorem 6.3 (Homotopy invariance of tame homotopy groups for regular schemes).
Let S be an affine noetherian scheme of characteristic p > 0 and X a regular scheme
which is essentially of finite type over S. Assume that resolution of singularities
holds over S. Then for every tame point (ȳ, w̄) of A1

X/S with image (x̄, v̄) in X/S,
the map

πq
t (A

1
X/S, (ȳ, w̄)) −→ πq

t (X/S, (x̄, v̄)),

induced by the projection pr : A1
X → X, is an isomorphism for all q ≥ 0.

Proof. The statement for q = 0 follows from Theorem 5.1(i) together with the fact
that A1

X is connected if X is. By assumption, X is normal, hence the same is true
for A1

X . By Theorem 5.1(iv), πq
t (A

1
X/S, (ȳ, w̄)) and πq

t (X/S, (x̄, v̄)) are profinite
for all q ≥ 1. In particular, Theorem 2.6 and Theorem 5.1(iii) show the statement
for q = 1.

By [AM69, Theorem 4.3] and Theorem 6.2, we conclude that the natural map
from the profinite completion of the homotopy type of (A1

X/S)t to the profinite
completion of the homotopy type of (X/S)t is a weak equivalence. Finally, since
the tame homotopy groups of X/S and A1

X/S are profinite, the homotopy types
of (A1

X/S)t and (X/S)t are already profinite. We conclude πq
t (A

1
X/S, (ȳ, w̄)) ∼=

πq
t (X/S, (x̄, v̄)) for all q. □

Remark 6.4. If S is pure of characteristic zero and X is an S-scheme, then the
sites Xet and (X/S)t coincide and the statements of Theorems 6.2 and 6.3 are well
known.

7. Tame homotopy groups as a functor on HA1(Sm/k)

In this section we will prove that (under the assumption of resolution of singu-
larities) the notion of tame homotopy groups extends to the A1-homotopy category
HA1(Sm/k) of smooth schemes over a field k (as defined by Morel and Voevodsky
[MV99]). This is not the case for the étale homotopy groups if char k > 0 (the
affine line has a huge fundamental group then).

In fact, we will show a little more. Let S be a connected affine noetherian
regular scheme of characteristic p > 0 and assume that resolution of singularities
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holds over S. Recall that the definition of the A1-homotopy category HA1(Sm/S)
of smooth schemes over S is based on the Nisnevich topology and we will use the
more precise notation HA1,Nis(Sm/S) from now on. The same construction works
with the tame and the étale topology yielding the categories HA1,t(Sm/S) and
HA1,et(Sm/S). There are natural functors

Sm/S → HA1,Nis(Sm/S) → HA1,t(Sm/S) → HA1,et(Sm/S),

where the first functor is induced by the Yoneda embedding and the functors be-
tween the various A1-homotopy categories are induced by sheafification.

Recall from Section 5 that the tame homotopy groups of geometrically pointed
smooth schemes over S are defined as the composition of the functor ‘pointed tame
homotopy type’

Πt
• : (Sm/S)• → pro-H•

where pro-H• is the pro-category of the homotopy category of pointed simplicial
sets with the usual homotopy group functor

pro-H•
π∗−→ pro-groups

(for ∗ = 0 replace pro-groups by pointed pro-sets).

Let X = {Xi} be in pro-H. The various coskeletons cosknXi form a pro-object
X♮ indexed by pairs (i, n). We have a natural map X → X♮ and X♮ → X♮♮ is
an isomorphism. We call a map f : X → Y in pro-H a weak equivalence (♮-
isomorphism in [AM69]) if f ♮ : X♮ → Y ♮ is an isomorphism. Let

(pro-H)w

be the full subcategory in pro-H consisting of objects isomorphic to X♮ for some X.
Then (pro-H)w is the localization of pro-H with respect to the class of weak equiv-
alences and ♮ : pro-H → (pro-H)w is the localization functor. The homotopy
pro-groups functors π∗ factor as

π∗ : pro-H• → (pro-H•)w → pro-groups.

Given all this, the goal of this section is to prove the following

Theorem 7.1. Let S be a connected affine noetherian regular scheme of charac-
teristic p > 0 and assume that resolution of singularities holds over S. Then there
exists a dashed vertical arrow making the diagram

Sm/S HA1,Nis(Sm/S) HA1,t(Sm/S)

pro-H (pro-H)w

Πt

♮

commutative.

Since the structure map of a vector bundle is an isomorphism in HA1,Nis(Sm/S),
we particularly obtain

Corollary 7.2. Every vector bundle over a smooth S-scheme X has the same tame
homotopy groups as X.

Remark 7.3. The profinite completion functor from pro-H to the homotopy cate-
gory Ĥ of profinite spaces (as defined in [Mor96], [Qui08]) factors through (pro-H)w.
Therefore Theorem 7.1 also provides a functor HA1,t(Sm/S) → Ĥ.
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Recall that the construction of theA1-homotopy category after Morel/Voevodsky
consists of two steps. The first one is to localize the category of simplicial sheaves
by simplicial weak equivalences and the second step consists of inverting the class
of weak A1-equivalences.

The proof of Theorem 7.1 will occupy the rest of this section. It is essentially
equivalent to the proof of [Sch12, Theorem 8.2], where the analogous result of
Theorem 7.1 was proven for the étale topology after completion away from all
residue characteristics. We will therefore be sketchy in the sense that we will use
the results of [Sch12] as long their proofs in the tame case are identical to those in
the étale case.

For the rest of this section let S be a locally noetherian scheme. We consider
the category

∆opShv t(Sm/S)

of simplicial tame sheaves (of sets) on Sm/S. By a point we will always mean a tame
point. A map of simplicial sheaves f : F → G is called a simplicial weak equivalence
if for every point x the map Fx → Gx is a weak equivalence of simplicial sets. f
is called a cofibration (resp. trivial cofibration) if it is injective (resp. injective and
a weak equivalence). Fibrations are maps satisfying the right lifting property with
respect to trivial cofibrations. The category of simplicial sheaves together with these
three classes of morphisms is a simplicial closed model category ([MV99, 1.1.4]) and
we denote the associated homotopy category by Hs,t(Sm/S).

A map of simplicial sheaves F → G is called a local fibration (resp. trivial local
fibration) if for every point x the map Fx → Gx is a fibration (resp. a fibration and
a weak equivalence). A local fibration has the right lifting property after a tame
refinement. Kan-simplicial sets considered as constant simplicial sheaves are locally
fibrant.

The proof of the following proposition is word by word the same as the proof of
[Sch12, Proposition 5.1] (which works for any subcanonical topology).

Proposition 7.4. The category Shv t(Sm/S) is locally connected. A connected
scheme X ∈ Sm/S represents a connected sheaf.

The rule associating to a sheaf its set of connected components defines the con-
nected component functor

Π : Shv t(Sm/S) −→ sets.

This functor naturally extends to simplicial sheaves (taking values in simplicial
sets). Furthermore, simplicial homotopies between maps of simplicial sheaves carry
over to homotopies between maps of simplicial sets.

For simplicial sheaves X , Y we denote by π(X ,Y) the quotient of Hom(X ,Y) =
S0(X ,Y) with respect to the equivalence relation generated by simplicial homo-
topies, i.e., the set of connected components of the simplicial function object S(X ,Y),
and call it the set of simplicial homotopy classes of morphisms from X to Y. The
simplicial homotopy relation is compatible with composition and thus one gets a
category π∆opShv t(Sm/S) with objects the simplicial sheaves and morphisms the
simplicial homotopy classes of morphisms.

For a simplicial sheaf X we denote by πTriv/X the category whose objects are
the trivial local fibrations to X and whose morphisms are commutative triangles
in π∆opShv t(Sm/S). This category is filtering and essentially small by [MV99],
2.1.12.

We consider a sheaf F as a simplicial sheaf with F in each degree and all face and
degeneracy morphisms the identity of F . For a scheme X ∈ Sm/S we denote by
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hX the tame sheaf that it represents. A hypercovering U· of X is a hypercovering
in the small tame site (X/S)t.

Lemma 7.5. Let X be a smooth S-scheme and let U· be a hypercovering of X.
Then the projection

hU· −→ hX

is a trivial local fibration in ∆opShv t(Sm/S).
The trivial local fibrations of the form hU· → hX are cofinal in πTriv/hX .

Proof. The similar assertion for étale hypercoverings is [Sch12, Lemmas 4.2,4.3] and
the proof is word-by-word the same in the tame case. □

For a scheme X essentially of finite type over S we denote its tame homotopy
type, i.e., the connected component functor from tame hypercoverings of X to H
by

Xtt ∈ pro-H.

By Lemma 7.5, the next definition extends via Yoneda the functor tame homotopy
type from Sm/S to ∆opShv t(Sm/S):

Definition 7.6. For a simplicial sheaf X ∈ ∆opShv t(Sm/S) the tame homotopy
type Xtt ∈ pro-H is defined as the connected component functor

Π : πTriv/X −→ H.

With this definition, the same proof as that of [Sch12, Theorem 6.4] shows fac-
torization through the simplicial homotopy category.

Proposition 7.7. The functor tame homotopy type

tt : ∆opShv t(Sm/S) −→ pro-H

factors through the localization ∆opShv t(Sm/S) → Hs,t(Sm/S).

Theorem 7.8 completes the proof of Theorem 7.1.

Theorem 7.8. Let S be a connected affine noetherian regular scheme of charac-
teristic p > 0 and assume that resolution of singularities holds over S. Then the
composite

♮ ◦ tt : Hs,t(Sm/S) −→ (pro-H)w

factors through the tame A1-homotopy category HA1,t(Sm/S).

Proof. For any smooth scheme U over S the projection A1
U → U induces a weak

equivalence
(A1

U )tt → Utt

in pro-H. Indeed, in order to show this, we may assume that U is connected. Then
(after choosing suitable base points), the projection induces isomorphisms on all
tame homotopy groups by Theorem 6.3 and is hence a weak equivalence by [AM69,
Corollary 4.2].

From this, the assertion of the theorem follows via a formal process which is
described in detail in the proof of [Sch12, Theorem 8.2]. □
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