p-adische Lie Gruppen

Neben dem gewöhnlichen Absolutbetrag $|x| \in [0, \infty[$, für $x \in \mathbb{Q}$, gibt es für jede Primzahl p > 0 den p-adischen Absolutbetrag, gegeben durch

$$|x|_p = p^{-r}, \quad x = p^r \cdot \frac{a}{b}, \qquad p \nmid a, b \in \mathbb{Z}.$$

Auch dieser definiert eine Metrik

$$d_p(x,y) := |x-y|_p, \qquad x,y \in \mathbb{Q},$$

dessen Vervollständigung die p-adischen Zahlen \mathbb{Q}_p sind. Viele bekannte Konstruktionen aus der reellen Analysis sind auch im p-adischen Kontext möglich. In diesem Seminar wollen wir das Konzept der Lie Gruppe von der reellen in die p-adische Welt übertragen.

Wir studieren Differenzierbarkeit von Abbildungen

$$f: U \longrightarrow \mathbb{Q}_p^n, \quad U \subset \mathbb{Q}_p^m \text{ offen,}$$

und nennen diese lokal analytisch, wenn sie sich lokal durch Potenzreihen beschreiben lassen. Wir erarbeiten das Konzept einer p-adischen Mannigfaltigkeit, ein topologischer Raum, der durch "lokal analytisches Verkleben" von offenen Teilmengen des \mathbb{Q}_p^n entsteht. Eine p-adische Lie Gruppe ist dann eine solche Mannigfaltigkeit G zusammen mit einer lokal analytischen Gruppenstruktur

$$G \times G \longrightarrow G$$
, $(g,h) \longmapsto g \cdot h$.

Wie im Reellen wird der Tangentialraum bei $1 \in G$ zu einer Lie Algebra $\mathfrak{g} := T_1G$, diesmal über \mathbb{Q}_p . Es gibt eine Exponentialabbildung $\mathfrak{g} \stackrel{\exp}{\longrightarrow} G$, mit deren Hilfe sich G-betreffende Probleme durch \mathfrak{g} lösen lassen.

Der Hauptanwendungsbereich p-adischer Lie Gruppen liegt in der Zahlentheorie. So ist die Galois-Gruppe einer unendlichen Erweiterung von \mathbb{Q} in vielen interessanten Fällen eine p-adische Lie Gruppe. Ist beispielsweise K_n/\mathbb{Q} die Körpererweiterung, die durch Hinzufügen aller p^n -ten Einheitswurzeln entsteht, so gilt

$$\operatorname{Gal}(K_{\infty}/\mathbb{Q}) = \varprojlim_{n \geq 1} \operatorname{Gal}(K_n/\mathbb{Q}) = \varprojlim_{n \geq 1} (\mathbb{Z}/p^n\mathbb{Z})^{\times} = \mathbb{Z}_p^{\times}, \qquad K_{\infty} := \bigcup_{n \geq 1} K_n.$$

Die Theorie p-adischer Lie Gruppen kann dazu benutzt werden, um Galoiskohomologie mit der Kohomologie der zugehörigen Lie Algebra zu identifizieren, deren Berechnung in vielen Fällen deutlich einfacher ist.

Ansprechpartner

Christian Rüschoff Mathematikon Raum 03.410

Homepage: http://www.mathi.uni-heidelberg.de/~rueschoff

Email: rueschoff@mathi.uni-heidelberg.de

Vorträge

Als Vorlage dient ausschließlich das Buch [Sch11], auf dessen Inhaltsverzeichnis sich folgende Angaben beziehen.

- 1. Abschnitt 1 (Ultrametrische Räume) bis Lemma 1.6 einschließlich, aber ohne Lemma 1.4. Abschnitt 2 (nichtarchimedische Körper) bis Lemma 2.4. Abschnitt 3 (Konvergente Reihen) Lemma 3.1, Lemma 3.2 ohne Beweis.
- 2. Abschnitt 4 (Differenzierbarkeit).
- 3. Abschnitt 5 (Potenzreihen) Beweis von Prop. 5.9 nur skizzieren.
- 4. Abschnitt 6 (lokal analytische Funktionen). Abschnitt 7 (Karten und Atlanten). Abschnitt 8 (Mannigfaltigkeiten), Prop. 8.7 ohne Beweis, evtl. grob skizzieren.
- 5. Abschnitt 9 (Tangentialraum) bis Bemerkung 9.10.
- 6. Abschnitt 9 (Tangentialraum) Rest.
- 7. Abschnitt 13 (Lie Gruppen).
- 8. Abschnitt 14 (Die universelle einhüllende Algebra). Abschnitt 15 (Freie Algebren).
- 9. Abschnitt 16 (Campbell-Hausdorff Formel).
- 10. Abschnitt 17 (Konvergenz der Hausdorff-Reihe). Abschnitt 18 (Formale Gruppen) bis S. 133 Mitte, d.h. kleiner Abschnitt nach Lemma 18.1.
- 11. Abschnitt 18 (Formale Gruppen) bis S. 142 unten.
- 12. Abschnitt 18 (Formale Gruppen) Rest.

Bibliography

[Sch11] Schneider, Peter: p-Adic Lie Groups. Berlin ; Heidelberg : Springer, 2011 (Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen ARRAY(0x32ede58)). – XI, 254 S.. – ISBN 978–3–642–21146–1