Trees of Groups Seminar: Groups Acting On Trees

Paul Gontschar (paul@gontschar.com)

In this talk every group G acts without inversion of edges on a graph Γ .

Definition 1. We call a pair (\mathcal{G}, Γ) a graph of groups if:

 $\circ \Gamma$ is a connected graph

• \mathcal{G} is a mapping which assigns to every element $x \in V(\Gamma) \cup E(\Gamma)$ a group $\mathcal{G}(x)$.

• for $P \in V(\Gamma)$ the group $\mathcal{G}(P) := G_P$ is called the **vertex group** at P

• for $e \in E(\Gamma)$ the group $\mathcal{G}(e) := G_e$ is called the **edge group** at e with $G_e = G_{\overline{e}}$

• for each edge $e \in E(\Gamma)$ there is a monomorphism $G_e \longrightarrow G_{t(e)}$ donated by $g \longmapsto g^e$.

If $\Gamma = T$ is a tree we call (\mathcal{G}, T) a tree of groups.

The **direct limit** of a system of groups given by a graph of groups (\mathcal{G}, Γ) we denote with

$$G_{\Gamma} = \lim_{\Gamma} (\mathcal{G}, \Gamma)$$

Theorem 2. Let (\mathcal{G}, T) be a tree of groups. Then there exists a graph X containing T and an action G_T on X characterized by:

(1) T is a fundamental domain for $X \mod G_T$

- (2) $\operatorname{Stab}_{G_T}(P) = G_P \text{ for all } P \in \operatorname{V}(T) \subset \operatorname{V}(X)$
- (3) $\operatorname{Stab}_{G_T}(e) = G_e \text{ for all } e \in \operatorname{E}(T) \subset \operatorname{E}(X)$

Moreover the graph X is a tree.

By considering the following scenario we can show that the converse of **Thm. 2** is true: Let G be group acting on a graph Γ such that the **fundamental domain** is a tree T. Note that this implies

$$V(\Gamma) = \bigsqcup_{P \in V(T)} G.P, \quad E(\Gamma) = \bigsqcup_{e \in E(T)} G.e.$$

Further let (\mathcal{G}, T) be a **tree of groups** determined by the stabilizers of the action of G on T, i.e.

$$\operatorname{Stab}_G(P) = G_P \quad \forall P \in \operatorname{V}(T) \quad \text{and} \quad \operatorname{Stab}_G(e) = G_e \quad \forall e \in \operatorname{E}(T)$$

with monomorphisms $G_e \longrightarrow G_{t(e)}$ being the inclusions. Set $G_T = \lim(\mathcal{G}, T)$. Because of $G_e, G_P \leq G$ we obtain a map

$$\phi: \ G_T \longrightarrow G$$

Now let X be the graph associated to (\mathcal{G}, T) obtained by **Thm. 2**. Since X contains also T, the identity map id : $T \longrightarrow T$ extends uniquely to a map

$$\psi: X \longrightarrow \Gamma, \quad gP \longmapsto \phi(g)P$$

Lemma 3. The map $\phi: G_T \longrightarrow G$ ist surjective if and only if the graph Γ is connected.

With this in mind we can state

Theorem 4. With the notations as above, the following statements are equivalent:

(1) Γ is a tree (2) $\psi: X \longrightarrow \Gamma$ is an isomorphism (3) $\phi: G_T \longrightarrow G$ is an isomorphism

Lemma 5. Let X be a connected graph and Γ be a tree. Is $f : X \longrightarrow \Gamma$ a locally injective morphism, then f is injective.

Example 6. '

Let K_4 be the **Klein four group** with representation $\langle a, b | a^2 = b^2 = (ab)^2 = 1 \rangle$. Let T be a tree which is a Path₂ with vertices $\{P_1, P_2, P_3\}$ and edges $\{e_1, e_2\}$. Construct (\mathcal{G}, T) by assigning

$$P_1 \longmapsto K_4 = \langle a, b | \dots \rangle, \quad P_2 \longmapsto K_4 = \langle c, d | \dots \rangle, \quad P_3 \longmapsto K_4 = \langle x, y | \dots \rangle,$$
$$e_1 \longmapsto \mathbb{Z}_2 = \langle w | w^2 \rangle, \quad e_2 \longmapsto \mathbb{Z}_2 = \langle z | z^2 \rangle$$

with monomorphisms $G_{e_1} \longrightarrow G_{P_1}$, $w \longmapsto b$, $G_{e_1} \longrightarrow G_{P_2}$, $w \longmapsto c$ and $G_{e_2} \longrightarrow G_{P_2}$, $z \longmapsto d$, $G_{e_2} \longrightarrow G_{P_3}$, $z \longmapsto x$. The theorems give us a group action of $G_T = (K_4 *_{\mathbb{Z}_2} K_4) *_{\mathbb{Z}_2} K_4$ on a tree X with fundamental domain T. Even though the group G_T depends highly on the inclusions of the edge groups into the corresponding vertex groups,

the tree X is by Thm. 4 unique up to isomorphism.

FIGURE 1. The tree X with fundamental domain T