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1 Graphs

Definition 1.1. i) A graph Γ consists of a set V = V (Γ), a set E = E(Γ)
and two maps

E → V × V, e 7→ (o(e), t(e))

E → E, e 7→ ē

which satisfy the following condition:

∀e ∈ E : ¯̄e = e, ē 6= e and o(e) = t(ē)

ii) An orientation of a graph Γ is a subset E+ of E = E(Γ) such that E is
the disjoint union of E+ and E+. An oriented graph is given by the set
V = V (Γ), an orientation E+ and a map E+ → V × V .

iii) A morphism ϕ of graphs (from a graph Γ1 to a graph Γ2) consists of two
maps

ϕV : V1 → V2 ϕE : E1 → E2

where Vi = V (Γi) and Ei = E(Γi) (i ∈ {1, 2}) and the following conditions
hold:

∀e ∈ E1 : ϕV (o(e)) = o(ϕE(e))

ϕV (t(e)) = t(ϕE(e))

ϕE(ē) = ϕE(e)

Definition 1.2. Let n ∈ N.

i) The oriented graph Pathn is given by V = {0, ..., n}, the orientation E+ =
{[i, i + 1]|0 ≤ i < n} and o([i, i + 1]) = i as well as t([i, i + 1]) = i + 1.

ii) A path (of length n) in a graph Γ is a morphism c of Pathn into Γ. When
c([i,+1]) = c([i + 1, i + 2]) (for some 0 ≤ i < n − 1) we call the pair
(c([i, i + 1]), c([i + 1, i + 2])) a backtracking.

iii) Let Γ be a graph and c a path of length n in Γ. The vertices P0 := c(0) and
Pn := c(n) are called the extremities of c and c is called a path from
P0 to Pn.
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iv) A graph Γ is said to be connected if for any v1, v2 ∈ V (Γ) there exists an
n ∈ N, and a path c of length n in Γ whose extremities are v1 and v2.

Proposition 1.3. Let Γ be a graph and v1, v2 ∈ V (Γ). If there exists a path c
with extremities v1, v2 then there exists a path c′ with the same extremities and
without backtracking.

Definition 1.4. Let n ∈ N+.

i) The oriented graph Circn is given by V = Z/nZ, the orientation E+ =
{[i, i + 1]|i ∈ Z/nZ} and o([i, i + 1]) = i as well as t([i, i + 1]) = i + 1.

ii) A circuit (of length n) in a graph is any subgraph isomorphic to Circn.

iii) A graph is called combinatorial if it has no circuit of length ≤ 2.

iv) A geometric edge of a combinatorial graph is a set {P,Q} of extremities
of a path of length 1.

Definition 1.5. Let G be a group and let S be a subset of G. We let Γ :=
Γ(G,S) be the oriented graph with V = G, E+ = G×S and o(g, s) = g, t(g, s) =
gs ∀(g, s) ∈ G× S. If S generates G we call Γ(G,S) a Cayley-graph.

Proposition 1.6. Let Γ = Γ(G,S) be the graph defined by a group G and a
subset S of G.

i) Γ is connected if and only if S generates G.

ii) Γ contains a circuit of length 1 if and only if 1G ∈ S.

iii) Γ is combinatorial if and only if S ∩ S−1 = ∅.

2 Trees

Definition 2.1. i) A tree is a connected, non-empty graph without circuits.

ii) A geodesic in a tree is a path without backtracking.

iii) The length of a geodesic from P to Q (2 vertices in a tree Γ) is called the
distance from P to Q and denoted by l(P,Q).

Proposition 2.2. Let P and Q be two vertices in a tree Γ. There is exactly
one geodesic from P to Q and it is an injective path.

Corollary 2.3. In a tree Γ with V := V (Γ) the function l : V×V → N, (P,Q) 7→
l(P,Q) is well-defined and (V, l) is a metric space.

Definition 2.4. Let Γ be a graph, V := V (Γ), E := E(Γ) and P ∈ V a vertex.

i) Define EP := {e ∈ E|t(e) = P}. The index of P is defined as the car-
dinatlity of EP . If |EP | ≤ 1 one says that P is a terminal vertex. If
|EP | = 0 we call P isolated.

ii) Let Γ \ P denote the subgraph of Γ with vertex set V \ {P} and edge set
E \ (EP ∪ EP ).
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Proposition 2.5. Let P be a non-isolated terminal vertex of a graph Γ.

i) Γ is connected if and only if Γ \ P is connected.

ii) Every circuit of Γ is contained in Γ \ P .

iii) Γ is a tree if and only if Γ \ P is a tree.

Proposition 2.6. Let Γ be a tree of diameter n <∞.

i) The set t(Γ) of terminal vertices of Γ is non-empty.

ii) If n ≥ 2, V (Γ) \ t(Γ) is the vertex set of a subtree of diameter n− 2.

iii) If n = 0 we have Γ ∼= Path0 and if n = 1 we have Γ ∼= Path1.

Corollary 2.7. A tree of even finite diameter (resp. odd finite diameter), has
a vertex (resp. geometric edge), which is invariant under all automorphisms.

3 Subtrees

Definition 3.1. Let Γ be a non-empty graph. A maximal tree of Γ is a max-
imal element of the set of subgraphs of Γ which are trees, ordered by inclusion.

Remark. By Zorn’s Lemma every non-empty graph has at least one maximal
tree.

Proposition 3.2. Let Λ be a maximal tree of a connected non-empty graph Γ.
Then Λ contains all the vertices of Γ.

Proposition 3.3. Let Γ be a connected graph with a finite number of vertices.
Put

s(Γ) := |V (Γ)|, a(Γ) :=
1

2
|E(Γ)|

Then a(Γ) ≥ s(Γ)− 1 and equality holds if and only if Γ is a tree.

Remark. The Betti numbers Bi of the non-empty graph Γ are B0 = 1, B1 =
a(Γ)− a(Λ) and Bi = 0 for i ≥ 2, where Λ is a maximal tree of Γ. The formula
a(Γ) = s(Γ)− 1 + (a(Γ)− a(Λ)) can then be written:

s(Γ)− a(Γ) =
∑
i

(−1)iBi

which is a special case of the Euler-Poincaré formula.

Definition 3.4. Let Γ be a graph and E := E(Γ), V := V (Γ). We form the
topological space T which is the disjoint union of V and E × [0, 1], where E
and V are provided with the discrete topology. Let R be the finest equivalence
relation on T for which (e, t) ≡ (ē, 1−t), (e, 0) ≡ o(e) and (e, 1) ≡ t(e) for e ∈ E
and t ∈ [0, 1]. The quotient space real(Γ) = T/R is called the realization of
the graph Γ.

Remark. Recall the following definitions and results from algebraic topology.
Let X,Y be two topological spaces and I := [0, 1] the unit interval.
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i) A homotopy between X and Y is a family of maps ht : X → Y, t ∈ I
such that the associated map H : X × I → Y given by H(x, t) = ht(x) is
continuous.

ii) Two maps h0, h1 : X → Y are homotopic if there exists a homotopy ht

connecting them and one writes h0 ' h1.

iii) A map h : X → Y is called a homotopy equivalence if there is a map
g : Y → X such that h ◦ g ' idY and g ◦ h ' idX . In this case the spaces
X and Y are said to be homotopic equivalent.

iv) A space which is homotopic equivalent to a point is called contractible.

v) Let A ⊆ X, the pair (X,A) is said to have the homotopy extension
property if, given a homotopy ht : A → Y and a map H0 : X → Y such
that H0|A = h0, there exists an extension of H0 to a homotopy Ht : X → Y
such that Ht|A = ht.

vi) For any CW-complex X and any subcomplex A the pair (X,A) has the
homotopy extension property.

vii) A bouquet of (n) circles is the quotient space C/S of a disjoint union of
n circles C and a set S which contains one point from each circle.

Proposition 3.5. The realization of a tree is contractible.

Definition 3.6. Let Γ be a connected non-empty graph and let Λ be a subgraph of
Γ which is a disjoint union of a family Λi(i ∈ I) of trees. We define a graph Γ/Λ
such that real(Γ/Λ) is the quotient space of real(Γ) obtained by identification of
each subspace real(Λi) to a point. More precisely set V (Γ/Λ) := V (Γ)/R where
the classes of the equivalence relation R are the sets V (Λi) and the elements of
V (Γ) \ V (Λ). Further let E(Γ/Λ) := E(Γ) \ E(Λ) with the involution e 7→ ē
induced by that on E(Γ). Finally,

E(Γ/Λ)→ V (Γ/Λ)× V (Γ/Λ)

is induced by

E(Γ)→ V (Γ)× V (Γ)

by passing to quotients.

Proposition 3.7. Let Γ be a graph and Λ as in 3.6. The canonical projection
real(Γ)→ real(Γ/Λ) is a homotopy equivalence.

Corollary 3.8. Let Γ be a connected non-empty graph. Then real(Γ) is homo-
topic equivalent to a bouqet of circles. Furthermore, Γ is a tree if and only if
real(Γ) is contractible.

Corollary 3.9. Let Γ be a graph and Λ as in 3.6. Γ is a tree if and only if Γ/Λ
is one.
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