Talk 2: Trees

Patrick Scholz

May 8, 2018

1 Graphs

Definition 1.1. i) A graph Γ consists of a set $V = V(\Gamma)$, a set $E = E(\Gamma)$ and two maps

$$\begin{array}{ll} E \rightarrow V \times V, & e \mapsto (o(e), t(e)) \\ E \rightarrow E, & e \mapsto \bar{e} \end{array}$$

which satisfy the following condition:

$$\forall e \in E : \bar{\bar{e}} = e, \bar{e} \neq e \text{ and } o(e) = t(\bar{e})$$

- ii) An orientation of a graph Γ is a subset E_+ of $E = E(\Gamma)$ such that E is the disjoint union of E_+ and $\overline{E_+}$. An oriented graph is given by the set $V = V(\Gamma)$, an orientation E_+ and a map $E_+ \to V \times V$.
- iii) A morphism φ of graphs (from a graph Γ_1 to a graph Γ_2) consists of two maps

$$\varphi_V: V_1 \to V_2 \qquad \qquad \varphi_E: E_1 \to E_2$$

where $V_i = V(\Gamma_i)$ and $E_i = E(\Gamma_i)$ $(i \in \{1, 2\})$ and the following conditions hold:

$$\forall e \in E_1 : \qquad \qquad \varphi_V(o(e)) = o(\varphi_E(e))$$
$$\varphi_V(t(e)) = t(\varphi_E(e))$$
$$\varphi_E(\bar{e}) = \overline{\varphi_E(e)}$$

Definition 1.2. Let $n \in \mathbb{N}$.

- i) The oriented graph $Path_n$ is given by $V = \{0, ..., n\}$, the orientation $E_+ = \{[i, i+1] | 0 \le i < n\}$ and o([i, i+1]) = i as well as t([i, i+1]) = i + 1.
- ii) A path (of length n) in a graph Γ is a morphism c of Path_n into Γ . When $c([i, +1]) = \overline{c([i+1, i+2])}$ (for some $0 \le i < n-1$) we call the pair (c([i, i+1]), c([i+1, i+2])) a backtracking.
- iii) Let Γ be a graph and c a path of length n in Γ . The vertices $P_0 := c(0)$ and $P_n := c(n)$ are called the **extremities** of c and c is called **a path from** P_0 to P_n .

iv) A graph Γ is said to be **connected** if for any $v_1, v_2 \in V(\Gamma)$ there exists an $n \in \mathbb{N}$, and a path c of length n in Γ whose extremities are v_1 and v_2 .

Proposition 1.3. Let Γ be a graph and $v_1, v_2 \in V(\Gamma)$. If there exists a path c with extremities v_1, v_2 then there exists a path c' with the same extremities and without backtracking.

Definition 1.4. Let $n \in \mathbb{N}^+$.

- i) The oriented graph $Circ_n$ is given by $V = \mathbb{Z}/n\mathbb{Z}$, the orientation $E_+ = \{[i, i+1] | i \in \mathbb{Z}/n\mathbb{Z}\}$ and o([i, i+1]) = i as well as t([i, i+1]) = i+1.
- ii) A circuit (of length n) in a graph is any subgraph isomorphic to $Circ_n$.
- iii) A graph is called **combinatorial** if it has no circuit of length ≤ 2 .
- iv) A geometric edge of a combinatorial graph is a set $\{P, Q\}$ of extremities of a path of length 1.

Definition 1.5. Let G be a group and let S be a subset of G. We let $\Gamma := \Gamma(G, S)$ be the oriented graph with V = G, $E_+ = G \times S$ and $o(g, s) = g, t(g, s) = gs \forall (g, s) \in G \times S$. If S generates G we call $\Gamma(G, S)$ a **Cayley**-graph.

Proposition 1.6. Let $\Gamma = \Gamma(G, S)$ be the graph defined by a group G and a subset S of G.

- i) Γ is connected if and only if S generates G.
- ii) Γ contains a circuit of length 1 if and only if $1_G \in S$.
- iii) Γ is combinatorial if and only if $S \cap S^{-1} = \emptyset$.

2 Trees

Definition 2.1. *i)* A tree is a connected, non-empty graph without circuits.

- ii) A geodesic in a tree is a path without backtracking.
- iii) The length of a geodesic from P to Q (2 vertices in a tree Γ) is called the **distance** from P to Q and denoted by l(P,Q).

Proposition 2.2. Let P and Q be two vertices in a tree Γ . There is exactly one geodesic from P to Q and it is an injective path.

Corollary 2.3. In a tree Γ with $V := V(\Gamma)$ the function $l : V \times V \to \mathbb{N}, (P,Q) \mapsto l(P,Q)$ is well-defined and (V,l) is a metric space.

Definition 2.4. Let Γ be a graph, $V := V(\Gamma), E := E(\Gamma)$ and $P \in V$ a vertex.

- i) Define $E_P := \{e \in E | t(e) = P\}$. The **index** of P is defined as the cardinatily of E_P . If $|E_P| \leq 1$ one says that P is a **terminal vertex**. If $|E_P| = 0$ we call P **isolated**.
- ii) Let $\Gamma \setminus P$ denote the subgraph of Γ with vertex set $V \setminus \{P\}$ and edge set $E \setminus (E_P \cup \overline{E_P})$.

Proposition 2.5. Let P be a non-isolated terminal vertex of a graph Γ .

i) Γ is connected if and only if $\Gamma \setminus P$ is connected.

ii) Every circuit of Γ is contained in $\Gamma \setminus P$.

iii) Γ *is a tree if and only if* $\Gamma \setminus P$ *is a tree.*

Proposition 2.6. Let Γ be a tree of diameter $n < \infty$.

- i) The set $t(\Gamma)$ of terminal vertices of Γ is non-empty.
- ii) If $n \geq 2$, $V(\Gamma) \setminus t(\Gamma)$ is the vertex set of a subtree of diameter n-2.
- *iii)* If n = 0 we have $\Gamma \cong Path_0$ and if n = 1 we have $\Gamma \cong Path_1$.

Corollary 2.7. A tree of even finite diameter (resp. odd finite diameter), has a vertex (resp. geometric edge), which is invariant under all automorphisms.

3 Subtrees

Definition 3.1. Let Γ be a non-empty graph. A maximal tree of Γ is a maximal element of the set of subgraphs of Γ which are trees, ordered by inclusion.

Remark. By Zorn's Lemma every non-empty graph has at least one maximal tree.

Proposition 3.2. Let Λ be a maximal tree of a connected non-empty graph Γ . Then Λ contains all the vertices of Γ .

Proposition 3.3. Let Γ be a connected graph with a finite number of vertices. Put

$$s(\Gamma) := |V(\Gamma)|,$$
 $a(\Gamma) := \frac{1}{2}|E(\Gamma)|$

Then $a(\Gamma) \geq s(\Gamma) - 1$ and equality holds if and only if Γ is a tree.

Remark. The Betti numbers B_i of the non-empty graph Γ are $B_0 = 1, B_1 = a(\Gamma) - a(\Lambda)$ and $B_i = 0$ for $i \ge 2$, where Λ is a maximal tree of Γ . The formula $a(\Gamma) = s(\Gamma) - 1 + (a(\Gamma) - a(\Lambda))$ can then be written:

$$s(\Gamma) - a(\Gamma) = \sum_{i} (-1)^{i} B_{i}$$

which is a special case of the Euler-Poincaré formula.

Definition 3.4. Let Γ be a graph and $E := E(\Gamma), V := V(\Gamma)$. We form the topological space T which is the disjoint union of V and $E \times [0,1]$, where E and V are provided with the discrete topology. Let R be the finest equivalence relation on T for which $(e,t) \equiv (\bar{e}, 1-t), (e,0) \equiv o(e)$ and $(e,1) \equiv t(e)$ for $e \in E$ and $t \in [0,1]$. The quotient space real $(\Gamma) = T/R$ is called the **realization** of the graph Γ .

Remark. Recall the following definitions and results from algebraic topology. Let X, Y be two topological spaces and I := [0, 1] the unit interval.

- i) A **homotopy** between X and Y is a family of maps $h_t : X \to Y, t \in I$ such that the associated map $H : X \times I \to Y$ given by $H(x,t) = h_t(x)$ is continuous.
- ii) Two maps $h_0, h_1 : X \to Y$ are **homotopic** if there exists a homotopy h_t connecting them and one writes $h_0 \simeq h_1$.
- iii) A map $h: X \to Y$ is called a **homotopy equivalence** if there is a map $g: Y \to X$ such that $h \circ g \simeq id_Y$ and $g \circ h \simeq id_X$. In this case the spaces X and Y are said to be **homotopic equivalent**.
- iv) A space which is homotopic equivalent to a point is called **contractible**.
- v) Let $A \subseteq X$, the pair (X, A) is said to have the **homotopy extension property** if, given a homotopy $h_t : A \to Y$ and a map $H_0 : X \to Y$ such that $H_0|_A = h_0$, there exists an extension of H_0 to a homotopy $H_t : X \to Y$ such that $H_t|_A = h_t$.
- vi) For any CW-complex X and any subcomplex A the pair (X, A) has the homotopy extension property.
- vii) A **bouquet of (n) circles** is the quotient space C/S of a disjoint union of n circles C and a set S which contains one point from each circle.

Proposition 3.5. The realization of a tree is contractible.

Definition 3.6. Let Γ be a connected non-empty graph and let Λ be a subgraph of Γ which is a disjoint union of a family $\Lambda_i (i \in I)$ of trees. We define a graph Γ/Λ such that $real(\Gamma/\Lambda)$ is the quotient space of $real(\Gamma)$ obtained by identification of each subspace $real(\Lambda_i)$ to a point. More precisely set $V(\Gamma/\Lambda) := V(\Gamma)/R$ where the classes of the equivalence relation R are the sets $V(\Lambda_i)$ and the elements of $V(\Gamma) \setminus V(\Lambda)$. Further let $E(\Gamma/\Lambda) := E(\Gamma) \setminus E(\Lambda)$ with the involution $e \mapsto \bar{e}$ induced by that on $E(\Gamma)$. Finally,

$$E(\Gamma/\Lambda) \to V(\Gamma/\Lambda) \times V(\Gamma/\Lambda)$$

is induced by

$$E(\Gamma) \to V(\Gamma) \times V(\Gamma)$$

by passing to quotients.

Proposition 3.7. Let Γ be a graph and Λ as in 3.6. The canonical projection $real(\Gamma) \rightarrow real(\Gamma/\Lambda)$ is a homotopy equivalence.

Corollary 3.8. Let Γ be a connected non-empty graph. Then $real(\Gamma)$ is homotopic equivalent to a bouquet of circles. Furthermore, Γ is a tree if and only if $real(\Gamma)$ is contractible.

Corollary 3.9. Let Γ be a graph and Λ as in 3.6. Γ is a tree if and only if Γ/Λ is one.