Reciprocity laws for (ɸ ,)-modules over Lubin-Tate extensions

       Autors: P. Schneider, O. Venjakob
       Titel:  Reciprocity laws for (ɸ ,)-modules over Lubin-Tate extensions
       Jahr: 2023
       Seiten: 150
       In: Preprint
     

      
      Abstract: In the Lubin-Tate setting we study pairings for analytic (ɸ ,)-modules and prove an abstract reciprocity law which then implies a relation between the analogue of Perrin-Riou's Big Exponential map as developed by Berger and Fourquaux and a $p$-adic regulator map whose construction relies on the theory of Kisin-Ren modules generalising the concept of Wach modules to the Lubin-Tate situation.

 zurück