Otmar Venjakob: On the structure theory of the Iwasawa algebra of a p-adic Lie group

       Autor: Otmar Venjakob
       Titel:  On the structure theory of the Iwasawa algebra of a p-adic Lie group
       Jahr: 2001
       Seiten: 39
       In: J. Eur. Math. Soc. (JEMS) 4 (2002), no. 3, 271--311. © Springer-Verlag & EMS 2001
      (DOI) 10.1007/s100970100038
       Preprint

        dvi-file   auslander.dvi

        pdf-file   auslander.pdf

      Abstract: This paper is lead by the question whether there is a nice structure theory of finitely generated modules over the Iwasawa algebra, i.e. the completed group algebra, R of a p-adic analytic group G. For G without any p-torsion element we prove that R is an Auslander regular ring. This result enables us to give a good definition for pseudo-null R-modules. Then the category of R-modules up to pseudo-isomorphisms is studied and we obtain a weak structure theorem for the p-primary part of a finitely generated R-module. A local duality theorem as well as the Auslander-Buchsbaum equality are further main issues. The arithmetic applications to the Iwasawa theory of abelian varieties are published in a forthcoming paper.

 zurück