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Abstract

We construct Selmer modules for cyclotomic deformations of motives, whose char-
acteristic ideals recover the algebraic p-adic L-functions of Perrin-Riou. These provide
an algebraic counterpart to the unbounded p-adic L-functions attached to supersingu-
lar modular forms, for example, and we use Kato’s Euler system to relate the two via
a divisibility. Our main tool is to extend the main results of local Iwasawa theory to
all (ϕ,Γ)-modules over the Robba ring.

Introduction

Main results

In her monograph [20], Perrin-Riou described a cyclotomic Iwasawa theory for motives.
This theory had the surprising feature of defining algebraic p-adic L-functions, but not
as the characteristic ideals of any apparent Selmer modules. Our ultimate goal in
this article is to show that the Selmer modules constructed by the methods of [22]
are indeed the ones missing from Perrin-Riou’s theory. Along the way, we extend to
all (ϕ,Γ)-modules over the Robba ring the main results of local Iwasawa theory, and
deduce that they satisfy the key finiteness and duality results needed in [22]. In the
special case of motives associated to modular forms, we extend consequences of Kato’s
Euler system to the nonordinary case.

Let us make our main results precise under the simplifying assumptions of good
reduction and base field Q. Fix a prime number p and a finite extension E/Qp,
and write Γ = Gal(Q(µp∞)+/Q), Λ = OE [[Γ]], and Λ∞ = Γ(W,O), where W is the
generic fiber of Spf(Λ). (In the work of Perrin-Riou, Λ∞ is sometimes denoted H(Γ).)
Normalize the Hodge–Tate weight of the cyclotomic character to be −1.

Fix a finite set S of primes containing p, write GQ,S for the Galois group of a
maximal extension QS of Q unramified outside S∪{∞}, and fix a complex conjugation
c ∈ GQ,S . Let V be a finite-dimensional E-vector space with a continuous, linear GQ,S-
action, whose restriction to a decomposition group above p is crystalline. In this paper
we naturally attach to each ϕ-stable subspace N ⊆ Dcrys(V ) of dimension dimQp V

c=1

a coherent sheaf S = H̃2
str,Iw(GQ,S , V

∗(1)) overW , identified to a Λ∞-module, satisfying
the following theorem.

Theorem. (1) If V is Panchishkin-ordinary and N = Dcrys(F
+) comes from its filtra-

tion, then S = Sel(Q(µp∞)+, V/T )∨⊗Λ Λ∞ is the base change of the classical ordinary
Iwasawa compact dual Selmer group, for T ⊆ V any Galois-stable Zp-lattice.
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(2) Let Eε/E be a finite extension, let ε : Γ → E×ε have finite order, and let i ∈
Z. Assume that V (εχicycl)

GQ,S = 0 and both X = N∗(1 − i), (Dcrys(V )/N)(i) satisfy

Fil0X = X and if ε = 1 then Xϕ=1 = 0. Then S ⊗Λ∞,εχicycl
Eε is canonically dual to

the Bloch–Kato Selmer group H1
f (GQ, V (εχicycl)).

(3) Assume that V ∗(1)Gal(QS/Q(µp∞ )+) = 0 and Dcrys(V |GQp
)ϕ=pj = 0 for all j ∈ Z.

Then Perrin-Riou’s algebraic p-adic L-function is given up to units by

Iarith,{p,∞}(detQp N) = (charΛ∞ S) · Γ−1
(Dcrys(V )/N)∗(1),

where the final factor depends only on the Hodge–Tate weights of (Dcrys(V )/N)∗(1). If
S is torsion, then the Weak Leopoldt Conjecture (WLC) holds for both V, V ∗(1).

Part (3) explains much about Perrin-Riou’s theory. For example, her computation
of the order of vanishing of her p-adic L-function [20, Chapter 3] is simply a reflection
of the control theorem: lengthΛ∞ SI ≥ dimE H1

f (GQ, V ), where I ⊆ Λ∞ is the augmen-
tation ideal, with equality under a semisimplicity hypothesis. Moreover, her “Gamma
factors at infinity” seem designed simply to balance out the factor Γ−1

(Dcrys(V )/N)∗(1).

In part (2) above, the condition on V (εχicycl)
GQ,S avoids a conjectural pole of the

p-adic L-function, the conditions on the filtration correspond to considering only its
critical values, and the conditions on Frobenius avoid a finite set of conjectural “ex-
ceptional zeroes” (but see [3] for a treatment of the latter). The hypotheses in (3) are
similar (but for all χ at once), and show up throughout Perrin-Riou’s work; see [20,
§2.4.7] for the classical Panchishkin-ordinary case.

Let us specialize to the case where f is a normalized cuspidal elliptic modular
newform of weight k ≥ 2, level N with p - N , and coefficients in E, and V is its
associated (cohomological) E-valued Galois representation. Suppose that the Frobenius
operator on Dcrys(V ) is semisimple with distinct eigenvalues. Choose an eigenspace
N with eigenvalue α, and assume that N is complementary to the Hodge filtration; in
particular, both eigenspaces are allowed except in the locally-split ordinary case, no
matter whether f is ordinary or nonordinary. Let (f c, αc) be the complex conjugate of
(f, α), and let Lp(f

c, αc) ∈ Λ∞ be its p-adic L-function.

Theorem. One has Lp(f
c, αc) ∈ charΛ∞ S.

In short, if we allow the use of coherent analytic sheaves on W in addition to finite
type Λ[1/p]-modules, then we can bring many nonordinary cases of Iwasawa theory
(and even some nonclassical ordinary ones!) onto an equal footing with the ordinary
case. Since Λ[1/p] → Λ∞ is faithfully flat, this comes at the only expense of ignoring
p-torsion information. This shift, from Λ[1/p] to W , allows us to give an algebraic
counterpart to the p-adic L-functions of nonordinary modular forms, despite the fact
that the latter have infinitely many zeroes.

Overview

The first section, which is preliminary, sketches the structure and duality theory of a
nice category of modules, called “coadmissible”, over the non-Noetherian ring Λ∞.

In the second section we study the Iwasawa cohomology of general (ϕ,Γ)-modules
over the Robba ring. For a Galois representation V (resp. a (ϕ,Γ)-module D), we define

its cyclotomic deformation to be V = V ⊗Qp Λ̃ι∞ (resp. D = D ⊗
B†rig,Qp

D†rig(Λ̃ι∞)),
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where the (̃·)
ι

denotes an appropriate Galois action. The use of Λ∞ instead of the more
traditional Λ is necessary for working with (ϕ,Γ)-modules over the Robba ring, and is
relatively harmless: in [22] it is shown that

H∗(GQp , V ⊗Zp Λ̃ι)⊗Λ Λ∞
∼→ H∗(GQp , V ) ∼= H∗(GQp ,D

†
rig(V )).

(To avoid confusion, we use H∗cl.Iw(GQp , V ) to denote the classical Iwasawa cohomology

H∗(GQp , V ⊗Zp Λ̃ι).) We show that H∗(GQp , D) is computed by the (co)invariants of ψ
on D, which we denote by H∗Iw(GQp , D), and we show that the latter have the desired
finiteness property. Once this is done, it is little more work to prove a duality result
for the Iwasawa cohomology of D.

In the third section we provide a theory of Wach modules for crystalline (ϕ,Γ)-
modules. Similarly to in [4] we show that one may compute Iwasawa cohomology as
the (co)invariants of ψ on the Wach module; on the other hand, the Wach module
is clearly related to the crystalline periods. Thus, we extend the definition and main
properties of Perrin-Riou’s big logarithm map to (ϕ,Γ)-modules.

The fouth section shows how to deduce the first theorem above. The subspace
N corresponds to a subobject F of D = D†rig(V ), and the natural map F → D is

used to form a (strict) ordinary local condition in H1(GQp , V ). The claims (1,2) then
follow from the methods of [22], since we know by the second section that the Galois
cohomology of F obeys the finiteness theorem. Having access to the big logarithm map
for D/F , and knowing its determinant, the comparison (3) to Perrin-Riou’s algebraic
p-adic L-function is reduced to a formal calculation.

Although part (3) implies the second theorem immediately by work of Kato and
Perrin-Riou, in the final section we work out the case of modular forms in some detail to
get a more general result. The point is that, as long as f as finite slope, the subobject
F always becomes crystalline over a finite p-cyclotomic extension.

Relations to other work

In his Ph.D. thesis [21], R. Pollack noticed that when ap = 0, special linear com-
binations of Lp(f, α) and Lp(f, β) factor as a purely local term times an element of
Λ[1/p]. Building on work of Perrin-Riou [19] and M. Kurihara [13], on the algebraic
side S. Kobayashi [12] found alternate local conditions in weight 2 whose Selmer groups
match these new, simplified p-adic L-functions. The case of weight 2 but ap 6= 0 was
handled in the masters thesis [25] of F. Sprung. This story has since been general-
ized to modular forms of all weights (and general motives having good reduction) in
a series of works using the Wach module of V (which is a sort of refinement of the
(ϕ,Γ)-module); see [15, 14]. Our characteristic ideals are related to theirs via certain
functions coming from p-adic Hodge theory, as we explain at the end of §4. It seems to
us that two aspects familiar to the ordinary case get divided up between their Selmer
modules and ours: their Selmer modules have simple analytic properties, in fact can
be defined integrally over Λ, whereas ours are directly related to motivic invariants.
In fact, we have come to view the necessity for both theories, and to play one off the
other, as fundamental to Iwasawa theory, and the fact that the two theories coalesce
in the ordinary case as a convenient yet very misleading coincidence. In future work
we will explain how the method of [19] can be seen in this picture, in such a way that
we think illustrates this philosophy.
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Ideas similar to ours have been used by D. Benois [2, 3] to study exceptional zeroes of
Perrin-Riou’s algebraic p-adic L-functions. We expect that his results can be recovered
in our language by generalizing Nekovář’s construction of height pairings [17, §11]
from the classical case. Moreover, this formalism should lead to precise special value
formulas for our p-adic L-functions at classical points resembling the algebraic side of
the Bloch–Kato conjecture. (Such formulas are a key ingredient in our forthcoming
reformulation of [19].)

Dabrowski and Panchishkin long ago predicted (see [9, 18]) that the analytic p-adic
L-function Lp(V,N) grows toward the boundary of W like O(logh), where h is the
difference between the Newton and Hodge degrees of N . It is likely that one can prove
the analogous statement on the algebraic side: one must show that, in the notation of
this paper, the characteristic ideal of the cokernel of H1

Iw(GK,S , V ) → H1
Iw(GK , D/F )

grows like O(logh), where h = deg(F ) is the slope of det(F ). See Equation 4.4 for a
partial result in this direction when dimQp V

c=−1 = 1.
Although Perrin-Riou’s formulation of Iwasawa theory is sufficient for obtaining

upper bounds on algebraic p-adic L-functions via Euler systems, the only known means
of giving lower bounds is by actually constructing cocycles, as in Ribet’s method using
congruences of automorphic forms. Thus our approach seems necessary in order to
prove a full main conjecture in the nonordinary case. For example, we challenge the
reader to generalize Skinner–Urban’s work [24] to the general good reduction, finite-
slope case.
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1 Coadmissible Λ∞-modules

Fix a prime p, and let F be a field of characteristic zero with a chosen algebraic closure
F alg. Throughout this section we either write Fn = F (µpn) for n ≤ ∞, or we write
Fn = F · Q(µpn)+ for n ≤ ∞, and we put G = GF = Gal(F alg/F ), Γ = ΓF =
Gal(F∞/F ) and H = HF = ker(G � Γ). Assume that F∞/F is an infinite extension.
We write Λ = ΛF = OE [[ΓF ]] for the completed group ring, which is a separated and
complete Noetherian semilocal ring with finite residue field. As in [22, §1.4], we write
Λn = ΛF,n for the p-adic completion of Λ[mn/p], as well as Λ∞ = ΛF,∞ = lim←−n(Λn[1/p]).
The p-adic analytic space W = WF arising as the generic fiber of the formal scheme
W = WF = Spf(Λ) is called the weight space, and it is admissibly covered by the
collection U of affinoid subdomains Yn with Γ(Yn,O) = Λn[1/p]. Thus Γ(W,O) = Λ∞.

The ring Λ is the product of domains in bijection with the Pontryagin dual Γ∨tors of
Γtors. For η ∈ Γ∨tors, write eη for the corresponding idempotent, and for any object X
on which Λ acts write Xη = eηX. The rings Λn,η are domains for all n ≤ ∞, and when
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n <∞ each Λn[1/p]η is Euclidean, so Div(Yn) = (Frac Λn[1/p])×/Λn[1/p]×. We write
Div(W ) := lim←−n Div(Yn) for the collection of formal sums

∑
p npp of closed points of⋃

n Spec Λn[1/p] such that each Spec Λn[1/p] contains only finitely many p with np 6= 0.
By work of Lazard, one similarly has Div(W ) = K×∞/Λ×∞, with K∞ the ring of total
fractions of Λ∞.

Recall from [23] the notion of a coadmissible Λ∞-module. These are the modules
arising as global sections of coherent analytic sheaves on W ; alternatively, they are
the inverse limits of systems (Mn)n, where each Mn is a finitely generated Λn[1/p]-
module and each natural map Mn+1 → Mn induces an isomorphism Mn+1 ⊗Λn+1[1/p]

Λn[1/p]
∼→Mn. As W is quasi-Stein, the global sections functor induces an equivlaence

between coherent analytic sheaves on W and coadmissible Λ∞-modules. We say that a
coadmissible Λ∞-module M (resp. one of its elements m) is torsion if every Mη (resp.
mη) is torsion. The structure of coadmissible Λ∞-modules is rather simple.

Proposition 1.1. (1) The torsion submodule Mtors of a coadmissible Λ∞-module M
is also coadmissible, and M/Mtors restricts to a finitely generated free module over each
integral factor of Λ∞.

(2) The torsion coadmissible Λ∞-modules are those isomorphic to
∏
α∈I Λ∞/p

nα
α for

some collection {pα}α∈I of (not necessarily distinct) closed points of
⋃
n Spec Λn[1/p]

such that each for each n there are only finitely many α with pα ∈ Spec Λn[1/p].

In particular, a coadmissible Λ∞-module arises via base change from a finitely
generated Λ[1/p]-module if and only if its torsion submodule has finite support.

We define the rank of a coadmissible Λ∞-module M to be the tuple (rankΛ∞,η Mη)η.
If it is torsion, its divisor div(M) =

∑
p(lengthΛ∞,p Mp)p belongs to Div(W ). We define

its characteristic ideal charΛ∞M to be the principal ideal whose η-component is zero if
Mη is not torsion, and otherwise generated by fη ∈ Λ∞,η satisfying div(Mη) = div(fη).

We also have a variant of Grothendieck duality for coadmissible Λ∞-modules. Given
a bounded complex C• of Λ∞-modules with coadmissible cohomology, let

D(C•) = HomΛ∞(C•,Cone

[
K∞ −→

K∞
Λ∞

]
[−1]).

It is easy to check by hand that this operation preserves short exact sequences of
complexes and quasi-isomorphisms, and thus passes to a contravariant functor

D : Db
coadm(Λ∞)→ Db

coadm(Λ∞)

which is an anti-involution; base changing this operation from Λ∞ to Λn[1/p] yields
the usual Grothendieck duality functor RHom(−,Λn[1/p]). If M is coadmissible, then
we write for brevity D i(M) = HiD([M ]); one has canonical identifications

D0(M) = HomΛ∞(M/Mtors,Λ∞), D1

(∏
α∈I

Λ∞/p
nα
α

)
=
∏
α∈I

p−nαα /Λ∞,

and of course all other D i(M) = 0.

Remark 1.2. We conjecture that the above formalism generalizes from Λ∞ to any A∞
as in [22, §1.4] with (A, I) local, by replacing Cone[K∞ → K∞/Λ∞][−1] with ω•A⊗AA∞,
where ω•A is a bounded complex of injectives representing the Grothendieck dualizing
complex for A. The key claim to be proved is that ω•A ⊗A An[1/p] is a Grothendieck
dualizing complex for each An[1/p].

5



Finally, we use Λ̃ to denote Λ equipped with the linear Γ-action, and hence also
G-action, given by multiplication by Γ ⊂ Λ×. We put Λ̃n = Λn ⊗Λ Λ̃ for n ≤ ∞. We
also write ι : Γ → Γ for the inversion map γ 7→ γ−1, and use the same symbol for the
involution it induces on Λ(n). Given a Λ(n)-module M , we write M ι = Λι(n) ⊗Λ(n)

M ,

with Λ(n)-module structure given by the first factor. Thus, Λ̃ι(n) has G-action through
multipliation by the inverses of images of elements in Γ.

2 Iwasawa cohomology

If K/Q is a finite extension and S is a finite set of primes containing all v dividing p, we
write Sn for the set of primes of Kn lying above places of S; we fix a maximal extension
KS of K unramified outside S∪{v|∞}, noting that Kn ⊆ KS and KS serves as a Kn,Sn ;
and we write G = GK,S = Gal(KS/K) and Gn = GKn,Sn = Gal(Kn,Sn/Kn). If K/Q`

is a finite extension, we write G = GK and Gn = GKn . For one of these choices of K
(and possibly S), given T ∈ RepZp(G) its classical Iwasawa cohomology is defined to
be

RΓcl.Iw(G,T ) = R lim←−
n

RΓcont(Gn, T ) and RΓcl.Iw(G,T [1/p]) = RΓcl.Iw(G,T )[1/p]

in Db
ft(Λ) and Db

ft(Λ[1/p]), respectively. By a variant of Shapiro’s lemma, for X =
T, T [1/p] one has

RΓcl.Iw(G,X) ∼= RΓcont(G,X ⊗Zp Λ̃ι).

If K is finite over Q and v ∈ S, then v only splits finitely in K∞/K, hence ΛK is a
finite ΛKv -algebra, and we get a restriction map

resv : RΓcl.Iw(GK,S , X)→ RΓcl.Iw(Gv, X)

in Db
ft(ΛKv).

For the rest of this section, K is finite over Qp. We let Fn denote K(µpn) rather than
F ·Q(µpn)+; analogous results for the latter choice are deduced from the stated ones
by applying the even idempotent projector. We use the language of families of Galois
representations, (ϕ,Γ)-modules, and their cohomology developed in [22], to which we
refer for notations.

Well-known work of Fontaine and Perrin-Riou computes the structure of the Λ-
modules H∗cl.Iw(G,T ): one has a canonical ismomorphism

RΓcl.Iw(G,T ) ∼=
[
D†(T )

ψ−1−−−→ D†(T )
]

in Db
ft(Λ), where the right hand side is concentrated in degrees 1, 2, such that the

torsion submodule of H1
cl.Iw(G,T ) = D†(T )ψ=1 is identified with D†(T )ϕ=1. The rank of

Hi
cl.Iw(G,T ) is [K : Qp] rankZp T if i = 1 and 0 otherwise; and their torsion submodules

are computed by H1
cl.Iw(G,T )tors

∼= TH and H2
cl.Iw(G,T ) ∼= [T ∗(1)H ]∗ as Λ-modules.

We define, for V ∈ RepQp
(G), its Iwasawa cohomology to be

RΓIw(G,V ) = RΓcont(G,V ⊗Qp Λ̃ι∞).
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It follows from [22, Theorem 1.6] that the natural maps

RΓcl.Iw(G,V )
L
⊗
Λ

Λ∞ → RΓIw(G,V ) and H∗cl.Iw(G,V )⊗Λ Λ∞ → H∗Iw(G,V )

are isomorphisms. (A “tempered growth” variant of these isomorphisms appears in [8,
Proposition II.3.1].) It is then clear that the Iwasawa cohomology groups are coadmis-
sible Λ∞-modules. When K is finite over Q and v ∈ S we get restriction maps

resv : RΓIw(GK,S , V )→ RΓIw(Gv, V )

in Db
ft(ΛKv ,∞). When when K is finite over Qp the work of Fontaine and Perrin-Riou

carries over, provided one replaces Fontaine’s isomorphism by

RΓIw(G,V ) ∼=
[
D†rig(V )

ψ−1−−−→ D†rig(V )
]

in Db
ft(Λ∞).

By analogy, for a (ϕ,Γ)-module D(s) over B
†(,s)
rig,K , we define the Iwasawa cohomology

of D(s) to be complex

C•Iw(D(s)) =
[
D(s) ψ−1−−−→ D(s)

]
in Kb(Λ∞) concentrated in degrees 1, 2, and write RΓIw(G,D(s)) and H∗Iw(G,D(s)) for
the respective objects it determines in Db(Λ∞) and Grb(Λ∞). The snake lemma shows
that it gives rise to a cohomological δ-functor. We go on to generalize to (ϕ,Γ)-modules
the work of Perrin-Riou and Fontaine mentioned in §2.

The G-representations Λ̃ιn[1/p] fit into a family of G-representations over W , and

therefore determine a family of (ϕ,Γ)-modules over OW ⊗̂Qp B
†(,s)
rig,K which is denoted

by D
†(,s)
rig (Λ̃ι∞). It is easy to compute that

D
†(,s)
rig (Λ̃ιn[1/p]) ∼= (Λ̃ιn[1/p] ⊗̂

Qp

B
†(,s)
rig,K) · e,

with ϕ, ψ and Γ acting on the right hand side (Λ̃n[1/p] ⊗̂ 1)-linearly via ϕ(e) = e,
ψ(e) = e, and γ(e) = (γ(−1) ⊗̂ 1) · e for γ ∈ Γ.

For any (ϕ,Γ)-module D(s) over E⊗Qp B
†(,s)
rig,K , we define its cyclotomic deformation

to be the family

D
(s)

= D(s) ⊗
(E⊗QpB

†(,s)
rig,K)

D
†(,s)
rig (Λ̃ι∞)

of (ϕ,Γ)-modules over OW ⊗̂Qp B
†(,s)
rig,K , and put D

(s)
n = Γ(Yn, D̃

(s)). It follows from

the preceding computation that the natural maps D(s) ⊗̂E Λ̃ιn[1/p] → D
(s)
n are iso-

morphisms, provided ϕ, ψ and Γ are extended to the left hand sides Λ̃n[1/p]-linearly
with ϕ(d ⊗̂ 1) = ϕ(d) ⊗̂ 1, ψ(d ⊗̂ 1) = ψ(d) ⊗̂ 1, γ(d ⊗̂ 1) = γ(d) ⊗̂ γ−1 for γ ∈ Γ.

In the case where D(s) = D
†(,s)
rig (V ) with V ∈ RepE(G), one easily checks that

D
†(,s)
rig (V ) ∼= D

†(,s)
rig (V ). The four results below follow from these facts and well-known

explicit computations of Ds/t and D
s
/t with their actions of ϕ, ψ, and Γ (cf. [16, §3]).
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Proposition 2.1. Let D∗ = Hom
B†rig,K

(D,B†rig,K).

(1) The Λ∞-module (D/t)ψ=1 is coadmissible and torsion.
(2) The Λ∞-module (D/t)/(ψ − 1) vanishes.

(3) If D∗ = Hom
B†rig,K

(D,B†rig,K), then there is a canonical isomorphism

D((D/t)ψ=1) ∼=
(

(t−1D∗(1)/D∗(1))ψ=1
)ι

[−1].

Proposition 2.2. Let γ ∈ Γ/∆ be a topological generator.

(1) If D is étale, then the operator γ − 1 is bijective on D∆=1,ψ=0 and D
∆=1,ψ=0

.
(2) The operator γ − 1 is bijective on (D/t)∆=1,ψ=0 and (Dn/t)

∆=1,ψ=0.

Lemma 2.3. Let W ∈ RepE(Γ).
(1) One has (W ⊗E R)Γ = 0 for R = Λ̃ι[1/p], Λ̃ιn[1/p], Λ̃ι∞.
(2) If n ≥ 1, then for all m� 0 one has

(
W⊗E (ker TrKm/Km−1

⊗QpΛ̃
ι
n[1/p])

)
Γ

= 0.

Proposition 2.4. One has RΓcont(Γ, Dn) ∼=
[
D ⊗̂Λ∞ Λn[1/p]

]
[−1], where the right

hand side is concentrated in degree 1.

We make heavy use of clever dévissage arguments due to Liu, which are centered
around the following two facts.

Proposition 2.5. Let D be a (ϕ,Γ)-module over B†rig,K that is pure of slope λ ∈ Q.
(1) Then there exists an étale (ϕ,Γ)-module D′ that is a successive extension of

various tmD with m ∈ Z.
(2) If λ > 0, then there exists an extension

0→ D → D′′ → t−1B†rig,K → 0

such that every constituent of the slope filtration of D′′ has nonnegative degree that is
strictly less than degD.

Proof. The claim (1) may be gleaned from the discussion of [16, §4.1], and the claim
(2) follows from the argument of [16, Theorem 4.7 and Remark 4.6].

Theorem 2.6. Let D be a (ϕ,Γ)-module over E ⊗Qp B†rig,K .

(1) The Hi
Iw(G,D) are coadmissible Λ∞-modules, vanish for i 6= 1, 2, are torsion

for i = 2, and are of rank equal to [K : Qp] rankD for i = 1.
(2) If γ ∈ Γ/∆ is a topological generator, then γ − 1 is invertible on D∆=1,ψ=0 and

D
∆=1,ψ=0

, and the morphisms of complexes

C•ϕ,γ : [D∆ (ϕ−1,γ−1)−−−−−−−→ D∆ ⊕D∆ (1−γ,ϕ−1)−−−−−−−→ D∆]

id ↓ −ψ ↓ id ↓ −ψ
C•ψ,γ : [D∆ (ψ−1,γ−1)−−−−−−−→ D∆ ⊕D∆ (1−γ,ψ−1)−−−−−−−→ D∆]

and

C
•
ϕ,γ : [D

∆ (ϕ−1,γ−1)−−−−−−−→ D
∆ ⊕D∆ (1−γ,ϕ−1)−−−−−−−→ D

∆
]

id ↓ −ψ ↓ id ↓ −ψ
C
•
ψ,γ : [D

∆ (ψ−1,γ−1)−−−−−−−→ D
∆ ⊕D∆ (1−γ,ψ−1)−−−−−−−→ D

∆
]

are quasi-isomorphisms.
(3) One has a canonical isomorphism RΓIw(G,D) ∼= RΓ(G,D).
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Remark 2.7. Strictly speaking, the isomorphism of part (3) of the theorem is nonsense,
because the two sides do not belong to the same category. It means that the rules

Yn 7→ RΓIw(G,D)
L
⊗

Λ∞
Λn[1/p] and RΓ(G,D)

in Db
ft(U) agree, or equivalently that RΓIw(G,D) ∼= R lim←−nRΓ(G,Dn) in Db

coadm(Λ∞).

Proof. It suffices to forget the E-action everywhere and assume that E = Qp.
Suppose that D is filtered by sub-(ϕ,Γ)-modules F ∗ ⊆ D that are direct summands.

An easy induction, using that Iwasawa cohomology is a δ-functor, reduces us to proving
the theorem for the Gr∗X . In particular, we may assume that D is pure of some slope

λ ∈ Q, and let D′ be as in Proposition 2.5(1), say D′ = D†rig(V ). Since there is an

exact sequence 0→ D′′ → D′ → tm
′′
D → 0, by the work of Perrin-Riou and Fontaine,

we have that
H2

Iw(G,V ) ∼= D′/(ψ − 1) � tm
′′
D/(ψ − 1)

for some m′′ ∈ Z. Since H2
Iw(G,V ) is coadmissible and torsion, so is tm

′′
D/(ψ − 1),

and by Proposition 2.1 so is D/(ψ − 1).
On the other hand, we have an exact sequence

D′ψ=1 → (tm
′′
D)ψ=1 → D′′/(ψ − 1)→ D′/(ψ − 1),

and applying the preceding paragraph to D′′ and invoking the facts that D′ψ=1 ∼=
H2

Iw(G,V ) and D′/(ψ − 1) ∼= H2
Iw(G,V ), we see that (tm

′′
D)ψ=1 is coadmissible. It

follows by Proposition 2.1 that Dψ=1 is coadmissible and of the same Λ∞-rank as
(tm

′′
D)ψ=1. To compute this rank, using dévissage and the fact that all the H2

Iw are
torsion we calculate that

rankD′

rankD
[K : Qp] rankD = [K : Qp] rankD′ = [K : Qp] dimQp V = rankΛ∞ H1

Iw(G,V )

= rankΛ∞ H1
Iw(G,D′) =

∑
i

rankΛ∞ H1
Iw(G, tmiD)

=
∑
i

rankΛ∞ H1
Iw(G,D) =

rankD′

rankD
rankΛ∞ H1

Iw(G,D).

This gives of part (1) of the theorem.
For part (2), to see the bijectiveness of γ − 1, we note that by the surjectivity of

ψ and the snake lemma, the functors F : D 7→ D∆=1,ψ=0 and F : D 7→ D
∆=1,ψ=0

are
exact, and therefore we may perform a dévissage. Thus, we may assume that D is pure
of some slope λ ∈ Q, and choose D′ as in Proposition 2.5(1).

Since there is a short exact sequence of the form 0→ D′′ → D′ → tm
′′
D → 0 we get

from Proposition 2.2(1) that γ−1 is surjective on (tm
′′
D)∆=1,ψ=0 and (tm

′′
D)∆=1,ψ=0,

and since there is a short exact sequence of the form 0→ tm
′′′
D → D′ → D′′′ → 0 we get

from Proposition 2.2(1) that γ− 1 is injective on (tm
′′′
D)∆=1,ψ=0 and (tm

′′′
D)∆=1,ψ=0.

But by Proposition 2.2(2), the injectiveness (resp. surjectiveness) of γ−1 on D∆=1,ψ=0

and D
∆=1,ψ=0

is equivalent to the injectiveness (resp. surjectiveness) of γ − 1 on
(tmD)∆=1,ψ=0 and (tmD)∆=1,ψ=0 for any m ∈ Z.

To see that the morphisms of complexes C•ϕ,γ → C•ψ,γ and C
•
ϕ,γ → C

•
ψ,γ are quasi-

isomorphisms, we note the contituent maps are surjective in every degree, so it suffices
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to show that the kernel complexes are acyclic. The latter claim amounts to asking that

γ−1 be bijective on D∆=1,ψ=0 and D
∆=1,ψ=0

, which we have verified. This shows part
(2) of the theorem.

Part (3) follows from assembling the functorial isomorphisms

RΓ(G,Dn) ∼= [C
•
ϕ,γ ] ∼= [C

•
ψ,γ ] ∼= Cone

[
RΓcont(Γ, Dn)

ψ−1−−−→ RΓcont(Γ, Dn)
]

[−1]

(?)∼= Cone

[
D ⊗̂

Λ∞
Λn[1/p]

ψ−1−−−→ D ⊗̂
Λ∞

Λn[1/p]

]
[−2]

(∗)
∼← Cone

[
D ⊗

Λ∞
Λn[1/p]

ψ−1−−−→ D ⊗
Λ∞

Λn[1/p]

]
[−2]

= RΓ•Iw(D)
L
⊗

Λ∞
Λn[1/p].

The isomorphism (?) is the content of Proposition 2.4, and the natural map (∗) is a
quasi-isomorphism because the right hand side has cohomology that is finitely gener-
ated over Λn[1/p] by part (1) of the theorem.

We remark in passing that if D is trianguline, for example if it becomes semistable
over an abelian extension and ϕ on Dcrys is semisimple, then the preceding result can
be proved by reducing to the rank one case and then making a direct computation.

Theorem 2.8. Let D be a (ϕ,Γ)-module over E ⊗Qp B†rig,K , with dual

D∗ = Hom
E⊗QpB†rig,K

(D,E ⊗Qp B†rig,K).

Then one has a canonical isomorphism DRΓIw(G,D) ∼= RΓIw(G,D∗(1))ι[2].

Proof. This argument is just an adaptation of [16, Theorem 4.7]. It is routine to check
the various compatibilities, so we omit them. By forgetting the E-action everywhere,
it suffices to assume that E = Qp, which we do for simplicity.

The desired morphisms over the respective Λn[1/p] are adjoint to the pairing

RΓ(G,D ⊗
B†rig,K

D†rig(Λ̃ιn))
L
⊗
Λn

RΓ(G,D∗(1)⊗
B†rig,K

D†rig(Λ̃ιn))ι

= RΓ(G,D ⊗
B†rig,K

D†rig(Λ̃ιn))
L
⊗
Λn

RΓ(G,D∗(1)⊗
B†rig,K

D†rig(Λ̃n))

∪→ RΓ(G, (D ⊗
B†rig,K

D∗(1)) ⊗̂
Qp

Λn)

= RΓ(G,D ⊗
B†rig,K

D∗(1))⊗Qp Λn

ev→ RΓ(G,B†rig,K(1))⊗Qp Λn ∼= RΓcont(G,Qp(1))⊗Qp Λn

→ τ≥2RΓcont(G,Qp(1))⊗Qp Λn
inv⊗1∼= Λn[−2].

They exist even on the level of cochains, compatibly for varying n, so they compile to
a map on cochains over Λ∞, and the duality operations compile to give D . We need
to check that what we get is a perfect pairing.

Because both D ◦RΓIw(G,−) and RΓIw(G,−∗(1))ι[2] are exact functors, given any
exact triangle it suffices to know the result for any two members. Therefore, we may
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assume that D has pure slope. Since D is an (anti-)involution, by replacing D with
D∗(1) if necessary, it suffices to treat the case where D has nonnegative slope. Invoking
Proposition 2.5(2), exactness and induction on degD reduce us to considering only the

cases where D is étale, and where D = t−1B†rig,K .

When D = D†rig(V ) is étale the analogous result for the Iwasawa cohomology of

V is well-known (see for example [17, 5.2.6] applied to V ⊗Qp Λ̃ι), and the result for

the Iwasawa cohomology of D follows. To treat D = t−1B†rig,K , we apply the following

general argument with E = t−1B†rig,K , which shows that the case of E is equivalent to

the case of tE, and then note that B†rig,K is étale.

For a general (ϕ,Γ)-module E over B†rig,K , it follows from Theorem 2.6 and the
short exact sequence 0→ tE → E → E/t→ 0 that the analogue of that theorem holds
for E/t, for any E as in the theorem; in fact, by Proposition 2.1(1,2), H1

Iw(G,E/t) is
coadmissible and torsion, and H2

Iw(G,E/t) = 0. Examining the diagram

DRΓIw(E/t) → DRΓIw(E) → DRΓIw(Et)
↓ ↓

RΓIw(E∗(1))ι[2] → RΓIw(t−1E∗(1))ι[2] → RΓIw(t−1E∗(1)/E∗(1))ι[2]

with exact triangles for rows, it suffices to complete it via an isomorphism

DRΓIw(G,E/t) ∼= RΓIw(G, t−1E∗(1)/E∗(1))ι[1].

Such an isomorphism is obtained by combining the three parts of Proposition 2.1, and
we leave it to the reader to check that it fits into the above diagram.

In fact, one has much finer information on the torsion in Iwasawa cohomology, as
the following result shows.

Proposition 2.9. Let D be a (ϕ,Γ)-module over E ⊗Qp B†rig,K . The vector spaces

Hi
Iw(G,D)tors are finite-dimensional over E.

Proof. By the preceding duality theorem, it suffices to show the claim for H2
Iw(G,D).

For each character χ : Γ→ E× the machinery of [22] gives an isomorphism

H2
Iw(G,D)⊗Λ∞,χ E

∼= H2(G,D(χ−1)),

and it suffices to show that the right hand side is nonzero for only finitely many χ
(as one ranges over all E). By Tate local duality as in [16], it suffices to show that
H0(G,D(χ)) is nonzero only for finitely many χ. In fact, let s1, . . . , s2 (resp. s) be the
Hodge–Tate–Sen weights of D (resp. χ). If H0(G,D(χ)) 6= 0 then some si + s ∈ Z;
thus, replacing D by D(χ) if necessary, it suffices to show that only finitely many χ
with s ∈ Z have H0(G,D(χ)) 6= 0. But in fact such χ have the form εχ−scycl with ε of

finite order, and H0(D(χ)) = D(χ)+,ϕ=1
crys

∼= D(ε)+,ϕ=p−s
crys . It is then easy to see that

D(ε)crys = 0 if ε has sufficiently large conductor, and when it is nonzero there are only
finitely many eigenvalues of ϕ, so the claim folows.

Since the Λn[1/p] for n ≤ ∞ are rings of uniformly bounded Tor-dimension (equal
to 1), and the preceding proposition allows us to bound the number of generators of
H∗Iw(G,D), we obtain the following strengthening of the preceding finiteness results.
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Corollary 2.10. The object RΓIw(G,D) can be represented in the derived category of
Λ∞-modules by a perfect complex in degrees [0, 2]. In particular, cyclotomic deforma-
tions satisfy the Finiteness Theorem of [22, Theorem 2.5].

3 Wach modules and the big logarithm

Continuing the preceding section, we assume K/Qp is a finite unramified extension.
Write Γn = Gal(K∞/Kn) and Dpcrys =

⋃
nD[1/t]Γn . Recall that π is a formal variable,

and one has the rings A+
K = OK [[π]], B+

K = A+
K [1/p], and B+

rig,K = lim←−nA
+
K [πn/p]̂ [1/p]

(where the completion is for the p-adic topology). They are all embedded into each

B†,rrig,K and stable under the actions of ϕ and Γ. Let q = ϕ(π)/π ∈ A+
K . A simple

refinement of the method of [7, §3.3], [6, §II] and [5, §II–III] gives the following result.

Theorem 3.1. (1) Assume given a (ϕ,Γ)-module D of rank d that becomes crystalline
over Kn of Hodge–Tate weights h1 ≤ · · · ≤ hd. There exists a unique free B+

rig,K-
submodule DW ⊆ D of rank d with the following properties:

• DW ⊗B+
rig,K

B†rig,K = D.

• [DW : Dpcrys ⊗K B+
rig,K ] = [(t/π)h1 ; . . . ; (t/π)hd ].

• [DW : ϕ∗DW] = [qh1 ; . . . ; qhd ], where ϕ∗DW = ϕ(DW)⊗ϕ(B+
rig,K) B+

rig,K .

• Γ leaves DW stable and Γn acts trivially on DW/π.

(2) The rule D 7→ DW is an exact equivalence between the category of (ϕ,Γ)-modules
becoming crystalline over Kn and the category of finitely generated free B+

rig,K-modules

N equipped with a ϕ-linear map ϕ : N → N [q−1] such (ϕ∗N)[q−1] = N [q−1] and a
commuting semilinear action of Γ with Γn acting trivially modulo π.

(3) One has canonical identifications

DW/π = Dpcrys, DW[(t/π)−1] = Dpcrys ⊗K B+
rig,K [(t/π)−1],

qhdDW ⊆ ϕ∗DW ⊆ qh1DW,

(tkD)W = (t/π)kDW, D(k)W = π−kDW(k), and

D†rig(V )W = N(V )⊗B+
K

B+
rig,K ,

where N(V ) is the usual Wach module of a crystalline GK-representation V .

Remark 3.2. Although most references refer only to the crystalline case, it is well-known
that their arguments carry over with little modification to the crystalline-over-some-Kn

case (see, for example, [7]), so we suppress any further discussion of this gap.

One easily sees that π−aDW is stable under ψ for all a ≥ hd, so we often consider
ψ − 1 as an endomorphism.

The following result extends [4, Theorem A.3] to crystalline (ϕ,Γ)-modules. Write
λ(D) for the largest integer n for which ϕ− pn is not bijective on Dpcrys (or −∞ if no
such n exists), and a(D) = max{hd, λ(D) + 1}.

Theorem 3.3. If a ≥ a(D) then the natural map [π−aDW
ψ−1−−−→ π−aDW] → [D

ψ−1−−−→
D] is a quasi-isomorphism (both complexes considered as concentrated in degrees 1, 2).
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Proof. The proof begins by establishing some simplifications.
We first point out that for a ≥ a(D) the natural map

[π−aDW
ψ−1−−−→ π−aDW]→ [π−a−1DW

ψ−1−−−→ ψ−a−1DW]

is a quasi-isomorphism. This is because, applying the snake lemma to the operator ψ−1
on the short exact sequence 0→ π−aDW → π−a−1DW → π−a−1DW/π

−aDW → 0, we
only need that ψ − 1 be bijective on π−a−1DW/π

−aDW. Since the latter operator can
be identified with paϕ−1 − 1 on Dpcrys (compare [4, Lemma A.4]), this is indeed the
case, as a > λ(D). Thus, we may replace π−aDW by DW[π−1] throughout the proof.

The claim for D is clearly invariant under replacing D by its Tate twists; it is also
invariant under replacing D by tkD for k ∈ Z. Indeed, to see that the claims for D and
tD are equivalent, applying the snake lemma to the operator ψ − 1 on the short exact
sequences 0 → tDW[π−1] → DW[π−1] → DW[π−1]/t → 0 and 0 → tD → D → D/t →
0, it suffices to compare the kernel and cokernel of ψ − 1 on DW[π−1]/t and on D/t.
Using the methods of [16, §3] and §2, both kernels are computed to be lim←−n,ψD

n
Sen and

both cokernels are computed to be zero.
Next, if 0 → D′ → D → D′′ → 0 is a short strict exact sequence, then so is

0 → D′W[π−1] → DW[π−1] → D′′W[π−1] → 0, and applying the snake lemma to the
operator ψ − 1 on these, followed by the five lemma, shows that if the claim of the
theorem holds for two of D,D′, D′′, then it holds for the third as well.

Let any D be given. By dévissage, it suffices to treat its pure pieces, hence to
assume that D is pure of some slope λ ∈ Q. Replacing the given D by suitable tkD,
we may assume that λ ≥ 0. We now induct on deg(D) = λ · d ∈ Z≥0. In the base

case, D = D†rig(V ) is étale, and the result follows from applying ⊗ΛΛ∞ to [4, Theorem

A.3] (for H1, the case of H2 following from the same method). Assuming the result
for all degrees strictly less than deg(D), we replace D by a Tate twist D(k) (which

does not change its degree) such that all extensions E of t−1B†rig,K by D(k) become
crystalline over Kn. It is shown in [16, Remark 4.6 and Theorem 4.7] that nontrivial
such extensions E exist, and that all the pure slope pieces of E have nonnegative degree
strictly less than deg(D). By inductive hypothesis and dévissage the result holds for

E and t−1B†rig,K , hence also for D.

Take an element γ ∈ Γ of infinite order, and for i ∈ Z write

`i =
log γ

logχcycl(γ)
− i =

log(γχcycl(γ)−i)

logχcycl(γ)
, Γi =

{
`−1
1 `−1

2 · · · `
−1
i if i ≥ 0,

`0`−1 · · · `i+1 if i < 0,

and ΓD = Γh1Γh2 · · ·Γh2 .

The `i, Γi and ΓD are independent of γ. Recall that the Mellin transform shows B+,ψ=0
rig,K

to be free of rank one over K ⊗Qp Λ∞. By [14, Proposition 1.5], one has

Γh1 ·Dpcrys ⊗K B+,ψ=0
rig,K ⊆ Dψ=0

W ⊆ Γhd ·Dpcrys ⊗K B+,ψ=0
rig,K .

Since ϕ∗(π−aDW) ⊆ qh1−a · π−aDW for any a ∈ Z, the operator 1 − ϕ on D takes a

finite-colength Λ∞-submodule of (π−aDW)ψ=1 into Dψ=0
W . We deduce from these facts
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a “big logarithm” map à la Perrin-Riou

LogD : H1
Iw(GK , D) ∼= Dψ=1 = (π−a(D)DW)ψ=1 1−ϕ−−→

Dψ=0
W ⊗Λ∞ K∞ = Dpcrys ⊗K B+,ψ=0

rig,K ⊗Λ∞ K∞ ≈ Dpcrys ⊗Qp K∞,
whose target we consider equipped with the Λ∞-lattice Dpcrys ⊗Qp Λ∞.

Theorem 3.4 (“δ(D)”). One has detΛ∞ LogD · charΛ∞ H2
Iw(GK , D) = ΓD ·Λ∞ ⊂ K∞.

We remind the reader that the right way to interpret the above determinant is
(charΛ∞ H1

Iw(GK , D)tors)
−1 times the determinant of the map induced by LogD on the

free quotient H1
Iw(GK , D)/tors. Thus one has the slightly more appealing restatement

that detΛ∞ LogD : detΛ∞RΓIw(GK , D)−1 ∼→ ΓD · Λ∞ ⊂ K∞. The nondegeneracy of
LogD shows, by the way, that H1

Iw(GK , D)tors
∼= Dϕ=1 = (π−a(D)DW)ϕ=1.

Proof. Following the strategy of the proof of the preceding theorem, it suffices to show
that the claim for D is invariant under replacing D by D(k) and tkD for k ∈ Z, is pre-
served by short strict exact sequences (if it holds for two, then it holds for the third),
and holds in the étale case. Invariance under Tate twisting follows from the compu-
tation that ΓD(k) = Γd−k · Twk ΓD, plus the canonical identifications Hn

Iw(GK , D(k)) =
Hn

Iw(GK , D)(k) and

D(k)pcrys ⊗K B+,ψ=0
rig,K = (D(k)pcrys ⊗K B+

rig,K)ψ=0

= (t−kDpcrys(k)⊗K B+
rig,K)ψ=0 = Γ−1

−k ·Dpcrys ⊗K B+,ψ=0
rig,K (k),

which give rise to the computations charΛ∞ H2
Iw(GK , D(k)) = Twk charΛ∞ H2

Iw(GK , D)
and detΛ∞ LogD(k) = Γd−k · Twk detΛ∞ LogD. The claims for D and tD are equivalent
by similar reasoning, this time using the identity ΓtD = ΓD(1) = `h1 · · · `hd · ΓD and
considering the long exact sequence for Iwasawa cohomology assoicated to 0→ tD →
D → D/t→ 0, noting the computations

(D/t)ψ=1 = lim←−
n,ψ

Dn
Sen ≈ lim←−

n, 1
p
Tr

d⊕
i=1

thiKn
∼=

d⊕
i=1

Λ∞/`hi ,

(D/t)/(ψ − 1) = 0, and (tD)pcrys = Dpcrys. That both sides of the desired identity
are multiplicative over short strict exact sequences is easy. The étale case follows from
applying ⊗Λ[1/p]Λ∞ to the “δ(V ) conjecture”, now a well-known theorem, casting it in
the language of (ϕ,Γ)-modules as in [4].

Similarly to the finiteness of Iwaswa cohomology, one can prove the above result in
the trianguline case by an explicit computation for rank one modules.

Remark 3.5. The ring Λ∞, consisting of locally analytic distributions on Γ, is sometimes
referred to as H(Γ) in the literature. Other times, H(Γ) is used for the subring Λtemp ⊂
Λ∞ of tempered distributions. The methods of this section can easily be refined to work
with this ring instead. One easily constructs DW as a B+

temp,K-lattice in D with all the

analogous properties, where B+
temp,K ⊂ B+

rig,K consists of the power series of tempered
growth. The proof of Theorem 3.3 shows (in this new notation)

[π−aDW
ψ−1−−−→ π−aDW]⊗Λtemp Λ∞ → [D

ψ−1−−−→ D]

to be a quasi-isomorphism, and the proof of Theorem 3.4 goes through without change,
using Λtemp and its ring of total fractions in place of Λ∞ and K∞.
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4 Global results

We summarize how the preceding sections give a cyclotomic Iwasawa theory for the
Selmer groups of Galois representations, and how their characteristic ideals compare
to Perrin-Riou’s algebraic p-adic L-functions. From now until the end of the article we
let Fn denote F · Q(µpn)+ instead of F (µpn), thus we redefine ΓF and all derivative
objects, and whenever we encounter an object constructed with the old convention we
tacitly apply the even idempotent projector to it, bringing it into the present situation.

In this section we suppose that K/Q is a finite extension and S is a finite set of
places containing all v dividing p as at the beginning of §2. For K ′ a finite subextension
of K∞/K with S′ its set of places lying over S, and χ : ΓK → O×E a continuous
character, we write Iχ,K′ ⊂ ΛK for the ideal corresponding to the kernel of the natural

map of GK,S-modules Λ̃K � OE [Gal(K ′/K)]∼(χ), where ∼ still denotes the canonical
GK,S-action. The natural maps ΛK/Iχ,K′ [1/p] → ΛK,n/Iχ,K′ [1/p] are isomorphisms
for n(χ,K ′) ≤ n ≤ ∞.

Let V ∈ RepE(GK,S) and put V ∗ = HomE(V,E) and Dv = D†rig(V |Gv) for each v
dividing p. Assume that that V |Gv is ordinary in the sense of [22] with distinguished
subobject Fv ⊆ Dv for each such v. The distinguished subobjects induce subobjects
upon passage to twists by χ, duals, restrictions to K ′, and cyclotomic deformations.
Construct the Selmer complexes RΓ̃str(GK ,−) using the unramified local condition at
v ∈ S not dividing p and the strict ordinary local condition at v ∈ S dividing p, and
similarly the Selmer complexes RΓ̃str,Iw(GK ,−) of the cyclotomic deformations.

Theorem 4.1. (1) The complex RΓ̃str,Iw(GK , V ) has cohomology concentrated in de-
grees [0, 3] consisting of coadmissible Λ∞-modules.

(2) The natural map

RΓ̃str,Iw(GK , V )
L
⊗

ΛK,∞
ΛK,∞/Iχ,K′ ∼= RΓ̃str(GK′ , V (χ−1))

is an isomorphism. In particular, we have canonical short exact sequences

0→ H̃i
str,Iw(GK , V ) ⊗

ΛK,∞
ΛK,∞/Iχ,K′ → H̃i

str(GK′ , V (χ−1))

→ Tor
ΛK,∞
1 (H̃i+1

str,Iw(GK , V ),ΛK,∞/Iχ,K′)→ 0.

(3) There is a canonical isomorphism

DRΓ̃str,Iw(GK , V ) ∼= RΓ̃str,Iw(G,V ∗(1))ι[3].

In particular, we have canonical short exact sequences

0→ D1H̃4−i
str,Iw(GK , V )→ H̃i

str,Iw(GK , V
∗(1))ι → D0H̃3−i

str,Iw(GK , V )→ 0

identifying the first term with the torsion submodule of the second.
(4) Assume that χ is de Rham at p, V ∗(1)(χ)GK′,S′ = 0, and for all places v′ of K ′

dividing p both X = Fv′(χ)∗(1), (Dv′/Fv′)(χ) satisfy X+
dR = XdR and Xϕ=1

crys = 0. Then
there is a canonical isomorphism

H̃2
str,Iw(GK , V )⊗ΛK,∞ ΛK,∞/Iχ,K′ ∼= H1

f (GK′ , V
∗(1)(χ))∗.
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Proof. Claims (1) and (2) are clear.
For part (3) By the definition of the Selmer complex as a mapping cone, it suffices

to justify that duality holds for each of RΓcont(GK,S , V ) and the U+
v for v ∈ S. The

first claim follows by applying
L
⊗ΛK ΛK,∞ to [17, 8.5.6]. Similarly, if v ∈ S does not

divide p, the second claim follows by applying
L
⊗ΛK ΛK,∞ to [17, 8.9.7.3], noting that

the local error term for V |Gv vanishes because p is inverted. Finally, if v ∈ S divides
p, the second claim follows from Theorem 2.8.

Employing the discussion of [22, §3.4], to prove (4) it suffices avoid the Iχ,K′-torsion

submodule of H̃3
str,Iw(GK , V ). By part (3), this module is D1-dual to the Iχ−1,K′-torsion

submodule of H̃1
str,Iw(GK , V

∗(1)). On the other hand, by part (2) this torsion vanishes

provided H̃0
str(GK′ , V

∗(1)(χ)) = 0, and the mapping cone defining the Selmer complex
gives H̃0

str(GK′ , V
∗(1)(χ)) ⊆ V ∗(1)(χ)GK,S′ .

Corollary 4.2. Put Si = H̃i
str,Iw(GK , V ).

(1) One has Si = 0 for i 6= 1, 2, 3, rankΛ∞ S3 = 0, and rankΛ∞ S1 = rankΛ∞ S2.
One has S1[Iχ,K′ ] ↪→ V (χ−1)GK′,S and [V (χ−1)∗(1)GK′,S′ ]∗ � S3[Iχ,K′ ].

(2) The common rank of S1 and S2 is invariant under replacing V with V ∗(1), and
bounds above the rank of H2

Iw(GK,S , V ).

Proof. (1) The first claim for i /∈ [0, 3] is clear by construction, and for i = 0 it follows
from Lemma 2.3(1). The computation of the rank of S3 follows from the vanishing of
S0 by part (3) of the theorem. To see the equality of ranks in degrees i = 1, 2, one
applies the Iwasawa-theoretic Euler–Poincaré formula to the diagram

0→ H̃1
str,Iw(GK , V )→ H1

Iw(GK,S , V )→ H1
Iw(GK , D/F )

→ H̃2
str,Iw(GK , V )→ H2

Iw(GK,S , V )→
⊕
v∈S

H2
Iw(GKv , V ),

noting that all local Iwasawa cohomology in degree 2 is torsion. The computation of
torsion in S1 follows from part (2) of the theorem, and the computation of torsion in
S3 follows from this and part (3) of the theorem.

(2) The first claim follows from part (3) of the theorem, and the second claim follows
from the preceding exact sequence.

We define the algebraic p-adic L-function for (V, (Fv)v|p) to be the principal frac-

tional Λ∞-ideal
(

detΛ∞RΓ̃str,Iw(GK , V )
)−1

⊆ K∞, or a generator thereof, uniquely

determined up to Λ×∞, which is equal to Λ[1/p]× by a theorem of Lazard. When
V HK = V ∗(1)HK = 0, the preceding corollary shows that the algebraic p-adic L-
function is simply charΛ∞ H̃2

str,Iw(GK , V ). We assert a weak Leopoldt conjecture (WLC)

for (V, (Fv)v|p), that rankΛ∞ H̃i
str,Iw(GK , V ) = 0 for i = 1, 2, or equivalently that the al-

gebraic p-adic L-function is, on each integral factor of K∞, not identically zero. By the
preceding corollary, the conjecture is invariant under replacing (V, (Fv)v|p) by V ∗(1)
equiped with its dual ordinary local conditions, and it implies the more traditional
WLC for V (and V ∗(1)), which is that rankΛ∞ H2

Iw(GK,S , V ) = 0.
For the remainder of this section, we assume that K/Q is unramified above p. In

particular, the groups ΓK ,ΓKv ,ΓQ,ΓQp coincide for all v|p. For any complex conjuga-

tion c, we let d± = dimQp(IndKQ V )c=±1, so that d+ + d− = [K : Q] dimQp V . We also
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assume henceforth that dimKv Fv = d+ for all v|p. It will be convenient to use semilo-
cal notations, when they are meaningful: D∗ =

⊕
v|p(Dv)∗ for ∗ = ∅,W, crys,pcrys;

H∗Iw(GK , D) =
⊕

v|p H∗Iw(GKv , Dv);

LogD =
⊕
v|p

LogDv : H1
Iw(GK , D)→ Dpcrys ⊗Qp K∞;

ΓD =
∏
v|p ΓDv ; and similarly with V ∗(1) in place of V , F or F/D in place of D, etc.

When V is crystalline at all places v of K lying over p, in [20, Remark 1.4.9]
Perrin-Riou’s module of p-adic L-functions for V is given as

Iarith,{p,∞} =
∏
v∈S
v-p

(
charΛ∞ H2

Iw(GKv , V )
)−1 · Γ−1

D

·
(∧d−

Λ∞
LogD

)(
det−1

Λ∞
RΓIw(GK,S , V )

)
⊂
∧d−

Λ∞

(
Dcrys ⊗Qp K∞

)
=

(∧d−

Qp

Dcrys

)
⊗Qp K∞.

Assume for the moment that WLC holds for V , so that ri := rankΛ∞ Hi
Iw(GK,S , V )

satisfies r1 = d− and r2 = 0. Then, since H0
Iw(GK,S , V ) = 0, we may rewrite

Iarith,{p,∞} =
∏
v∈S
v-p

(
charΛ∞ H2

Iw(GKv , V )
)−1 · Γ−1

D

·
2∏
i=1

(
charΛ∞ Hi

Iw(GK,S , V )tors

)(−1)i

·
∧d−

Λ∞
LogD

(
H1

Iw(GK,S , V )
)
.

Considering Dcrys as functionals on D∗(1)crys and evaluating these functionals on
(D/F )∗(1)crys = (Fcrys)

⊥, one gets a fractional Λ∞-ideal

Iarith,{p,∞}(detQp(D/F )∗(1)crys) ⊆ K∞.

A generator of this fractional ideal is Perrin-Riou’s algebraic p-adic L-function for

(V, (Fv)v|p), well-defined up to Λ[1/p]×. The factor
∧d−

Λ∞
LogD(H1

Iw(GK,S , V )), eval-
uated on detQp(D/F )∗(1)crys, is of course recomputed as follows: map H1

Iw(GK,S , V )
along the top row and right column of the diagram

H1
Iw(GK,S , V ) H1

Iw(GK , D) Dcrys ⊗Qp K∞

H1
Iw(GK , D/F ) (D/F )crys ⊗Qp K∞,

locD/F

LogD

LogD/F

apply
∧d−

Λ∞
to its image, and identify detQp(D/F )crys to Qp at whim. (We remark that

locD/F or LogD/F ◦ locD/F is the analogue in this situation of a Coleman map.) But

factoring the map H1
Iw(GK,S , V )→ (D/F )crys⊗Qp K∞ as LogD/F ◦ locD/F , and noting

that all three of

H1
Iw(GK,S , V ), H1

Iw(GK , D/F ), and (D/F )crys ⊗Qp Λ∞
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have rank d−, gives∧d−

Λ∞
LogD

(
H1

Iw(GK,S , V )
)

(det
Qp

(D/F )∗(1)crys)

=
(
charΛ∞ H1

Iw(GK,S , V )tors

)
· (detΛ∞ locD/F )

· ΓD/F ·
(
charΛ∞ H2

Iw(GQp , D/F )
)−1

.

Rewriting Perrin-Riou’s definition using this equation, it now makes sense under the
weaker assumption that for each Dv/Fv becomes crystalline over some Kv,n, using
(Dv/Fv)pcrys in place of (Dv/Fv)crys.

Assume henceforth only that each Dv/Fv becomes crystalline over some Kv,n, and
define Perrin-Riou’s algebraic p-adic L-function for V and (Fv)v|p, well-defined up to
Λ[1/p]×, to be a generator of the fractional Λ∞-ideal

Iarith,{p,∞}(detQp(D/F )∗(1)pcrys) :=
∏
v∈S
v-p

(
charΛ∞ H2

Iw(GKv , V )
)−1

· Γ−1
F ·

(
charΛ∞ H2

Iw(GQp , D/F )
)−1

·
(
charΛ∞ H2

Iw(GK,S , V )
)
· (detΛ∞ locD/F )

(which a priori might be zero). We compare it to charΛ∞ H̃2
str,Iw(GK , V ).

Consider the local conditions U+
v,Iw for v ∈ S arising in the definition of the Selmer

complex, or rather the complexes U−v,Iw = Cone
[
U+
v,Iw → RΓcont(GKv , V )

]
. If v - p one

easily computes from the definition of the unramified local condition that

H0U−v,Iw = 0, H1U−v,Iw = (VIv ⊗Qp Λ∞)GFv = 0, and H2U−v,Iw = H2
Iw(GKv , V ),

where 1 → Iv → GKv → GFv → 1 exhibits the inertia and residual Galois groups of
Kv. If v|p one has H∗U−v,Iw = H∗Iw(GKv , Dv/Fv). Assume that the natural surjection

H2
Iw(GK , D)→ H2

Iw(GK , D/F ) is an isomorphism; for example, if V |GKv is crystalline
for all v|p then

H2
Iw(GK , D)∗ =

⊕
v|p

H2
Iw(GKv , V )∗ =

⊕
v|p

V ∗(1)HKv =
⊕
j∈Z

(D∗(1)ϕ=p−j
crys ⊗Qp χ

j
cycl),

and the right hand side vanishes for generic V . By the preceding computations, the
long exact sequence arising from the definition of the Selmer complex as a mapping
cone gives:

0→ H̃1
str,Iw(GK , V )→ H1

Iw(GK,S , V )
locD/F−−−−→ H1

Iw(GK , D/F )→ H̃2
str,Iw(GK , V )

→ H2
Iw(GK,S , V )→

⊕
v∈S

H2
Iw(GKv , V )→ H̃3

str,Iw(GK , V )→ 0. (4.1)

Note that WLC holds for (V, (Fv)v|p) if and only if the map locD/F is injective modulo
torsion. We compute

charΛ∞ H̃2
str,Iw(GK , V ) = (charΛ∞ H2

p,Iw(GK,S , V )) · (detΛ∞ locD/F ), (4.2)
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where

H∗p,(cl.)Iw(GK,S , V ) = ker

[
H∗(cl.)Iw(GK,S , V )→

⊕
v∈S

H∗(cl.)Iw(GKv , V )

]
,

charΛ∞ H2
p,Iw(GK,S , V ) =

(
charΛ∞ H2

Iw(GK,S , V )
)
·
∏
v∈S

(
charΛ∞ H2

Iw(GKv , V )
)−1

(4.3)

· charΛ∞ H̃3
str,Iw(GK , V ).

In conclusion, we have the following theorem.

Theorem 4.3. Let K,S, V,Dv, Fv be as at the beginning of this section, with K/Q
unramified at p. Assume that each Dv/Fv becomes crystalline over some Kv,n, and
that the natural surjection H2

Iw(GK , D) → H2
Iw(GK , D/F ) is an isomorphism. Then

Perrin-Riou’s algebraic p-adic L-function is given by

Iarith,{p,∞}(detQp(D/F )∗(1)pcrys) =
(

charΛ∞ H̃2
str,Iw(GK , V )

)
· Γ−1

F

·
(

charΛ∞ H̃3
str,Iw(GK , V )

)−1
,

where the last factor disappears if V ∗(1)HK = 0. WLC holds for (V, (Fv)v|p) if and only
if the common quantity is nonzero on each component of Spec Λ∞.

Remark 4.4. Assuming the hypotheses of the theorem also when the roles of V, V ∗(1)
are reversed, Theorems 4.1 and 4.3 give a new proof of the functional equation of Perrin-
Riou’s algebraic p-adic L-function, and partially recover her results on its behavior at
s = 0, namely on the order of vanishing.

We now compare the characteristic ideals constructed in [15, 14] to ours. In keep-
ing with op. cit., we assume for simplicity that E = Qp, K = Q, and the restriction
V |GQp

is crystalline, negative (in our normalizations, all its Hodge–Tate weights are
nonpositive), and without quotient isomorphic to the trivial representation. In par-

ticular, the Wach module DW satisfies DW ⊆ ϕ∗DW, H1
Iw(GQp , V ) = Dψ=1

W , and

Dψ=0
W ⊆ Dcrys ⊗Qp B+,ψ=0

rig,Qp
. The same properties are satisfied by the usual Wach mod-

ule N(T ) over Λ, with H1
cl.Iw(GQp , T ) in place of H1

Iw(GQp , T ), where T ⊆ V is a
GQ,S-stable Zp-lattice. One chooses a basis n1, . . . , nd of N(T ) with the property that
(1 + π)ϕ(n1), . . . , (1 + π)ϕ(nd) is a Λ-basis of (ϕ∗N(T ))ψ=0, and defines the Coleman
maps

Col : H1
cl.Iw(GQp , T ) = N(T )ψ=1 1−ϕ−−→ (ϕ∗N(T ))ψ=0 ≈ Λ⊕d and ColI = projI ◦Col

with respect to this basis, for I ⊆ {1, . . . , d}. We denote by Col′I its restriction
to H1

cl.Iw(GQ,S , T ). We assume Dϕ=pn
crys = 0 for all n ∈ Z, so that the map 1 − ϕ

above is injective and the Λ- and Λ∞-modules H1
cl.Iw(GQ,S , T ), H1

cl.Iw(GQp , T ) and
H1

Iw(GQp , D/F ) are free. Selmer groups were defined in op. cit. for modular forms,
and the definition generalizes as follows. In a standard way one forms a local condition
U+,•
p for T ⊗Zp Λ̃ι with H0(U+

p ) = H0
cl.Iw(GQp , T ), H1(U+

p ) = ker ColI , and all other
Hi(U+

p ) = 0; one has H1(U−p ) = img ColI , H2(U−p ) = H2
cl.Iw(GQp , T ), and all other

Hi(U−p ) = 0. Using this condition at p and the unramified local condition at each v - p
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gives rise to a Selmer complex whose cohomology will be denoted H̃∗I,cl.Iw(GQ,S , V ).
There is a mapping cone exact sequence

0→ H̃1
I,cl.Iw(GQ, T )→ H1

cl.Iw(GQ,S , T )
Col′I−−−→ img ColI → H̃2

I,cl.Iw(GQ, T )

→ H2
cl.Iw(GQ,S , T )→

⊕
v∈S

H2
cl.Iw(GQv , T )→ H̃3

I,cl.Iw(GQ, T )→ 0,

just like Sequence (4.1); cf. [14, Sequence (60)]. We can expect a reasonable numerology
of Λ-ranks only when #I = d−, so assume the subset I satisfies this requirement. One
deduces an identity

charΛ H̃2
I,cl.Iw(GQ, T ) = (charΛ H2

p,cl.Iw(GQ,S , T )) · (detΛ Col′I),

just like Equation (4.2), and we are reduced to comparing Col′I with locD/F . Such a
comparison is highly dependent on the original choice of basis n1, . . . , nd of N(T ), but
there is still a tautological relationship coming from the linear algebra of the situation;
we make it precise when d− = 1. Fixing a basis m of H1

Iw(GQp , D/F ), we may write
the natural map H1

cl.Iw(GQp , T )→ H1
Iw(GQp , D/F ) uniquely in the form

x 7→ (log1 · · · logd)

Col{1}(x)
...

Col{d}(x)

 ·m
with logi ∈ K∞. (By [14, Theorem B], the logi have finitely many poles, occurring at
precisely known points.) It follows formally that

charΛ∞ H̃2
str,Iw(GK,S , V ) =

d∑
i=1

logi · charΛ H̃2
{i},cl.Iw(GK,S , V ), (4.4)

abusively confusing principal ideals with choices of generators. This exhibits our p-adic
L-function as a linear combination of various bounded functions on W of global origin,
with unbounded coefficients of purely local origin.

5 Modular forms

Given a normalized elliptic modular cuspidal new eigenform f and a prime p, Kato
proved one divisibility in his so-called “Iwasawa main conjecture without p-adic L-
functions”, which is purely a statement relating naked Iwasawa cohomology to his Euler
system. In the classically ordinary case, he deduced from this one divisibility in his so-
called “Iwasawa main conjecture with p-adic L-functions”, which relates Greenberg’s
ordinary Iwasawa Selmer group to one of the p-adic L-functions. Here we extend this
latter deduction to all finite slope forms, and both p-adic L-functions for each form that
admits two (in most cases).

We continue the notations of the preceeding section, taking p > 2, K = Q, and S
to be the set of places dividing Mp, where M ≥ 1. Note that ΓQ = ΓQp ; we write Γ,
etc. without regard for the base field.

Let f ∈ Sk(Γ1(M), ψ;E) be a normalized elliptic modular cuspidal new eigenform
with k ≥ 2, having q-expansion

∑
n≥1 anq

n. Inside the cohomology of the appropriate
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Kuga–Sato variety, there is associated to f an irreducible 2-dimensional E-valued rep-
resentation V of GQ,S which is de Rham at p, characterized up to scalar multiple by
the relations

trace(Frob`|V ) = a` and det(Frob`|V ) = `k−1ψ(`)

for all ` -Mp, where Frob` denotes the geometric Frobenius. We put D = D†rig(V |GQp
).

Fix a finite Galois extension L/Qp over which V becomes semistable, write FL for
the maximal aboslutely unramified subfield of L, and let m = [FL : Qp]. Enlarge E,
if necessary, so that L can be embedded into E as a Qp-algebra. Then we may view
Dpst as a free (FL ⊗Qp E)-module of rank 2, and ϕ as a (ϕ ⊗ 1)-linear operator. On
a suitable basis, the matrix entries of ϕ can be taken to lie in 1⊗ E. We assume that
f has finite slope at p, by which we mean that the matrix of ϕ is nonscalar: even
after enlarging E, ϕ cannot be taken to have the form I2 ⊗ α with α ∈ E× and where
I2 ∈ GL2(FL) is the identity matrix. Under our assumption, after perhaps enlarging
E, the filtered (ϕ,N,GQp)-module Dpst has the following structure. (For details on
the classification of rank two filtered (ϕ,N,G)-modules with coefficients, we refer the
reader to [10, §6].) There exists an (FL⊗QpE)-basis {e1, e2} and finite order characters
ψi : GQp → E× such that GQp acts on ei through 1⊗ψi, as well as nonzero α1, α2 ∈ OE
with ordp α1 ≤ ordp α2 such that exactly one of the following situations applies.

• ϕ is semisimple. Then αm1 6= αm2 , and ϕ(ei) = (1⊗ αi)ei for i = 1, 2. The vectors
e1, e2 realize the unique E-linear (ϕ,GQp)-stable decomposition. If N 6= 0, then
N(e2) = e1 and N(e1) = 0, so only the factor containing e1 is (ϕ,N,GQp)-stable,
and ordp α2 = ordp α1 + 1.

• ϕ is not semisimple. Then ψ1 = ψ2, α1 = α2, and N = 0. One has ϕ(e1) =
(1⊗α1)e1, e1 spans the unique nontrivial (ϕ,GQp)-stable E-subspace, and ϕ(e2) =
(1⊗ α2)e2 (mod e1).

(According to common conjecture, the second case never occurs.) In particular, we
may take L to be some Qp,n, so FL = Qp. In either case, only the αmi , and not the
αi, are uniquely determined. One has ordp α1 + ordp α2 = k − 1, with ordp α1 = 0 if
and only if f is classically ordinary at p. Also, DdR is 2-dimensional over E, and the
Hodge filtration satisfies DdR = H0 ) H1 = Hk−1 ) Hk = 0; put H = H1. Weak
admissibility means that e1 /∈ L ⊗Qp H, and that e2 /∈ L ⊗Qp H unless possibly if
N 6= 0, or ϕ is not semisimple, or V is deomposible (in which case ordp α1 = 0, and we
call f “split ordinary” at p).

Thus the “finite slope” hypothesis is equivalent to V becoming semistable over an
abelian extension, or some twist f ⊗ ε by a Dirichlet character ε having an associated
Up-eigenform with nonzero Up-eigenvalue (in the above, take ε = ψ−1

1 ), justifying the
name. The cases excluded by this assumption consist of a small number of cases where
f is principal series at p (those where f becomes semistable only over a nonabelian
extension of Qp), and all cases where f is supercuspical at p.

The nontrivial nearly ordinary filtrations are rank-one (ϕ,N,GQp)-stable (1⊗ E)-
subspaces of Dpst; these are determined by ei, with necessarily i = 1 if either N 6= 0
or ϕ is not semisimple. The ordinary hypothesis requires that ei not lie in the Hodge
filtration L ⊗Qp H ⊂ L ⊗Qp DdR; thus ei spans an ordinary filtration except when
i = 2 in the N 6= 0, nonsemisimple ϕ, and split ordinary cases. We choose such an i,
and take F ⊆ D such that Fpst is the span of ei. Since the theory behaves well under
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twisting, for simplicity we replace f by f ⊗ψ−1
1 (identifying ψ1 to a Dirichlet character

of p-power conductor), and assume that F is crystalline and ψ2 = ψ. Let αf = Upf
(so we have αi = α), and put i′ = 3− i.

We determine when Theorem 4.1(4) applies to K ′ = Q and χ = εχjcycl, for ε
of finite order factoring through Γ and j ∈ Z. The Hodge–Tate weight of F (χ)∗(1)
(resp. (D/F )(χ)) is equal to j − 1 (resp. k − 1 − j), so the condition on Hodge–Tate
weights requires that 0 < j < k. For the condition on Frobenius, we first see that
F (χ)∗(1)ϕ=1

crys is nonzero if and only if ε = 1 and αm = p(j−1)m. Considering that the

determinant of V gives F⊗(D/F ) ∼= D†rig(χ1−k
cyclψ), we have (D/F )(χ) ∼= F ∗(χj+1−k

cycl ψε).

Therefore, (D/F )(χ)ϕ=1
crys is nonzero if and only if ε = ψ−1 and αm = p(k−j−1)m. Finally,

V ∗(1)(χ)GQ,S = 0 always because V is irreducible. Thus the theorem applies exactly
to the χ corresponding to critical values of f where the p-adic L-function Lp(f, α) does
not have a so-called exceptional zero.

We now treat the characteristic ideal, and assume henceforth that ϕ on Dcrys is
semsimple. Note that V |HQ

remains irreducible, and in particular V HQ = 0 and

V ∗(1)HQ = 0. We also claim the surjection H2
Iw(GQp , V )→ H2

Iw(GQp , F ) is injective. In
the case where f is nonordinary (resp. potentially crystalline) at p, then the irreducibil-
ity of V |HQp

(resp. purity of étale cohomology) forces H2
Iw(GQp , V )∗ ∼= V ∗(1)HQp = 0.

In the case where f is ordinary with nonzero monodromy at p, hence of weight two,
then the fact that the span of e1 is the unique (ϕ,N,GQp)-stable subspace of Dpst,
combined with Tate local duality and base change, allows one to show the desired map
to be an isomorphism. In particular, if H̃2

str,Iw(GQ, V ) is torsion, Theorem 4.3 applies.
We next recall Kato’s divisibility “without p-adic L-functions” for f . Let κ ∈

H1
cl.Iw(GQ,S , V ) denote the restriction to the p-cyclotomic tower of Kato’s Euler system.

Theorem 5.1 ([11, Theorems 12.4(1,2), 12.5(2,3)]). The module H1
cl.Iw(GQ,S , V ) is

free over Λ[1/p] of rank one, the Λ[1/p]-modules

H2
cl.Iw(GQ,S , V ) and H1

cl.Iw(GQ,S , V )/Λ[1/p]κ

are torsion, and

charΛ[1/p] H2
p,cl.Iw(GQ,S , V ) divides charΛ[1/p] H1

cl.Iw(GQ,S , V )/Λ[1/p]κ.

(Kato’s formulation of the theorem actually uses with a modified version of Galois
cohomology, with local conditions at all v 6= p; cf. [11, §8.2] and the proof of [11,
Lemma 8.5], and employ Equation (4.3) to compare it with H2

p,cl.Iw(GQ,S , V ).)
Applying ⊗Λ[1/p]Λ∞ then locD/F to the above theorem, Equation (4.2) and the

torsion-freeness of H1
Iw(GQ,S , V ) give the following claim.

Corollary 5.2. The characteristic ideal charΛ∞ H̃2
str,Iw(GQ, V ) divides

charΛ∞ H1
Iw(GQp , D/F )/Λ∞ locD/F κ,

with one nonzero if and only if the other is.

In order to compute the index of locD/F κ above, we apply LogD/F and make use
of Kato’s explicity reciprocity law.

To apply LogD/F , put δi = charΛ∞ Hi
Iw(GQp , D/F )tors and δ =

∏2
i=1 δ

(−1)i

i . An

argument similar to the surjectivity of H2
Iw(GQp , D) → H2

Iw(GQp , D/F ) shows that
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the δi are nonidentity precisely in the case of semistable reduction, weight 2, and
ψ|GQp

factors through Γ (the condition “(C)” of [11, Theorem 12.5(3)]), in which

case D/F = D†rig(Qp(−1)(ψ)) and δi = charΛ∞Qp(−i)(ψ). Since D/F is potentially
crystalline of rank one with Hodge–Tate weight k − 1, we have that (D/F )pcrys is free
over E with basis given by the image ei′ of ei′ . Theorem 3.4 then shows that e∗i′◦LogD/V
has torsion kernel with characteristic ideal δ1, and has image equal to the fractional
ideal Γk−1 · δ−1

2 ⊂ K∞. Therefore, charΛ∞ H̃str,Iw(GQ, V ) divides Γ−1
k−1δ · e

∗
i′ LogD/F κ.

To state Kato’s explicit reciprocity law, write e∗i , e
∗
i′ for the basis of D∗pst dual to

ei, ei′ ; note that e∗i′ is an E-basis for (D∗)pcrys.

Theorem 5.3 ([11, Theorem 16.6(2)]). One can make sense of LogV : H1
Iw(GQp , V )→

((D∗)pcrys)
∗ ⊗Qp Λ∞ (V only being de Rham) and e∗i′ LogV (κ) = Lp(f

c, αc), where
the superscript c denotes complex conjugation and Lp denotes the associated p-adic
L-function.

We expect that the diagram

H1
Iw(GQp , V )

e∗
i′◦LogV−−−−−→ Λ∞

↓ ↓ Γk−1δ
−1

H1
Iw(GQp , D/F )

e∗
i′◦LogD/F−−−−−−−→ Λ∞

(5.1)

commutes up to Λ×∞. In the case where f has potentially good reduction, the desired
commutativity is a simple verification using the constructions in §3, but otherwise
the existence of LogV relies on unpublished work of Kato–Kurihara–Tsuji and we are
presently unable to check the claim. Assuming the commutativity, then the explicit
reciprocity law amounts to the identity

e∗i′ LogD/F κ = Γk−1δ
−1Lp(f

c, αc),

and we arrive at our sought divisibility “with p-adic L-functions” for f , as in the
following theorem.

Theorem 5.4. Let f have semisimple crystalline Frobenius and nonzero Up-eigenvalue
α. Assume the diagram (5.1) commutes up to Λ×∞, for example f has potentially good
reduction. Then

Lp(f
c, αc) ∈ charΛ∞ H̃2

str,Iw(GQ, V ).

In particular, H̃2
str,Iw(GQ, V ) is torsion, and Theorem 4.3 applies.

Remark 5.5. One can proceed with the constructions of this section in the case where
f has split ordinary reduction, taking the nonordinary nearly ordinary filtration. Of
course Theorem 4.1(4) does not apply as stated, because we cannot hope to obtain the
Bloch–Kato Selmer groups in this way, but one still obtains a control theorem for strict
ordinary Selmer groups (there are no changes to the argument), which may have some
strange p-adic meaning here. Similarly, one will obtain a torsion characteristic ideal
once one knows that the image of Kato’s Euler system is nonzero. Recently Bellaiche
[1] has constructed a nonzero p-adic L-function for this case by analytic means; we
hope it can be shown to equal the image of Kato’s Euler system.
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[6] , Équations différentielles p-adiques et (ϕ,N)-modules filtrés, Astérisque
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