Ruprecht-Karls-Universität Heidelberg
Dr. Mirko Rösner
Mirko Rösner

 Research Interests

Automorphic representations, Siegel modular forms, L-functions.

 Publications and Preprints

Global liftings between inner forms of GSp(4) (with R. Weissauer).
Preprint, (2021). Submitted.
ArXiV.

Regular poles of local L-functions for GSp(4) with respect to split Bessel models (the subregular cases) (with R. Weissauer).
Preprint, (2018). Submitted.
ArXiV.

Exceptional poles of local spinor L-functions of GSp(4) with anisotropic Bessel models (with R. Weissauer).
Preprint, (2018). Submitted.
ArXiV.

Regular poles for spinor L-series attached to split Bessel models of GSp(4) (with R. Weissauer).
Preprint, (2017). Submitted.
ArXiV.

Parahoric Restriction for GSp(4).
Algebras and Representation Theory, 21(1):145-161, (2017).
ArXiV

Multiplicity one for certain paramodular forms of genus two (with R. Weissauer).
In: J. H. Bruinier and W. Kohnen (editors), L-Functions and Automorphic Forms. Contributions in Mathematical and Computational Sciences, vol. 10. Springer, (2017).
ArXiV
Remark: Our hypothesis 1.1 was shown in Non-vanishing of twists of GL_4(A_Q) L-functions by Radziwiłł and Yang in 2023.

Genericity under parahoric restriction (with M. Mishra).
manuscripta mathematica, 152(1), 241-245, (2017).
ArXiV

Invariant Vectors for Weak Endoscopic and Saito-Kurokawa Lifts to GSp(4).
Preprint, (2013).
ArXiV

Parahoric restriction for GSp(4) and the inner cohomology of Siegel modular threefolds.
PhD Thesis, defended 27th of May, 2016.
doi:10.11588/heidok.00021401

The anisotropic Theta-lift for GSp(4,F). Diploma Thesis, (2012).

  Teaching (in german)


 Contact

Office hours: Tuesday 14:00-15:00 and by appointment

Mathematikon, Im Neuenheimer Feld 205
69120 Heidelberg
Germany

Phone: 06221 6577415
E-Mail: mroesner(a)mathi.uni-heidelberg.de

 Links

Prof. Dr. Rainer Weissauer
Prof. Dr. Thomas Krämer
Prof. Dr. Manish Mishra
Dr. Thorsten Heidersdorf
Dr. Kathrin Maurischat
Dr. Uwe Weselmann

DFG Research group 1920 "Symmetrie, Geometrie und Arithmetik" Heidelberg/Darmstadt

Siegel Modular of genus two

Dimension formulas for spaces of Siegel modular forms of genus two

 Other


Statement of Inclusiveness

ORCID ID: https://orcid.org/0000-0001-9903-1015
Erdős number: 4.
Editor: mroesner 2020-10-05
Seitenbearbeiter: mroesner 2020-10-05