Teoría de Iwasawa Ejercicios

Martes, 14 de agosto

Part A Introduction to algebraic number theory and class field theory

Exercise A.6. Let L/K be a finite extension of fields. For $a \in L$ the multiplication

 $L \longrightarrow L, \quad x \longmapsto ax$

is *K*-linear and hence has a well-defined trace and determinant. The determinant is called *norm* in this case, and we denote trace and norm by

$$\operatorname{Tr}_{L/K}(a)$$
, $\operatorname{N}_{L/K}(a)$.

Fix an algebraic closure \overline{K} of K and let $\sigma_1, \ldots, \sigma_n$ be the K-linear embeddings of L into \overline{K} . Show that

$$\operatorname{Tr}_{L/K}(a) = \sum_{i=1}^{n} \sigma(a), \quad \operatorname{N}_{L/K}(a) = \prod_{i=1}^{n} \sigma(a).$$

In particular, $N_{L/K}(x) = x^n$ if $x \in K$.

Exercise A.7. Let *K* be a number field with ring of integers \mathcal{O}_K and $I \subseteq \mathcal{O}_K$ an ideal. In the lecture the norm of *I* was defined as $N(I) = #(\mathcal{O}_K/I)$.

(a) Show that if *I* is a principal ideal, $I = a\mathcal{O}_K$, then $N(I) = |N_{K/\mathbb{Q}}(a)|$.

(b) Show that the norm is multiplicative, i. e. N(IJ) = N(I)N(J) for any ideals $I, J \subset \mathcal{O}_K$.

Exercise A.8. Let $\overline{\mathbb{Q}}_p$ be an algebraic closure of \mathbb{Q}_p .

(a) Let *K* be a finite extension of \mathbb{Q}_p , $\alpha, \beta \in \overline{\mathbb{Q}}_p$ and let $\alpha_2, \ldots, \alpha_n$ be the other zeroes (apart from α) of the minimal polynomial of α over *K*. Assume that

$$\forall i \in \{2,\ldots,n\}: |\beta - \alpha| < |\alpha_i - \alpha|.$$

Show that then $K(\alpha) \subseteq K(\beta)$.

This statement is known as Krasner's lemma.

- (b) Show that $\overline{\mathbb{Q}}_p$. is not topologically complete.
- (c) Show that the completion \mathbb{C}_p of $\overline{\mathbb{Q}}_p$ is algebraically closed.

Exercise A.9. Show that for two different primes $p \neq \ell$ the fields \mathbb{Q}_p and \mathbb{Q}_ℓ are not isomorphic to each other (as abstract fields).

Part B Structure theory of Iwasawa modules and Iwasawa's asymptotic formula

Exercise B.5. (a) Show that a pseudo-null module is torsion.

(b) Show that over a Dedekind ring a module is pseudo-null if and only if it is trivial.

Part C Local Units, Coleman's construction, higher logarithmic derivatives

As in the lecture we use the following notation:

- $R = \mathbb{Z}_p[\![T]\!];$
- (ζ_n)_{n≥0} is a compatible system of *p*-power roots of unity, i. e. ζ_n is a primitive pⁿ⁺¹-th root of unity and ζ^p_{n+1} = ζ_n for all n ≥ 0;
- $\pi_n = \zeta_n 1$ for $n \ge 0$;
- $\mathcal{K}_n = \mathbb{Q}_p(\zeta_n), \mathcal{O}_n$ is the ring of integers in \mathcal{K}_n and $\mathcal{U}_n = \mathcal{O}_n^{\times}$ for all $n \ge 0$;
- $\mathcal{U}_{\infty} = \lim_{n \to \infty} \mathcal{U}_n;$
- $W = \{ f \in \mathbb{R}^{\times} : \mathcal{N}(f) = f \}.$

Exercise C.4. In the lecture we constructed for each $\mathbf{u} \in \mathcal{U}_{\infty}$ an interpolating power series $f_{\mathbf{u}} \in R$. Show that this defines an isomorphism of \mathcal{G} -modules

$$\mathcal{U}_{\infty} \xrightarrow{\sim} W, \quad \mathbf{u} \longmapsto f_{\mathbf{u}}.$$

Exercise C.5. The aim of this exercise is to give an example for a Coleman power series. Let $a, b \in \mathbb{Z}$ be nonzero and prime to p. For $n \ge 0$ define

$$u_n = \frac{\zeta_n^{-a/2} - \zeta_n^{a/2}}{\zeta_n^{-b/2} - \zeta_n^{b/2}}.$$

Show that $u_n \in \mathcal{U}_n$ and that $\mathbf{u} := (u_n)_{n \ge 0} \in \mathcal{U}_\infty$. Find an explicit power series $f_{\mathbf{u}} \in \mathbb{R}$ such that $f_{\mathbf{u}}(\pi_n) = u_n$ for all $n \ge 0$. (*Hint:* Consider $((1+T)^{-k/2} - (1+T)^{k/2})/T$ for $k \in \mathbb{Z}$).