RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Mathematisches Institut

Vorlesung Geometry of Manifolds
Heidelberg, 5.7.2017

Exercise sheet 4

Mostow Rigidity

To be handed in by Friday, July 14th, 2pm

Exercise 1 (Schottky groups). Let $\gamma_{1}, \ldots, \gamma_{n} \in \operatorname{Isom}\left(D^{n}\right)$ be hyperbolic isometries of the Poincaré disc model and D_{1}, \ldots, D_{n} be open subsets of D^{n} satisfying

- $D_{i} \cap g\left(D_{i}\right)=\emptyset$ for all $g \neq 1$ in $\left\langle\gamma_{i}\right\rangle$,
- $D:=\bigcap_{i=1}^{n} D_{i}$ is nonempty,
- $D_{i} \cup D_{j}=D^{n}$ for all $i \neq j$.

Show:
(i) The group $\Gamma:=\left\langle\gamma_{1}, \ldots, \gamma_{n}\right\rangle$ is the free product of the groups $\left\langle\gamma_{i}\right\rangle, i=1, \ldots, n$,
(ii) $D \cap g(D)=\emptyset$ for all $g \neq 1$ in Γ,
(iii) The group Γ is discrete.

Exercise 2 (Trigonometry in hyperbolic space). (i) Prove that for any two points w, z in the upper half plane the hyperbolic distance is given by the formula

$$
\cosh d(w, z)=1+\frac{|w-z|^{2}}{2 \operatorname{Im} w \operatorname{Im} z} .
$$

(ii) Let α, β and $\frac{\pi}{2}$ be the angles of a hyperbolic right triangle and let a, b and c be the lengths of the opposite sides. Show that

$$
\sinh a=\sinh c \sin \alpha
$$

(iii) Let $\alpha, \beta, 0$ be the angles of an infinite hyperbolic triangle with just one ideal vertex and let c be the length of the finite side. Show that

$$
\sinh c=\frac{\cos \alpha+\cos \beta}{\sin \alpha \sin \beta}
$$

Hint: Use Möbius transformations in order to bring everything into a suitable position.

Exercise 3 (Quasi-isometries). (i) Show that if there exists a quasi-isometry $F: X \rightarrow$ Y then there exists a quasi-isometry $G: Y \rightarrow X$ and a constant $k \geq 0$ such that $d(G \circ F(x), x) \leq k$ and $d(F \circ G(y), y) \leq k$ for all $x \in X$ and all $y \in Y$.
(ii) Prove that the composition of two quasi-isometries is a quasi-isometry.

Exercise 4 (Pseudo-isometries). Let $f: M \rightarrow N$ be a smooth map between Riemannian n-manifolds. The maximum dilatation of f is given by

$$
\sup _{x \in M} \sup _{v \in T_{x} M, v \neq 0} \frac{\left|d f_{x}(v)\right|}{|v|}
$$

Prove that if f has maximum dilatation C then f is C-Lipschitz.
Exercise 5 (Lobachevski function). Prove that the Lobachevski function given by

$$
\Lambda(\Theta)=-\frac{1}{2} \int_{0}^{\Theta} \log |2 \sin t| d t
$$

is well-defined and continuous on \mathbb{R}.
Hint: Consider the complex function $\phi(w):=\frac{-\log (1-w)}{w}$ which is analytic (why?) and define three paths in \mathbb{C} as follows. Let α be the straight path from 0 to $e^{2 i \varepsilon}$ for some $0<\varepsilon<\Theta$, γ the straight path from 0 to $e^{2 i \Theta}$ and β the path on the unit circle from $e^{2 i \varepsilon}$ to $e^{2 i \Theta}$. Now integrate ϕ over all three paths and see what happens.

Exercise 6 (Mostow rigidity). Show that in general the natural map

$$
\operatorname{Isom}(M) \rightarrow \operatorname{Out}\left(\pi_{1}(M)\right)
$$

fails to be an isomorphism when the dimension of M is 2 .

Hint: What can be said about the order of the two groups?

