

Sheet 12

Due date: Jan 24

Problem 1 (Ends in small free products). Given two finite groups G, H, express the number of ends of their free product G * H as a function of |G| and |H|.

Problem 2 (The geometry of BS(1,2)). Recall the Baumslag-Solitar group

$$BS(1,2) = \langle a, b \mid bab^{-1} = a^2 \rangle$$

from Sheet 11. Its Cayley graph with respect to $\{a, b\}$ looks as follows:

- (a) Explain this picture of the Cayley graph. More explicitly: indicate which edges correspond to *a* and to *b*, and label some of the vertices. How is this picture compatible with the unique words established in Sheet 11?
- (b) How many ends does BS(1,2) have?

Problem 3 (Azrelà-Ascoli). The goal of this exercise is to prove the following formulation of Azrelà-Ascoli's Theorem:

Let X, Y be metric spaces, with X separable and Y proper. Let $(f_n \colon X \to Y)_{n \in \mathbb{N}}$ be a sequence of functions that are:

- pointwise bounded, that is, for every $x \in X$, the sequence $(f_n(x))_{n \in \mathbb{N}}$ is bounded,
- uniformly equicontinuous, that is, for every $\varepsilon > 0$ there is $\delta > 0$ such that for all $n \in \mathbb{N}$ and all $x, x' \in X$, we have

$$d(x, x') < \delta \implies d(f_n(x), f_n(x')) < \varepsilon.$$

Then $(f_n)_{n \in \mathbb{N}}$ has a subsequence that converges to a continuous function $f: X \to Y$ uniformly on compact sets.

- (a) Given a functions f_n as in the statement and a countable subset Q ⊆ X, show that there is a subsequence (f_{nm})_{m∈N} such that for every q ∈ Q, the sequence of points f_{nm}(q) is convergent. *Hint:* If Q = {q₀, q₁,...}, start by finding a subsequence that converges on q₀, then one converging on q₀ and q₁, etc.
- (b) Conclude that there is a subsequence $(f_{n_m})_{m \in \mathbb{N}}$ that converges pointwise on a dense subset of X to a continuous function $f: X \to Y$.
- (c) Show that the family $\{f_n\}_{n\in\mathbb{N}} \cup \{f\}$ is uniformly equicontinuous. *Hint:* Let $Q \subseteq X$ be a dense set as before. For every $\varepsilon > 0$ and respective $\delta > 0$ as given by uniform equicontinuity of the f_n , observe first that for all $q, q' \in Q$

$$d(q,q') < \delta \implies d(f(q), f(q')) \le \varepsilon.$$

Then extend this estimate to all $x, x' \in X$.

(d) Show that for every compact set $C \subseteq X$, the sequence of restricted functions $f_{n_m}|_C$ converges uniformly to $f|_C$.

Hint: The role of the compactness assumption on C is to, given $\delta > 0$, produce a finite subset $F \subseteq Q$ such that every $x \in C$ is within distance δ from some $q \in F$.