

Sheet 9

Due date: Dec 20

Problem 1 (Minimal words in free products). Let $G := *_{i \in I} G_i$ be a free product of groups, and recall that each $g \in G$ is represented by a unique reduced word

 $g_1 * \ldots * g_k$,

with each g_j in one of the groups G_{i_j} . Given generating sets S_i for the G_i , consider also the generating set $S := \bigsqcup_{i \in I} S_i$ of G.

Show that a word w in S^{\pm} is a minimal length representative of g if and only if it is of the form

 $w = w_1 \cdots w_k,$

where each w_j is a minimal length word in $S_{i_j}^{\pm}$ representing g_j .

Problem 2 (Hyperbolicity and free products). Let G and H be finitely generated groups. Show that their free product G * H is hyperbolic if and only if both G and H are hyperbolic.

Problem 3 (\mathbb{R} -trees). An \mathbb{R} -tree is a metric space (X, d) such that:

- X is **uniquely geodesic**, that is, for every $x, y \in X$ there is a unique geodesic from x to y, whose image we denote by [x, y],
- for all $x, y, z \in X$, we have

$$[x,y]\cap [y,z]=\{y\} \quad \Longrightarrow \quad [x,z]=[x,y]\cup [y,z].$$

- (a) Show that if T is a tree, then its geometric realization |T| is an \mathbb{R} -tree.
- (b) Give an example of an \mathbb{R} -tree that is not the geometric realization of a tree.
- (c) Show that \mathbb{R} -trees are precisely the 0-hyperbolic metric spaces.

Problem 4 (Möbius transformations). The **complex projective plane**, also known as the **Rie-mann sphere**, is defined as

$$\mathbb{C}\mathrm{P}^1 := (\mathbb{C}^2 \setminus \{0\})/{\sim},$$

where \sim identifies C-collinear vectors:

$$(z,w) \sim (z',w') :\iff \exists \lambda \in \mathbb{C}^{\times} : (z',w') = \lambda(z,w).$$

The equivalence class of (z, w) is denoted by [z : w]. It is common to identify \mathbb{CP}^1 with the set $\mathbb{C} \cup \{\infty\}$ via the bijection $[z : 1] \mapsto z \in \mathbb{C}, [1 : 0] \mapsto \infty$ (if this is new to you, you should convince yourself that this is indeed a bijection).

- (a) Show that matrix multiplication yields a well defined action α : PGL(2, \mathbb{C}) $\sim \mathbb{C}P^1$, and express α in terms of the description of $\mathbb{C}P^1$ as $\mathbb{C} \cup \{\infty\}$.
- (b) Show that α is **triply transitive**, that is, it is transitive on ordered triples of distinct points in $\mathbb{C}P^1$.

(c) Show that $PGL(2, \mathbb{C})$ is generated by the union of the following sets of matrices:

Hint: Can you express the formula from part (a) as a composition of simpler functions?

(d) Find a similar generating set for the subgroup $PSL(2,\mathbb{R}) < PGL(2,\mathbb{C})$, and deduce that α restricts to an action of $PSL(2,\mathbb{R})$ on the upper half-plane

$$\mathbb{H}^2 := \{ z \in \mathbb{C} \mid \Im(z) > 0 \}.$$

(e) Prove that this action $PSL(2, \mathbb{R}) \curvearrowright \mathbb{H}^2$ is faithful and transitive. What is the stabilizer of the point $i \in \mathbb{H}^2$?