

## Sheet 8

Due date: Dec 13

**Problem 1** (Normal form for free products). Given groups  $(G_i)_{i \in I}$ , recall that the elements of the free product  $G := *_{i \in I} G_i$  are words in  $\bigsqcup_{i \in I} G_i$ , up to a certain equivalence relation  $\sim$ . Such a word  $(g_1, \ldots, g_l)$  is called **reduced** if

- no entry  $g_j$  is the trivial element of the corresponding group  $G_{i_j}$ , and
- no two consecutive entries  $g_j, g_{j+1}$  lie in the same free factor, that is,  $i_j \neq i_{j+1}$  for all  $j \in \{1, \ldots, l-1\}$ .
- (a) Show that every element of G admits a unique representation as a reduced word. Hint: Recall that  $\sim$  is generated by "elementary moves" of two types, which decrease length by one. Given a sequence  $u = w_0 \sim w_1 \sim \ldots \sim w_k = v$  of elementary moves (and their inverses) between reduced words u, v, consider what happens when length increases and then decreases in succession.
- (b) Sketch the Cayley graph of  $\mathbb{Z}^2 * \mathbb{Z}$  with respect to the generating set  $\{(1,0),(0,1),1\}$ .
- (c) As you know, the *n*-regular tree  $T_n$  is a Cayley graph whenever n is even (see Sheet 6, Problem 2(c)). What if n is odd?

**Problem 2** (Geometric properties). Which of the following properties of finitely generated groups are geometric?

- (a) Being finite,
- (b) Having a generating set with n elements (for a fixed  $n \in \mathbb{N}$ ),
- (c) Being finitely presented,
- (d) Being abelian,
- (e) Being free,
- (f) Having elements of order n (for a fixed  $n \in \mathbb{N}_{\geq 1}$ ),
- (g) Being a free product of two non-trivial groups.

**Problem 3** (Virtually free groups from free products). Let A, B be groups and consider the canonical map

$$\pi \colon A * B \to A \times B$$

induced by  $\pi(a) = (a, 1)$  for  $a \in A$  and  $\pi(b) = (1, b)$  for  $b \in B$ .

(a) Show that  $\ker(\pi)$  is a free group with free generating set

$$S := \{ [a, b] \mid a \in A \setminus \{1_A\}, b \in B \setminus \{1_B\} \}.$$

(b) Deduce that if A and B are nontrivial finite groups and one of them has order at least 3, then A \* B is quasi-isometric to  $F_2$ .

**Problem 4** (Product of hyperbolic spaces). Given two metric spaces  $(X, d_X), (Y, d_Y)$ , we equip their product  $X \times Y$  with the metric

$$d((x,y),(x',y')) := d_X(x,x') + d_Y(y,y').$$

- (a) Show that the product of two geodesic metric spaces is geodesic.
- (b) Suppose X,Y are hyperbolic spaces (that is,  $\delta$ -hyperbolic for some  $\delta \geq 0$ ). When is  $X \times Y$  hyperbolic?

*Hint:* You may use the fact, to be shown in class, that being hyperbolic is a geometric property.