

Sheet 7

Due date: Dec 6

Problem 1 (Free products). Let $(G_i)_{i\in I}$ be a set of groups. A **free product** of the G_i is a group G together with homomorphisms $(\iota_i\colon G_i\to G)_{i\in I}$ satisfying the following universal property: For every group H and homomorphisms $(f_i\colon G_i\to H)_{i\in I}$, there is a unique homomorphism $f\colon G\to H$ such that $f\circ\iota_i=f_i$ for all $i\in I$. Diagrammatically:

Note: If you have encountered coproducts before, you should recognize this as the definition of a coproduct in the category of groups.

(a) Show for every two free products G, G', with structure maps $(\iota_i), (\iota'_i)$ respectively, there is a unique isomorphism $\varphi \colon G \to G'$ such that for every $i \in I$ we have $\varphi \circ \iota_i = \iota'_i$.

Let \mathcal{G} be the set of all finite words with entries in the disjoint union $\bigsqcup_{i \in I} G_i$, and let \sim be the equivalence relation on \mathcal{G} generated by the following moves:

• suppressing occurrences of trivial elements:

$$(g_1,\ldots,g_{m-1},1,g_{m+1},\ldots,g_k)\sim (g_1,\ldots,g_{m-1},g_{m+1},\ldots,g_k),$$

• multiplying consecutive entries g_m, g_{m+1} that are elements of the same group G_i :

$$(g_1,\ldots,g_m,g_{m+1},\ldots,g_k) \sim (g_1,\ldots,g_m,g_{m+1},\ldots,g_k).$$

We define

$$\underset{i\in I}{*}G_i := \mathcal{G}/\sim,$$

and denote the equivalence class of a word $(g_1, g_2, \ldots, g_k) \in \mathcal{G}$ by $g_1 * g_2 * \ldots * g_k$.

- (b) Show that the operation on \mathcal{G} of concatenating words descends to an operation on $*_{i \in I}G_i$ making it into a group.
- (c) Supply structure maps $(\iota_i \colon G_i \to \underset{i \in I}{*} G_i)$ that make $*_{i \in I} G_i$ a free product of the G_i .

In light of (a), one often refers to $\underset{i \in I}{*} G_i$ as the free product of the G_i .

(d) Given presentations $\langle S_i \mid R_i \rangle$ of the G_i , write down a presentation of $*_{i \in I} G_i$.

Problem 2 (Free groups and quasi-isometry). Recall that every finitely generated group G has a canonical quasi-isometry type, represented by the Cayley graph Cay(G, S) with respect to any finite generating set S.

For which pairs of numbers $n, m \in \mathbb{N}$ is F_n quasi-isometric to F_m ? Prove your assertion.

Problem 3 (Metrics on quotients). Consider an action of a group G on a metric space (X, d), and denote the orbit of a point $x \in X$ by \bar{x} .

(a) A **pseudo-metric space** is a set Y with a function $\delta \colon Y \to \mathbb{R}_{\geq 0}$ satisfying the usual properties of a distance, except that we do not impose $\delta(x,y) \neq 0$ for $x \neq y$. Such δ is called a pseudo-metric.

Show that

$$\bar{d}(\bar{x}, \bar{y}) := \inf\{d(x, y) \mid x \in \bar{x}, y \in \bar{y}\}\$$

defines a pseudo-metric \bar{d} on the orbit space $G\backslash X$.

- (b) Show that if, in addition, the G-action is properly discontinuous, then the above infimum is attained, and \bar{d} is a metric making the projection map $p: X \to G \backslash X$ continuous.
- (c) Give an example of a group G with an action by isometries on a metric space (X, d) such that \bar{d} is not a metric on $G \setminus X$.

Problem 4 (Topological Milnor-Švarc). Prove the following variant of the Milnor-Švarc Lemma by reducing it to the "geometric version" seen in class. (Recall that a metric space X is **proper** if its closed balls are compact.)

Topological Milnor-Švarc (TMŠ). Let G be a group acting properly and cocompactly by isometries on a proper geodesic metric space (X, d). Then G is finitely generated, and for every $x \in X$ the map

$$G \to X$$
$$g \mapsto g \cdot x$$

is a quasi-isometry.