

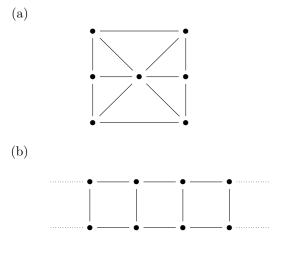
Sheet 6

Due date: Nov 29

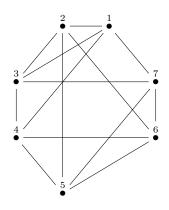
Problem 1 (Properly discontinuous actions). Consider a properly discontinuous action of a group G on a metric space (X, d).

- (a) Prove that, for all $x \in X$, the stabilizer $G_x := \{g \in G \mid g \cdot x = x\}$ of x in G is finite.
- (b) Show that, for every $x \in X$, there is a ball B_x in X centered at x such that $gB_x \cap B_x = \emptyset$ for every $g \in G \setminus G_x$.
- (c) Prove that no G-orbit has an accumulation point in X.

Problem 2 (Cayley or not Cayley?). Among the following graphs, which of them are Cayley graphs?



(c) The 2*n*-regular tree T_{2n} with $n \ge 0$, i.e., the tree in which every vertex has exactly 2n neighbors.



Convention: in the following problem, every generating set of a group is supposed to not have the unit as element.

Problem 3 (Quasi-isometries on groups). Let G be a group with a generating set S. Consider the word metric d_S of (G, S), i.e., for all $g, h \in G$ define

 $d_S(g,h) := \min\{n \in \mathbb{Z}_{\geq 0} \mid \exists s_1, \dots, s_n \in S \cup S^{-1} \text{ such that } h = gs_1 \cdots s_n\}.$

For $g \in G$ and $r \in \mathbb{Z}_{\geq 0}$, let

$$B_r^{G,S}(g) := \{ h \in G \mid d_S(g,h) \le r \}.$$

Two finitely generated groups G and H are said to be **quasi-isometric** if there are finite generating sets S and T of G and H, respectively, such that (G, d_S) is quasi-isometric to (H, d_T) .

(a) Let G be a finitely generated group. By Satz 6.5 of the lecture notes, for every two *finite* generating sets S and T of G, the metric spaces (G, d_S) and (G, d_T) are quasi-isometric. Does this statement remain true if we drop the hypothesis that S and T are both finite?

(b) Let G and H be groups with finite generating sets S and T, respectively. Consider a quasiisometric embedding $f: (G, d_S) \to (H, d_T)$. Show that there is $c \in \mathbb{Z}_{\geq 1}$ such that, for every $r \in \mathbb{Z}_{\geq 0}$,

$$f(B_r^{G,S}(1_G)) \subseteq B_{cr+c}^{H,T}(f(1_G))$$

and

 $|B_r^{G,S}(1_G)| \le |B_{c^2}^{G,S}(1_G)| \cdot |B_{cr+c}^{H,T}(1_H)|.$

(c) Fix $n \in \mathbb{Z}_{\geq 1}$. Let G be the additive group \mathbb{Z}^n and $S = \{e_i \mid 1 \leq i \leq n\}$ be its canonical \mathbb{Z} -basis. Prove that there are $k, K \in \mathbb{R}_{>0}$ such that for every $r \gg 1$ one has

$$kr^n \le |B_r^{G,S}(0)| \le Kr^n.$$

(d) Deduce that, for all $m, n \in \mathbb{Z}_{\geq 1}$ with $m \neq n$, the groups \mathbb{Z}^m and \mathbb{Z}^n are not quasi-isometric.