

Sheet 4

Due date: Nov 15

Problem 1 (A presentation for the trivial group). Show that the following is a presentation of the trivial group:

 $\langle x,y\mid xyx^{-1}y^{-2},yxy^{-1}x^{-2}\rangle.$

Problem 2 (Normal subgroups of F_n). Let $n \in \mathbb{Z}_{\geq 1}$, and denote by F_n the free group of rank n.

- (a) Prove that F_n has a normal free subgroup of index d, for every $d \in \mathbb{Z}_{\geq 1}$.
- (b) Prove that F_2 has a normal free subgroup of finite index and rank k, for every $k \in \mathbb{Z}_{\geq 2}$.
- (c) Assume that $n \ge 2$ and let p be a prime number. Prove that \mathbf{F}_n has exactly $\frac{p^n-1}{p-1}$ normal free subgroups of index p.

Hint: Prove that there are exactly $p^n - 1$ epimorphisms $\mathbf{F}_n \to \mathbb{Z}/p$.

A group is said to be **virtually free** if it has a free subgroup of finite index.

Problem 3 (SL₂(\mathbb{Z}) is virtually free). Let F be the subgroup of SL₂(\mathbb{Z}) generated by the matrices

$$a = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$
 and $b = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$.

According to Beispiel 3.20 of the lecture notes, the group F is freely generated by $\{a, b\}$.

Define the subgroups:

$$\Gamma_n := \operatorname{SL}_2(\mathbb{Z}) \cap \begin{bmatrix} 1 + n\mathbb{Z} & n\mathbb{Z} \\ n\mathbb{Z} & 1 + n\mathbb{Z} \end{bmatrix}, \ n \in \mathbb{Z}_{\geq 0}; \quad \text{and} \quad G := \operatorname{SL}_2(\mathbb{Z}) \cap \begin{bmatrix} 1 + 4\mathbb{Z} & 2\mathbb{Z} \\ 2\mathbb{Z} & 1 + 4\mathbb{Z} \end{bmatrix}.$$

(a) For $k \ge 1$, consider the set

$$G(k) := \left\{ x \in G \mid \max\{|x_{11}|, |x_{21}|\} = k \right\}$$

Let $k \ge 2$. Prove that, for every $x \in G(k)$, there are $f \in F$ and $h \in \mathbb{Z}_{\ge 0}$ with h < k such that $fx \in G(h)$.

Hint: For example, observe that if $|x_{11}| \ge |x_{21}|$, then one has one of the strict inequalities

$$|x_{11} - 2x_{21}| < |x_{11}|$$
 or $|x_{11} + 2x_{21}| < |x_{11}|$.

- (b) Prove that F = G.
- (c) Prove that $\operatorname{SL}_2(\mathbb{Z})/\Gamma_2 \cong \operatorname{SL}_2(\mathbb{Z}/2)$.
- (d) Prove that $|\operatorname{SL}_2(\mathbb{Z}) : \Gamma_2| = 6$ and $|\Gamma_2 : G| = 2$. *Hint:* Show that

$$\Gamma_2 = G \sqcup \left(\operatorname{SL}_2(\mathbb{Z}) \cap \begin{bmatrix} -1 + 4\mathbb{Z} & 2\mathbb{Z} \\ 2\mathbb{Z} & -1 + 4\mathbb{Z} \end{bmatrix} \right).$$

- (e) Conclude that $SL_2(\mathbb{Z})$ is virtually free. Is $SL_2(\mathbb{Z})$ free?
- (f) Prove that Γ_n is free whenever n is a multiple of 4.