

Sheet 2

Due date: Nov 1

Let $n \geq 3$. Recall that the **dihedral group of order** 2n, written D_n , is the group of all isometries of a regular *n*-gon \mathcal{P}_n in \mathbb{R}^2 . Denote by *m* the midpoint of \mathcal{P}_n and, for every vertex *v* of \mathcal{P}_n , denote by $s_v \in D_n$ the reflection of \mathcal{P}_n whose axis is the line through *m* and *v*. Lemma 1.6 of the lecture notes asserts that, for every vertex *v* of \mathcal{P}_n and for every rotation *t* of \mathcal{P}_n with center *m* and angle $\frac{2\pi}{n}$, the group D_n is generated by s_v and *t*. Moreover,

$$D_n = \{ t^k s_v^{\epsilon} \mid k \in \{0, 1, \dots, n-1\}, \, \epsilon \in \{0, 1\} \}.$$

Problem 1 (Finite dihedral groups). From now on, fix an arbitrary reflection s and an arbitrary rotation t of \mathcal{P}_n of angle $\frac{2\pi}{n}$.

- (a) Prove that $sts = t^{-1}$.
- (b) Let $g \in D_n$. Prove that g is a rotation of \mathcal{P}_n if and only if $g = t^k$ for some $0 \le k < n$. Moreover, show that g is a reflection of \mathcal{P}_n if and only if $g = t^k s$ for some $0 \le k < n$.
- (c) Let $T \subseteq D_n$ be the set of all rotations of \mathcal{P}_n . Prove that $T \trianglelefteq D_n$ and that $T \cong \mathbb{Z}/n$ via $k \mapsto t^k$.
- (d) Consider the action $\iota: \mathbb{Z}/2 \to \operatorname{Aut}(\mathbb{Z}/n)$ given by $\iota(1)(x) = -x$ for every $x \in \mathbb{Z}/n$. Show that

$$\mathbb{Z}/n \rtimes_{\iota} \mathbb{Z}/2 \cong D_n.$$

Problem 2 (The dihedral group D_5). For this problem we focus on the dihedral group D_5 .

(a) Let s be a reflection of \mathcal{P}_5 and t a rotation of \mathcal{P}_5 of angle $\frac{2\pi}{5}$. Draw the Cayley graphs of D_5 with respect to the generating sets

$$\{s,t\}, \{s,t,t^{-1}\}, \text{ and } \{s,st\}.$$

- (b) Prove that, for every n ≥ 1, the product of 2n reflections of P₅ is a rotation of P₅, and the product of 2n + 1 reflections of P₅ is a reflection of P₅. *Hint*: Use Problem 1(b).
- (c) Let S be a generating set of D_5 consisting of elements of order 2. Prove that the undirected Cayley graph $\Gamma(D_5, S)$ of D_5 with respect to S does not have cycles of length 5.
- (d) Let S be a generating set of D_5 with |S| = 3, such that the undirected Cayley graph $\Gamma(D_5, S)$ has valency 3, i.e., every vertex of $\Gamma(D_5, S)$ is in exactly three edges. Prove that S either consists of three distinct elements of order 2, or it equals $\{a, b, b^{-1}\}$ where a has order 2 and b has order 5.

Hint: Observe that every element $a \in S$ of order 5 determines a cycle of length 5 in $\Gamma(D_5, S)$.

(e) Let \mathcal{P} be the Petersen graph:

Prove that \mathcal{P} is not isomorphic to any Cayley graph of D_5 .

Problem 3 (Groups of order 10). The goal of this exercise is to classify the groups of order 10.

- (a) Show that every group G of order 10 is isomorphic to a semidirect product $\mathbb{Z}/5 \rtimes_{\alpha} \mathbb{Z}/2$. *Hint:* You may use the fact that G has a subgroup of order 5. This is a consequence of the first Sylow theorem.
- (b) Show that there are precisely two actions α: Z/2 → Aut(Z/5). *Hint:* Observe that every automorphism of Z/5 is given by multiplication by some element of (Z/5)[×]. When does such an automorphism have order dividing 2?
- (c) Conclude that the only groups of order 10 up to isomorphism are $\mathbb{Z}/10$ and D_5 .
- (d) Show that the Petersen graph is not isomorphic to any Cayley graph.*Hint*: Cayley graphs of abelian groups often like to have cycles of length 4 ...