

Sheet 12

Due date: July 12

Our goal for this exercise sheet is to prove the Theorem of Tits. Fix a building Δ of type (W, S) with a strongly transitive label-preserving action of a group G. Choose also an apartment Σ and a chamber $C \subset \Sigma$, and recall the subgroups

 $B := \operatorname{Stab}_G(C), \qquad N := \operatorname{Stab}_G(\Sigma), \qquad T := B \cap N.$

Problem 1 (The torus). Since the *G*-action is color-preserving, *B* fixes *C* pointwise. On the other hand, *N* does not fix Σ pointwise.

(a) What is the maximal subgroup of G that does?

Hint: Recall the standard uniqueness argument from Sheet 11, Problem 1.

(b) Conclude axiom (BN1), that T is normal in N, with $N/T \cong W$ (BN1).

For each $w \in W$, fix from now on a pre-image \tilde{w} under the quotient $N \to W$.

Problem 2 (Stabilizers). Given a special subgroup $W_0 \subseteq W$, let σ be the corresponding face of C.

(a) Show that

$$\operatorname{Stab}_{G}(\sigma) = \bigcup_{w \in W_{0}} B\tilde{w}B. \tag{*}$$

Hint: Given $g \in \operatorname{Stab}_G(\sigma)$, there is an apartment containing C and gC...

(b) Deduce G = BNB, so in particular $B \cup N$ generates G and (BN0) holds.

Problem 3 (Retractions, algebrically). Recall the retraction $\rho_{\Sigma,C} \colon \Delta \to \Sigma$, which restricts to an isomorphism on each apartment containing C. Define $\rho \colon G \to W$ by setting $\rho(g)$ to be the element of W such that $\rho_{\Sigma,C}(gC) = \rho(g)C$.

- (a) Prove that ρ maps each *B*-double coset $B\tilde{w}B$ to w. **Hint:** Show first that for every $b \in B$, the restriction of $\rho_{\Sigma,C}$ to the apartment $b\Sigma$ is given by acting with b^{-1} .
- (b) Conclude that (\star) may be written as a disjoint union

$$\operatorname{Stab}_G(\sigma) = \bigsqcup_{w \in W_0} B\tilde{w}B,$$

and deduce in particular the Bruhat decomposition.

Problem 4 (s-adjacent double cosets). Use the function ρ to show axiom (BN2): for every $w \in W$ and $s \in S$, we have

$$B\tilde{w}B \cdot B\tilde{s}B \subseteq B\tilde{w}B \cup B\tilde{w}sB.$$

Hint: Given $g \in B\tilde{w}B$ and $h \in B\tilde{s}B$, use the fact that $\rho_{\Sigma,C}$ preserves *s*-adjacency to show that $\rho(gh)$ equals *w* or *ws*.

Problem 5 (The thick case). Let $s \in S$. Show that if C has two s-adjacent chambers (other than C itself), then the condition in axiom (BN3) is satisfied:

$sBs \not\subseteq B.$

Hint: Show that if $g \in G$ moves C to an s-adjacent chamber that is not in Σ , then $g \in BsB$ but $g \notin sB$.