

Sheet 9 Due date: June 21

Problem 1 (Infinite trees). Recall that a building of type $I_2(\infty)$ is the same as an infinite tree without leaves, such as the graph Γ below:

- (a) List all subgraphs of Γ that are isomorphic to the Coxeter complex of type $I_2(\infty)$.
- (b) Find two different systems of apartments ("atlases") making Γ into a building.

Problem 2 (*p*-adic arithmetic). For a fixed prime *p*, the field of *p*-adic rationals \mathbb{Q}_p is the Cauchy completion of \mathbb{Q} with respect to the *p*-adic norm (and operations induced from the usual addition and multiplication). Recall that *p*-adic rationals can be uniquely expressed in the form

$$\sum_{i=N}^{\infty} a_i p^i, \quad \text{with } a_i \in \{0, \dots, p-1\}, \ N \in \mathbb{Z} \text{ and } a_N \neq 0$$

Inside them, the *p*-adic integers \mathbb{Z}_p are the sub-ring of *p*-power series with $N \ge 0$.

- (a) Exhibit $-1 \in \mathbb{Z}_p$ as a *p*-power series of the above form.
- (b) Show that for each $m \in \mathbb{N}_{\geq 1}$, its reciprocal $\frac{1}{m}$ lies in \mathbb{Z}_p if and only if $p \nmid m$.
- (c) Recall that two elements a, b in a ring R are called **associate** if there is a unit $u \in R$ such that a = ub. When are two elements of \mathbb{Z}_p associate?

Problem 3 (Vertex stabilizer). For a fixed prime p and $n \in \mathbb{N}$, recall that two bases of \mathbb{Q}_p^n span the same lattice if and only if they are related by a matrix in $\operatorname{GL}_n(\mathbb{Z}_p)$. Let L be a lattice in \mathbb{Q}_p^n , and $A \in \operatorname{SL}_n(\mathbb{Q}_p)$. Show that if AL is homothetic to L, then $A \in \operatorname{SL}_n(\mathbb{Z}_p)$ (and hence L = L').

Problem 4 (Common bases for lattices). Fix a prime p and $n \in \mathbb{N}$.

(a) Show that every matrix $M \in \operatorname{GL}_n(\mathbb{Q}_p)$ can be factored as

$$M = A \begin{bmatrix} p^{a_1} & 0 & \cdots & 0 \\ 0 & p^{a_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & p^{a_n} \end{bmatrix} B,$$

where $a_1, \ldots, a_n \in \mathbb{Z}$ and $A, B \in GL_n(\mathbb{Z}_p)$.

Hint: Begin by choosing an entry of M with minimal p-valuation and use row an column operations to move it to the top-left corner. Can you perform Gaussian elimination using only matrices in $\operatorname{GL}_n(\mathbb{Z}_p)$?

- (b) Let L and L' be lattices in \mathbb{Q}_p^n . Show that there exist a \mathbb{Z}_p -basis (b_1, \ldots, b_n) of L and integers $a_1, \ldots, a_n \in \mathbb{Z}$ such that $(p^{a_1}b_1, \ldots, p^{a_n}b_n)$ is a basis of L'.
- (c) Prove that the integers a_1, \ldots, a_n from (b) are unique up to reordering. **Hint:** Compare L and L' to their maximal common sub-lattice $L \cap L'$.