

Sheet 6

Due date: May 31

Problem 1 (Special subgroups). Recall that given a Coxeter system (W, S) and a subset $T \subseteq S$, the **special subgroup** W_T is the subgroup of W generated by T. Show that (W_T, T) is a Coxeter system with the same values $m_{t,t'}$ as in (W, S).

Problem 2 (The barycentric subdivision). Given a simplicial complex X, its **barycentric subdivision** X' is the simplicial complex whose vertices are the nonempty simplices of X, and whose k-dimensional simplices are the sets $\{\sigma_0, \sigma_1, \ldots, \sigma_k\}$ with $\sigma_0 \subset \sigma_1 \subset \ldots \subset \sigma_k$.

- (a) Describe the boundary of a tetrahedron combinatorially as a simplicial complex X on four vertices, by explicitly listing all simplices.
- (b) Draw (the realization of) X'. How many simplices does X' have in each dimension?Hint: Start by drawing the tetrahedron X, then place each vertex of X' at the center of the corresponding simplex of X.

Problem 3 (Counting cosets). Recall that the Coxeter group of type A_n is isomorphic to Sym(n+1).

- (a) For the Coxeter system of type A_3 , how many special cosets of each rank are there?
- (b) If you have solved Problem 2, these numbers should look familiar. Is this a coincidence? Get to the bottom of this mystery!

Hint: Your answer should involve the words "Coxeter complex".

(c) You should have already noticed that the Coxeter group of type A_3 has two special subgroups of type A_2 and one of type $A_1 \times A_1$. Can you locate their Coxeter complexes in the pictures you have just drawn?

Problem 4 (Joins of Coxeter complexes). The **join** X * Y of two simplicial complexes X, Y is the simplicial complex with vertex set $V(X * Y) = V(X) \sqcup V(Y)$, and whose simplices are the sets of the form $\sigma \sqcup \tau$, with σ a simplex of X and τ a simplex of Y. Observe that the join operation is associative, commutative, and has the empty simplicial complex as the identity element.

- (a) Recall that Δ^n is the simplicial complex on n + 1 vertices, and where every subset of $V(\Delta^n)$ is a simplex. Given $n, m \in \mathbb{N}$, what is $\Delta^n * \Delta^m$?
- (b) Denote by $\partial \Delta^n$ the simplicial complex obtained from Δ^n by discarding its only *n*-dimensional simplex. Draw (the realization of) the iterated join $(\partial \Delta^1)^{*n}$, for $n \in \{1, 2, 3\}$.
- (c) Given two Coxeter systems (W, S), (W', S'), show that there is a canonical isomorphism of simplicial complexes

$$\Sigma(W \times W', S \sqcup S') \cong \Sigma(W, S) * \Sigma(W', S').$$

(d) Draw the Coxeter complex of type $A_1 \times A_1 \times A_1$.