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Abstract

In this thesis, we construct special deformations for Anosov representations, so-called cata-

clysms, and investigate their properties. In Teichmüller theory, cataclysms and the closely

related shearing coordinates carry information about the structure of Teichmüller space.

Therefore, the question arises if cataclysms also exist in higher Teichmüller spaces or more

generally for Anosov representations. We construct cataclysms for θ-Anosov representa-

tions into a semisimple non-compact connected real Lie group G, where θ ⊂ ∆ is a subset

of the simple roots that is invariant under the opposition involution.

Important steps in our construction of cataclysm deformations are the definition of the

appropriate parameter space as well as the definition of slithering maps in the context of

θ-Anosov representations. These maps generalize slithering maps for Hitchin representa-

tions which were defined by Bonahon and Dreyer in their parametrization of the Hitchin

component. We then construct stretching maps, shearing maps and finally cataclysms.

Cataclysms have some natural properties: They are additive and behave well with respect

to composing an Anosov representation with a Lie group homomorphism. Moreover, we

show how the cataclysm deformation of an Anosov representation affects the associated

boundary map.

In Teichmüller space, cataclysm deformations are injective. However, this does not hold

true for θ-Anosov representations in general. We give sufficient conditions for injectivity

as well as for non-injectivity of the deformation. For certain classes of reducible rep-

resentations, we explicitly determine the subspace of the parameter space on which the

deformation is trivial. These representations include a family of Borel Anosov representa-

tions into SL(2n+1,R), by which we show that cataclysms of Borel Anosov representations

are not necessarily injective.
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Zusammenfassung

Diese Dissertation behandelt die Konstruktion spezieller Deformationen von Anosov-Dar-

stellungen, sogenannter Kataklysmen, und untersucht ihre Eigenschaften. Kataklysmen und

die eng verwandten Scherkoordinaten spielen eine wichtige Rolle bei der Untersuchung

von Teichmüllerräumen. Daher stellt sich die Frage, ob Kataklysmen auch in höheren

Teichmüllerräumen oder allgemeiner für Anosov-Darstellungen existieren. Wir konstruie-

ren Kataklysmen für θ-Anosov-Darstellungen in eine halbeinfache nicht-kompakte zusam-

menhängende reelle Liegruppe G. Hierbei ist θ eine Teilmenge der einfachen Wurzeln ∆,

die invariant unter der Oppositionsinvolution ist.

Ein wichtiger Schritt in unserer Konstruktion von Kataklysmen ist die Definition des pas-

senden Parameterraumes. Desweiteren definieren wir Gleitabbildungen für θ-Anosov-Dar-

stellungen. Diese verallgemeinern entsprechende Abbildungen für Hitchin-Darstellungen in

PSL(n,R), die von Bonahon und Dreyer im Rahmen der Parametrisierung der Hitchin-

Komponente definiert wurden. Wir definieren außerdem Scherabbildungen und schließlich

Kataklysmen. Im Anschluss zeigen wir einige Eigenschaften von Kataklysmen: Sie sind

additiv und verhalten sich natürlich unter der Verknüpfung von Anosov-Darstellungen mit

Liegruppenhomomorphismen. Außerdem beschreiben wir, wie ein Kataklysmus die zu einer

Anosov-Darstellung gehörige Randabbildung verändert.

Kataklysmen im Teichmüllerraum sind injektiv. Für allgemeine θ-Anosov-Darstellungen

gilt dies nicht. Wir geben eine hinreichende Bedingung dafür, dass ein Kataklysmus in-

jektiv ist, sowie hinreichende Bedingungen für das Gegenteil. Für bestimmte Klassen von

reduziblen Darstellungen bestimmen wir explizit den Unterraum des Parameterraums, für

den der Kataklysmus trivial ist. Diese Darstellungen beinhalten eine Familie von Borel-

Anosov-Darstellungen in SL(2n + 1,R), womit wir zeigen, dass Kataklysmen für Borel-

Anosov-Darstellungen im Allgemeinen nicht injektiv sind.
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1. Introduction

Surfaces are ubiquitous not only in mathematics, but also in other areas, like physics and

engineering. The most common examples from everyday life are the boundaries of three-

dimensional objects, like the bounding surface of a ball. In mathematics, surfaces are

studied from various points of view. Topologically, surfaces are classified by their number

of holes. Mathematicians call this the genus of a surface. The sphere, i.e. the bounding

surface of a ball, has genus 0. The torus, i.e. the bounding surface of a doughnut, has

genus 1. A surface of genus 2 has two holes and can be imagined as a blown up eight.

A surface of genus 3 resembles the bounding surface of a pretzel, and similarly, one can

picture surfaces of higher genus.

Though all surfaces with equal genus are the same from a topological point of view, this

is not true anymore if we take a geometric viewpoint. In geometry, we look at metrics

on surfaces. This allows us to measure distances and lengths of curves. A surface of

fixed genus can admit different metrics. If we restrict to metrics of constant curvature, by

the Gauss-Bonnet theorem, all surfaces with genus at least 2 can only admit a metric of

negative curvature. If we normalize the curvature to −1, such a metric is called hyperbolic.

Let us fix a closed connected oriented surface S of genus g(S) ≥ 2. Teichmüller space,

denoted by T (S), is the space of hyperbolic metrics on S up to a suitable equivalence

relation. It can be parametrized using Fenchel-Nielsen coordinates, which are obtained

from decomposing S into pairs of pants. The coordinates for a metric m on S are then

given by measuring the lengths of the boundary curves of the pants with respect to the

metric m as well as capturing how the pants are combined to give the surface S. The

Fenchel-Nielsen coordinates give a homeomorphism between T (S) and R
6g(S)−6.

Teichmüller space has a rich structure. For example, it admits different metrics, one of

which is theWeil-Petersson metric. With respect to this metric, T (S) is a Kähler manifold,

i.e. a Riemannian manifold that also has a complex structure and a symplectic structure

and these structures are compatible [Ahl61]. Another example for an object of interest on

Teichmüller space are length functions : Given a simple closed curve c on S and a hyperbolic

structure m ∈ T (S), we can consider the length of c with respect to m. Thurston used

length functions to compactify Teichmüller space (see [FLP12, Exposé 8]).

1



1. Introduction

(a) (b)

(c) (d)

Figure 1.1.: A basic example for an earthquake is a twist along a simple closed geodesic
drawn in pink in (a). If we cut the surface along this curve, we obtain two
surfaces with boundary (b). We deform the surface on the right by rotating its
boundary curve (c) and re-glue the two surfaces back together (d). The blue
curve illustrates the deformation. In this picture, the rotation is by 2π.

Apart from Fenchel-Nielsen coordinates, there is another set of coordinates on T (S) called

shearing coordinates. They have been first defined by Thurston in [Thu98] and are described

in detail by Bonahon in [Bon96]. Shearing coordinates are closely related to deformations

of hyperbolic structures. An example for such a deformation is an earthquake [Thu86]. In

its simplest form, an earthquake is a twist along a simple closed geodesic (see Figure 1.1):

Cut the surface along the geodesic, fix one side and rotate the other one to the left by a

fixed distance. Since we assume the surface to be oriented, we can talk about left in this

context. Gluing the two sides together again, we regain the topological surface S, but the

metric on it is different. This deformation is called a left earthquake. In the same way, we

can define a right earthquake.

For general earthquakes, the twisting happens not along a simple closed geodesic, but along

a geodesic lamination λ. A geodesic lamination is a possibly infinite collection of simple

disjoint geodesics such that their union is closed. It is called maximal if the complement

consists of ideal triangles. The amount of twisting for the earthquake is determined by a

transverse measure for λ, which assigns a non-negative real number to any arc transverse

to the lamination λ. This assignment is countably additive and invariant under homotopy

relative to the lamination.

If we allow twisting both to the left and to the right, the resulting deformation is called a
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cataclysm. In this case, the amount of twisting is determined by a transverse cycle, which,

in contrast to a transverse measure, can also attain negative values and is only finitely

additive. Positive values correspond to twisting to the left, whereas negative values give a

twist to the right. We denote the vector space of transverse cycles for a lamination λ with

H(λ;R). Fixing a maximal lamination λ on S, we can assign to any hyperbolic metric m a

transverse cycle εm and this assignment gives a real analytic homeomorphism from T (S) to

an open convex cone in H(λ;R) [Bon96, Theorem A]. The coordinates on T (S) obtained

in this way are the shearing coordinates. Now for any two metrics m1,m2 ∈ T (S), there

is a unique cataclysm along λ that sends m1 to m2 and the transverse cycle parametrizing

this cataclysm is εm2 −εm1 . This shows the close relation between cataclysms and shearing

coordinates.

Deformations of hyperbolic structures and shearing coordinates give us insights in the

structure of Teichmüller space: For instance, length functions on T (S) can be computed in

terms of the shearing coordinates [Bon96, Theorem E] and we can study how they behave

under deformations. Douady showed that length functions are convex under twists along

simple closed curves [FLP12, Exposé 7]. Convexity of length functions along earthquake

paths, along Weil-Petersson geodesics and with respect to shearing coordiantes was shown

in [Ker83], [Wol87] and [BBFS13], respectively. There is also a relation between defor-

mations of hyperbolic structures and the symplectic structure of Teichmüller space. For

example, twist flows along simple closed curves are Hamiltonian flows with respect to its

Kähler form [Wol83]. Further, the Weil-Petersson metric can be expressed in terms of the

shearing coordinates [SB01] and agrees with Thurston’s intersection form on the space of

transverse cycles.

Higher Teichmüller spaces and Anosov representations

To a hyperbolic structure on S, one can associate a representation ρ : π1(S) → PSL(2,R),

where PSL(2,R) ∼= Isom+(H2) is the group of orientation-preserving isometries of the

upper half-plane. This representation is only unique up to conjugation in PSL(2,R), so an

element in T (S) defines a point in the character variety χ(S,PSL(2,R)), which is the space

of homomorphisms from the fundamental group π1(S) to PSL(2,R) up to conjugation. In

fact, T (S) forms a connected component of χ(S,PSL(2,R)) consisting entirely of discrete

and faithful representations.

The viewpoint that Teichmüller space can be understood in terms of homomorphisms into

PSL(2,R) motivates the definition of higher Teichmüller spaces, for which we replace the

group PSL(2,R) by a general semisimple Lie group G of higher rank. Higher Teichmüller

spaces are connected components of the character variety χ(S,G) consisting entirely of

3



1. Introduction

discrete and faithful representations (see [Wie18] or [Poz20]). One example for this is the

Hitchin component. It is the connected component of χ(S,PSL(n,R)) that contains repre-

sentations obtained by composing a discrete and faithful representation into PSL(2,R) with

the unique irreducible representation PSL(2,R) →֒ PSL(n,R). A Hitchin representation

is a representation in the Hitchin component. The Hitchin component was first studied

by Hitchin using Higgs bundle techniques in [Hit92], and since then, has been investigated

extensively. For n = 3, it parametrizes real projective structures on S [CG93].

Hitchin representations and all other known higher Teichmüller spaces are examples of a

larger class of discrete and faithful representations: Anosov representations. They have first

been introduced by Labourie in [Lab06] and his definition was extended by Guichard and

Wienhard in [GW12]. The original definition is dynamic in nature and involves the geodesic

flow on a bundle associated to a representation ρ. In recent years, many equivalent char-

acterizations of Anosov representations have been found and the field is an active area of

research (see [GGKW17], [KLP17], [DGK17], [BPS19], [Zhu19], [Tso20], [KP20], [Zhu21],

[BCKM21],[CZZ21]). Important examples of Anosov representations are quasi-Fuchsian

representations, Hitchin representations, maximal representations [BILW05], θ-positive

Anosov representations [GW18] and (1, 1, 2)-hyperconvex representations [PSW21].

For a semisimple Lie group G, there are different types of Anosov representations that are

related to parabolic subgroups P+
θ of G, where θ ⊂ ∆ is a subset of the simple restricted

roots. An Anosov representation is always Anosov with respect to a parabolic subgroup

P+
θ of G. We call such a representation θ-Anosov. When we just say that a representation

is Anosov, then we mean that it is θ-Anosov with respect to some θ ⊂ ∆. In this thesis,

we use a definition of Anosov representations through equivariant boundary maps and

θ-divergence from [GGKW17].

One approach to understanding higher Teichmüller spaces is to use techniques that have

proven helpful in the case of Teichmüller space. An example for this is the symplectic

structure on the character variety χ(S,G) for a reductive Lie group G. Goldman showed

that the character variety carries a natural symplectic structure [Gol84] and studied the

behavior of the Hamiltonian flows associated to length functions [Gol86]. Since cataclysm

deformations are closely related to the structure of Teichmüller space, they might also be

a tool to understand higher Teichmüller spaces. First steps in this direction were taken by

Dreyer in [Dre13]. He generalizes Thurston’s cataclysm deformations to representations

into PSL(n,R) which are Anosov with respect to the minimal parabolic subgroup. One

example for such representations are Hitchin representations. Based on work of Fock and

Goncharov [FG06], Bonahon and Dreyer define coordinates on the Hitchin component

that generalize the shearing coordinates [BD17]. These coordinates depend on a maximal

lamination λ and consist of two types of parameters: the triangle invariants, which are

4



associated to the ideal triangles in the complement of the lamination, and the shearing

invariants, which are a generalized version of transverse cycles. Cataclysms provide a

geometric realization of deformations of Hitchin representations which keep the triangle

invariants fixed.

However, the construction of cataclysms by Dreyer is restricted to the group PSL(n,R)

and to representations that are Anosov with respect to the minimal parabolic. Assuming a

representation to be Anosov with respect to the minimal parabolic is a strong assumption,

which is not satisfied by most Anosov representations (see [CT20]).

In this thesis, we generalize Dreyer’s construction and define cataclysm deformations for

θ-Anosov representations into a semisimple connected non-compact real Lie group G that

are Anosov with respect to a parabolic P+
θ , where θ ⊂ ∆ is a subset invariant under the

opposition involution.

The parameter space for cataclysms: transverse twisted cycles

Let λ ⊂ S be a geodesic lamination. It is in general not orientable. This is why we

often look at a the orientation cover λ̂ which is a two-fold cover of λ and can be oriented

continuously. Further, we also look at the universal cover λ̃ ⊂ S̃, which is the lift of λ to

the universal cover S̃ of S. The parameter space for the cataclysm deformation along the

lamination λ is the space of aθ-valued transverse twisted cycles for the orientation cover

λ̂ (see Section 3.2). Here, aθ denotes the Lie algebra of the center of the reductive group

Lθ = P+
θ ∩ P−

θ , where P+
θ is the standard parabolic subgroup associated with θ, and P−

θ

is the standard parabolic subgroup transverse to P+
θ (see Section 2.1). For the case of

SL(n,R) and θ = ∆, P+
∆ and P−

∆ consist of all upper and lower triangular matrices in

SL(n,R), respectively. Consequently, L∆ is the set of diagonal matrices of determinant 1,

and a∆ is the set of diagonal matrices of trace 0.

We only consider transverse cycles that satisfy a certain twist condition (see Definition

3.20):

Definition 1.1 (Definition 3.15 and 3.20). An aθ-valued transverse twisted cycle ε assigns

to every pair (P,Q) of connected components P,Q ⊂ S̃ \ λ̃ an element ε(P,Q) ∈ aθ in a

way that is

• π1(S)-invariant,

• finitely additive, i.e. ε(P,Q) = ε(P,R) + ε(R,Q) if R ⊂ S̃ \ λ̃ lies between P and Q

and

• twisted, i.e. ε(Q,P ) = ι(ε(P,Q)),

5



1. Introduction

where ι : a → a is the opposition involution. The space of transverse twisted aθ-valued

cycles is denoted by HTwist(λ̂; aθ).

Note that in the main text, Definition 3.15 of transverse cycles (not necessarily twisted) is

stated slightly differently in terms of arcs transverse to the lamination λ, in order to have

a unifying definition of transverse cycles for λ and λ̂.

We compute the dimension of the space of transverse twisted cycles, depending on the

lamination λ. If λ is maximal, this formula is particularly simple:

Proposition 1.2 (Corollary 3.22). For a maximal lamination λ on S, the vector space

HTwist(λ̂; aθ) of aθ-valued transverse twisted cycles has dimension |θ|(6g(S)−6)+|θ′|, where
θ′ ⊂ θ is a maximal subset satisfying θ′ ∩ ι(θ′) = ∅ and g(S) is the genus of the surface S.

Here, ι : ∆ → ∆ is the opposition involution on the simple roots. Note that we abuse

notation and denote by ι both the map on a and the induced map on the simple roots.

Applying the proposition to G = SL(n,R) and θ = ∆, we obtain that the dimension of

HTwist(λ̂; aθ) is (n−1)(6g(S)−6)+ ⌊n−1
2 ⌋, recovering a result from Dreyer [Dre13, Lemma

16]. If the cardinality of θ is 2, then the dimension is 12g(S)− 11.

We determine the dimension of HTwist(λ̂; aθ) more generally for a geodesic lamination λ

that is not necessarily maximal (Proposition 3.21). In general, the dimension is smaller

than in the case of a maximal lamination and depends on the number of orientable and

non-orientable components of the lamination and on its Euler characteristic.

Slithering, stretching and shearing

Recall that our goal in this thesis is to construct cataclysm deformations for Anosov rep-

resentations. Fix an Anosov representation ρ : π1(S) → G, a lamination λ on S and let S̃

be the universal cover of S. In the course of the construction, we will define three families

of elements in G:

• slithering maps Σgh associated with two geodesics g and h in S̃,

• stretching maps TH
g associated with one oriented geodesic g in S̃ and an element

H ∈ aθ and

• shearing maps ϕε
PQ associated with two connected components P,Q ⊂ S̃ \ λ̃ and an

aθ-valued transverse twisted cycle ε.
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Abusing notation, we call these group elements maps. Note that all of these maps, i.e. Σgh,

TH
g and ϕε

PQ, depend on the representation ρ which is not reflected in the notation.

Slithering maps were introduced by Bonahon and Dreyer in [BD17] for Hitchin represen-

tations into PSL(n,R). Using similar techniques, we extend their definition to our more

general setting of Anosov representations (see Proposition 4.9). Given a θ-Anosov repre-

sentation, one can associate to every oriented geodesic g in S̃ a pair (P+
g , P

−
g ) of transverse

parabolic subgroups that are conjugate to the pair of standard parabolics (P+
θ , P

−
θ ). The

slithering map Σgh ∈ G maps the pair of parabolics associated to h to the pair of parabolics

associated to g. If the two geodesics share an endpoint g+ = h+, then P+
g = P+

h and Σgh

is the unique unipotent element in P+
g that maps P−

h to P−
g . In the general case, Σgh

is obtained from concatenating such unipotent elements and taking a limit. We use the

slithering map in this thesis as a tool to investigate the stretching maps. It might be useful

in other contexts as well. In particular, Bonahon and Dreyer use it in [BD17] to define a

parametrization of the Hitchin component.

The second family of elements, the stretching maps, form the basic building blocks of

the cataclysm deformation. For earthquake maps, basic building blocks are hyperbolic

isometries that translate along an axis in S̃. In a similar vein, the basic building blocks

for cataclysms are elements TH
g ∈ G, where g is an oriented geodesic in S̃ and H is an

element in aθ (see Section 4.2). For the case G = SL(n,R) and θ = ∆, we can associate

to any oriented geodesic g a splitting of Rn into lines by using the representation ρ. The

stretching map TH
g is the linear transformation that acts on the lines of this splitting as a

stretch, where the amount of the stretch is given by the parameter H (see Example 4.15).

This motivates the name stretching map.

The third family of elements are the shearing maps. Those are crucial in the definition of

cataclysms: Starting with the representation ρ, we will define a new representation that

for every γ ∈ π1(S) is given by left-multiplying ρ(γ) with the shearing map ϕε
P (γP ). The

shearing maps are defined as follows: Fix two connected components P and Q in S̃ \ λ̃
and an aθ-valued transverse twisted cycle ε ∈ HTwist(λ̂; aθ). If P and Q are separated by

finitely many geodesics g1, . . . , gm in λ̃, labeled from P to Q, and if Ri is the connected

component of S̃ \ λ̃ between gi and gi+1 (see Figure 1.2), then ϕε
PQ is the element in G

obtained as the concatenation of stretching maps

ϕε
PQ = T ε(P,R1)

g1 T ε(R1,R2)
g2 · · ·T ε(Rm−1,Q)

gm . (1.1)

In the general case, P and Q are separated by infinitely many geodesics, and the shearing

map ϕε
PQ is defined using a limit (Proposition 5.3). The shearing maps satisfy some natural

properties, namely they behave well under taking the inverse, i.e. ϕε
PQ

−1 = ϕε
QP , they are
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From the equivariance and composition properties of the shearing maps, it follows that

Λε
0ρ is indeed a homomorphism.

Remark 1.4. For the special case of ∆-Anosov representations into PSL(n,R), Theorem

1.3 was proven by Dreyer in [Dre13]. We extend their definition of cataclysms to θ-Anosov

representations into any semisimple connected non-compact real Lie group G and θ ⊂ ∆

with ι(θ) = θ, where ι is the opposition involution. The difference to their construction

lies in the definition of the parameter space and in the definition of the stretching maps

TH
g . Further, we consider an arbitrary geodesic lamination λ, whereas Dreyer’s result is

for maximal laminations only. The way in which the shearing maps are constructed as a

limit of stretching maps in this thesis is analogous to [Dre13].

Note that Λε
0ρ depends on the choice of the reference triangle P0, but for different choices,

the resulting representations are conjugate. Moreover, if we start with two representations

ρ, ρ′ that are conjugate in G, the deformed representations Λε
0ρ and Λε

0ρ
′ are conjugate as

well. We thus have the following result:

Theorem 1.5 (Corollary 5.13). The cataclysm deformation Λ0 : Vρ → Hom(π1(S), G) from

Theorem 1.3 descends to a well-defined map Λ: Vρ → χθ−Anosov(S,G) on the character

variety, where χθ−Anosov(S,G) denotes the subspace of the character variety consisting

entirely of conjugacy classes of θ-Anosov representations.

The cataclysm deformation Λ0 on the representation variety has some natural properties:

First, it is additive in the sense that Λε+η
0 ρ = Λε

0 (Λ
η
0ρ) for two transverse twisted cycles

ε, η ∈ HTwist(λ̂; aθ) (Corollary 5.17). Further, it behaves well under composition of an

Anosov representation with a Lie group homomorphism: Let G and G′ be semisimple non-

compact connected real Lie groups, let ρ : π1(S) → G be a θ-Anosov representation and

let κ : G→ G′ be a Lie group homomorphism. It is a result from Guichard and Wienhard

that under an additional assumption on θ′ ⊂ ∆′ and on the induced map κ∗ : a → a′, then

κ◦ρ is θ′-Anosov (Proposition 5.18). Assuming further that κ∗(aθ) ⊂ a′θ′ , we prove that

Λκ∗ε(κ ◦ ρ) = κ (Λερ) ,

where ε ∈ HTwist(λ̂; aθ) and κ∗ε is a transverse cycle induced by κ and ε (see Proposition

5.21).

An Anosov representation has an associated boundary map ζ from ∂∞S̃ to the flag space

Fθ for θ (see Section 2.3). A cataclysm deformation of an Anosov representation ρ can

also be understood as a deformation of the associated boundary map ζ (see Theorem 6.1).

If x ∈ ∂∞S̃ is an ideal vertex of the connected component Q ⊂ S̃ \ λ̃, then the boundary

9



1. Introduction

map ζε for the deformed representation Λε
0ρ is at x given by

ζε(x) = ϕP0Q · ζ(x),

where P0 ⊂ S̃ \ λ̃ is the fixed reference component used to define the cataclysm deforma-

tion.

In contrast to cataclysm deformations on Teichmüller space, cataclysm deformations for

Anosov representations are not injective in general. However, the assignment of the family

of shearing maps {ϕε
PQ}(P,Q) to a transverse twisted cycle ε ∈ HTwist(λ̂; aθ) is injective

(Proposition 7.1). From this, we can conclude injectivity of the cataclysm deformation

under extra assumptions. In particular, we have the following result:

Proposition 1.6 (Corollary 7.7). If ρ : π1(S) → SL(n,R) is a Hitchin representation, then

the cataclysm deformation based at ρ along λ is injective.

A class of representations for which the cataclysm deformation is not injective are (n, k)-

horocyclic deformations (see Subsection 2.4.3 and Section 7.4). They are obtained from

composing a discrete and faithful representation ρ0 : π1(S) → SL(2,R) with a reducible

embedding SL(2,R) → SL(n,R) and are {k, n− k}-Anosov.

Proposition 1.7 (Corollary 7.21). Let ρ : π1(S) → SL(n,R) be an (n, k)-horocyclic rep-

resentation with 1 ≤ k < n/2 and let θ = {k, n − k}. There is a linear subspace

Htrivial ⊂ HTwist(λ̂; aθ) such that Λε
0ρ = ρ if and only if ε ∈ Htrivial.

For a maximal lamination, the dimension of the subspace Htrivial is 4g(S)− 5, where g(S)

is the genus of the surface S (Corollary 7.24).

Remark 1.8. The idea of recovering the transverse twisted cycle ε from the family of

shearing maps {ϕε
PQ}(P,Q) that we use in Section 7.1 is adapted from [Dre13]. They use

another viewpoint on Anosov representations, using a flow on a bundle over T 1S associated

with ρ. We take a different approach, using the Busemann cocycle instead of their flow

construction and can thus show that their result also holds in our more general setting. As

a corollary, Dreyer states that cataclysm deformations for Borel Anosov representations

into SL(n,R) are injective [Dre13, Corollary]. However, this is not correct. A special

case of Proposition 1.7 are representations that are obtained from composing a discrete

and faithful representation into SL(2,R) with a block embedding of SL(2,R) into SL(3,R).

These representations are Borel Anosov, but not Hitchin. This shows that there exist Borel

Anosov representations into SL(3,R) for which the cataclysm deformation is not injective.
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A generalization for representations into SL(n,R)

For a certain class of Anosov representations into SL(n,R), we can enlarge the parameter

space of twisted cycles valued in aθ to twisted cycles valued in a. We define a θ-Anosov

representation ρ : π1(S) → SL(n,R) to be λ-admissible if we can assign a line splitting to

every oriented leaf in λ̃ that is ρ-equivariant, subordinate to the splitting obtained from the

boundary map and behaves well under reversing the orientation of the leaf (see Definition

8.3). For λ-admissible representations, we can enlarge the parameter space of cataclysm

deformations to cycles valued in a:

Theorem 1.9 (Theorem 8.13). Let ρ : π1(S) → SL(n,R) be θ-Anosov and λ-admissible.

Then there exist cataclysm deformations of ρ along λ with parameters in the space of a-

valued transverse twisted cycles HTwist(λ̂; a).

Examples for representations that are λ-admissible can be found in Sections 8.2 and 8.3.

Outline of the thesis

We start in Chapter 2 and 3 with recalling basic definitions - most of this is not original, but

a personal selection of concepts and results that will be needed throughout the thesis.

Chapter 2 is concerned with Lie groups and Anosov representations. In Section 2.1, we

define parabolic subgroups of Lie groups, the Weyl group and flag manifolds. We illustrate

the introduced concepts for the group SL(n,R). In Section 2.2, we define the Cartan

decomposition and the Cartan projection as well as the Iwasawa decomposition and the

Busemann cocycle. With these preparations, we can define Anosov representations in

Section 2.3 and give examples in Section 2.4.

Chapter 3 introduces geodesic laminations and transverse twisted cycles. In Section 3.1,

we define geodesic laminations, the orientation cover of a lamination and look at a classical

property of geodesic laminations. In Section 3.2 we define the vector space of transverse

twisted cycles and compute its dimension.

In Chapter 4 we define slithering maps and stretching maps. In Section 4.1, we generalize

the construction of slithering maps for Hitchin representations to the setting of Anosov

representations. The proofs in this section are similar to the ones in [BD17, Section 5.1].

In Section 4.2, we define stretching maps TH
g . Using the slithering map, we give an estimate

on the difference between two stretching maps for geodesics that are close.

Chapter 5 contains the main result of this thesis, Theorem 5.12. In Section 5.1, we define

shearing maps as the limit of a composition of stretching maps. Using shearing maps, we

11



1. Introduction

can define cataclysm deformations in Section 5.2. In Section 5.3, we show that cataclysm

deformations satisfy additivity and behave naturally under composition with Lie group

homomorphisms.

In Chapter 6 we show how a cataclysm deformation of an Anosov representation ρ changes

the corresponding boundary map ζ. Our proof for this expression of the deformed repre-

sentation uses different methods from the proof in [Dre13] where they consider for the case

G = PSL(n,R) and θ = ∆.

In Chapter 7 we ask the question under which conditions a cataclysm deformation is in-

jective. In Section 7.1 we show that the assignment of the family of shearing maps to

a transverse twisted cycle is injective. From this, we conclude in Section 7.2 a sufficient

condition for injectivity of the cataclysm deformation. In Section 7.3, we show that cat-

aclysms are not injective in general by giving sufficient conditions for the deformation to

satisfy Λε
0ρ = ρ for a non-trivial transverse twisted cycle ε. We also give examples for rep-

resentations that satisfy these conditions, among which are horocyclic representations. In

Section 7.4 we have a closer look at horocyclic representations and determine the subspace

of twisted cycles for which the cataclysm deformation is trivial.

We finish in Chapter 8 by giving a construction for cataclysm deformations of representa-

tions into SL(n,R) which have a bigger parameter space than the deformations from Chap-

ter 5. We define in Subsection 8.1 what it means for a representation to be λ-admissible,

and show that λ-admissible representations admit cataclysm deformations bigger param-

eter space HTwist(λ̂; a). In Subsections 8.2 and 8.3 we give examples for λ-admissible

representations into SL(4,R) and SL(2n,R), respectively.

In the Appendix A, we recall the definition of a left-invariant and almost right-invariant

metric on the group G and collect technical proofs that we need in the thesis, but that

would not add significant value when presented in the main part.
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2. Lie groups and Anosov representations

In this section, we give a short introduction into parabolic subgroups of Lie groups and

Anosov representations. The results and definitions are not original, but a personal selec-

tion of concepts that will be relevant throughout the thesis. We define parabolic subgroups

of Lie groups in Section 2.1 and explain two different decompositions of Lie groups in Sec-

tion 2.2. With these preparations, we define Anosov representations in Section 2.3 and

give examples for Anosov representations in Section 2.4.

2.1. Parabolic subgroups

We start by recalling some basics about Lie groups. In particular, we define the set of

simple roots, parabolic subgroups and flag manifolds. The main references for this section

are [GW12, Section 3.2] and [GGKW17, Section 2.2].

Let G be a connected non-compact semisimple real Lie group and let g be its Lie algebra.

Choose a maximal compact subgroup K ⊂ G. Let k ⊂ g be the Lie algebra of K and

p its orthogonal complement with respect to the Killing form. The killing form is non-

degenerate since g is semisimple. Let a be a maximal abelian subalgebra in p. The group

G acts on its Lie algebra g via the adjoint representation Ad: G → GL(g). Since G is

connected, this action is by inner automorphisms of g (see [SW73, Cor.7.13]). Taking the

derivative of Ad at the identity, we obtain the adjoint representation of the Lie algebra

ad: g → gl(g). It holds that adX(Y ) = [X,Y ] for any X,Y ∈ g, where [·, ·] is the Lie

bracket on g. Let a∗ be the dual space of a. For α ∈ a∗, we define

gα = {X ∈ g | ∀H ∈ a : adH(X) = α(H)X}.

If gα 6= 0, we say that α is a restricted root with associated root space gα. Let Σ ⊂ a∗ \ {0}
be the set of restricted roots. The root space decomposition of g is

g = g0 ⊕
⊕

α∈Σ
gα,
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2. Lie groups and Anosov representations

where g0 is the centralizer of a in g. Let ∆ ⊂ Σ be a simple system, i.e. a subset of Σ such

that every element in Σ can be expressed uniquely as a linear combination of elements in

∆ where all coefficients are either non-negative or non-positive (see [Kna02, §II.6]). The

elements of ∆ are called simple roots. Denote by Σ+ the set of positive roots, namely the

set of all elements in Σ which have non-negative coefficients with respect to the generating

set ∆, and by Σ− the negative roots. We have Σ− = −Σ+ and Σ = Σ+ ∪ Σ−.

Define the subalgebras

n+ =
⊕

α∈Σ+

gα, n− =
⊕

α∈Σ+

g−α

and consider the corresponding subgroups N+ = exp(n+) and N− = exp(n−). Further,

let A := exp(a) and let ZK(a) be the centralizer of a in K, i.e. the set of all k ∈ K such

that Adk(H) = H for all H ∈ a. The standard minimal parabolic subgroup is the subgroup

B+ := ZK(a)AN+. This is a semidirect product of the abelian subgroup ZK(a)A of G and

the normal subgroup N+, where ZK(a)A acts on N+ by conjugation. In the same way,

one defines B− := ZK(a)AN−. A subgroup of G that is conjugate to B+ is called minimal

parabolic subgroup or Borel subgroup. The group N+ is the unipotent radical of B+, that

is, the largest normal subgroup consisting of unipotent elements.

Example 2.1. Consider the special linear group G = SL(n,R), i.e. the group of n × n

matrices with determinant 1. As maximal compact subgroup we chose K = SO(n,R), the

orthogonal matrices with determinant 1. The Lie algebra sl(n,R) is given by all n × n

matrices with trace 0, and k = so(n,R) are the antisymmetric matrices. The Killing form

on sl(n,R) is B(X,Y ) = 2ntr(XY ) for X,Y ∈ sl(n,R). The orthogonal complement p

of k with respect to B is given by the traceless symmetric matrices. The set of traceless

diagonal matrices is a maximal abelian subalgebra a in p. Let λi ∈ a∗ be the evaluation

at the i-th entry of an element in a, i.e. λi(diag(a1, . . . , an)) = ai. A short calculation

shows that the root space gα for α ∈ a∗ is non-zero if and only if α = αij := λi − λj for

1 ≤ i 6= j ≤ n. The corresponding root spaces are gαij = R · Eij , where Eij is the matrix

with a 1 in the i-th row and j-th column and 0 everywhere else. Further, g0 = a is all

traceless diagonal matrices and we have g = g0 ⊕
⊕

i 6=j gαij . We thus find the restricted

roots, a system of simple roots and the set of positive roots as

Σ = {αij | 1 ≤ i 6= j ≤ n},
∆ = {αi(i+1)| i = 1, . . . , n− 1} and

Σ+ = {αij | 1 ≤ i < j ≤ n}.

To shorten notation, set αi := αi(i+1). We sometimes identify the set of simple roots ∆

with the set {1, . . . , n− 1}.
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2.1. Parabolic subgroups

We have

n+ =
⊕

α∈Σ+

gα =








0 ∗ · · · ∗
...

. . .
. . .

...
...

. . . ∗
0

. . .
. . . 0








and N+ = exp(n+) =








1 ∗ · · · ∗
0

. . .
. . .

...
...

. . . ∗
0 · · · 0 1








.

Similarly, n− and N− are given by the lower triangular matrices with only 0s and only 1s

on the diagonal, respectively. Further, A = exp(a) is given by all diagonal matrices with

positive entries and determinant 1 and the centralizer ZK(a) is given by the set of diagonal

matrices with all entries ±1 and determinant 1. The minimal parabolic subgroup is the

set of all upper triangular matrices, i.e.

B+ = ZK(a)AN+ =








∗ . . . ∗
. . .

...

0 ∗




∣∣∣∣∣∣∣∣
det = 1




.

Similarly, B− is the set of all lower triangular matrices.

We now define parabolic subgroups of G A subgroup P ⊂ G is called parabolic if it is

conjugate to a subgroup containing B+. Every parabolic subgroup of G is self-normalizing,

i.e. NG(P ) = P (see [Mil17, Corollary 17.49]). Parabolic subgroups can be classified by

subset of the set of simple roots ∆ as we will now explain.

Given a subset θ ⊂ ∆, let

aθ :=
⋂

α∈∆\θ
ker(α) ⊂ a, (2.1)

and let ZK(aθ) be its centralizer in K. Define P±
θ := ZK(aθ)AN

±. Because aθ ⊂ a, we

have that ZK(a) ⊂ ZK(aθ) and hence B+ ⊂ P+
θ , so P+

θ is a parabolic subgroup. Parabolic

subgroups of this form are called standard parabolic subgroups. Moreover, these are the

only parabolic subgroups containing B+, and every parabolic subgroup P is conjugate to

some P+
θ for a unique θ ⊂ ∆ (see [BT65, Proposition 5.14]). Thus, conjugacy classes of

parabolic subgroups are in one-to-one correspondence with subsets θ ⊂ ∆. For example, for

θ = ∆ we have a∆ = a, so ∆ corresponds to the conjugacy class of the minimal parabolic

subgroup B+ = ZK(a)AN+.

Let Σ+
θ denote the set of all elements in Σ+ that do not belong to the span of ∆\θ. Define
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2. Lie groups and Anosov representations

the Lie subalgebras

n+θ =
⊕

α∈Σ+
θ

gα, n−θ =
⊕

α∈Σ+
θ

g−α

and N±
θ := exp(n±θ ). The group N±

θ is the unipotent radical of P±
θ , and the standard

parabolic subgroups P±
θ are equal to the semidirect product LθN

±
θ , where Lθ := P+

θ ∩P−
θ

is the common Levi subgroup of P+
θ and P−

θ . Note that exp(aθ) ⊂ exp(a) ⊂ Lθ is contained

in the center of Lθ.

The quotient Fθ = G/P+
θ is called flag manifold. It is a compact G-homogeneous space

and its elements are called flags. The group G acts on Fθ by left-multiplication, which will

be denoted by (g, F ) 7→ g · F . In the special case θ = ∆, we have aθ = a, P+
θ = B+ and

F∆ is called complete. The name flag manifold is motivated by the case of SL(n,R) as we

will see in Example 2.3 below.

Remark 2.2. There is a one-to-one correspondence between Fθ and the set of parabolic

subgroups conjugate to P+
θ as follows: When F = g · P+

θ ∈ Fθ is a flag, then its stabilizer

StabG(gP
+
θ ) is gP+

θ g
−1, i.e. a parabolic subgroup conjugate to P+

θ . Since P+
θ is self-

normalizing, this is in fact a one-to-one correspondence. We will often make no distinction

between elements in Fθ and parabolic subgroups conjugate to P+
θ and will switch between

the two points of view.

Example 2.3. We consider again the group SL(n,R) from Example 2.1. Let θ = {i1, . . . , ik}
with 1 ≤ i1 < · · · < ik ≤ n − 1. Also, let i0 := 0 and ik+1 := n. For j = 1, . . . , k + 1, let

mj := ij − ij−1, so the mj describe the sizes of the gaps between the elements in θ. For

i ∈ ∆, we have that ker(αi) is given by all traceless diagonal matrices where the iths and

(i + 1)st entry are equal. Thus aθ =
⋂

α∈∆\θ ker(α) is given by block diagonal matrices,

where the j-th block is a scalar multiple of the mj ×mj identity matrix. The centralizer

of aθ in K is

ZK(aθ) =








Am1 0
. . .

0 Amk+1


 ∈ SO(n,R)




,

and the standard parabolic subgroup for θ is given by upper block triangular matrices.
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More precisely,

P+
θ = ZK(aθ)AN

+ =








Am1 ∗ . . . ∗
0

. . .
...

...
. . . ∗

0 . . . 0 Amk+1




∈ SL(n,R)





.

Similarly, P−
θ consists of lower block triangular matrices, where the blocks are of sizes

mj × mj . The unipotent radical N±
θ is the subgroup of P±

θ where all blocks on the

diagonal are identity matrices and the Levi subgroup Lθ is the group of block diagonal

matrices where the blocks are of size mj ×mj .

Elements of the flag manifold Fθ are families of nested subspaces of the form

F =
(
F (i1) ⊂ · · · ⊂ F (ik) ⊂ R

n
)

with dim F (ij) = ij ,

so flags in the sense of linear algebra. This explains the name flag manifold. An element in

Fθ can be seen as element of Gri1(n)× · · · ×Grik(n), where Grl(n) is the Grassmannian,

i.e. the space of all l-dimensional linear subspaces of Rn. Two basic examples of flags are

the standard ascending flag F+ and standard descending flag F− that are defined as

F+ = (〈e1, . . . , ei1〉 ⊂ 〈e1, . . . , ei2〉 ⊂ · · · ⊂ 〈e1, . . . , eik〉),
F− = (〈en, . . . , en−i1+1〉 ⊂ 〈en, en−i2+1〉 ⊂ · · · ⊂ 〈en, . . . , en−ik+1〉),

where e1, . . . , en are the standard basis vectors for Rn. The flags F+ and F− are stabilized

by the standard parabolic subgroup P+
θ and P−

θ , respectively.

As above, let ZK(a) be the centralizer of a in K. Further, let NK(a) be the normalizer of

a in K. The Weyl group of G is defined as

W := NK(a)/ZK(a).

Seen as a subgroup of GL(a), it is a finite Coxeter group with system of generators given

by the orthogonal reflections in the hyperplanes ker(α) ⊂ a for α ∈ ∆. The Weyl chambers

are the connected components of a \⋃α∈∆ ker(α). A closed Weyl chamber is the closure of

a Weyl chamber. The set of positive roots Σ+ singles out the closed positive Weyl chamber

of a defined by

a+ := {H ∈ a | α(H) ≥ 0 ∀α ∈ Σ+}.

The Weyl group W acts simply transitively on the Weyl chambers and thus there exists
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2. Lie groups and Anosov representations

a unique element w0 ∈ W such that w0(a+) = −a+. It is the unique longest element

of W and as such satisfies w0 = w−1
0 . Abusing notation, we will denote by w0 also a

representative of the longest element of W in NK(a) ⊂ K.

Definition 2.4. The involution on a defined by ι := −w0 is called opposition involution.

It induces a dual map on a∗ which is also denoted by ι and defined by ι(α) = α ◦ ι for all
α ∈ ∆.

Note that ι(∆) = ∆ and ι(Σ+) = Σ+. For some Lie groups, the opposition involution ι is

trivial. One example where it is non-trivial is SL(n,R).

Example 2.5. For SL(n,R), a is the set of traceless diagonal matrices, i.e. isomorphic to

R
n−1. The Weyl group is isomorphic to the symmetric group Sn with generators the or-

thogonal reflections along the hyperplanes ker(αi) for i = 1, . . . , n−1. Here, the hyperplane

ker(αi) is given by all elements diag(a1, . . . , an) ∈ a with ai = ai+1. The closed positive

Weyl chamber is

a+ =
{
H ∈ a

∣∣ α(H) ≥ 0 ∀α ∈ Σ+
}
=

{
diag(a1, . . . , an)

∣∣∣∣∣

n∑

i=1

ai = 0, ai ≥ ai+1∀i
}
.

The longest element w0 of the Weyl group, which sends a+ to −a+ acts on a by reversing

the order of the diagonal elements:

w0 ·




a1
. . .

an


 =




an
. . .

a1




On ∆, the longest element acts as w0(αi) = −αn−i, so for the opposition involution ι : ∆ →
∆, we have ι(αi) = αn−i.

Remark 2.6. It is useful to have a basis for a that is invariant under the opposition invo-

lution ι. The elements α ∈ ∆ form a basis for a∗. Define by {Hα}α∈∆ the corresponding

dual basis for a defined by α(Hβ) = δαβ for all α, β ∈ ∆, where δαβ denotes the Kronecker

delta. The basis constructed in this way satisfies ι(Hα) = Hι(α) for all α ∈ ∆, because by

definition, for all β ∈ ∆,

β(ι(Hα)) = ι(β)(Hα) = δι(β)α = δβι(α) = β(Hι(α)).

The first step here is simply the definition of ι on ∆. For the third step, we use that

ι : ∆ → ∆ is an involution, so ι(β) = α if and only if β = ι(α). Further, for every β 6= α, Hα

lies in the kernel of β. It follows that for every θ ⊂ ∆, we have Hα ∈ ⋂β∈∆\θ ker(β) = aθ,

so by dimension reasons, {Hα}α∈θ is a basis for aθ. We remark that these elements agree
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2.1. Parabolic subgroups

up to a factor with the coroots, which are also denoted by Hα in the literature, and are

defined using the fundamental weights and the Killing form (see [Hal15, Def. 7.21]).

Example 2.7. If we consider SL(n,R), then a short computation shows that the basis

element for i ∈ ∆ for aθ from Remark 2.6 is given by

Hi =
1

n

(
(n− i)Idi 0

0 (−i)Idn−i

)
.

Remark 2.8. Let w0 ∈ NK(a) be a representative of the longest element of the Weyl

group as in Definition 2.4, and recall that A = exp(a). Then, since w0 ∈ NK(a), we

have w0Aw
−1
0 = A. One can further compute that w0N

+w−1
0 = N− and w0ZK(aθ)w

−1
0 =

ZK(ι(aθ)) = ZK(aι(θ)). Combining this, we obtain

w0P
+
θ w

−1
0 =

(
w0ZK(aθ)w

−1
0

) (
w0Aw

−1
0

) (
w0N

+w−1
0

)

= ZK(aι(θ))AN
−

= P−
ι(θ),

so P−
ι(θ) is conjugate to P

+
θ by w0. Since every parabolic subgroup is conjugate to a unique

P+
θ′ , it follows that P

+
θ is conjugate to P−

θ if and only if ι(θ) = θ.

Consider the space Fθ × Fι(θ) of pairs of flags. There exists a unique open orbit for the

diagonal action of G on Fθ × Fι(θ) (see [GW12, Section 2.1]), and one representative of

this orbit is the pair (P+
θ , P

−
θ ). Here, we use that P−

θ is conjugate to P+
ι(θ) by w0, so P

−
θ is

an element of Fι(θ).

Definition 2.9. Two parabolic subgroups P+ and P− are transverse if the pair (P+, P−)

lies in the unique open G-orbit of Fθ × Fι(θ) for some θ ⊂ ∆. Given P+ ∈ Fθ and

P− ∈ Fι(θ), we say that P+ is transverse to P− (and P− is transverse to P−) if the pair

(P+, P−) is transverse.

Note that the subset θ in this definition is already determined by the parabolic P+, since

every parabolic subgroup is conjugate to P+
θ for a unique θ ⊂ ∆.

Remark 2.10. Fix the standard parabolic P+
θ . Then its unipotent radical N+

θ acts simply

transitively on parabolics transverse to P+
θ . To see this, let P be a parabolic transverse to

P+
θ . By definition of transversality, G acts transitively on pairs of transverse parabolics,

there exists some g ∈ G such that (g ·P+
θ , g ·P ) = (P+

θ , P
−
θ ). The element g has to lie in P+

θ .

Recall that P+
θ = LθN

+
θ , where Lθ = P+

θ ∩ P−
θ . Hence g = ln for unique elements l ∈ Lθ

and n ∈ N+
θ . It follows that n · P = l−1 · P−

θ = P−
θ since l stabilizes P−

θ . So indeed, N+
θ

acts simply transitively on parabolics transverse to P+
θ . Moreover, the element n ∈ N+

θ

depends locally Hölder continuously on the flag P transverse to P+
θ .
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2. Lie groups and Anosov representations

In the following, we restrict our attention to subsets θ ⊂ ∆ for which P+
θ and P−

θ are

conjugate. As see in Remark 2.8, this holds if and only if ι(θ) = θ.

Standing Assumption. From now on, we always assume that θ ⊂ ∆ is invariant under

the opposition involution ι, i.e. ι(θ) = θ.

For Lie groups with trivial opposition involution, e.g. for Sp(2n,R) or SO(p, q) with p 6= q,

this assumption is trivially satisfied.

Example 2.11. For G = SL(n,R) and θ = {i1, . . . , ik}, the assumption ι(θ) = θ means that

ij ∈ θ if and only if n − ij ∈ θ. As in Example 2.3, set i0 := 0 and ik+1 := n. Two flags

E,F ∈ Fθ = Fι(θ) are transverse exactly if

E(ij) ⊕ F (n−ij) = R
n ∀ij ∈ θ.

A pair of transverse flags (E,F ) induces a splitting of Rn in subspaces

R
n = V1 ⊕ · · · ⊕ Vk+1,

where Vj = E(ij) ∩ F (n−ij−1). Define mj as in Example 2.3 as mj := ij − ij−1. By

transversality, Vj is a subspace of dimension mj . In particular, for θ = ∆, every pair of

transverse flags induces a line splitting of Rn.

2.2. Lie group decompositions, the Cartan projection and

the Busemann cocycle

In this section, we define two Lie group decompositions and the Cartan projection that

will be important in the definition of Anosov representations. Further, we introduce the

Busemann cocycle.

As before, let G be a connected non-compact semisimple real Lie group and K ⊂ G a

maximal compact subgroup. Let a+ be the closed positive Weyl chamber. The following

decomposition of G is the Cartan decomposition.

Theorem 2.12 ([Hel01, Ch. IX Theorem 1.1]). Let G be a connected semisimple Lie

group. Then

G = K exp(a+)K,

i.e. every g ∈ G ca be written as g = kak′ with k, k′ ∈ K and a ∈ exp(a+). Moreover,

a ∈ exp(a+) is unique.
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2.2. Lie group decompositions, the Cartan projection and the Busemann cocycle

Definition 2.13. The Cartan decomposition induces a map µ : G → a+, the Cartan

projection, where for g ∈ G, µ(g) is defined by g = k exp(µ(g))k′.

Example 2.14. For SL(n,R) with maximal compact subgroup SO(n), exp(a+) consists

of diagonal matrices with determinant 1 and entries in decreasing order. In this case,

the Cartan decomposition is given by the singular value decomposition. Recall that the

singular value decomposition of a matrix M ∈ SL(n,R) is M = UDV T , where U and V

are orthogonal matrices and D is diagonal with eigenvalues the singular values of M , i.e.

the square roots of the eigenvalues ofMMT in decreasing order. The matrix D is uniquely

determined. With this notation, the Cartan projection µ(M) is given by log(D), so its

entries are the logarithms of the singular values of M .

There is another decomposition of G that will be useful for us: the Iwasawa decomposi-

tion.

Theorem 2.15 ([Hel01, Ch. IX Theorem 1.3]). Let G be a connected semisimple Lie

group. Then

G = KAN+,

that is, the map K ×A×N+ → G, (k, a, n) 7→ kan is a diffeomorphism.

Since the map is a diffeomorphism, for every g ∈ G the elements k, a, n such that g = kan

are unique.

Example 2.16. For SL(n,R), the Iwasawa decomposition is given by the QR-decomposition

of a matrix in an orthogonal matrix and an upper triangular matrix, i.e. an element in

B+, with positive entries on the diagonal. This upper triangular matrix can be written

as a product of a diagonal matrix with positive entries and a unipotent upper triangular

matrix.

Using the Iwasawa decomposition, we can define a map σ : G × F∆ → a that tells us

something about how an element in G acts on a given flag. It is defined as follows: The

maximal compact subgroup K acts transitively on F∆ = G/B+. Thus, every element in

F∆ can be written as k · B+ for some k ∈ K. By the Iwasawa decomposition, for g ∈ G

and F = k ·B+ ∈ F∆, there exists a unique element σ(g, F ) in a such that

gk ∈ K exp(σ(g, F ))N+.

Definition 2.17. The map σ : G × F∆ → a is called the Busemann cocycle or Iwasawa

cocycle.
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2. Lie groups and Anosov representations

By definition, the Busemann cocycle satisfies σ(Id, F ) = 0 for all F ∈ F∆, and σ(k,B
+) = 0

for all k ∈ K.

The name cocycle refers to the following property:

Lemma 2.18 ([BQ16, Lemma 6.29]). The Busemann cocycle is continuous and satisfies

the cocycle property, i.e. for all g1, g2 ∈ G and F ∈ F∆,

σ(g1g2, F ) = σ(g1, g2 · F ) + σ(g2, F ). (2.2)

To gain familiarity with the decomposition and the Busemann cocycle, we include the proof

for the cocycle property.

Proof. Let F ∈ F∆ and let k ∈ K such that F = k · B+ ∈ F∆. Let g1, g2 ∈ G, and let

k′ ∈ K such that

g2k ∈ k′ exp(σ(g2, F ))N
+.

Then g2 · F = k′ ·B+, so

g1k
′ ∈ K exp(σ(g1, g2 · F ))N+.

Combining this, we obtain

g1g2k ∈ g1k
′ exp(exp(σ(g2, F )))N

+

⊂ K exp(exp(σ(g1, g2 · F )))N+ exp(exp(σ(g2, F )))N
+

= K exp(exp(σ(g1, g2 · F )) + exp(σ(g2, F )))N
+.

In the last line, we used that exp(a) normalizes N+. It follows that the cocycle property

holds.

Example 2.19. For G = SL(n,R), g ∈ SL(n,R) and F =
(
F (1) ⊂ · · · ⊂ F (n)

)
∈ F∆, one

can compute that the ith coordinate of σ(g, F ) of the Busemann cocycle is equal to the

logarithm of the norm of the linear transformation induced by g between the 1-dimensional

spaces F (i)/F (i−1) and gF (i)/gF (i−1). This can be seen by first looking at the special case

that F = B+ is the standard minimal parabolic, and then using the cocycle property.

The Busemann cocycle also exists in the context of partial flag manifolds. Let Wθ be the

subgroup of the Weyl group W that fixes aθ point-wise, i.e.

Wθ := {w ∈W | w(H) = H ∀H ∈ aθ}.
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Let pθ : a → aθ be the unique projection invariant underWθ. In terms of the basis {Hα}α∈∆
defined in Remark 2.6, it is given by pθ

(∑
α∈∆ xαHα

)
=
∑

α∈θ (xαHα).

Lemma 2.20 ([BQ16, Lemma 8.21]). For every θ ⊂ ∆, the map pθ ◦ σ : G × F∆ → aθ

factors through a map σθ : G×Fθ → aθ.

This map is also called Busemann cocycle and satisfies the cocycle property (2.2).

2.3. Anosov representations

We are now ready to define Anosov representations. Anosov representations were first

defined by Labourie in [Lab06]. His definition then was generalized by Guichard and

Wienhard in [GW12]. Since then, many equivalent characterization of Anosov representa-

tions have been found and the field is an active area of research (see [GGKW17], [KLP17],

[BPS19], [Tso20], [DGK17], [KP20], [Zhu19], [Zhu21], [BCKM21],[CZZ21]). The definition

we are presenting can be found in [GGKW17, Theorem 1.3]. We are only interested in

surface groups, but Anosov representations can be defined more generally for any word-

hyperbolic group Γ.

Standing Assumption. Throughout this paper, let S be a closed connected oriented

surface of genus at least 2. Fix an auxiliary hyperbolic metric m on S. Denote by S̃ the

universal cover of S, which then carries a hyperbolic metric as well, and let ∂∞S̃ be the

boundary at infinity. Fixing base points on S and S̃, the fundamental group π1(S) of S

acts on S̃ by isometries.

Before giving the definition of Anosov representations, we need to introduce some more

concepts. Let θ ⊂ ∆ be a subset of the simple roots and Fθ = G/P+
θ the flag manifold for

the standard parabolic subgroup P+
θ .

Definition 2.21. Let ρ : π1(S) → G be a representation and ζ : ∂∞S̃ → Fθ be a map.

• ζ is called ρ-equivariant if ζ(γx) = ρ(γ) · ζ(x) for all x ∈ ∂∞S̃ and γ ∈ π1(S).

• ζ is called transverse if for every pair of points x 6= y ∈ ∂∞S̃, the images ζ(x), ζ(y) ∈
Fθ are transverse.

• ζ is called dynamics-preserving for ρ if for every non-trivial element γ ∈ π1(S), its

unique attracting fixed point in ∂∞S̃ is mapped to an attracting fixed point of ρ(γ)

on Fθ.
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2. Lie groups and Anosov representations

Further, ρ is called θ-divergent if for all α ∈ θ we have α(µ(ρ(γ))) → ∞ as the word length

of γ ∈ π1(S) goes to infinity.

Definition 2.22 ([GGKW17, Theorem 1.3]). A representation ρ : π1(S) → G is θ-Anosov

if it is θ-divergent and there exists a continuous ρ-equivariant map ζ : ∂∞S̃ → Fθ that is

transverse and dynamics-preserving. The map ζ is called the boundary map for ρ.

The set of θ-Anosov representations forms an open subset of the representation variety

Hom(π1(S), G) [GW12, Theorem 5.13]..

Remark 2.23. If there exists a continuous, dynamics-preserving boundary map ζ : ∂∞S̃ →
Fθ for ρ, then it is unique and ρ-equivariant. This follows from the fact that the set of

attracting fixed points of elements γ ∈ π1(S) is dense in ∂∞S̃. Further, the boundary map

is Hölder continuous [BCLS15, Theorem 6.1].

Remark 2.24. For some settings, the assumption of ρ being θ-divergent is not necessary,

since it is already guaranteed by the existence of a continuous transverse ρ-equivariant

boundary map. This is the case for example if ρ is Zariski dense or if ρ is an irreducible

representation into SL(n,R) and θ = {1, n− 1} [GW12, Theorem 4.11 and Theorem 4.10,

respectively].

We now explain how the boundary map ζ can be constructed from the Anosov represen-

tation ρ (see [GGKW17, Section 5]): Assume that ρ : π1(S) → G is θ-Anosov. We want to

understand ζ(x) for some x ∈ ∂∞S̃. Define

Ξθ : G→ G/P+
θ

g 7→ kg · P+
θ ,

where g = kg exp(µ(g))k
′
g is the Cartan decomposition (Theorem 2.12). Note that the

element kg ∈ K is not unique, but kg · P+
θ is well-defined. Let x ∈ ∂∞S̃ be a point in the

boundary of S̃ and (γn)n∈N be a sequence in π1(S) converging to x in the sense that the

sequence (γn)n∈N and the quasi-geodesic ray defining x have bounded distance. Here, we

identify ∂∞S̃ with ∂∞π1(S). If ρ is θ-Anosov, then the sequence (Ξθ(ρ(γm)))m∈N converges

and

ζ(x) = lim
m→∞

Ξθ(ρ(γm)). (2.3)

Example 2.25. Let G = SL(n,R) and θ = {k, n − k} for some 1 ≤ k ≤ n
2 (see Example

2.3). Then the flag space Fθ consists of pairs of nested subspaces
(
F (k) ⊂ F (n−k)

)
with

dimF (i) = i and can be seen as a subset of Grk(n)×Grn−k(n), where Grl(n) denotes the

Grassmannian of l-dimensional subspaces of Rn. We say that M ∈ SL(n,R) has a gap of

index j if σj(M) > σj+1(M), where σj(M) and σj+1 are the jth and (j+1)st eigenvalues of
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M , respectively (see [BPS19, Section 2.2]). If M has a gap of index j, let Uj(M) ∈ Grl(d)

be the subspace of Rd that contains the j biggest axes of the ellipsoid {Mv | ‖v‖ = 1}.
If ρ : π1(S) → SL(n,R) is {k, n − k}-Anosov, then for every γ ∈ π1(S), ρ(γ) has gaps of

index k and n− k. The flag Ξθ(M) is given by

Ξθ(M) = (Uk(M) ⊂ Un−k(m)) .

Thus, the k- and (n− k)-dimensional parts of the boundary map are given by

ζ(k)(x) = lim
m→∞

Uk(ρ(γm)) and ζ(n−k)(x) = lim
m→∞

Un−k(ρ(γm)),

respectively.

Notation 2.26. Let g be an oriented geodesic in the universal cover S̃ and let ρ : π1(S) →
G be θ-Anosov with boundary map ζ. Using the boundary map ζ, we can associate to g

a pair of opposite parabolics as follows: Denote by g+ and g− the positive and negative

endpoints of g, respectively. Let P±
g := ζ(g±) and Lg := P+

g ∩ P−
g be the common Levi

factor of P+
g and P−

g . Further, let N+
g be the unipotent radical of P+

g . By transversality

of ζ, the pair (P+
g , P

−
g ) is transverse.

We want to mention an important class of Anosov representations.

Definition 2.27. A representation ρ : π1(S) → SL(n,R) that is {α1, αn−1}-Anosov is

called projective Anosov.

Projective Anosov representations play an important role in the study of Anosov represen-

tations, because of the following result:

Theorem 2.28 ([GW12, Prop. 4.3 and Remark 4.12]). There exists d ∈ N and an ir-

reducible representation τ : G → SL(d,R) such that a representation ρ : π1(S) → G is

θ-Anosov if and only if τ ◦ ρ : π1(S) → SL(d,R) is projective Anosov. Furthermore, τ

induces maps

τ+ : G/P+
θ → RP d−1 and τ− : G/P+

θ → Grd−1(d).

If ζ : ∂∞S̃ → G/P+
θ is the boundary map for ρ, then the 1- and (d− 1)-dimensional parts

of the boundary map for τ ◦ ρ are given by τ+ ◦ ζ and τ− ◦ ζ, respectively.

Note that τ is not unique. If for M ∈ SL(d,R), we denote by U1(M) the eigenspace of

MMT with respect to its biggest eigenvalue as in Example 2.25, then we have

τ+ (Ξθ(g)) = U1(τ(g)).
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Example 2.29. Let G = SL(n,R), θ = {k, n − k} for some 1 ≤ k ≤ n
2 . Then the exterior

power representation
∧k

n : SL(n,R) → SL
(∧k

R
n
)

is an irreducible representation as in

Theorem 2.28. It is defined by

∧k

n
(A)(v1 ∧ · · · ∧ vk) := Av1 ∧ · · · ∧Avk

for every A ∈ SL(n,R) and every decomposable element v1∧· · ·∧vk ∈ ∧k
R
n. In this case,

d = dim
(∧k

R
n
)

=
(
n
k

)
. The induced map ι+ : G/Pθ

+ → RP d−1 is called the Plücker

embedding and is given by

ι+(V ) = 〈v1 ∧ · · · ∧ vk〉

if V = (V (k) ⊂ V (n−k)) ∈ G/Pθ
+ ⊂ Grk(n) × Grn−k(n) and V (k) = 〈v1, . . . , vk〉. This is

independent of the choice of v1, . . . , vk, because if w1, . . . , wn is another generating system

for V , then wi = Avi for all i for some A ∈ GL(V (k)). Hence 〈w1 ∧ · · · ∧wk〉 = 〈det(A)v1 ∧
· · · ∧ vk〉.f

If a representation ρ is θ-Anosov, then also every representation ρ′ that is conjugate to ρ by

an element in G is θ-Anosov. Thus, it makes sense to talk about θ-Anosov representations

also on the character variety.

Definition 2.30. The space

χ(S,G) := Hom(π1(S), G)//G

of representations of the fundamental group of S into G up to G-conjugation is called

G-character variety. For a subset θ ⊂ ∆ of the simple roots, denote by χθ-Anosov(S,G) the

subset consisting of the equivalence classes of θ-Anosov representations.

Note that here, χ(S,G) is not the usual quotient, which is in general not Hausdorff. Instead,

it is the largest Hausdorff quotient, which is equivalent to restricting to the subset of

reductive representation (see [CLM18, Theorem 2.2]).

2.4. Examples for Anosov representations

In this section we give examples of Anosov representations for different families of Lie

groups G.
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2.4.1. Teichmüller space

This section on Teichmüller space is built on [FM12, Section 10.3], which gives a nice

treatment on the viewpoint on Teichmüller space as discrete and faithful representations

A marked hyperbolic structure on S is a pair (X, fX), where X is a hyperbolic surface and

fX : S → X is a homeomorphism, called marking. We say that two marked hyperbolic

structures (X, fX) and (Y, fY ) are equivalent if there exists an isometry h : X → Y such

that fY and h◦fX are homotopic. Teichmüller space T (S) is the space of marked hyperbolic

structures on S up to this equivalence relation.

To a marked hyperbolic structure, we can assign a representation ρ from π1(S) to PSL(2,R)

as follows: There exists an isometry from the universal cover X̃ of X to the hyperbolic

plane H2. The fundamental group π1(X) identifies with the group of deck transformations

for the universal cover X̃, so it acts on X̃ properly discontinuously and by isometries.

Hence, π1(X) identifies with a discrete subgroup of Isom+(H2) = PSL(2,R). Combining

this with the isomorphism (fX)∗ : π1(S) → π1(X) induced from the marking fX : S → X

we obtain a discrete and faithful representation ρ : π1(S) → PSL(2,R). This construction

depends on various choices, e.g. on the choice of representative (X, fX) of the equivalence

class [(X, fX)] and on the identification of X̃ with H
2, but the representations we obtain

for different choices are the same up to conjugation. We obtain a continuous and injective

map

T (S) → Hom(π1(S),PSL(2,R))//PSL(2,R),

whose image is a connected component of the PSL(2,R)-character variety. Goldman

showed in his thesis [Gol80] that there are two components of the PSL(2,R)-character

variety that can be identified with T (S). They correspond to the two possible orientations

of the surface S. A representation ρ that represents an element in T (S) is Anosov and

the boundary map is constructed as follows: Consider the orbit map τρ : π1(S) → H
2 for

ρ which is defined by τρ(γ) = ρ(γ) · x0, where x0 ∈ H
2 is a fixed base point. It induces a

ρ-equivariant homeomorphism on the boundary ζ : ∂π1(S) → ∂H2 ∼= RP 1. This boundary

map is transverse and dynamics-preserving.

2.4.2. Hitchin representations

One way of constructing θ-Anosov representations into a Lie group G is to take a discrete

and faithful representation ρ0 : π1(S) → SL(2,R), a so-called Fuchsian representation, and

post-compose it with a suitable representation SL(2,R) →֒ G. Hitchin representations
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arise in this way. They are one of the first examples of Anosov representations and have

been studied extensively. We first introduce Hitchin representations for G = SL(n,R).

Consider the n-dimensional irreducible representation jn : SL(2,R) → SL(n,R). It can

be realized by considering the action of SL(2,R) on the n-dimensional vector space of

homogeneous polynomials of degree n−1 in 2 variables x and y. If A =

(
a b

c d

)
∈ SL(2,R),

then jn(A) acts on this space by sending x to ax + by and y to cx + dy. A basis for the

space of homogeneous polynomials of degree n− 1 is xn−1, xn−2y, . . . , xyn−2, yn−1. Scaling

this basis appropriately, we can arrange that jn(SO(2)) ⊂ SO(n), where we consider SO(n)

with respect to the standard inner product on R
n. For example, for n = 3 we choose the

basis 1√
2
x2, xy, 1√

2
x2 and j3 : SL(2,R) → SL(3,R) is given by

j3

((
a b

c d

))
=




a2
√
2ac c2√

2ab ad+ bc
√
2cd

b2
√
2bd d2


 .

A principal Fuchsian representation in SL(n,R) is a representation of the form ρ = jn ◦ρ0,
where ρ0 : π1(S) → SL(2,R) is a Fuchsian representation. A Hitchin representation is a

representation that lies in the same connected component as a principal Fuchsian repre-

sentation. The Hitchin component Hit(π1(S), SL(n,R)) is the component of the character

variety X (S, SL(n,R)) consisting of conjugacy classes of Hitchin representations.

The construction of the Hitchin component can be generalized to any split real semi-simple

Lie group G using an embedding j : SL(2,R) →֒ G. For the classical groups Sp(2n,R) and

SO(n, n + 1), the embedding j is given by j2n and j2n+1, respectively, which has image

contained in these subgroups. Just as in the SL(n,R)-case, the Hitchin component is the

connected component of X (S,G) containing a principal Fuchsian representation of the form

ρ = j ◦ ρ0.

The Hitchin component in χ(S,PSL(n,R)) was first studied through Higgs bundles by

Hitchin in [Hit92], who called it Teichmüller component. He showed that it consists entirely

of irreducible representations and is diffeomorphic to R
−χ(S)(n2−1), where χ(S is the Euler

characteristic of the surface S. Labourie showed that any Hitchin representation ρ is

discrete and faithful and that for any γ ∈ π1(S), ρ(γ) is diagonalizable with distinct

eigenvalues of the same sign [Lab06]. Bonahon and Dreyer construct coordinates for the

Hitchin component in PSL(n,R) that generalize shearing coordinates on Teichmüller space

[BD17].

To motivate that Hitchin representations are ∆-Anosov, we look at the special case of

principal Fuchsian representations. For general Hitchin representations, this was proved
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by Labourie [Lab06]. The following treatment is adapted from lecture notes by Canary

[Can20, Chapter 32]. Let ρ = jn◦ρ0 be a principal Fuchsian representation. The irreducible

representation jn induces a continuous map j+n : RP 1 → Flag(Rn) as follows: Every element

in RP 1 can be written uniquely as L · 〈e1〉, where e1 ∈ R
2 is the first standard basis vector

and L is in SO(2). Define

j+n (L · 〈e1〉) = jn(L) · F+,

where F+ is the standard ascending flag in R
n as in Example 2.3. One can check that

this defines a continuous jn-equivariant injective map which is dynamics-preserving, i.e.

if 〈x〉 ∈ RP 1 is the attracting eigenline for A ∈ SL(2,R), then j+n (〈x〉) is the attracting

flag for jn(A). It is a generalized version of the Veronese embedding of RP 1 in RPn−1.

Define

ζ : ∂∞S̃ → Flag(Rn), ζ := j+n ◦ ζ0,

where ζ0 : ∂∞S̃ → RP 1 is the flag curve for ρ0. Then ζ is a continuous, ρ-equivariant,

dynamics-preserving and transverse boundary map.

The fact that ρ is θ-divergent can be seen as follows: If the singular value decomposi-

tion for A ∈ SL(2,R) is A = LDK, then the singular value decomposition for jn(A) is

jn(L)jn(D)jn(K). By examining how jn acts on diagonal matrices, we see that the ith

singular value σi of jn(A) is given by σi(jn(A)) = σ1(A)
n+1−2i. Recall from Example 2.14

that for SL(n,R), the Cartan projection µ : SL(n,R) → a+SL(n,R) is given by the logarithms

of the singular values. It follows that for all αi ∈ ∆

αi (µ(ρ(γ))) = log σi(ρ(γ))− log σi+1(ρ(γ)) = log
σ1(ρ0(γ))

n+1−2i

σ1(ρ0(γ))n+1−2(i+1)
= log σ1(ρ0(γ))

2,

which, since ρ0 is Anosov, goes to infinity as the word length of γ goes to infinity. In total,

ρ is θ-divergent and has a continuous, ρ-equivariant, transverse and dynamics-preserving

boundary map, so is ∆-Anosov.

2.4.3. Horocyclic representations and other reducible representations

For constructing principal Fuchsian representations in Subsection 2.4.2, we used an irre-

ducible embedding j : SL(2,R) →֒ G. We can also consider embeddings SL(2,R) →֒ G that
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are reducible. Define

ι : SL(2,R) → SL(3,R),

(
a b

c d

)
7→



a 0 b

0 1 0

c 0 d


 . (2.4)

The image of ι in SL(3,R) fixes the line 〈e2〉 and the hyperplane 〈e1, e3〉. Let ρ0 : π1(S) →
SL(2,R) be discrete and faithful. Then a representation of the form

ρ := ι ◦ ρ0 : π1(S) → SL(3,R)

is called horocyclic representation. In other words, a horocyclic representation is the direct

sum of a Fuchsian representation with a trivial representation. The name horocyclic is

motivated by the fact that the image of ρ is contained in a parabolic subgroup of SL(3,R),

namely the one that stabilizes the line 〈e2〉 and the complementary hyperplane 〈e1, e3〉.
Horocyclic representations and deformations thereof were defined by Barbot [Bar10] and

are sometimes also called Barbot representations. Barbot also proved that horocyclic rep-

resentations are ∆-Anosov.

To see this, we construct the boundary map ζ : ∂∞S̃ → Flag(R3) for a horocyclic represen-

tation ρ. Define a continuous, ι-equivariant and dynamics-preserving embedding by

ι+ : RP 1 → Flag(R3),

〈(
a

b

)〉
7→



〈

a

0

b



〉

⊂
〈

a

0

b


 ,



0

1

0



〉
 .

Let ρ = ι ◦ ρ0 be a horocyclic representation and ζ0 : ∂∞S̃ → RP 1 the boundary map for

ρ0. Then

ζ : ∂∞S̃ → Flag(R3), ζ(x) := ι+ ◦ ζ0(x)

is a continuous, ρ-equivariant, transverse and dynamics-preserving boundary map for ρ.

This can be seen analogous to the case of Hitchin representations in Subsection 2.4.2. To

show that ρ is ∆-Anosov, the only thing that is left to show is ∆-divergence, which follows

from a short computation.

This construction of horocyclic representations not only works in SL(3,R). We can gen-

eralize it to obtain reducible {k, n− k}-Anosov representations in SL(n,R) for any k ≤ n
2

as follows: Identify R
n with

(
R
2
)k × R

n−2k and embed SL(2,R) as SL(2,R)k × {Idn−2k}.

30



2.4. Examples for Anosov representations

Reordering the basis of Rn, this gives an embedding

ιn,k : SL(2,R) → SL(n,R),

(
a b

c d

)
7→



aIdk 0 bIdk

0 Idn−2 0

cIdk 0 dIdk


 , (2.5)

where Idm denotes the m × m-identity matrix, and the 0s denote zero matrices of the

appropriate sizes. For n = 3 and k = 1, we recover ι3,1 = ι from above. An (n, k)-horocyclic

representation is a representation of the form ρ = ιn,k ◦ ρ0 where ρ0 : π1(S) → SL(2,R) is

discrete and injective. Sometimes we will just say a representation is horocyclic, meaning

that it is (n, k)-horocyclic for some n and k. Again, the motivation for the name comes

from the fact that such a representation stabilizes an element in F{k,n−k}. In the special

case n = 3 and k = 1 considered above, we have {k, n− k} = {1, 2} = ∆SL(3,R), so F{1,2} is

the complete flag variety. In the general case, however, F{k,n−k} is a partial flag variety.

A (n, k)-horocyclic representation is {k, n− k}-Anosov. This can be seen analogous to the

special case n = 3 and k = 1 above, using the embedding

(ιn,k)
+ : RP 1 → SL(n,R)/P+

{k,n−k},

M · 〈e1〉 7→ ιn,k(M) · (〈e1, . . . , ek〉 ⊂ 〈e1, . . . , en−k〉)

for M ∈ SO(2). The boundary map for ρ = ιn,k ◦ ρ0 is then given by (ιn,k)
+ ◦ ζ0.

In a similar way, we can construct reducible representations into SL(2n + 1,R) that are

∆SL(2n+1,R)-Anosov. For that, consider the representation

ι2n→2n+1 : SL(2n,R) → SL(2n+ 1,R), (2.6)

(
A B

C D

)
7→



A 0 B

0T 1 0T

C 0 D


 .

Here, 0 and 0T denote the 0 vector in R
n and (Rn)T , respectively. Now let ρ0 : π1(S) →

Sp(2n,R) ⊂ SL(2n,R) be a ∆Sp(2n,R)-Anosov representation. In particular, ρ0 is ∆SL(2n,R)-

Anosov and for every γ ∈ π1(S), the eigenvalues of ρ(γ) are pairwise distinct and different

from 1. Then ρ := ι2n→2n+1 ◦ ρ0 is a reducible representation into SL(2n+1,R). The map

ι2n→2n+1 induces a continuous, ι2n→2n+1-equivariant embedding ι+2n→2n+1 : Flag(R
2n) →

Flag(R2n+1). Since Sp(2n,R)/B+ can be embedded in Flag(R2n), we obtain a continu-

ous, transverse, ρ-equivariant map ζ := ι+2n→2n+1 ◦ ζ0 : ∂∞S̃ → Flag(R2n+1). By similar

considerations as above, ρ is ∆SL(2n+1,R)-divergent. Thus, ρ is a ∆SL(2n+1,R)-Anosov repre-
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sentation into SL(2n+1,R). It is reducible, so does not lie in the Hitchin component. Note

that in this construction we need to start with a ∆Sp(2n,R)-Anosov representation ρ0 into

Sp(2n,R) and cannot replace it by a ∆SL(2n,R)-Anosov representation into SL(2n,R). The

reason is that for the latter, the elements ρ0(γ) for γ ∈ π1(S) can have 1 as an eigenvalue.

In that case, the composed representation ι2n→2n+1 ◦ ρ0 is not ∆SL(2n+1,R)-divergent.

2.4.4. Maximal representations

In addition to Hitchin representations, maximal representations were among the first

known examples of Anosov representations. Their definition originates in the observa-

tion that the two Teichmüller components for representations into PSL(2,R) are distin-

guished from the other components by the Euler number E(ρ) [Gol88]. A representation

ρ : π1(S) → PSL(2,R) lies in one of the Teichmüller components if and only if the modulus

of its Euler number is maximal. Let now G be a Lie group of Hermitian type, i.e. connected

semisimple with finite center, without compact factors and such that the associated sym-

metric space X has a G-invariant complex structure. For a representation ρ : π1(S) → G,

one can define an invariant T (ρ), called Toledo invariant, which agrees with the Euler

number for G = PSL(2,R). The map ρ 7→ T (ρ) on Hom(π1(S), G) is continuous and takes

values in a discrete bounded set. Consequently, it is constant on connected components

[BIW10]. A representation ρ ∈ Hom(π1(S), G) is maximal if |T (ρ)| is maximal. Maximal

representations are P -Anosov for a certain maximal parabolic P ⊂ G (see [BILW05, Theo-

rem 6.1] for G = Sp(2n,R) and [GW12, Theorem 6.6 and Remark 6.7] for a classical group

G of Hermitian type).

An important example for a Lie group of Hermitian type is Sp(2n,R). In this case, a

maximal representation is Anosov with respect to the maximal parabolic that stabilizes a

Lagrangian, i.e. a maximal isotropic subspace of R2n. The group Sp(2n,R) is also split,

hence we can also define Hitchin representations into Sp(2n,R). Hitchin representations

into Sp(2n,R) are maximal, the converse is not true see [GW12, p.581].

2.4.5. Positive representations

Recently, Guichard and Wienhard discovered another class of representations that are

θ-Anosov for some θ ⊂ ∆ and that contains both Hitchin representations and maximal

representations [GW18]. The starting point for their definition is the observation that the

boundary maps for both Hitchin representations and maximal representations are positive

in the sense that they map positive triples in ∂∞S̃ to positive triples in G/P+
θ . In order to

say what it means for a triple in G/P+
θ to be positive, Guichard and Wienhard define what

32



2.4. Examples for Anosov representations

a θ-positive structure on a simple Lie group G is. They show that there are four families of

Lie groups admitting a θ-positive structure. Two of these families are split real Lie groups

and Lie groups of Hermitian types, for which one can define Hitchin representations and

maximal representations, respectively. The definition of positivity from Guichard and

Wienhard generalizes the notion of positivity in split real Lie groups introduced by Lusztig

[Lus94].

Definition 2.31. A representation ρ : π1(S) → G is θ-positive if there exists a continuous

ρ-equivariant map ζ : ∂∞S̃ → G/P+
θ which sends positive triples to positive triples.

The fact that Hitchin representations and maximal representations are positive for some θ

is proven in [FG06, Theorem 1.15] and [BIW10, Theorem 8], respectively. In unpublished

work, Guichard, Labourie and Wienhard [GLW16] show that θ-positive representations

are θ-Anosov and that the subset of θ-positive representations is open in Hom(π1(S), G).

Further, they conjecture that it is also closed, so θ-positive representations form a union

of connected components of Hom(π1(S), G).
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3. Laminations and transverse twisted

cycles

In this chapter we introduce two concepts that are important for the definition of cataclysm

deformations. The first one is a so-called lamination, which is a fixed topological object on

the surface S. Recall that S is a closed connected oriented surface of genus at least 2. The

second one is called twisted cycle and serves as a parameter for the cataclysm deformation.

It determines how much the cataclysm changes a representation ρ.

3.1. Geodesic laminations

Geodesic laminations have been introduced by Thurston and are powerful tool in low-

dimensional topology and geometry. In this section we define the concepts that are impor-

tant for the construction of cataclysms and give examples and properties. An overview of

geodesic laminations can be found in [Bon01].

Definition 3.1. A geodesic lamination λ on S is a collection of simple complete disjoint

geodesics such that their union is a closed subset of S. The geodesics contained in the

lamination λ are called leaves. A geodesic lamination λ is maximal if every connected

component of S \ λ is isometric to an ideal triangle. We denote by λ̃ the lift of λ to the

universal cover S̃.

Although Definition 3.1 makes use of the auxiliary hyperbolic metric m on S, geodesic

laminations can be defined independently on the choice of a metric (see [Bon97, Section

3]).

Example 3.2. A basic example for a geodesic lamination is just one closed simple geodesic

on S. More generally, every collection of simple closed disjoint geodesics is a geodesic

lamination. A pair of pants decomposition, for example, is a geodesic lamination consisting

of 3 · g(S)− 3 closed leaves, where g(S) is the genus of the surface S.
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For example, if λ is orientable, then λ̂ is consists of two disjoint copies of λ with opposite

orientations. In order to consider arcs transverse to the lamination λ̂, we need an ambient

surface Û in which λ̂ is embedded. Let U ⊂ S be an open neighborhood of λ that avoids at

least one point in the interior of each ideal triangle in S \ λ. The orientation cover λ̂→ λ

extends to a cover Û → U . On Û , we can consider the orientation reversing involution

R : Û → Û that interchanges the two sheets of the cover.

Example 3.6. If λ consists of m disjoint simple closed geodesics c1, . . . , cm, then it is ori-

entable. Its orientation cover consists of 2m disjoint simple closed geodesics c+1 , . . . , c
+
m,

c−1 , . . . , c
−
m, where c±i are the two lifts of ci with opposite orientations.

Example 3.7. Let P be a pair of pants. Consider a maximal lamination λ on P , consisting

of three bi-infinite geodesics that pairwise spiral towards the boundary curves (see Figure

3.1a). It is not possible to orient the bi-infinite geodesics in a continuous way. The

orientation cover λ̂ consists of six bi-infinite geodesics, two lifts for every geodesics gi in λ.

They spiral pairwise to lifts of the boundary curves, and can be oriented continuously as

sketched in Figure 3.1a.

Example 3.8. An example for a finite maximal lamination λ on a surface S of genus 2 is

sketched in Figure 3.2a. It is obtained from a pair of pants decomposition of S, where every

pants is divided into two ideal triangles by three infinite geodesics that spiral towards the

closed leaves. The complements S \ λ consists of four ideal triangles. Figure 3.2b shows a

sketch of the orientation cover λ̂ with a choice of orientation of the leaves. The orientation

cover λ̂ is drawn without the ambient surface Û to keep the picture clean. Figure 3.2c

shows a sketch of the lift λ̃ of λ to the universal cover S̃.

We will be interested in arcs transverse to a lamination λ, that are well-behaved in the

following sense.

Definition 3.9. A arc k is tightly transverse to λ if it is simple, compact, transverse to

λ, has non-empty intersection with λ, and every connected component d ⊂ k \ λ either

contains an endpoint of k, or separates one of the ideal vertices of the ideal triangle P ⊂ S\λ
containing d from the other two vertices. We use the same notation for arcs k̃ transverse

to the universal cover λ̃ or to the orientation cover λ̂ of λ.

Notation 3.10. Throughout the paper, we use the following notation: By λ, we denote a

lamination on S, by λ̃ its lift to the universal cover S̃ and by λ̂ the orientation cover. We

denote by k an oriented arc tightly transverse to λ, by k̃ an oriented an arc tightly transverse

to λ̃ and by k̂ an oriented arc tightly transverse to λ̂. Since the universal cover S̃ is oriented,

the leaves of λ̃ intersecting k̃ have a well-defined transverse orientation determined by k̃,

i.e. if g is a leaf of λ̃ intersecting k̃, we orient g such that the intersection k̃ ⋔ g is

positive. Denote by P and Q the connected components of k̃ containing the negative and
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3.2. Transverse twisted cycles

1. ε is finitely additive, i.e. ε(k) = ε(k1) + ε(k2) if we split k in two subarcs k1, k2 with

disjoint interiors.

2. ε is λ-invariant, i.e. ε(k) = ε(k′) whenever the arcs k and k′ are homotopic via a

homotopy respecting the lamination λ.

We denote the vector space of aθ-valued transverse cycles for λ by H(λ; aθ).

In the same way, one can define R-valued transverse cycles and transverse cycles for the

orientation cover λ̂.

Remark 3.16. We will mostly be interested in transverse cycles for the orientation cover

λ̂, i.e. elements in H(λ̂; aθ). This is because cycles for λ̂ allow us to assign values to

oriented arcs transverse to the lamination λ, rather than unoriented arcs as for cycles

for the lamination λ. The correspondence between oriented arcs transverse to λ and arcs

transverse to λ̂ works as follows: If k is an oriented arc transverse to λ, then there exists

a unique lift k̂ of k to Û such that the intersection k̂ ⋔ λ̂ is positive (see Figure 3.7). This

gives a one-to-one correspondence between oriented arcs transverse to λ and unoriented

arcs transverse to λ̂. If ε ∈ H(λ; aθ) is a transverse cycle and k an oriented arc, denote by k

the arc with opposite orientation. Then, since ε does not take into account the orientation

of k, ε(k) = ε(k). If, in contrast, we consider the corresponding arcs in the orientation

cover, then k̂ = R(k̂), where R : Û → Û is the orientation reversing involution. So for

ε̂ ∈ H(λ̂; aθ), we have ε̂(k̂) = ε̂(R(k̂)) 6= ε̂(k̂) in general.

Remark 3.17. If {Hα}α∈θ is the basis for aθ introduced in Remark 2.6, we can express

ε ∈ H(λ̂; aθ) as

ε =
∑

α∈θ
εαHα, (3.1)

where for all α ∈ θ, εα ∈ H(λ̂;R) is an R-valued transverse cycle.

Remark 3.18. There are different viewpoints on transverse cycles which are useful to work

with in different contexts. One of them is by using train tracks: Fixing a sufficiently nice

train track τ that carries the lamination λ, there is a one-to-one correspondence between

transverse cycles for λ and weights on the train track τ that satisfy the so-called switch

relations. For details on the different viewpoints on transverse cycles, see [Bon97].

In the following, if not stated otherwise, a transverse cycle will always be an aθ-valued

transverse cycle. A lamination λ is connected if it cannot be written as a disjoint union of

two sublaminations, i.e. subsets that are themselves laminations. Using train tracks, one

can show:
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twist condition will become apparent in Section 5.1, when we use transverse cycles as

parameters for the shearing map (see Remark 5.5).

We now calculate the dimension of the space of twisted cycles. Let θ′ ⊂ θ be a maximal

subset satisfying θ′∩ι(θ′) = ∅. For example, if ι is trivial, then θ′ is empty. If G = SL(n,R)

and θ = ∆, then θ′ can be chosen to be {α1, . . . , α⌊n
2
⌋}. The subset θ′ is not unique, but

its cardinality |θ′| is independent on a choice.

Proposition 3.21. Let G be a connected non-compact semisimple real Lie group, θ ⊂ ∆

and let θ′ ⊂ θ be a maximal subset satisfying ι(θ′) ∩ θ′ = ∅. Then

dim HTwist(λ̂; aθ) = |θ| (−χ(λ) + no(λ)) + |θ′| (n(λ)− no(λ)) ,

where χ(λ) is the Euler characteristic of λ, n(λ) is the number of connected components

of λ and no(λ) is the number of components that are orientable.

Proof. Using (3.1), we can write ε ∈ H(λ̂; aθ) as ε =
∑
εαHα with εα ∈ H(λ̂;R). Since

the pullback endomorphism R∗ : H(λ̂;R) → H(λ̂;R) is an involution, its eigenvalues are

±1 and we can write the vector space H(λ̂;R) as direct sum H(λ̂;R)+ ⊕H(λ̂;R)−, where

H(λ̂;R)± is the (±1)-eigenspace with respect to R∗. We write every εα ∈ H(λ̂;R) as

εα = ε+α + ε−α , where ε
+
α and ε−α lie in H(λ̂;R)+ and H(λ̂;R)−, respectively. By definition

of ε±α , we have

R∗ε =
∑

α∈θ
(R∗ε+α +R∗ε−α )Hα =

∑

α∈θ
(ε+α − ε−α )Hα.

Let θ′ ⊂ θ be as in the Proposition and let Fix(ι) ⊂ ∆ denote the set of fixed points of ι.

Then we have θ = (Fix(ι) ∩ θ) ∪̇θ′∪̇ι(θ′). If we apply the opposition involution ι to ε, we

obtain

ι(ε) =
∑

α∈θ
(ε+α + ε−α )ι(Hα) =

∑

α∈θ
(ε+α + ε−α )Hι(α) =

∑

α∈θ
(ε+ι(α) + ε−ι(α))Hα

=
∑

α∈Fix(ι)∩θ
(ε+α + ε−α )Hα +

∑

α∈θ′
(ε+ι(α) + ε−ι(α))Hα +

∑

α∈θ′
(ε+α + ε−α )Hι(α).

By the two equations above, the twist condition R∗ε = ι(ε) becomes

ε−α = −ε−α ∀α ∈ Fix(ι) ∩ θ,
ε+α = ε+ι(α) ∀α ∈ θ′ and

ε−α = −ε−ι(α) ∀α ∈ θ′.
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Thus, it follows that ε−α = 0 for all α ∈ Fix(ι) ∩ θ and hence

dim HTwist(λ̂; aθ) =
(
|Fix(ι) ∩ θ|+ |θ′|

)
· dim H(λ̂;R)+ + |θ′| · dim H(λ̂;R)−.

Using the one-to-one correspondence between arcs transverse to λ̂ and oriented arcs trans-

verse to λ, we can identify the subspace H(λ̂;R)+ with the space H(λ;R) of transverse

cycles for the lamination λ. We know from Proposition 3.19 that H(λ̂;R) has dimension

−χ(λ̂)+no(λ̂) = −2χ(λ)+n(λ)+no(λ) and H(λ̂;R)+ has dimension −χ(λ)+no(λ). Thus,

dim H(λ̂;R)− = dim H(λ̂;R)− dim H(λ̂;R)+

= (−2χ(λ) + n(λ) + no(λ))− (−χ(λ) + no(λ))

= −χ(λ) + n(λ).

Combining this with the fact that |Fix(ι) ∩ θ|+ |θ′| = |θ| − |θ′|, we obtain

dim HTwist(λ̂; aθ) =
(
|θ| − |θ′|

)
· (−χ(λ) + no(λ)) + |θ′| · (−χ(λ) + n(λ))

= |θ| (−χ(λ) + no(λ)) + |θ′| (n(λ)− no(λ)) ,

which finishes the proof.

Corollary 3.22. If the lamination λ is maximal, we have

dim HTwist(λ̂; aθ) = |θ|(6 · g(S)− 6) + |θ′|.

Proof. This follows from Proposition 3.21 using the fact that a maximal lamination is

connected and not orientable, so n(λ) = 1 and no(λ) = 0, and that χ(λ) = 3χ(S) =

6− 6 · g(S).

For the case G = SL(n,R) and θ = ∆, i.e. when Pθ = P∆ is the minimal parabolic,

Corollary 3.22 is exactly Lemma 16 in [Dre13].

We conclude this section with an estimate for transverse cycles. To formulate it, let k̃

be an oriented arc transverse to λ̃, k its projection to S and let k̂ be the unique lift

of k to Û as in Remark 3.16. Let ‖·‖aθ be the maximum norm with respect to the basis

{Hα}α∈θ from Remark 2.6, i.e. ifX =
∑

α∈θ xαHα with xα ∈ R, then ‖X‖aθ = maxα∈θ |xα|.
Further, on H(λ̂; aθ) consider the norm ‖ε‖H(λ̂;aθ)

= maxα∈θ ‖εα‖H(λ̂;R)
for a transverse

cycle ε =
∑

α∈θ εαHα for some fixed norm on H(λ̂;R).
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Lemma 3.23. There exists some constant C > 0, depending on k̃, such that for every

transverse cycle ε ∈ H(λ̂; aθ), for every R ∈ CPQ,

∥∥∥ε(k̂R)
∥∥∥
aθ

≤ C ‖ε‖H(λ̂;aθ)
(r(R) + 1),

where r(R) is the divergence radius, k̃R is a subarc of k̃ joining the negative endpoint of k̃

to an arbitrary point contained in R and k̂R is the corresponding arc in Û .

Proof. In [Bon96, Lemma 6], the statement is proven for R-valued transverse cycles. For

the more general case of aθ-valued transverse cycles, let ε =
∑

α∈θ εαHα. Then, with

[Bon96, Lemma 6],

∥∥∥ε(k̂d)
∥∥∥
aθ

= max
α∈θ

∣∣∣εα(k̂d)
∣∣∣

≤ max
α∈θ

(
C ‖εα‖H(λ̂;R)

(r(R) + 1)
)

= C ‖ε‖H(λ̂;aθ)
(r(R) + 1).

This finishes the proof.
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In this chapter we define two more important concepts that will become relevant for the

definition of cataclysm deformations. The first is the slithering map, which is an element in

G associated to two geodesics g, h that relates the pairs of flags associated to the geodesics.

The second one are stretching maps. They are associated with one oriented geodesic g, fix

the pair of flags associated with g and have an additional parameter H ∈ aθ. Throughout

this chapter, let θ ⊂ ∆ and let ρ : π1(S) → G be θ-Anosov with boundary map ζ.

4.1. The slithering map

In this section, if not stated otherwise, the lamination λ is assumed to be maximal.

Recall from Notation 2.26 that to every oriented geodesic g in S̃ we can associate a pair

(P+
g , P

−
g ) = (ζ(g+), ζ(g−)) of transverse flags. For two geodesics g and h in λ̃, we want

to construct an element in G that identifies the pairs of transverse flags (P+
h , P

−
h ) and

(P+
g , P

−
g ). This element will be called slithering map, referring to [BD17, Section 5.1],

where this map is constructed for the special case of Hitchin representations into SL(n,R).

In [BD17, Section 5.1], they already mention that their construction possibly extends

to θ-Anosov representations. Indeed, the proofs presented here are analogous to theirs,

transferred to our more general setting of Lie groups. We give the details for completeness

and for later reference.

In this thesis, we need the slithering maps only for an estimate in Proposition 4.18. How-

ever, we treat them in this chapter in detail, since they might be useful in other con-

texts as well. In particular, slithering maps play a crucial role in the construction of the

Bonahon-Dreyer coordinates for Hitchin representations [BD17] and our generalization of

the slithering maps to semisimple Lie groups might be useful to define such coordinates in

a more general context.

We first construct the slithering map in the special case that g and h have a common

endpoint.
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4. Slithering and stretching

Lemma 4.1. Let g and h be two oriented geodesics in λ̃ that share their positive endpoint,

i.e. g+ = h+. Then there exists a unique element Σgh in the unipotent radical N+
g ⊂ P+

g

that sends P−
h to P−

g , where g− and h− are the other endpoints of g and h, respectively.

Further, Σgh depends locally Hölder continuously on the flags P−
g and P−

h .

Proof. The existence and uniqueness are a direct consequence of the transversality of the

boundary map and of the fact that the unipotent radical N+
g ⊂ P+

g acts simply transitively

on flags transverse to P+
g by Remark 2.10. Also the local Hölder continuity follows from

the local Hölder continuity in Remark 2.10.

An analogous result holds if the geodesics share their negative endpoint. The map Σgh

only depends on the geodesics g and h, not on an orientation. The orientation of g and h

is only used to distinguish their endpoints.

If g, h are arbitrary geodesics in λ̃, and R ∈ Pgh, set ΣR := Σg0Rg1R
, where g0R, g

1
R are the

oriented geodesics bounding R as in Notation 3.10 (see Figure 3.3). Since λ is maximal by

assumption, g0R and g1R share an endpoint, so we can define Σg0Rg1R
. Let C = {R1, . . . , Rm}

be a finite subset of Cgh, where the indexing is from g to h, i.e. such that each Ri separates

g from Ri+1. Consider the finite composition

ΣC = ΣR1ΣR2 · · ·ΣRm .

We show in Lemma 4.5 below that ΣC converges when C tends to the whole set Cgh. To do

so, we first need an estimate for the basic slithering maps from Lemma 4.1.

Let k̃ be an arc transverse to λ̃ that intersects both g and h. Let d∞ be a distance on

∂∞S̃. Define a distance d on the space all oriented geodesics in the universal cover S̃ as

the sum of the distances in ∂∞S̃ between the positive and negative endpoints. For two

oriented geodesics g and h, their distance is given by

d(g, h) := d∞(g+, h+) + d∞(g−, h−), (4.1)

where d∞ is a distance on ∂∞S̃.

Remark 4.2. Let Gk̃ be the set of geodesics in λ̃ that intersect k̃. On Gk̃, there exists a

distance dk̃ defined by dk̃(g, h) = ℓ(k̃gh), where ℓ(k̃gh) is the the subarc of k̃ from g to

h. Since Gk̃ is compact, the distance d from above and dk̃ are equivalent, so there exist

constants B1, B2 > 0 depending on k̃, such that for all geodesics g, h ∈ Gk̃, we have

B1ℓ(k̃gh) ≤ d(g, h) ≤ B2ℓ(k̃gh),
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4.1. The slithering map

Let dG be the left-invariant and almost-right invariant metric on G introduced in Appendix

A.1 and r : Cgh → N the divergence radius from Lemma 3.11.

Lemma 4.3. There exist constants C,A > 0 depending on k̃ and ρ such that

dG(ΣR, Id) ≤ Ce−Ar(R)

for every component R ∈ Cgh.

Proof. Fix R ∈ Cgh and orient g0R and g1R such that they share the positive endpoint

(g0R)
+ = (g1R)

+ ∈ ∂∞S̃ . The element ΣR depends locally Hölder continuously on the P−
g0R

and P−
g1R

and is the identity if the two flags agree. As R varies in Cgh, these flags stay in

a compact subset of the space of pairs of transverse flags, because the arc k̃ is compact.

Note that this compact subset depends on k̃ and ρ. Thus, there exist constants C1, A1 > 0

depending on k̃ and ρ such that

dG(ΣR, Id) ≤ C1dFθ

(
P−
g0R
, P−

g1R

)A1

, (4.2)

where dFθ
is a metric on the space of flags Fθ. By Hölder continuity of the flag curve ζ,

there exist constants C2, A2 > 0 depending on ρ such that

dFθ

(
P−
g0R
, P−

g1R

)
≤ C2 d∂∞S̃

(
(g0R)

−, (g1R)
−)A2 = C2 d

(
g0R, g

1
R

)A2 , (4.3)

where we use that the distance between g0R and g1R is given as the sum of the distances of

the endpoints as in (4.1). Combining (4.2) and (4.3) with Remark 4.2 and Lemma 3.11,

we have

dG(ΣR, Id) ≤ C3ℓ(k̃ ∩R)A3 ≤ Ce−Ar(R)

for constants C,A > 0 depending on ρ and k̃. This finishes the proof.

Before we can show convergence of the ΣC as C tends to Cgh (Lemma 4.5), we need one

more lemma.

Lemma 4.4. As C = {R1, . . . , Rm} ranges over all finite subsets of Cgh, the distance

dG(ΣC , Id) remains uniformly bounded.
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4. Slithering and stretching

Proof. Using the triangle inequality and left-invariance of the metric dG, we have

dG (ΣC , Id) ≤ dG(ΣR1 . . .ΣRm ,ΣR1 . . .ΣRm−1) + dG(ΣR1 . . .ΣRm−1 , Id)

≤ dG(ΣRm , Id) + dG(ΣR1 . . .ΣRm−1 ,ΣR1 . . .ΣRm−2) + dG(ΣR1 . . .ΣRm−2 , Id)

≤
m∑

i=1

dG (ΣRi , Id)

≤
m∑

i=1

Ce−Ar(Ri),

The constants C and A are obtained from Lemma 4.3 and depend on k̃ and ρ. Since the

number of all triangles with a fixed divergence radius is uniformly bounded by some D ∈ N

(Lemma 3.11), we have

m∑

i=1

Ce−Ar(Ri) ≤ CD

∞∑

r=0

e−Ar <∞,

This bound does not depend on C, which proves the Lemma.

Now we have the necessary preparation to define the slithering map in general.

Lemma 4.5. As the finite subset C tends to Cgh, the limit

Σgh := lim
C→Cgh

ΣC

exists.

Proof. Choose a sequence (Cm)m∈N of finite subsets of Cgh tending to Cgh such that Cm has

cardinality m and Cm ⊂ Cm+1 for all m ∈ N. Let Cm = {R1, . . . , Rm} and let R ∈ Cgh
such that Cm+1 = Cm ∪ {R}. Let R separate Ri from Ri+1. Set C := {R1, . . . , Ri} and

C′ = {Ri+1, . . . , Rm}. Then

ΣCm+1 = ΣCΣC′ and ΣCm+1 = ΣCΣRΣC′ .

Let ‖·‖op(g) be the operator induced by a norm ‖·‖g as in Lemma A.2. Using left-invariance
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4.1. The slithering map

and almost right-invariance of the the metric dG, we have

dG
(
ΣCm+1 ,ΣCm

)
= dG (ΣCΣC′ ,ΣCΣRΣC′) (4.4)

= dG (ΣC′ ,ΣRΣC′)

≤
∥∥∥AdΣ−1

C′

∥∥∥
op(g)

dG(ΣR, Id)

≤ Ce−Ar(R)

where in the last inequality, the constants C and A come from the constants in Lemma 4.3

and from the fact that
∥∥∥AdΣ−1

C′

∥∥∥
op(g)

is uniformly bounded by Lemma 4.4. By Lemma 3.11,

the number of triangles R ∈ Cgh with divergence radius r(R) ≤ r is uniformly bounded.

Together with (4.4), this shows that dG
(
ΣCm+1 ,ΣCm

)
goes to zero as m goes to infinity,

hence (ΣCm)m∈N is a Cauchy sequence and converges.

Note that Σgh is well-defined: When g and h have a common endpoint g+ = h+ ∈ ∂∞S̃ and

other endpoints g− and h−, respectively, we can either define Σgh as the unique element

in the unipotent radical N+
g < P+

g sending P−
h to P−

g or as the limit limC→Cgh ΣC . Since

all geodesics separating g from h have g+ as an endpoint and N+
g is closed, this limit lies

in N+
g and sends P−

h to P−
g . By uniqueness, it agrees with Σgh.

The slithering map Σgh ∈ G satisfies some composition properties.

Lemma 4.6. For any two leaves g and h of λ̃, we have Σgg = Id and Σhg = Σ−1
gh . In

addition, if g, h, h′ are three leaves such that one of them separates the other two, we have

Σgh′ = ΣghΣhh′.

Proof. The fact that Σgg = Id is trivial. The other two properties follow from the con-

struction of Σgh by showing them first for finite compositions ΣC and then taking the

limit. For completeness, we write them down here. For showing the behavior under taking

inverses, note that, as sets Cgh = Chg. If C = {R1, . . . , Rm} ⊂ Cgh is a finite subset, let

C′ := {R′
1, . . . , R

′
m} ⊂ Chg be defined by R′

i := Rm−i+1. As sets, C and C′ agree, but

the labelings are reversed. For the basic slithering maps, we have ΣR′
i
= Σ−1

Rm−i+1
by

construction, so

ΣC′ = ΣR′
1
· · ·ΣR′

m
= Σ−1

Rm
· · ·Σ−1

R1
= (ΣR1 · · ·ΣRm)

−1 = Σ−1
C .

If C goes to Cgh, we have that C′ goes to Chg and by taking the limit it follows that

Σhg = Σ−1
gh .

For the composition property, first assume that h separates g and h′. Then we have

Cgh′ = Cgh ∪ Chh′ . Let C ⊂ Cgh be a finite subset and C1 := C ∩ Cgh′ , C2 := C ∩ Chh′ .
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next one. It may happen that one or both of Q0
i and Q1

i are degenerate, i.e. a geodesic, if

hi agrees with g
1
i or g0i+1.

As in Lemma 4.1, define ΣQ0
i
as the unique element in the unipotent radical of P+

g1i
that

sends P−
g1i

to P−
hi

= P−
g0i+1

and ΣQ1
i
as the unique element in the unipotent radical of

P−
hi

= P−
g0i+1

that sends P+
hi

= P+
g1i

to P+
g0i+1

. Set

Σ̂C := ΣQ0
0
ΣQ1

0
ΣR1ΣQ0

1
ΣQ1

1
ΣR2 · · ·ΣRmΣQ0

m
ΣQ1

m
.

By construction, since the triangles are pairwise adjacent when going from g to h, Σ̂C maps

P±
h to P±

g . We want to show that Σ̂C and ΣC have the same limit as C goes to Cgh.

By the triangle inequality, left-invariance and almost-right invariance of dG, we have

dG

(
Σ̂C ,ΣC

)
= dG

(
ΣQ0

0
ΣQ1

0

m∏

i=1

(
ΣRiΣQ0

i
ΣQ1

i

)
,

m∏

i=1

ΣRi

)

≤ dG

(
ΣQ0

0
ΣQ1

0

m∏

i=1

(
ΣRiΣQ0

i
ΣQ1

i

)
,ΣQ0

0
ΣQ1

0

m∏

i=1

ΣRi

)

+ dG

(
ΣQ0

0
ΣQ1

0

m∏

i=1

ΣRi ,
m∏

i=1

ΣRi

)

≤ dG

(
ΣQ0

1
ΣQ1

1

m∏

i=2

(
ΣRiΣQ0

i
ΣQ1

i

)
,

m∏

i=2

ΣRi

)

+

∥∥∥∥Ad
(
∏m

i=1 ΣRi)
−1

∥∥∥∥
op(g)

dG

(
ΣQ0

0
ΣQ1

0
, Id
)

≤ . . .

≤
m∑

i=0

∥∥∥Ad(ΣRi+1
···ΣRm )−1

∥∥∥
op(g)

dG

(
ΣQ0

i
ΣQ1

i
, Id
)
.

Since dG (ΣC , Id) is uniformly bounded for every finite subset C of Cgh (Lemma 4.4), also∥∥∥Ad(ΣRi+1
···ΣRm )−1

∥∥∥
op(g)

is uniformly bounded and we have that

dG

(
Σ̂C ,ΣC

)
≤ C

m∑

i=0

dG

(
ΣQ0

i
ΣQ1

i
, Id
)
.

Again by the triangle inequality and left-invariance of dG,

dG

(
ΣQ0

i
ΣQ1

i
, Id
)
≤ dG

(
ΣQ0

i
ΣQ1

i
,ΣQ0

i

)
+ dG

(
ΣQ0

i
, Id
)

= dG

(
ΣQ1

i
, Id
)
+ dG

(
ΣQ0

i
, Id
)
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As in the proof of Lemma 4.3, dG

(
Σ
Q

0/1
i

, Id
)
≤ C ℓ(k̃ ∩ Q0/1

i )A for constants C,A > 0.

The constant A comes from the Hölder continuity of the flag curve ζ. Without loss of

generality we can assume that A ≤ 1. Thus, if Q∗
i is either Q0

i or Q1
i , we have

ℓ(k̃ ∩Q0/1
i )A ≤ ℓ(k̃ ∩ (Q0

i ∪Q1
i )

A

≤ ℓ


k̃ ∩

⋃

R∈C
g1
i
g0
i+1

R




A

≤
∑

R∈C
g1
i
g0
i+1

ℓ(k̃ ∩R)A,

where Cg1i g0i+1
is the set of all ideal triangles in S̃ \ λ̃ between Ri and Ri+1. Combining the

above estimates and Lemma 3.11, we obtain

dG

(
Σ̂C ,ΣC

)
≤ C

∑

R∈Cgh\C
e−Ar(R).

The right hand side converges to zero as C converges to Cgh, so in total, Σ̂C and ΣC have

the same limit. This implies that Σgh maps P±
h to P±

g .

We now turn to the regularity of the slithering map.

Lemma 4.8. The slithering map Σgh depends locally separately Hölder continuously on

the leaves g, h in λ̃ in the following sense: Let k̃ be a compact arc transverse to λ̃, and let

Gk̃ denote the set of all geodesics in λ̃ that intersect k̃. Then for all g ∈ Gk̃, the assignment

h 7→ Σgh is Hölder continuous, i.e. there there exist constants C,A > 0 depending on k̃

and ρ such that

dG
(
Σgh′ ,Σgh

)
≤ Cd(h, h′)A

for every h, h′ ∈ Gk̃. In particular, dG (Σgh, Id) ≤ Cd(g, h)A.

Proof. Let k̃ be an arc transverse to λ̃. Fix a geodesic g in Gk̃ and let h, h′ ∈ Gk̃ be two

other geodesics. Since k̃ is tightly transverse, one of the three geodesics separates the other

two. By Lemma 4.6, Σgh′ = ΣghΣhh′ , and using left-invariance of dG,

dG
(
Σgh′ ,Σgh

)
= dG (Σhh′ , Id) (4.5)
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Now, using Lemma 4.3, there exist constants C,A > 0 such that

dG (Σhh′ , Id) = lim
C→Chh′

dG (ΣC , Id)

≤ lim
C→Chh′

m∑

i=1

dG (ΣRi , Id)

≤ C
∑

R∈Chh′
e−Ar(R)

≤ CD

∞∑

r=N

e−Ar,

where N := minR∈Chh′ r(R) and D ∈ N is the bound on the number of components with

fixed divergence radius from Lemma 3.11. The last expression is the remainder term of a

geometric series and bounded by a constant times e−AN . Thus, we have that

dG (Σhh′ , Id) ≤ C1e
−AminR∈N r(R) = C1 max

R∈Chh′
e−Ar(R).

Together with Lemma 3.11 and Remark 4.2, there exist constants Ci, Ai > 0 such that

max
R∈Chh′

e−Ar(R) ≤ C2 max
R∈Chh′

ℓ(k̃ ∩R)A ≤ C2 ℓ(k̃
A
hh′) ≤ C3d(h, h

′)A.

Therefore, dG (Σhh′ , Id) ≤ Cd (h, h′)A. Together with (4.5), it follows that there exist

constants C,A > 0 such that

dG
(
Σgh′ ,Σgh

)
≤ C1C3d(h, h

′)A,

which proves that h 7→ Σgh is locally Hölder continuous. The constants only depend on k̃

and ρ, but not on g.

We summarize the results from this section in a Proposition.

Proposition 4.9. There exists a unique family {Σgh}(g,h) of elements in G, indexed by all

pairs of leaves g, h in λ̃, that satisfies the following conditions:

(1) Σgg = Id, Σhg = (Σgh)
−1, and Σgh′ = ΣghΣhh′ when one of the three geodesics g, h, h′

separates the others;

(2) Σgh depends locally separately Hölder continuously on g and h in the sense of Lemma

4.8;

(3) if g and h are oriented and have a common positive endpoint g+ = h+ ∈ ∂∞S̃ and if

g− and h− are the negative endpoints of g and h, respectively, then Σgh is the unique
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4. Slithering and stretching

element in the unipotent radical of P+
g that sends P−

h to P−
g .

From (1)-(3) it follows that if g and h are oriented in parallel, Σgh sends the pair (P+
h , P

−
h )

to the pair (P+
g , P

−
g ).

Proof. The only thing left to show is uniqueness of the family {Σgh}(g,h). Let {Σ′
gh}(g,h)

be a family of elements in G satisfying the conditions (1)-(3) in Proposition 4.9. We claim

that for all geodesics g, h in λ̃, Σ′
gh is equal to Σgh. Let C = {R1, . . . , Rm} ⊂ Cgh be a finite

subset. By the composition condition (1) we have

Σ′
gh = Σ′

gg01
Σ′
g01g

1
1
Σ′
g11g

0
2
Σ′
g02g

1
2
· · ·Σ′

g0mg1m
Σ′
g1mh.

By condition (3), we have Σ′
g0i g

1
i
= Σg01g

1
1
= ΣRi for all i, so

Σ′
gh = Σ′

gg01
ΣR1Σ

′
g11g

0
2
ΣR2 · · ·ΣRmΣ

′
g1mh.

By the Hölder continuity (2), there exists constants C,A > 0 such that

dG

(
Σ′
g1i g

0
i+1
, Id
)
≤ Cd

(
g1i , g

0
i+1

)A
.

From Remark 4.2, we know that

d
(
g1i , g

0
i+1

)
≤ C1ℓ

(
k̃g1i g0i+1

)
= C1

∑

R∈C
g1
i
g0
i+1

ℓ
(
k̃ ∩R

)

Using the same techniques as in the proof of Lemma 4.7, we see that

dG
(
Σ′
gh,ΣC

)
≤ C

∑

R∈Cgh\C
e−Ar(R),

where the right hand side goes to zero as C tends to Cgh. This shows that Σ′
gh =

limC→Cgh ΣC = Σgh.

Remark 4.10. The requirement of being locally separately Hölder continuous is crucial

for the uniqueness in Proposition 4.9. One can construct families of maps satisfying all

requirements of the proposition except for Hölder continuity. For the special case G =

PSL(n,R) and θ = ∆, this is explained in [BD17, Remark 5.10].

The construction of the slithering map depends on the fact that λ is maximal. However,

from the proofs above, we can deduce a weaker statement also for non-maximal laminations.

In this case, we cannot construct Σgh for all pairs of geodesics, but we can still construct
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it in the case that the part of λ̃ between g and h consists only of “wedges”. Let λ be a

lamination, not necessarily maximal.

Definition 4.11. Let g and h be two geodesics in λ̃. Then R ∈ Cgh is a wedge component

if the geodesics g0R and g1R share an endpoint. Else, it is a non-wedge component. We say

that g and h are separated by wedges if Cgh consists entirely of wedge components.

In particular, if λ is maximal, every R ∈ Cgh is a wedge component and every pair of

geodesics in λ̃ is separated by wedges. In general, the number of non-wedge components

is finite, because the arc k has finite length.

Corollary 4.12. Let g and h be two geodesics in λ̃ oriented in parallel and separated by

wedges. Then there exists Σgh ∈ G sending P±
h to P±

g and constants C,A > 0 such that

dG (Σgh, Id) ≤ Cd(g, h)A.

Proof. The proofs of Lemma 4.1 to 4.8 do not use that λ is maximal, but only the weaker

assumption that g and h are separated by wedges. Thus, they are valid also in this

setting.

4.2. The stretching map

Let ρ : π1(S) → G be a θ-Anosov representation and ζ : ∂∞S̃ → Fθ the boundary map.

The goal of this section is to associate to an oriented geodesic g in the universal cover S̃

and H ∈ aθ an element TH
g in G, the so-called stretching map. These maps are the basic

building blocks for the cataclysm deformation.

Definition 4.13. Let g be an oriented geodesic in S̃ and H ∈ aθ. Let (P+
g , P

−
g ) be the

pair of transverse parabolics associated with g and let mg ∈ G such that mg · P±
θ = P±

g .

We define the H-stretching along g as

TH
g := mg exp(H)m−1

g .

By construction, TH
g lies in Lg = P+

g ∩ P−
g . The choice of mg from above is only unique

up to an element in Lθ. However, the definition of TH
g is independent of the choice of mg,

which follows from the fact that exp(aθ) is contained in the centralizer of Lθ.

Example 4.14. For G = SL(2,R), we have θ = ∆ = {α1} (see Example 2.3). In this case,

an element H ∈ aθ is a diagonal matrix with entries a and −a for some a ∈ R, and exp(H)
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is a diagonal matrix with entries ea and e−a. For the oriented geodesic g, the element mg

maps the oriented geodesic from 0 to ∞ to g, and thus

TH
g = mg

(
ea 0

0 e−a

)
m−1

g

is the hyperbolic element that acts as translation along the oriented geodesic g with trans-

lation length 2a.

Example 4.15. The case G = SL(n,R) and θ = ∆, i.e. P+
∆ = B+ is the minimal parabolic,

is treated in [Dre13]. We have that a∆ = a ∼= {(a1, . . . , an) ∈ R
n|∑n

i=1 ai = 0} and a pair

of transverse flags gives rise to a line splitting of Rn (see Example 2.11). If we look at the

pair of standard minimal parabolics (B+, B−), the ith line of the splitting is given by the

ith standard vector of Rn. For an oriented geodesic g, the element mg ∈ SL(n,R) maps

the standard splitting to the splitting given by the pair (P+
g , P

−
g ). With respect to a basis

adapted to this splitting, the stretching map TH
g for H = (λ1, . . . , λn) ∈ a∆ is diagonal

with entries ea1 , . . . , ean . Geometrically speaking, TH
g is the linear map that acts on the

ith line of the splitting as a stretch by the factor eai . This motivates the term stretching

map.

For an oriented geodesic g in S̃, denote by g the geodesic in S̃ with the same image, but

opposite orientation, and let ι : a → a be the opposition involution.

Lemma 4.16. The stretching map TH
g for an oriented geodesic g and elements H,H1, H2 ∈

aθ has the following properties:

1. TH1
g TH2

g = TH1+H2
g ,

2.
(
TH
g

)−1
= T−H

g ,

3. TH
g = T

−ι(H)
g and

4. ρ-equivariance, i.e. TH
γg = ρ(γ)TH

g ρ(γ)
−1 for all γ ∈ π1(S).

Proof. For the first property we have

TH1
g TH2

g =
(
mg exp(H1)m

−1
g

) (
mg exp(H2)m

−1
g

)

= mg exp(H1) exp(H2)m
−1
g

= mg exp(H1 +H2)m
−1
g .

The behavior under inverse holds since

T−H
g = mg exp(−H)m−1

g =
(
mgexp(H)m−1

g

)−1
=
(
TH
g

)−1
.
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For the third property, the behavior under reversing the orientation of g, let w0 ∈ G be an

element satisfying w0(a+) = −a+ as in Definition 2.4. We have for H ∈ aθ

w0 exp(H)w−1
0 = exp(Adw0(H)) = exp(−ι(H))

by definition of the opposition involution ι. Further, the element w0 satisfies w0P
+
θ = P−

θ ,

so if mg ∈ G maps P±
θ to P±

g , then mgw0 ∈ G maps P±
θ to P∓

g = P±
g . It follows that

TH
g = (mgw0) exp(H)(mgw0)

−1 = mg exp(−ι(H))m−1
g = T−ι(H)

g .

Note that this is independent og the choice of the representative w0, because two represen-

tatives differ by an element in ZK(a). For the ρ-equivariance, note that the flag curve ζ is

ρ-equivariant, i.e. (P+
γg, P

−
γg) = (ρ(γ) ·P+

g , ρ(γ) ·P−
g ). Thus, we can choose mγg = ρ(γ)mg,

which implies the ρ-equivariance of the stretching map.

Remark 4.17. If ρ and ρ′ are two representations that are conjugate by an elementM ∈ G,

then also the stretching maps TH
g and T ′H

g are conjugate by M . This follows from the

fact that the corresponding boundary maps ζ and ζ ′ satisfy ζ ′ = M · ζ, using the same

argument as for the ρ-equivariance in Lemma 4.16. Since on the character variety, conjugate

representations define the same point, we will sometimes switch from ρ to a representation

conjugate to ρ if convenient.

The following Proposition gives an estimate on the distance of the stretching maps TH
g and

TH
h depending on the distance of the oriented geodesics g and h for the case that g and h

are separated by wedges.

Proposition 4.18. There exist constants C,A > 0, depending on k̃ and ρ, such that for

all geodesics g, h in λ̃ that intersect k̃, separated by wedges and oriented positively with

respect to the orientation of k̃, for every H ∈ aθ,

dG(T
H
g , T

H
h ) ≤ C

(
(e‖H‖

a + 1)d(g, h)a
)
,

where ‖·‖a is the norm on a introduced in Lemma A.3.

Proof. Without loss of generality we can assume that the pair of transverse parabolics

(P+
g , P

−
g ) associated with g agrees with the pair (P+

θ , P
−
θ ) of standard transverse parabol-

ics. Since G acts transitively on pairs of transverse parabolics, there always exists a rep-

resentation conjugate to ρ with this property. Then the slithering map Σhg sends P±
θ to

P±
h . Thus, in the definition of the stretching maps, we can choose mh := Σhg. Using
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4. Slithering and stretching

left-invariance and almost right-invariance of dG (Lemma A.2), we have

dG(T
H
g , T

H
h ) = dG(exp(H),Σhg exp(H)Σgh)

≤
∥∥Adexp(−H)

∥∥
op(g)

dG(Id,Σhg) + dG(Id,Σgh). (4.6)

By left-invariance of the metric and Hölder continuity of the slithering map (Proposition

4.9 (2)), there exist constants C,A > 0 depending on k̃ and ρ such that

dG(Id,Σgh) = dG(Id,Σhg) ≤ Cd(g, h)A. (4.7)

Combining (4.6) and (4.7) with the estimate for
∥∥Adexp(−H)

∥∥
op(g)

provided by Lemma A.3,

there exist constants C,A > 0 depending on k̃ and ρ such that

dG(T
H
g , T

H
h ) ≤ C

(
e‖H‖

a + 1
)
d(g, h)A.

We want to remark here that the proof of Proposition 4.18 is the only point in the con-

struction of cataclysms where we need the slithering map. The Hölder continuity of the

slithering map allows us to prove the desired estimate, whereas the definition of the stretch-

ing map itself does not use the slithering map.

The following corollary covers the special case of Proposition 4.18 when the two geodesics

bound the same connected component in S̃ \ λ̃.

Corollary 4.19. Let k̃ be an oriented arc transverse to λ̃, let R ⊂ S̃ \ λ̃ be a wedge

component such that k̃ ∩ R 6= ∅ and let r(R) be the divergence radius (see Lemma 3.11).

There exist constants C,A > 0 depending on k̃ and ρ such that

dG

(
TH
g0R
T−H
g1R

, Id
)
≤ C

(
e‖H‖

a + 1
)
e−Ar(R).

Proof. This is a direct consequence of Proposition 4.18, using left-invariance of the metric,

Remark 4.2 and Lemma 3.11.
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5. Cataclysms

In the first part of this chapter we compose the stretching maps constructed in Section

4.2 to obtain shearing maps. Those are central in the second part of the chapter where

we introduce cataclysms. In the third part we prove additivity of cataclysms and natural

behavior under composing an Anosov representation with a Lie group homomorphism.

Cataclysms were first introduced for Teichmüller space by Thurston [Thu98] and under

the name of shear maps studied by Bonahon [Bon96]. Dreyer extended the construction

to ∆-Anosov representations into PSL(n,R) [Dre13].

We generalize his results to θ-Anosov representations into any semisimple connected non-

compact Lie group G for θ ⊂ ∆ with ι(θ) = θ. The construction of the shearing maps as a

composition of stretching maps in Section 5.1 and the definition of cataclysms in Section

5.2 are parallel to the construction in [Dre13]. The main difference lies in the definition of

the stretching maps. Further, in contrast to [Dre13] we do not assume the lamination λ to

be maximal.

5.1. The shearing map between two connected components

Fix a θ-Anosov representation ρ : π1(S) → G. Let ε ∈ HTwist(λ̂; aθ) be an aθ-valued

transverse twisted cycle (see Definition 3.20) and R ∈ CPQ. Set

ε(P,R) := ε(k̂PR) ∈ aθ, (5.1)

where k̃PR is the oriented subarc of k̃ from P to R, kPR its projection to S and k̂PR is the

distinguished lift transverse to λ̂ as in Remark 3.16. Let C = {R1, . . . , Rm} ⊂ CPQ be a

finite set of connected components labeled from P to Q and set g
0/1
i := g

0/1
Ri

. Set

ψε
C :=

(
T
ε(P,R1)

g01
T
−ε(P,R1)

g11

)
· · ·
(
T
ε(P,Rm)
g0m

T
−ε(P,Rm)
g1m

)
, (5.2)

and let

ϕε
C := ψε

C · T ε(P,Q)

g0Q
(5.3)
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5. Cataclysms

We will show that ϕε
C converges when the finite set C goes to the possibly infinite set CPQ.

Remark 5.1. This construction of the shearing maps is very similar to the construction of

the slithering maps Σgh in Section 4.1: For a finite subset C = {R1, . . . , Rm} ⊂ CPQ, for

every component Ri ∈ C, we have an element
(
T
ε(P,R1)

g01
T
−ε(P,R1)

g11

)
, and composing those

gives us ψε
C . As in the construction of the slithering maps, we then let C go to CPQ and

show that the limit exists (Proposition 5.3). Also the ideas of the proofs are similar to the

ones for the slithering map. However, the two families of maps are different and should

not be confused. In particular, the slithering maps only depend on the representation ρ,

whereas the shearing maps highly depend on the twisted cycle ε ∈ HTwist(λ̂; aθ).

Before showing convergence, we prove a technical lemma. Similar to Lemma 4.4, we show

that ψC is uniformly bounded for all finite subsets C ⊂ CPQ.

Lemma 5.2. For ‖ε‖HTwist(λ̂;aθ)
small enough, for every finite subset C ⊂ CPQ, the distance

dG(ψ
ε
C , Id) is uniformly bounded. The bound depends on k̃ and ρ.

Proof. Recall that the connected components of S̃ \ λ̃ that lie in CPQ are either wedge com-

ponents or non-wedge components (Definition 4.11) and that the number of non-wedge com-

ponents in CPQ is finite. Let Q1, . . . , Ql ∈ CPQ be the finitely many non-wedge components.

It might happen that all components are wedge components, for instance if the lamination

λ is maximal. Every finite subset C ⊂ CPQ can contain wedge components and non-wedge

components. Let C = {R1, . . . , Rm1 , Qi1 , . . . , Qim2
, }, where the Rj are wedge components

and the Qij are non-wedge components. In particular, {i1, . . . , im2} ⊂ {1, . . . , l}. By the

triangle inequality and left-invariance of dG, we have

dG(ψ
ε
C , Id) ≤

m1∑

j=1

dG

(
T
ε(P,Rj)

g0j
T
−ε(P,Rj)

g1j
, Id

)
+

m2∑

j=1

dG

(
T
ε(P,Qij

)

g0Qij

T
−ε(P,Qij

)

g1Qij

, Id

)

≤
m1∑

j=1

dG

(
T
ε(P,Rj)

g0j
T
−ε(P,Rj)

g1j
, Id

)
+

l∑

j=1

dG

(
T
ε(P,Qj)

g0Qj

T
−ε(P,Qj)

g1Qj

, Id

)
.

The second sum is finite and depends only on k̃, but not on C. For the first sum, we can

use Corollary 4.19 and obtain

m1∑

j=1

dG

(
T
ε(P,Rj)

g0j
T
−ε(P,Rj)

g1j
, Id

)
≤ C1

m1∑

j=1

(
e‖ε(P,Rj)‖

a + 1
)
e−Ar(Rj).

Since aθ is a finite-dimensional vector space, the norms ‖·‖a restricted to aθ and the

norm ‖·‖aθ from Lemma 3.23 are equivalent. Hence, Lemma 3.23 gives ‖ε(P,Rj)‖a ≤
C ‖ε‖ (r(Rj) + 1) for a norm ‖·‖ on HTwist(λ̂; aθ). Using the fact that the number of con-

nected components with fixed divergence radius is uniformly bounded by some D ∈ N

64



5.1. The shearing map between two connected components

(Lemma 3.11), it follows that there exists C2 > 0 such that

m1∑

j=1

(
e‖ε(P,Rj)‖

a + 1
)
e−Ar(Rj) ≤ C2

m1∑

j=1

(
eC‖ε‖(r(Rj)+1)

)
e−Ar(Rj) + C2

m1∑

j=1

e−Ar(Rj)

≤ C2D

∞∑

r=0

(
eC‖ε‖(r+1)

)
e−Ar + C2D

∞∑

r=0

e−Ar.

The second sum converges as A > 0. For ‖ε‖ < A/C, also the first sum converges,

independent of m1. Thus, dG(ψ
ε
C , Id) is uniformly bounded, the bound depending on k̃

and ρ.

We remark that in the above proof, the distinction between wedge components and non-

wedge components is only necessary if the lamination λ is non-maximal.

We can now prove convergence of the maps ϕC as the finite sets C converge to CPQ.

Proposition 5.3. There exists a constant B > 0 depending on k̃ and ρ such that for

ε ∈ HTwist(λ̂; aθ) with ‖ε‖HTwist(λ̂;aθ)
< B, the limit

ϕε
PQ := lim

C→CPQ

ϕε
C

exists.

Proof. If CPQ is finite, we have nothing to prove. So assume that CPQ is infinite. For a

finite subset C ⊂ CPQ as above, consider ψε
C as in (5.2). To show that ψε

C converges for

C → CPQ, analogous to the proof of Lemma 4.5, choose a sequence (Cm)m∈N of subsets of

CPQ such that Cm has cardinality m and such that Cm ⊂ Cm+1 for all m ∈ N. Fix m ∈ N,

let Cm = {R1, . . . , Rm} and let Cm+1 = Cm ∪ {R} for a connected component R ⊂ S̃ \ λ̃.
Let R separate Ri from Ri+1 and let C := {R1, . . . Ri} and C′ := {Ri+1, . . . , Rm}. Then

ψε
Cm+1

= ψε
C
(
T
ε(P,R)

g0R
T
−ε(P,R)

g1R

)
ψε
C′ .

As in (4.4), we have that

dG(ψ
ε
Cm+1

, ψε
Cm) ≤ Ce−Ar(R),

where we use the fact that ψε
C is uniformly bounded (Lemma 5.2) and Corollary 4.19. We

can apply Corollary 4.19, because form big enough, R ∈ Cm+1\Cm is a wedge component. It

follows that
(
ψε
Cm
)
m∈N is a Cauchy sequence and thus converges. Thus, also ϕε

Cm converges

as m goes to infinity. The constant B here is the same as in Lemma 5.2.
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5. Cataclysms

Definition 5.4. For P,Q ∈ S̃\λ̃ and ε ∈ HTwist(λ̂; aθ) small enough, the element ϕε
PQ ∈ G

is called shearing map from P to Q.

If no confusion is possible, we omit the superscript and simply write ϕPQ for ϕε
PQ.

Remark 5.5. We can now motivate the twist condition in Definition 3.20: It guarantees that

the shearing maps behave well under taking the inverse. We illustrate this for the case that

P and Q are adjacent. The general case is treated below in Proposition 5.6. If P,Q ⊂ S̃ \ λ̃
are two connected components, then, by definition of k̂PQ, we have k̂QP = R(k̂PQ), where

R : Û → Û is the orientation-reversing involution. It follows that for ε ∈ HTwist(λ̂; aθ),

ι(ε(P,Q)) = R∗ε(k̂PQ) = ε(R(k̂PQ)) = ε(k̂QP ) = ε(Q,P ).

Let P and Q be adjacent components, separated by a geodesic g, oriented to the left as

seen from P . Denote by g the same geodesics, but with opposite orientation. Using the

properties of the stretching map (Lemma 4.16)

(ϕPQ)
−1 =

(
T ε(P,Q)
g

)−1
= T−ε(P,Q)

g = T
ι(ε(P,Q))
g = T

ε(Q,P )
g = ϕQP . (5.4)

Thus, the twist condition R∗ε = ι(ε) guarantees that ϕ−1
PQ = ϕQP .

The shearing maps ϕPQ have some natural properties.

Proposition 5.6. For connected components P,Q,R in S̃ \ λ̃, and ε ∈ HTwist(λ̂; aθ) small

enough, the shearing maps satisfy

ϕQP = ϕ−1
PQ, (5.5)

ϕPR ϕRQ = ϕPQ. (5.6)

Further, the shearing maps are ρ-equivariant, i.e. for all γ ∈ π1(S)

ϕ(γP )(γQ) = ρ(γ)ϕPQρ(γ)
−1. (5.7)

Proof. We first show ρ-equivariance (5.7). Observe that C(γP )(γQ) = γCPQ, and that the

twisted cycle ε ∈ HTwist(λ̂; aθ) satisfies ε(γR, γR′) = ε(R,R′) for all R,R′ ⊂ S̃ \ λ̃. Let

P ′ = {R′
1, . . . , R

′
m} ⊂ C(γP )(γQ) be a finite subset and Ri ∈ CPQ such that R′

i = γRi. Then,
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5.1. The shearing map between two connected components

using the ρ-equivariance of the stretching maps (Lemma 4.16), we have

ϕC′ :=

m∏

i=1

(
T
ε(γP,R′

i)

g0
R′
i

T
−ε(γP,R′

i)

g1
R′
i

)
T
ε(γP,γQ)

g0γQ

=

m∏

i=1

(
T
ε(P,Ri)

γg0Ri

T
−ε(P,Ri)

γg1Ri

)
T
ε(P,Q)

γg0Q

=
m∏

i=1

(
ρ(γ)T

ε(P,Ri)

g0Ri

T
−ε(P,R′

i)

g1Ri

ρ(γ)−1

)
ρ(γ)T

ε(P,Q)

g0Q
ρ(γ)−1

= ρ(γ)

(
m∏

i=1

(
T
ε(P,Ri)

g0Ri

T
−ε(P,R′

i)

g1Ri

)
T
ε(P,Q)

g0Q

)
ρ(γ)−1

= ρ(γ)ϕCρ(γ)
−1.

If we let C′ tend to CPQ, it follows that ϕγPγQ = ρ(γ)ϕPQρ(γ)
−1.

For the behavior under taking the inverse, we first assume that CPQ = {R1, . . . , Rm} is

finite. Set R0 := P and Rm+1 := Q. Since all the connected components are adjacent,

we have g1Ri
= g0Ri+1

. Using the additivity of the transverse cycle, we have −ε(P,Ri) +

ε(P,Ri+1) = ε(Ri, Ri+1). Further, the stretching maps satisfy TH1
g TH2 = TH1+H2

g for

H1, H2 ∈ aθ by Lemma 4.16. This simplifies the expression of the shearing map to

ϕPQ = T
ε(P,R1)

g0R1

T
ε(R1,R2)

g0R2

· · ·T ε(Rm,Q)

g0Rm+1

. (5.8)

Let CQP = {R′
1, . . . , R

′
m}, where R′

i = Rm−i+1. As sets, CPQ and CQP agree, but the

elements are labeled in opposite order. Then g0R′
i
= g1Rm−i+1

= g0Rm−i+2
, where the last

equality holds because the triangles Rm−i+1 and Rm−i+2 are adjacent. Using the equality

from (5.4) for all the stretching maps in the composition, we have

ϕ−1
PQ =

(
T
ε(P,R1)

g0R1

· · ·T ε(Rm,Q)

g0Rm+1

)−1

(5.9)

= T
ε(Q,Rm)

g0Rm+1

· · ·T ε(R1,P )
g
R0
1

= T
ε(Q,R′

1)

g0
R′
1

· · ·T ε(R′
m,P )

g0
R′
m+1

= ϕQP .

In the general case, CPQ is infinite. In this case, to show the behavior under taking

inverses, we use the same idea as in the proof of Lemma 4.7. We express ϕPQ as limit of

different maps ϕ̂C , that are constructed using collections of triangles that are adjacent to

the respective next one. For C = {R1, . . . , Rm} ⊂ CPQ, define auxiliary geodesics hi and

triangles Q0
i , Q

1
i as in the proof of Lemma 4.7 (see Figure 4.1). In this way, we approximate
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5. Cataclysms

the part of the geodesic lamination between two components Ri and Ri+1 by triangles. Set

ψ̂C :=

(
T
ε(P,Q0

0)

g0
Q0
0

T
−ε(P,Q0

0)

g1
Q0
0

)(
T
ε(P,Q1

0)

g0
Q1
0

T
−ε(P,Q1

0)

g1
Q1
0

)

m∏

i=1

((
T
ε(P,Ri)

g0i
T
−ε(P,Ri)

g1i

)(
T
ε(P,Q0

i )

g0
Q0
i

T
−ε(P,Q0

i )

g1
Q0
i

)(
T
ε(P,Q1

i )

g0
Q1
i

T
−ε(P,Q1

i )

g1
Q1
i

))
.

and ϕ̂C := ψ̂CT
ε(P,Q)

g0Q
. We remark here that the value of ε(P,Q

0/1
i ) is not well-defined,

because the auxiliary triangles Q
0/1
i are not in the complement of the lamination. To

define ε(P,Q
0/1
i ) we have to choose an arc from P to Q

0/1
i and ε(P,Q

0/1
i ) is determined by

the endpoint of this arc. However, when we take the limit C → CPQ, this choice becomes

irrelevant.

With the same techniques as in the proof of Lemma 4.7, using that dG(ψC , Id) is uniformly

bounded by Lemma 5.2, we can show that

dG

(
ψ̂C , ψC

)
≤ C

∑

R∈CPQ\C
e−Ar(R),

so ψ̂C and ψC have the same limit as C tends to CPQ. It follows that also ϕ̂C converges to

ϕPQ.

For a finite subset C ⊂ CPQ, we can show the behavior under taking inverse for ϕ̂C just

as in (5.9), because all the triangles appearing in the composition are adjacent to their

respective neighbors. Since ϕ̂C converges to ϕPQ, also ϕPQ satisfies (5.5) by continuity.

For the composition property (5.6), assume first that P,R,Q ⊂ S̃ \ λ̃ are such that R

separates P and Q and that CPQ, CQR and CPR are finite. We have that CPQ = CPR ∪
{R} ∪ CRQ and the composition property directly follows from writing the shearing maps

as in (5.8). An according property for the maps ϕ̂C can be shown in the same way, and

the composition property (5.6) for the shearing maps ϕPQ follows by taking the limit. If P

separates R from Q, then we have by the above argument ϕRQ = ϕRPϕPQ, which implies

ϕPQ = ϕPRϕRQ, since ϕ
−1
RP = ϕPR. A similar argument works if Q separates P from R.

In general, none of P , Q and R separates the other two, but there exists a component P ′

that separates P , R and Q pairwise (see Figure 5.1). Then we have

ϕPQ = ϕPP ′ϕP ′Q = ϕPRϕRP ′ϕP ′Q = ϕPRϕRQ.

This shows that the composition property (5.6) holds for any three connected components

P,R,Q ⊂ S̃ \ λ̃.
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of components with fixed divergence radius is bounded by some D ∈ N, this gives us

dG(ψPQ, Id) ≤ C1D

∞∑

l=r+1

(
eC‖ε‖(l+1) + 1

)
e−Al

≤ C1D
∞∑

l=r+1

(
eC‖ε‖(l+1)

)
e−Al + C1

∞∑

l=r+1

e−Al.

Both sums are the remainder term of the geometric series and for ‖ε‖ < A/C, they are

bounded by a constant times e−A′r, where A′ := −(C ‖ε‖−A). This finishes the proof.

Up to now, the bound on the cycle ε ∈ HTwist(λ̂; aθ) that guarantees the convergence

depends on the arc k̃ transverse to λ̃. We now show that there exists a constant depending

on the representation ρ only.

Proposition 5.9. There exists a constant B > 0 depending on the representation ρ only

such that for all connected components P,Q,R ⊂ S̃ \ λ̃, for all ε ∈ HTwist(λ̂; aθ) with

‖ε‖HTwist(λ̂;aθ)
< B, the limit ϕPQ = limC→CPQ

ϕPQ exists and satisfies (5.5), (5.6) and

(5.7).

Proof. The only thing left to show is that the constant B from Proposition 5.3 can be

made independent of the arc k̃. Choose a collection k1, . . . , km of arcs on the surface S

transverse to λ such that every connected component in S \ λ and every leaf of λ is met

by at least one arc kj . For every j, let Bj > 0 be the constant as in Proposition 5.3 for

a lift k̃j of kj . This is independent of the choice of lift. Let B := min{B1, . . . , Bm}. Let

P,Q ⊂ S̃ \ λ̃ be connected components. Then there exists a finite sequence of components

P = R0, R1, . . . , RN , RN+1 = Q such that Rj separates Rj−1 from Rj+1 and Rj , Rj+1 are

met by the same lift k̃ij of a transverse arc kij . For ‖ε‖HTwist(λ̂;aθ)
< B, the maps ϕRjRj+1

exist and thus also ϕPQ = ϕPR1 · · ·ϕRNQ.

From Proposition 5.9, it follows that there exists a neighborhood Vρ ⊂ HTwist(λ̂; aθ) around

0, depending on ρ, and a map

Vρ → G{(P,Q) | P,Q⊂S̃\λ̃}

ε 7→ {ϕε
PQ}(P,Q)

that assigns to ε the associated family of shearing maps. By construction, the family of

shearing maps {ϕε
PQ}(P,Q) depends continuously on the shearing parameter ε.

Remark 5.10. The family of shearing maps {ϕPQ}(P,Q) depends on the representation ρ. If

two representations ρ, ρ′ : π1(S) → G are conjugate, ρ′(γ) =Mρ(γ)M−1 for some M ∈ G,
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5.2. Cataclysm deformations

then for every oriented geodesic g in S̃ and H ∈ aθ, the associated stretching maps TH
g

and T ′H
g are conjugated by M . Consequently, also the shearing maps ϕPQ and ϕ′

PQ are

conjugated by M . Thus, the conjugacy class of the shearing map ϕPQ only depends on

the conjugacy class of ρ.

5.2. Cataclysm deformations

We have now developed the concepts that we need to define cataclysm deformations for

θ-Anosov representations.

Let ε ∈ HTwist(λ̂; aθ) be sufficiently small such that the shearing map ϕPQ exists for all

connected components P,Q ⊂ S̃ \ λ̃. Fix a reference component P0 ⊂ S̃ \ λ̃. For γ ∈ π1(S)

set

Λε
0ρ(γ) := ϕP0(γP0)ρ(γ) .

Lemma 5.11. The map Λε
0ρ : π1(S) → G is a group homomorphism. Further, if P1 ⊂ S̃\λ̃

is another reference component, then Λε
1ρ is conjugate to Λε

0ρ by ϕP1P0.

Proof. Using the ρ-equivariance and the composition property of the shearing map (Propo-

sition 5.6) we have for γ1, γ2 ∈ π1(S)

Λε
0ρ(γ1γ2) = ϕP0(γ1γ2P0)ρ(γ1γ2)

= ϕP0(γ1P0)ϕ(γ1P0)(γ1γ2P0)ρ(γ1)ρ(γ2)

= ϕP0(γ1P0)

(
ρ(γ1)ϕP0(γ2P0)ρ(γ1)

−1
)
ρ(γ1)ρ(γ2)

=
(
ϕP0(γ1P0)ρ(γ1)

) (
ϕP0(γ2P0)ρ(γ2)

)

= Λε
0ρ(γ1)Λ

ε
0ρ(γ2).

If P1 is another reference triangle, then for γ ∈ π1(S),

Λε
1ρ(γ) = ϕP1γP1ρ(γ)

= ϕP1P0ϕP0(γP0)ϕ(γP0)(γP1)ρ(γ)

= ϕP1P0ϕP0(γP0)ρ(γ)ϕP0P1ρ(γ)
−1ρ(γ)

= ϕP1P0Λ
ε
0ρ(γ) (ϕP1P0)

−1 ,

so the two cataclysms with respect to the reference triangles P0 and P1 are conjugate by

ϕP1P0 .
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We have now constructed a map Λε
0 : Vρ → Hom(π1(S), G), defined on a small neighborhood

of 0 in HTwist(λ̂; aθ) that depends on the reference triangle P0.

Theorem 5.12. Let ρ be a θ-Anosov representation. Fix a reference component P0 ⊂ S̃\λ̃.
There exists a neighborhood Vρ of 0 in HTwist(λ̂; aθ) and a continuous map

Λ0 : Vρ → Hom(π1(S), G)

ε 7→ Λε
0ρ

such that Λ0
0ρ = ρ. Further, there exists a neighborhood Uρ ⊂ Vρ such that for all ε ∈ Uρ,

Λε
0ρ is θ-Anosov.

Proof. The only thing left to show for the first statement is continuity, which follows from

the fact that the shearing maps ϕε
PQ depend continuously on the shearing parameter ε.

The second statement follows from the fact that the set of θ-Anosov representations is open

in Hom(π1(S), G).

If we change the representation ρ by conjugation, or if we change the reference triangle, we

obtain conjugate representations. Thus, the map Λ0 descends to the character variety.

Corollary 5.13. Let ρ be a θ-Anosov representation and denote by [ρ] the corresponding

element in the character variety χθ−Anosov(S,G). There exists a neighborhood Uρ of 0 in

HTwist(λ̂; aθ) and a continuous map

Λ: Uρ → χθ-Anosov(S,G)

ε 7→ [Λε
0ρ]

such that Λ0[ρ] = [ρ].

Proof. Since conjugate representations give conjugate shearing maps, there exists a well-

defined map Λ on the representation variety. This map does not depend on the choice of

reference triangle P0 ⊂ S̃ \ λ̃. The neighborhood Uρ is the same as in Theorem 5.12.

Abusing notation, we call both maps Λ0 and Λ cataclysm deformation based at ρ along λ

with respect to the shearing parameter ε ∈ HTwist(λ̂; aθ). When talking about cataclysms

on the level of homomorphisms with respect to a fixed reference component P0, we write

Λ0. Without the subscript 0, we refer to the deformation on the character variety.
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Example 5.14. Let G = PSL(2,R). In this case, a = {diag(a,−a)|a ∈ R} ∼= R and the

simple root system consist of only one element, ∆ = {α1} with α (diag(a,−a)) = 2a. The

opposition involution ι is trivial, so the space HTwist(λ̂; aθ) of twisted transverse cycles

consist exactly of those transverse cycles for λ̂ that are invariant under the orientation

reversing involution R, which can be identified with H(λ;R) as in the proof of Proposition

3.21. For H = diag(a,−a) ∈ a and an oriented geodesic g, the stretching map TH
g is

the hyperbolic isometry with oriented axis g and translation length α(H) = 2a. In this

case cataclysms are shearing deformations for hyperbolic metrics, that were first described

by Thurston [Thu98] and investigated in detail by Bonahon [Bon96]. They can be used

to define shearing coordinates for Teichmüller space. In particular, shearing deformations

are injective, i.e. deforming with respect to different shearing parameters gives different

hyperbolic metrics. Further, if we restrict to cycles with values in a+, then a transverse

cycle is a transverse measure, all the stretching maps TH
g move to the left with respect

to the orientation of g and the resulting deformations are Thurston’s earthquake maps

[Thu86].

5.3. Properties of cataclysm deformations

We now show two properties of cataclysms: additivity with respect to the transverse twisted

cycles and natural behavior with respect to composing an Anosov representation with a

Lie group homomorphism.

5.3.1. Additivity

In this subsection we show that the cataclysm deformation with respect to a fixed reference

component P0 behaves well under addition of cycles, i.e. Λε+η
0 ρ = Λε

0 (Λ
η
0ρ) for η, ε ∈

HTwist(λ̂; aθ). We have to keep in mind here that a cataclysm deformation is based at ρ for

some representation ρ, i.e. the whole construction depends on the representation we start

with. In this case, we look at the (ε + η)-cataclysm deformation based at ρ and at the

ε-cataclysm deformation based at Λη
0ρ.

To shorten notation, let P = P0 be the fixed reference component. Let η ∈ HTwist(λ̂; aθ)

be small and ρ′ := Λη
0ρ. We will denote all elements constructed with respect to ρ′ with a

prime, in particular the stretching maps T ′
g
H and shearing maps ϕ′ε

PQ. The first step to

show additivity is to relate the stretching maps TH
g and T ′

g
H′

for ρ and ρ′. Let g be an

oriented leaf bounding a component Q. Let mg ∈ G be such that

mg · P±
θ = P±

g = ζ(g±).
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In Theorem 6.1 below we prove that if x is a vertex of the component Q, then that

ζ ′(x) = ϕη
PQ ·ζ(x). Define m′

g := ϕη
PQmg. Then it follows that

m′
g · P±

θ =
(
ϕη
PQmg

)
· P±

θ = ϕη
PQ · P±

g = ϕη
PQ · ζ(g±) = ζ ′(g±) = P ′±

g .

Hence, for H ∈ aθ, we have

T ′H
g = m′

g exp(H)(m′
g)

−1 = ϕη
PQ

(
mg exp(H)m−1

g

) (
ϕη
PQ

)−1
= ϕη

PQT
H
g

(
ϕη
PQ

)−1
, (5.10)

so T ′H
g is conjugated to TH

g by ϕη
PQ.

Proposition 5.15. Let P be the fixed reference component for the cataclysm deformation

Λ0. Then for ε, η ∈ HTwist(λ̂; aθ) small enough, for every component Q ⊂ S̃ \ λ̃ it holds

that

ϕ′ε
PQ = ϕε+η

PQ

(
ϕη
PQ

)−1
.

Proof. The details of the proof can be found in the Appendix A.2. The ideas are very

similar to the proofs for the shearing maps in Section 5.1 and use (5.10) . In particular, we

approximate CPQ by a sequence (Cr)r∈N of finite subsets, where Cr consists of all components

of S̃ \ λ̃ of divergence radius at most r. Then we compute ϕ′ε
Cr and show that it converges

to ϕε+η
PQ

(
ϕη
PQ

)−1
as r goes to infinity.

Remark 5.16. Proposition 5.15 relies on the fact that P is the fixed reference component

for the cataclysm deformation Λ0. If we look at components R,Q ⊂ S̃ \ λ̃ where R is

not equal to the reference component P , we have, using the composition property of the

shearing maps,

ϕ′ε
RQ = ϕ′ε

RPϕ
′ε
PQ

=
(
ϕ′ε

PR

)−1
ϕ′ε

PQ

=
(
ϕε+η
PR

(
ϕη
PR

)−1
)−1

ϕε+η
PQ

(
ϕη
PQ

)−1

= ϕη
PRϕ

ε+η
RP ϕ

ε+η
PQ

(
ϕη
PQ

)−1

= ϕη
PR

(
ϕε+η
RQ

(
ϕη
RQ

)−1
)(

ϕη
PR

)−1
.

So in this case, ϕ′ε
RQ is conjugate to

(
ϕε+η
RQ

(
ϕη
RQ

)−1
)

by ϕη
PR.

Corollary 5.17. Let ρ : π1(S) → G be θ-Anosov and let ε, η ∈ HTwist(λ̂; aθ) be small
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enough. Then

Λε+η
0 ρ = Λε

0 (Λ
η
0ρ) .

Proof. Set ρ′ := Λη
0ρ and use the same notation as before. Then for every γ ∈ π1(S) we

have using Proposition 5.15,

Λε
0 (Λ

η
0ρ) (γ) = ϕ′ε

P (γP ) (Λ
η
0ρ(γ)) = ϕ′ε

P (γP )

(
ϕη
P (γP )ρ(γ)

)
= ϕε+η

P (γP )ρ(γ) = Λε+η
0 ρ(γ),

which proves the claim.

5.3.2. Behavior under composition with Lie group homomorphisms

We now examine how cataclysms behave with respect to composing an Anosov representa-

tion ρ : π1(S) → G with a Lie group homomorphism κ : G → G′ for some other Lie group

G′. For that, we first need to know how the property of being Anosov behaves under

composition with Lie groups homomorphisms. This question is adressed by Guichard and

Wienhard in [GW12]. In particular, composing an Anosov representation with a Lie group

homomorphism does not always give an Anosov representation. An example where this is

not the case can be found in [GW12, Section 4.3]. We first recall the results from Guichard

and Wienhard before giving the main result of this subsection.

Let κ : G → G′ be a homomorphism between semisimple Lie groups and κ∗ : g → g′ the

associated Lie algebra homomorphism. We denote with primes the objects associated with

G′, e.g. ∆′ is the set of simple roots for G′. We can assume that the maximal compact

subgroup K ′ < G′ and the maximal abelian subalgebra a′ are compatible with κ in the

sense that κ(K) ⊂ K ′ and κ∗(a) ⊂ a′ (see [GW12, Section 4.1] and references therein).

As in the previous sections, let aθ =
⋃

α∈∆\θ ker(α). Let W
′
θ′ be the subgroup of the Weyl

group W ′ for G′ that fixes a′θ′ pointwise. There there is the following result:

Proposition 5.18 ([GW12, Proposition 4.4]). Let κ : G → G′ be a Lie group homomor-

phism and assume that κ(K) ⊂ K ′ and κ(a) ⊂ a′. Let θ ⊂ ∆ and suppose that there exist

w′ ∈W ′ and θ′ ⊂ ∆′ such that

κ∗

(
a+ \

⋃

α∈θ
ker(α)

)
⊂ w′ ·W ′

θ′ ·
(
a′+ \

⋃

α∈θ′
ker(α′)

)
. (5.11)

Then for any θ-Anosov representation ρ : π1(S) → G, the representation κ ◦ ρ is θ′-

Anosov. Furthermore κ(P±
θ ) ⊂ w′P ′±

θ′w
′−1, and there is an induced map κ+ : Fθ → F ′

θ′.

If ζ : ∂∞S̃ → Fθ is the boundary map associated to ρ, then the boundary map for κ ◦ ρ is

κ+ ◦ ζ.
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The assumption (5.11) guarantees that if H ∈ a+ does not lie in a wall of the Weyl chamber

corresponding to an element α ∈ θ, then also its image under κ∗ stays away from the walls

corresponding to the elements α′ ∈ θ′.

Remark 5.19. In [GW12], they use a different notational convention than we do – what

they call θ-Anosov is (∆ \ θ)-Anosov in our notation. Moreover, in their paper, there is a

typing error in the statement and proof of Proposition 5.18: In the assumption (5.11), θ

and ∆ \ θ are reversed. The version we state here is adapted to our notational convention

of θ-Anosov and has the corrected assumption (5.11).

For the special case thatG has rank 1, e.g. forG = SL(2,R), then |∆| = 1 and being Anosov

always means being ∆-Anosov. In this case, there is a simple description for θ′ ⊂ ∆′ that

guarantees that κ ◦ ρ is θ′-Anosov:

Proposition 5.20 ([GW12, Proposition 4.7]). Let G be a Lie group of real rank 1. Let

ρ : π1(S) → G be an Anosov representation and κ : G→ G′ a homomorphism of Lie groups.

Assume that the Weyl chambers of G and G′ are arranged so that κ∗(a+) ⊂ a′+. Then

κ ◦ ρ is θ′-Anosov, where θ′ = {α′ ∈ θ′ | κ∗α′ 6= 0}, where κ∗ : a′∗ → a∗ is the map induced

by κ.

Recall that a∗ is the dual vector space to a and the induced homomorphism κ∗ : a′∗ → a∗

is the dual of the homomorphism κ∗ : a → a′. It is defined by

(κ∗α′)(H) = α′(κ∗(H))

for every α′ ∈ a′∗ and every H ∈ a.

If κ∗ satisfies κ∗(aθ) ⊂ a′θ′ , then it induces a linear map HTwist(λ̂; aθ) →֒ HTwist(λ̂; a′θ′) that

we also denote by κ∗.

The cataclysm deformation Λ0 with respect to a fixed reference component in S̃ \ λ̃ is

natural in the following sense:

Proposition 5.21. Let κ : G→ G′ be a Lie group homomorphism and assume that κ(K) ⊂
K ′ and κ(a) ⊂ a′. Let θ ⊂ ∆ and θ′ ⊂ ∆′ such that (5.11) is satisfied. Further, assume

that κ∗(aθ) ⊂ a′θ′. Let ρ : π1(S) → G be θ-Anosov and let ε ∈ HTwist(λ̂; aθ) be sufficiently

small such that Λε
0ρ exists. Then κ ◦ ρ is θ′-Anosov and

Λκ∗ε
0 (κ ◦ ρ) = κ (Λε

0ρ) . (5.12)

We want to remark that the notation Λ0 for the cataclysm deformation does not encode

the group G containing the image of the representation ρ. This is given implicitly by the

76



5.3. Properties of cataclysm deformations

cycle. In particular, in Proposition 5.21, Λκ∗ε
0 is the deformation of a representation with

values in G′, and Λε
0 is the deformation of a representation with values in G.

Remark 5.22. In Proposition 5.21 we need to make the assumption κ∗(aθ) ⊂ a′θ′ . If the Lie

group G is of rank 1 and if θ′ is as in Proposition 5.20, then this assumption automatically

satisfied. Indeed, we have θ = ∆, so aθ = a and for all α′ ∈ ∆′ \ θ′ we have κ∗α′ = 0 by

definition of θ′. Hence,

α′(κ∗(H)) = (κ∗α′)(H) = 0 ∀α′ ∈ ∆′ \ θ′, H ∈ a,

so κ∗(a) ⊂ a′θ′ .

Proof of Proposition 5.21. The fact that κ ◦ ρ is θ′-Anosov is guaranteed by Proposition

5.18. Up to changing the Weyl chamber of G′, we can assume that w′ = Id. Hence, by

Proposition 5.18 we know that κ(P±
θ ) = P ′

θ′
±. Let g be an oriented geodesic in S̃. If

mg ∈ G such that mg · P±
θ = ζ(g±), then by equivariance of κ+ and the definition of the

boundary map for κ ◦ ρ, we have

κ(mg) · P ′±
θ′ = κ(mg) · κ+(P±

θ ) = κ+(mg · P±
θ ) = κ+(P±

g ) = κ+ ◦ ζ(g±).

Further, for H ∈ aθ it holds that exp(κ∗H) = κ(exp(H)). Thus, the stretching maps

TH
g ∈ G and T κ∗H

g ∈ G′ satisfy

T κ∗H
g = κ(mg) exp(κ∗H)κ(mg)

−1 = κ(TH
g ).

It follows that for ε ∈ HTwist(λ̂; aθ) the shearing maps satisfy ϕκ∗ε
PQ = κ(ϕε

PQ). Conse-

quently, we have for every γ ∈ π1(S),

Λκ∗ε
0 (κ ◦ ρ(γ)) = ϕκ∗ε

PγP (κ ◦ ρ(γ))
= κ(ϕε

PγP )κ(ρ(γ))

= κ(ϕε
PγPρ(γ))

= κ (Λε
0ρ(γ)) .

This finishes the proof.

We finish this subsection with examples for Lie group homomorphisms κ for which the

prerequisites in Proposition 5.21 are satisfied, as well as with a counterexample.

Example 5.23. An example where we can apply Proposition 5.21 are (n, k)-horocyclic rep-

resentations as introduced in Subsection 2.4.3. They stabilize a k-dimensional subspace of

R
n and are obtained from composing a discrete and faithful representation ρ0 : π1(S) →
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SL(2,R) with the reducible representation ιn,k : SL(2,R) → SL(k,R) defined in Equation

(2.5). In this case, G = SL(2,R), θ = ∆SL(2,R) and G′ = SL(n,R). The induced map

(ιn,k)∗ : a → a′ is

(ιn,k)∗

((
a

−a

))
=



aIdk

0n−2k

−aIdk


 .

Here, 0n−2k is the (n− 2k)× (n− 2k) matrix with all entries zero. The abelian subalgebra

a consists of all diagonal matrices diag(a,−a ∈ a) with a ∈ R. The positive Weyl chamber

a+ is given by all elements diag(a,−a) with a > 0. We have a+ \⋃α∈θ ker(α) = a+. Set

θ′ = {k, n− k}. Then for H = diag(a,−a) ∈ a+ it holds that

αj((ιn,k)∗ (H)) = 0 ∀j 6= k, n− k,

αk((ιn,k)∗ (H)) = a− 0 = a > 0 and

αn−k((ιn,k)∗ (H)) = 0− (−a) = a > 0.

Hence, (ιn,k)∗ (a
+) ⊂ a′+ \ ∪α′∈θ′ ker(α′). Further, (ιn,k)∗ (aθ) ⊂ a′θ′ , so the assumptions

from Proposition 5.21 are satisfied and we have Λ
(ιn,k)

∗
ε

0 (ιn,k ◦ ρ) = ιn,k (Λ
ε
0ρ). In this case,

as SL(2,R) is of rank 1, we could have drawn the same conclusion by applying Proposition

5.20 and Remark 5.22. We consider cataclysm deformations of horocyclic representation

in more detail in Section 7.4.

Example 5.24. We now give an example where G is not of rank 1. Let G = SL(4,R),

θ = {α2}, G′ = SL(6,R) and let κ :=
∧2

4 : SL(4,R) → SL(6,R) be the exterior power

representation from Example 2.29. The induced map on a is given by

(∧2

4

)

∗







a1

a2

a3

a4





 =




a1 + a2

a1 + a3

a1 + a4

a2 + a3

a2 + a4

a3 + a4




.

Let θ′ := {α1, α5} ⊂ ∆′ and H = diag(a1, a2, a3, a4) ∈ a+ \ ker(α2). We have that

a+ \ ker(α2) consists of all diagonal matrices diag(a1, a2, a3, a4) with trace zero and a1 ≥
a2 > a3 ≥ a4. Then

a1 + a3 = max{a1 + a3, a1 + a4, a2 + a3, a2 + a4} and

a2 + a4 = minmax{a1 + a3, a1 + a4, a2 + a3, a2 + a4}.
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Note that
(∧2

4

)
∗
(H) 6∈ a′+ in general, since we do not know if α3(H) = (a1+a4)−(a2+a3)

is non-negative. By applying an element inW ′
θ′ if necessary we can arrange that the entries

are in descending order. Further, we have

α1

((∧2

4

)
∗
(H)

)
= (a1 + a2)− (a1 + a3) = a2 − a3 > 0 and

α5

((∧2

4

)
∗
(H)

)
= (a2 + a4)− (a3 + a4) = a2 − a3 > 0.

Thus,
(∧2

4

)
∗
(H) 6∈ ker(α1) ∪ ker(α5). This shows that

(∧2
5

)
∗

(
a+ \ ker(α2)

)
⊂ W ′

θ′ ·(
a+ \⋃α′∈θ′ ker(α

′)
)
, so the prerequisite (5.11) from Proposition 5.18 is satisfied. More-

over, we have aθ = {diag(a, a,−a,−a) | a ∈ R} and for every a ∈ R

(∧2

4

)
∗







a

a

−a
−a







=




2a

0

0

0

0

−2a




∈ a′θ′ ,

so
(∧2

4

)
∗
(aθ) ⊂ a′θ′ . Thus, all prerequisites from Proposition 5.21 are satisfied and it holds

that Λκ∗ε
0 (κ ◦ ρ) = κ (Λε

0ρ) for κ =
∧2

4.

Example 5.25. We now give an example where Proposition 5.18 holds, but the additional

assumption κ∗(aθ) ⊂ a′θ′ in Proposition 5.21 is not satisfied. Let G = SL(5,R), θ = {α2, α3}
and let κ :=

∧2
5 : SL(5,R) → SL(10,R) be the exterior power representation from Example

2.29. Analogous to Example 5.24 we have

(∧2

5

)
∗







a1

a2

a3

a4

a5







=




a1 + a2
. . .

(ai + aj)i<j

. . .

a4 + a5




.

Let θ′ := {α1, α9} ⊂ ∆′. As in Example 5.24, we see that α1

((∧2
4

)
∗
(H)

)
> 0 and

α9

((∧2
4

)
∗
(H)

)
> 0 for all H ∈ a+ \ (ker(α2) ∪ ker(α3)) and up to applying an element

in W ′
θ′ ,
(∧2

4

)
∗
(H) lies in a′+. Thus, (5.11) is satisfied, so for every {α2, α3}-Anosov rep-

resentation ρ : π1(S) → SL(5,R) the representation
∧2

5 ◦ρ : π1(S) → SL(5,R) is {α1, α9}-
Anosov. However, the additional assumption

(∧2
5

)
∗
(aθ) ⊂ a′θ′ from Proposition 5.21 is
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not satisfied, since

(∧2

5

)
∗







1

1

0

−1

−1







= diag(2, 1, 0, 0, 1, 0, 0,−1,−1,−2) 6∈ a′θ′ .

Note that there does not exist w′ ∈W ′ such that
(∧2

5

)
∗
(aθ) ⊂ w′ ·a′θ′ . This shows that the

additional assumption κ∗(aθ) ⊂ a′θ′ in Proposition 5.21 is not implied by the assumption

(5.11) from Proposition 5.18.

In this example, we see that for the bigger subset θ′′ := {α1, α3, α7, α9}, there exists

w′ ∈ W ′ such that
(∧2

5

)
∗
(aθ) ⊂ w′ · a′θ′′ . If a representation ρ : π1(S) → SL(4,R) is

such that
∧2

5 ◦ρ is not only θ′-Anosov, but satisfies the stronger requirement of being

θ′′-Anosov, then if we choose the positive Weyl chamber accordingly and if additionally
∧2

5(P
+
θ ) ⊂ P ′+

θ′′ , the conclusion (5.12) from Proposition 5.21 holds.
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A cataclysm deformation of a θ-Anosov representation ρ can also be understood in terms

of a deformation of the associated ρ-equivariant flag curve ζ : ∂∞S̃ → Fθ. Let ρε := Λε
0ρ

for ε ∈ HTwist(λ̂; aθ) be the θ-Anosov representation obtained from ρ by a cataclysm

deformation with respect to a fixed reference component P0 ⊂ S̃ \ λ̃. Denote by ζε : ∂∞S̃ →
Fθ the boundary map associated with ρε. Our goal is to express ζε in terms of the flag

curve ζ and the family of shearing maps {ϕε
PQ}(P,Q) that were used to define ρε. The

expression for ζε in Theorem 6.1 and most of the results in Section 6.1 are analogous to

results obtained by Dreyer in [Dre13], while for the proof of Theorem 6.1 in Section 6.2 we

use a different approach.

Let Vλ be the subset of ∂∞λ̃ consisting of the vertices of connected components in S̃ \ λ̃.
In general, Vλ is not equal to ∂∞λ̃, since the endpoints of non-isolated leaves are not

necessarily contained in Vλ. The main result of this section is the following:

Theorem 6.1. Let ρ : π1(S) → G be θ-Anosov, let ε ∈ Uρ and let ρε := Λε
0ρ be the ε-

cataclysm deformation of ρ along λ with respect to a reference component P0 ⊂ S̃ \ λ̃.
Here, Uρ ∈ HTwist(λ̂; aθ) is as in Theorem 5.12 such that ρε is θ-Anosov. Let ζ and ζε

be the boundary maps associated with ρ and ρε, respectively. Then for every x ∈ Vλ, the

boundary map ζε is given by

ζε(x) = ϕε
P0Qx

· ζ(x), (6.1)

where Qx is a component of S̃ \ λ̃ having x as a vertex.

To prove Theorem 6.1, we first show that the right hand side of (6.1) defines a ρε-equivariant

boundary map on Vλ. We omit the superscript ε in the notation of the shearing maps. Let

ζλ : Vλ → Fθ be defined by the right hand side of (6.1), i.e.

ζλ(x) := ϕP0Qx · ζ(x). (6.2)

Note that the map ζλ depends on the parameter ε ∈ HTwist(λ̂; aθ), since the shearing maps

ϕP0Q depend on ε. Further, the notation ζλ is motivated by the fact that ζλ is not defined
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on all of ∂∞S̃, but only on Vλ. We will later see that ζλ can be extended to the boundary

∂∞λ̃ of the lifted lamination λ̃.

With this definition of ζλ in (6.2), the statement of Theorem 6.1 translates to ζε|Vλ
= ζλ.

Before proving this, we have a closer look at the map ζλ.

6.1. The boundary map ζλ

First, we prove that ζλ is well-defined and ρε-equivariant. To shorten notation, let P := P0

be the fixed reference component of S̃ \ λ̃ used to define the deformed representation ρε.

Lemma 6.2. The map ζλ : ∂∞λ̃→ Fθ defined in (6.2) is well-defined and ρε-equivariant.

Proof. To show well-definedness, we have to show that ζλ(x) does not depend on the choice

of component Qx ⊂ S̃ \ λ̃ having x as a vertex. If x ∈ Vλ and Qx, Rx are two connected

components of S̃ \ λ̃ having x as a vertex, then all components between Qx and Rx also

have x as a vertex. By definition, ϕQxRx is a (possibly infinite) concatenation of stretching

maps that all stabilize ζ(x). Hence, also ϕQxRx stabilizes ζ(x). Using the composition

property of the shearing maps from Proposition 5.6, we have

ϕPRx · ζ(x) = (ϕPQx ϕQxRx) · ζ(x) = ϕPQx · ζ(x),

so ζλ is well-defined.

To show ρε-equivariance, let x ∈ Vλ be a vertex of Qx and γ ∈ π1(S). Using the ρ-

equivariance of ζ and of the shearing maps (Proposition 5.6), we have

ζλ(γx) = ϕPQγx · ζ(γx)
= (ϕP (γP ) ϕ(γP )(γQx) ρ(γ)) · ζ(x)
=
(
ϕP (γP )(ρ(γ) ϕPQx ρ(γ)

−1)ρ(γ)
)
· ζ(x)

=
((
ϕP (γP ) ρ(γ)

)
ϕPQx

)
· ζ(x)

= ρε(γ) · ζλ(x).

This finishes the proof.

Note that we cannot say anything about continuity of ζλ here. We give an alternative defi-

nition of ζλ that uses oriented leaves of the lamination λ̃ instead of connected components

of S̃ \ λ̃. This will allow us to show a continuity result in Lemma 6.5. Further, with this

alternative definition, we can define ζλ on all of ∂∞λ̃.
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techniques as in the proof of the composition property of the shearing maps in Proposition

5.6.

The maps ψPg depend continuously on the leaf g in the following sense:

Lemma 6.3. Let g be an oriented leaf in λ̃ and let (gn)n∈N be a sequence of oriented leaves

of λ̃ converging to g, i.e. limn→∞ g+n = g+ and limn→∞ g−n = g−, where g+n and g−n denote

the positive and negative endpoints of gn, respectively. Then limn→∞ ψPgn = ψPg.

Proof. Up to passing to a subsequence, we can assume that the geodesics gn all lie on the

same side of g. Since the sequence (gn)n∈N converges to g, there exists N ∈ N such that

for all n > N either gn separates P and g, or g separates P and gn. In the first case, P

and gn lie on the same side of g, in the second case, they lie on different sides. Assume

first that gn separates P and g for all n > N . Then CPgn ⊂ CPg and limn→∞ CPgn = CPg in

the sense that for all R ∈ CPg, there exists some M ∈ N such that R ∈ CPgn for all n > M .

By definition of ψPg, we have

lim
n→∞

ψPgn = lim
n→∞

lim
C→CPgn

ψC = lim
C→CPg

ψC = ψPg.

If P and gn lie on different sides of g, let Q ⊂ S̃ \ λ̃ be a component that lies on the same

side of g as the geodesics gn, and let gn separate Q from g for all n ∈ N. Then by the

composition property of ψPg and by what we have shown above

lim
n→∞

ψPgn = lim
n→∞

ϕPQψQgn = ϕPQψQg = ψPg

which finishes the proof.

We can use the maps ψPg to give an alternative definition of ζλ: For x ∈ ∂∞λ̃, let g be a

geodesic having x as endpoint. Define

ζλ(x) := ψPg · ζ(x). (6.3)

On Vλ, this definition agrees with the one from Lemma 6.2:

Lemma 6.4. The map ζλ : ∂∞λ̃→ Fθ is ρε-equivariant and agrees with the map ζλ from

Lemma 6.2 when restricted to Vλ.

Proof. The ρε-equivariance follows from the ρ-equivariance of ζ and of the maps ψPg. To

show that ζλ restricts to the map from Lemma 6.2, we have to show that for a point x ∈ Vλ

that is a vertex of a connected component Qx and an endpoint of a leaf g bounding Qx, it
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holds that ψPg · ζ(x) = ϕPQx · ζ(x). With Notation 3.10, we have g = g0Qx
or g = g1Qx

. In

both cases, for every H ∈ aθ, T
H
g fixes ζ(x). If g = g0Q, we have

ψPg · ζ(x) = ψPQx · ζ(x) =
(
ψPQxT

ε(P,Q)
g

)
· ζ(x) = ϕPQx · ζ(x).

Similarly, if g = g1Q, then

ψPg · ζ(x) =
(
ψPQxT

ε(P,Qx)

g0Q
T−ε(P,Qx)
g

)
· ζ(x) =

(
ϕPQxT

−ε(P,Qx)
g

)
· ζ(x) = ϕPQx · ζ(x).

Thus, on Vλ, ζ
λ agrees with the map from Lemma 6.2.

Lemma 6.3 and the alternative definition of ζλ in (6.3) allow us to show a continuity

property of ζλ.

Lemma 6.5. Let g be an oriented non-isolated leaf of λ̃ with positive endpoint g+ and let

(gn)n∈N be a sequence of oriented leaves of λ̃ converging to g. For n ∈ N, let g+n be the

positive endpoint of gn. Then limn→∞ ζλ(g+n ) = ζλ(g+).

Proof. By continuity of ζ and by Lemma 6.3 we have

lim
n→∞

ζλ(g+n ) = lim
n→∞

ψPgn · ζ(g+n ) = ψPg · ζ(g+) = ζλ(g+).

Note that we do not show continuity of ζλ for an arbitrary sequence (xn)n∈N in ∂∞λ̃

converging to x ∈ ∂∞λ̃, only for the special situation described in the Lemma. Once we

have proven Theorem 6.1, the continuity of ζε implies continuity of ζλ - but this will only

follow a posteriori and we cannot use it at this point.

We finish this section with the dynamical behavior of the map ζλ. Recall that the shearing

maps ϕε
PQ depend on the shearing parameter ε, so also ζλ depends on ε.

Lemma 6.6. For ε ∈ HTwist(λ̂; aθ) small enough, the map ζλ : Vλ → Fθ is dynamics-

preserving with respect to ρε, i.e. if x ∈ Vλ is an attracting fixed point of γ ∈ π1(S), then

ζλ(x) ∈ Fθ is an attracting fixed point of ρε(γ).

Proof. Let x ∈ Vλ and γ ∈ π1(S) such that x is an attracting fixed point of γ. By ρε-

equivariance of ζλ, ζλ(x) is a fixed point of ρε(γ). For ε ∈ HTwist(λ̂; aθ) small enough,

since ρε(γ) depends continuously on ε, this fixed point is again attracting.
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Remark 6.7. If the lamination λ is finite, Theorem 6.1 is a direct consequence of Lemma

6.6. In this case, all bi-infinite leaves of λ spiral towards a closed leaf, so all points in Vλ

are endpoints of lifts of closed geodesics. In particular, they are attracting fixed points for

some element γ ∈ π1(S). By Lemma 6.6, since ζε and ζλ are dynamics-preserving for ρε

and since attracting fixed points are unique, we have ζε(x) = ζλ(x) for every vertex x of

Vλ.

6.2. Proof of Theorem 6.1

We now prove Theorem 6.1, i.e. show that ζλ and ζε agree on Vλ. The key observation is

that the two maps agree on vertices of the fixed reference component P .

Proposition 6.8. Let ρ, ρε, ζ and ζε be as in Theorem 6.1. If x ∈ Vλ is a vertex of the

reference component P ⊂ S̃\λ̃ used to define the cataclysm deformation, then ζε(x) = ζ(x).

In other words, a cataclysm deformation does not change the flags associated to vertices

of the reference component P .

Using Proposition 6.8, we can prove Theorem 6.1.

Proof of Theorem 6.1. Let x ∈ Vλ. We want to show that ζε(x) = ζλ(x), where ζλ is as in

(6.2). If x is a vertex of the fixed reference component P that is used to define ρε, then,

by Proposition 6.8, we have

ζε(x) = ζ(x) = ϕPP · ζ(x) = ζλ(x).

If x is not a vertex of P , let Qx ⊂ S̃ \ λ̃ be a component having x as a vertex. Then

we look at the cataclysm deformation with respect to the reference component Qx. Let

ρεx = Λε
xρ be the ε-cataclysm deformation of ρ with respect to the triangle Qx and let ζεx

be the corresponding boundary map. By Lemma 5.11, ρεx and ρε are conjugated, ρε(γ) =

ϕPQxρ
ε
x(γ) (ϕPQx)

−1 for all γ ∈ π1(S). Consequently, the boundary maps satisfy ζε =

ϕPQx · ζεx. By Proposition 6.8, we have ζεx(x) = ζ(x), since x is a vertex of the reference

component Qx. Thus, we have

ζε(x) = ϕPQx · ζεx(x) = ϕPQx · ζ(x) = ζλ(x).

It follows that ζλ and ζε agree on all of Vλ, which finishes the proof of Theorem 6.1.
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It remains to prove Proposition 6.8. In the proof, we will work in the setting of projective

Anosov representations into SL(d,R) and use a result from Bochi, Potrie and Sambarino

[BPS19]. By Theorem 2.28 there exists an irreducible representation τ : G → SL(d,R)

for some d ∈ N such that ρ is θ-Anosov if and only if τ ◦ ρ is projective Anosov. Let

τ+ : G/Pθ → RP
d−1 and τ− : G/Pθ → Grd−1(d) be the τ -equivariant embeddings induced

by τ . Since τ+ is injective, to prove Proposition 6.8 it is sufficient to show that τ+ ◦ ζ(x) =
τ+ ◦ ζε(x). We will now have a closer look at the situation in SL(d,R).

Recall from Example 2.25 that A ∈ SL(d,R) has a gap of index k if σk(A) > σk+1(A),

where σj(A) is the jthe singular value of A, i.e. the square root of the jth eigenvalue

of AAT , where the eigenvalues are in descending order. If A has a gap of index k, let

Uk(A) ∈ Grk(d) be the subspace of Rd that contains the k biggest axes of the ellipsoid

{Mv | ‖v‖ = 1}.

We define the angle between two subspaces E,F ⊂ R
d, not necessarily of the same dimen-

sion, as

∡(E,F ) := min
v∈E\{0}
w∈F\{0}

∡(v, w).

In particular, ∡(E,F ) = 0 if and only if E ∩ F 6= {0}.

The following estimate will be the key element in the proof of Proposition 6.8.

Lemma 6.9 ([BPS19, Lemma A.6]). Let A ∈ SL(d,R) have a gap of index k. Then A−1

has a gap of index d− k and for all F ∈ Grk(d) transverse to Ud−k(A
−1),

dGrk(d)(A · F,Uk(A)) ≤
σk+1(A)

σk(A)

1

sin∡(F,Ud−k(A−1))
,

where dGrk(d) is a suitable distance on Grk(d) as in [BPS19, Equation A.2].

With theses preliminary remarks, we can now prove Proposition 6.8.

Proof of Proposition 6.8. First note that ζλ(x) = ϕPP ·ζ(x) = ζ(x) for every x ∈ Vλ that is

a vertex of P . Assume that every boundary leaf of P is isolated. Then all boundary leaves of

P spiral towards a closed leaf, so x is an endpoint of a lift of a closed geodesics. In particular,

x is a fixed point of an element in π1(S) and we have by Remark 6.7 ζε(x) = ζλ(x) = ζ(x)

for every vertex x of P .

In the general case, x is not a fixed point of an element in π1(S). Let g be the leaf bounding

P with endpoint x. Denote by g± the endpoints of g and let x = g+. Since g is not isolated,

the orbit of g is dense in λ̃ and there exists a sequence (γn)n∈N in π1(S) such that (γn ·g)n∈N
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Since τ ◦ρε is projective Anosov, the singular value gap σ2(τ◦ρε(γn))
σ1(τ◦ρε(γn)) tends to zero as n goes

to infinity. Thus, using Lemma 6.5, we have

lim
n→∞

(τ ◦ ρε(γn)) ·
(
τ+ ◦ ζ(g+)

)
= lim

n→∞
U1(τ ◦ ρε(γn)). (6.4)

Further, with the continuity of ζλ from Lemma 6.5 it holds that

ζ(g+) = ζλ(g+) = lim
n→∞

ζλ(γn · g+)

= lim
n→∞

ϕP (γnP ) · ζ(γn · g+)

= lim
n→∞

(
ϕP (γnP )ρ(γn)

)
· ζ(g+)

= lim
n→∞

ρε(γn) · ζ(g+). (6.5)

Using equation (6.5) and τ -equivariance of τ+, we obtain

τ+ ◦ ζ(g+) = lim
n→∞

τ+
(
ρε(γn) · ζ(g+)

)
= lim

n→∞
((τ ◦ ρε)(γn)) · τ+

(
ζ(g+)

)
. (6.6)

Combining (6.6) with (6.4) and the fact that for any h ∈ G, we have τ+ (Ξθ(h)) = U1(τ(h))

gives us

τ+ ◦ ζ(g+) = lim
n→∞

(τ ◦ ρε(γn)) ·
(
τ+
(
ζ(g+)

))

= lim
n→∞

U1(τ ◦ ρε(γn))

= lim
n→∞

τ+ (Ξθ(ρ
ε(γn))

= τ+ ◦ ζε(g+).

For the last step, we use that the boundary map ζε satisfies ζε(g+) = limn→∞ Ξθ(ρ
ε(γn)

(see (2.3) in Section 2.3). Since τ+ is injective, this shows that ζ(g+) = ζε(g+) as claimed.

It remains to prove that the prerequisites of Lemma 6.9 are satisfied, i.e. that the angle

∡
(
τ+ ◦ ζ(g+), Ud−1(τ ◦ ρε(γ−1

n ))
)
is uniformly bounded away from zero for n big enough.

By Lemma A.5, the sequence (γ−1
n )n∈N converges to g− ∈ ∂∞S̃. The (d − 1)-dimensional

part of the boundary map for τ ◦ ρε is given by τ− ◦ ζε and we have with Example 2.25

τ− ◦ ζε(g−) = lim
n→∞

Ud−1(τ ◦ ρε(γ−1
n )).

By transversality of the boundary maps τ+ ◦ζ and τ− ◦ζ and since g+ 6= g−, we know that

the angle between τ+ ◦ ζ(g+) and τ− ◦ ζ(g−) is positive. Since ρε is a small deformation

of ρ, we have that τ− ◦ ζε(g−) is close to τ− ◦ ζ(g−). It follows that for ε ∈ HTwist(λ̂; aθ)

small enough also the angle between τ+ ◦ ζ(g+) and τ− ◦ ζε(g−) is positive. Using the fact
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that τ− ◦ ζε(g−) = limn→∞ Ud−1(τ ◦ ρε(γ−1
n )), we conclude that for n large enough, the

angle ∡
(
τ+ ◦ ζ(g+), Ud−1(τ ◦ ρε(γ−1

n ))
)
is bounded away from zero. This completes the

proof.
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For a fixed lamination λ, the cataclysm deformation Λ cannot be surjective onto a small

neighborhood of ρ. This can be seen by looking at the dimensions: Consider for instance

Hitchin representations (Subsection 2.4.2) for which we have θ = ∆. The Hitchin compo-

nent in PSL(n,R) is diffeomorphic to R2(g−1)(n2−1), whereas the dimension of the parameter

space HTwist(λ̂, a∆) grows only linearly in n by Corollary 3.22. Another way to look at it is

in Bonahon-Dreyer coordinates [BD17], where cataclysms only change the shearing cycle,

but not the triangle invariants.

We can also ask if cataclysms are injective. We have to distinguish between looking at cat-

aclysms on the representation variety, i.e. Λ0 with respect to a fixed reference component,

or on the character variety, i.e. Λ, where we do not need to specify a reference component.

If Λ is injective, then so is Λ0. In the following, we only consider the cataclysm deformation

Λ0 on the representation variety.

We will see that Λ0 is in general not injective, not even for ∆-Anosov representations.

Some parts of the construction of cataclysms are injective’: The assignment of the family

of shearing maps to a twisted cycle is injective as we will see in Section 7.1. The results in

Section 7.1 are adapted from [Dre13, Section 5.1], see Remark 1.8. In Section 7.2, we give a

sufficient condition on the representation ρ that guarantees that the cataclysm deformation

is injective. In Section 7.3, we give a sufficient condition for Λ0 not to be injective. Exam-

ples where Λ0 is not injective include horocyclic representations and reducible ∆-Anosov

representations into SL(n,R). These are investigated in Section 7.4.

7.1. Different twisted cycles give different families of

shearing maps

In the construction of cataclysms, the family of shearing maps {ϕε
PQ}(P,Q) defined in Section

5.1 plays an important role. The goal of this section is to recover the parameter ε ∈
HTwist(λ̂; aθ) from the family of shearing maps. In other words, we show the following:

91



7. Injectivity properties of cataclysms

Proposition 7.1. If two transverse twisted cycles ε, η ∈ HTwist(λ̂; aθ) have the same family

of shearing maps, i.e. ϕε
PQ = ϕη

PQ for all P,Q ⊂ S̃ \ λ̃, then ε = η. In other words, the

map

Vρ → G{(P,Q)|P,Q⊂S̃\λ̃}

ε 7→ {ϕε
PQ}(P,Q)

is injective. Here, Vρ ⊂ HTwist(λ̂; aθ) is the neighborhood of 0 consisting of all twisted

cycles such that the family of shearing maps {ϕε
PQ}(P,Q) is defined (see Proposition 5.9).

Remark 7.2. The idea of the proof is to recover the shearing parameter from a sum depend-

ing on the shearing maps (see Equation (7.1)). This construction is adapted from [Dre13,

Section 5.1], where it is done for the case of ∆-Anosov representations into PSL(n,R). The

proof in [Dre13] uses the dynamical viewpoint on Anosov representations through bundles.

We take a different approach and use the Busemann cocycle, which allows us to generalize

their construction to any semisimple Lie group G and θ ⊂ ∆. Further, in [Dre13] they

conclude from their result that the cataclysm deformation is injective for ∆-Anosov rep-

resentations into PSL(n,R). However, this statement is wrong as we will see in Examples

7.12 and 7.14.

Throughout the section, we fix ε ∈ Vρ, where Vρ is the subset of HTwist(λ̂; aθ) for which

the family of shearing maps {ϕε
PQ}(P,Q) exists (see Proposition 7.5).

Let σθ : G × Fθ → aθ be the Busemann cocycle (see Lemma 2.20). We first make the

following observation.

Lemma 7.3. Let g be an oriented geodesic in S̃ and let H ∈ aθ. Then σθ
(
TH
g , P

+
g

)
= H.

Proof. First, note that σθ
(
exp(H), P+

θ

)
= H, since exp(H) ∈ exp(a). By definition,

TH
g = mg exp(H)m−1

g , where mg · P±
θ = P±

g . With the cocycle property of σθ, we have

σθ
(
TH
g , P

+
g

)
= σθ

(
mg exp(H),m−1

g · P+
g

)
+ σθ

(
m−1

g , P+
g

)

= σθ
(
mg exp(H), P+

θ

)
+ σθ

(
m−1

g ,mg · P+
θ

)

= σθ
(
mg, exp(H) · P+

θ

)
+ σθ

(
exp(H), P+

θ

)
+ σθ

(
m−1

g ,mg · P+
θ

)

= H,

where for the last equality, we used the cocycle property together with exp(H) · P+
θ = P+

θ

and σθ
(
m−1

g mg, P
+
θ

)
= 0.

In particular, if P,Q ⊂ S̃\λ̃ are two adjacent components separated by the oriented geodesic

g, then it holds that ϕε
PQ = T

ε(P,Q)
g , so σθ

(
ϕε
PQ, P

+
g

)
= σθ

(
T
ε(P,Q)
g , P+

g

)
= ε(P,Q). In
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this way, we can recover the value of the twisted cycle ε from the shearing map ϕε
PQ. This

does not only work for adjacent components, as we will now see.

Let P and Q be arbitrary components in S̃ \ λ̃ and let k̃ be an oriented arc transverse to λ̃

joining P to Q. We now define an element δ(k̃) in aθ associated with k̃. In Proposition 7.5,

we will see that δ(k̃) = ε(P,Q), so δ recovers the shearing parameter ε ∈ HTwist(λ̂; aθ). In

the following, we omit the superscript ε in the notation of the shearing maps. All shearing

maps are with respect to the fixed twisted cycle ε ∈ Vρ ⊂ HTwist(λ̂; aθ). Further, for a

component R ⊂ S̃ \ λ̃, let ϕR := ϕPR. We define

δ(k̃) :=
∑

R∈CPQ

(
σθ

(
ϕR, P

+
g0R

)
− σθ

(
ϕR, P

+
g1R

))
− σθ

(
Id, P+

g1P

)
+ σθ

(
ϕQ, P

+
g0Q

)
(7.1)

Note that δ depends on the family of shearing maps {ϕε
PQ}(P,Q) and only indirectly on ε

itself. If two different cycles ε, η ∈ HTwist(λ̂; aθ) have the same families of shearing maps,

i.e. ϕε
PQ = ϕη

PQ for all P,Q ⊂ S̃ \ λ̃, then they give the same value δ(k̃) for every transverse

arc k̃.

First, we prove that δ is well-defined, i.e. that the sum in (7.1) is convergent.

Lemma 7.4. For every transverse twisted cycle ε ∈ Vρ ⊂ HTwist(λ̂; aθ) as in Proposition

5.9 and for every oriented arc k̃ transverse to the orientation cover λ̃, the sum defining

δ(k̃) as in (7.1) is absolutely convergent.

Proof. Fix a norm ‖·‖ on a. The Busemann cocycle is analytic, so in particular, it is locally

Lipschitz. Since the arc k̃ is compact, all the shearing maps ϕR lie within a compact subset

of G, and the flags P+

g
0/1
d

lie within a compact subset of Fθ. Thus, using Hölder continuity

of the boundary map, Remark 4.2 and Lemma 3.11, we have constant Ci, Ai > 0 depending

on the arc k̃ and the representation ρ such that

∥∥∥σθ
(
ϕR, P

+
g0R

)
− σθ

(
ϕR, P

+
g1R

)∥∥∥ ≤ C1 dFθ

(
P+
g0R
, P+

g1R

)

≤ C2 d
(
g0R, g

1
R

)A1

≤ C3 ℓ
(
k̃ ∩R

)A1

≤ C4e
−A2r(R).
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It follows that

∑

R∈CPQ

∥∥∥σθ
(
ϕR, P

+
g0R

)
− σθ

(
ϕR, P

+
g1R

)∥∥∥ ≤ C4

∑

R∈CPQ

e−A2r(R)

≤ C5

∞∑

r=0

e−A2r <∞

where for the last equality, we use the fact that the number of all components with a fixed

divergence radius is uniformly bounded (Lemma 3.11). In total, the sum defining δ is

absolutely convergent.

We are now ready to show that δ recovers the shearing parameter ε. For the special case

when the components P and Q are adjacent, this was shown above as a consequence of

Lemma 7.3.

Proposition 7.5. For every transverse twisted cycle ε ∈ Vρ ⊂ HTwist(λ̂; aθ) as in Propo-

sition 5.9 and for every oriented arc k̃ transverse to the orientation cover λ̃, we have

δ(k̃) = ε(P,Q), where P and Q are the connected components of k̃ containing the end-

points of k̃.

Proof. Let C = {R1, . . . , Rm} be a finite subset of CPQ. Set R0 := P and Rm+1 := Q. To

shorten notation, let ϕi := ϕRi and g
0/1
i := g

0/1
Ri

. Reordering the sum defining δ, we have

δ(k̃) = lim
m→∞

m∑

i=1

(
σθ

(
ϕi, P

+
g0i

)
− σθ

(
ϕi, P

+
g1i

))
− σθ

(
ϕ0, P

+
g10

)
+ σθ

(
ϕm+1, P

+
g0m+1

)

= lim
m→∞

m∑

i=0

(
σθ

(
ϕi+1, P

+
g0i+1

)
− σθ

(
ϕi, P

+
g1i

))
.

Remember that by Remark 5.7, ϕi+1 = ϕiψiT
ε(Ri,Ri+1)

g0i+1
, where ψi := ψRiRi+1 . Using the

cocycle property (2.2), we have

σθ

(
ϕi+1, P

+
g0i+1

)
= σθ

(
ϕiψi, T

ε(Ri,Ri+1)

g0i+1
P+
g0i+1

)
+ σθ

(
T
ε(Ri,Ri+1)

g0i+1
, P+

g0i+1

)

= σθ

(
ϕiψi, P

+
g0i+1

)
+ ε(Ri, Ri+1),

where in the last step we use Lemma 7.3 and the fact that T
ε(Ri,Ri+1)

g0i+1
stabilizes P+

g0i+1
.

94



7.1. Different twisted cycles give different families of shearing maps

Thus, by additivity of ε and the cocycle property,

δ(k̃) = lim
m→∞

m∑

i=0

(
σθ

(
ϕiψi, P

+
g0i+1

)
+ ε(Ri, Ri+1)− σθ

(
ϕi, P

+
g1i

))

= ε(P,Q) + lim
m→∞

m∑

i=0

(
σθ

(
ϕi, ψiP

+
g0i+1

)
− σθ

(
ϕi, P

+
g1i

)
+ σθ

(
ψi, P

+
g0i+1

))

It remains to show that the limit on the right side equals zero. By local Lipschitz continuity

of the Busemann cocycle, there exists a constant C1 > 0 depending on k̃ and ρ such that

∥∥∥σθ
(
ϕi, ψiP

+
g0i+1

)
− σθ

(
ϕi, P

+
g1i

)∥∥∥ ≤ C1 dFθ

(
ψiP

+
g0i+1

, P+
g1i

)

≤ C1

(
dFθ

(
ψiP

+
g0i+1

, P+
g0i+1

)
+ dFθ

(
P+
g0i+1

, P+
g1i

))
.

Let NC := minR∈CPQ\C r(R) be the minimal divergence radius of all components of CPQ

that are not contained in C. NC goes to infinity as C tends to CPQ, since for fixed n, there

are only finitely many components in CPQ with r(R) = n. By Hölder continuity of the

boundary map and by Remark 4.2, there are constants Ai, Ci > 0 depending on k̃ and ρ

such that

dFθ

(
P+
g0i+1

, P+
g1i

)
≤ C2d

(
g0i+1, g

1
i

)A1

≤ C3ℓ


k̃ ∩

⋃

R∈C
g0
i+1

g1
i

R




A1

= C3




∑

R∈C
g0
i+1

g1
i

ℓ
(
k̃ ∩R

)



A1

≤ C4




∑

R∈C
g0
i+1

g1
i

e−A2r(R)




A1

≤ C5e
−A3NC ,

where for the last step, we used that the series can be estimated by the remainder term of

a geometric series and is bounded by a constant times e−A3NC as in the proof of Lemma

4.8.

Further, since the action of G on Fθ is smooth, it is in particular locally Lipschitz, we have
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by Lemma 5.8

dFθ

(
ψiP

+
g0i+1

, P+
g0i+1

)
≤ C6dG(ψi, Id) ≤ C7e

−A4NC .

Combining these estimates gives us

∥∥∥σθ
(
ϕi, ψiP

+
g0i+1

)
− σθ

(
ϕi, P

+
g1i

)∥∥∥ ≤ C8e
−A5NC . (7.2)

In addition, again by Lemma 5.8, we have

∥∥∥σθ
(
ψi, P

+
g0i+1

)∥∥∥ =
∥∥∥σθ

(
ψi, P

+
g0i+1

)
− σθ

(
Id, P+

g0i+1

)∥∥∥ (7.3)

≤ C9dG(ψi, Id)

≤ C10e
−A6NC .

Combining the estimates from (7.2) and (7.3), we have

m∑

r=0

∥∥∥σθ
(
ϕiψi, P

+
g0i+1

)
− σθ

(
ϕi, P

+
g1i

)∥∥∥ ≤
m∑

i=0

C11e
−A7NC ≤ C(NC + 1)e−ANC ,

where we use the fact that m = |C| is bounded by a constant times NC + 1 (Lemma 3.11).

If C goes to CPQ, NC goes to infinity, so the right hand side converges to zero. This finishes

the proof.

As a direct consequence of Proposition 7.5, we obtain that different cycles in HTwist(λ̂; aθ)

give different families of shearing maps, i.e. Proposition 7.1. In other words, the assignment

of the family of shearing maps {ϕε
PQ}(P,Q) to a transverse cycle ε is injective.

Proof of Proposition 7.1. This follows from Proposition 7.5, using that δ only depends on

the family of shearing maps {ϕε
PQ}(P,Q) and not on ε itself.

Now one would like to conclude from that that the cataclysm map on the level of homo-

morphisms, Λ0 : HTwist(λ̂; aθ) → Hom(π1(S), G), is injective for a fixed reference compo-

nent P . Assume that there exist ε 6= η ∈ HTwist(λ̂; aθ) with Λε
0ρ = Λη

0ρ. This implies

ϕε
P (γP ) = ϕη

P (γP ) for all γ ∈ π1(S), but in general not that ϕε
PQ = ϕη

PQ for all components

Q ⊂ S̃ \ λ̃ as we will see in Section 7.3. In particular, we cannot apply Proposition 7.1

since for that, we need ϕε
PQ = ϕη

PQ for all pairs of components P,Q ⊂ S̃ \ λ̃.
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7.2. A sufficient condition for injectivity of the cataclysm

deformation

We will see in Sections 7.3 and 7.4 below that the cataclysm deformation is not injective

in general. Under an additional assumption injectivity follows from the injectivity of the

assignment of the family of shearing maps to a twisted cycle, i.e. Proposition 7.5. For a

connected component Q ⊂ S̃ \ λ̃, let ∂Q ⊂ ∂∞S̃ be the set of ideal vertices of Q in the

boundary of S̃.

Proposition 7.6. Let ρ : π1(S) → G be θ-Anosov such that for every connected component

Q ⊂ S̃ \ λ̃, the stabilizer of the set of all flags ζ(x) with x ∈ ∂Q, StabG{ζ(x)|x ∈ ∂Q},
is trivial. Then for a fixed reference triangle P0, the cataclysm deformation based at ρ,

Λ0 : Uρ → Hom(π1(S), G) is injective.

Here, Uρ is the neighborhood of 0 in HTwist(λ̂; aθ) for which the deformed representation

Λε
0ρ is again an Anosov representation. We restrict to these representations, since it ensures

that Λε
0ρ has a continuous, transverse, dynamics-preserving boundary map that is central

to the proof.

Proof. Let ε, η ∈ Uρ be such that Λε
0ρ = Λη

0ρ. We want to show that ε = η. Let ζε and ζη

denote the boundary maps corresponding to Λε
0ρ and Λη

0ρ, respectively. By assumption,

ζε = ζη. Let Q ⊂ S̃ \ λ̃ be a connected component and let x ∈ ∂Q be a vertex of Q. Then,

by Theorem 6.1, we can express ζε and ζη in terms of ζ and the families of shearing maps

{ϕε
PQ}(P,Q) and {ϕη

PQ}(P,Q), respectively. This gives us

ϕε
P0Q · ζ(x) = ζε(x) = ζη(x) = ϕη

P0Q
· ζ(x),

so
(
ϕε
P0Q

)−1
ϕη
P0Q

∈ Stab(ζ(x)). This holds for all x ∈ ∂Q, hence

(
ϕε
P0Q

)−1
ϕη
P0Q

∈ Stab{ζ(x) | x ∈ ∂Q} = {Id}

by assumption. Thus, ϕε
P0Q

= ϕη
P0Q

for all Q ⊂ S̃ \ λ̃. If P ⊂ S̃ \ λ̃ is another component

different from P0 and Q, then

ϕε
PQ = ϕε

PP0
ϕε
P0Q =

(
ϕε
P0P

)−1
ϕε
PQ =

(
ϕη
P0P

)−1
ϕη
PQ = ϕη

PP0
ϕη
P0Q

= ϕη
PQ,

so the families of shearing maps associated with ε and η agree. With Proposition 7.1, we

can conclude that ε = η.
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For every Q ⊂ S̃ \ λ̃, the boundary ∂Q consists of at least three points. In particular,

Proposition 7.6 holds under the stronger assumption that for any triple of distinct points

x, y, z ∈ ∂∞S̃, the stabilizer of the triple (ζ(x), ζ(y), ζ(z)) is trivial.

Corollary 7.7. If ρ is a Hitchin representation into PSL(n,R) or into SL(n,R), then the

cataclysm deformation based at ρ is injective.

Proof. For Hitchin representations into PSL(n,R), this directly follows from Proposi-

tion 7.6, since the stabilizer of every triple of flags (ζ(x), ζ(y), ζ(z)) for x, y, z ∈ ∂∞S̃

is trivial and ∂Q consists of at least three points for every Q ⊂ S̃ \ λ̃. For Hitchin

representations into SL(n,R) with n odd, the same holds. If n is even, then the stabi-

lizer of a triple (ζ(x), ζ(y), ζ(z)) is {±Id}. In this case, we can look at the projection

π : Hom(π1(S), SL(n,R)) → Hom(π1(S),PSL(n,R)) and see that it commutes with the

cataclysm deformation in the sense that π (Λε
0ρ) = Λε

0(π(ρ)). If η, ε ∈ HTwist(λ̂; aθ) are

such that Λε
0ρ = Λη

0ρ, then

Λε
0(π(ρ)) = π (Λε

0ρ) = π (Λη
0ρ) = Λη

0(π(ρ)).

From injectivity of the cataclysm deformation for Hitchin representations into PSL(n,R),

it follows that ε = η, so the cataclysm deformation is injective.

Corollary 7.7 shows in particular that the injectivity of cataclysm deformations claimed by

Dreyer in [Dre13, Corollary 35] is correct if we restrict to Hitchin representations.

7.3. A sufficient condition for non-injectivity of the

cataclysm deformation

The goal of this section is to show that the cataclysm deformation in general not injective.

We consider the cataclysm Λ0 : Uρ → Hom(π1(S), G) on the level of homomorphisms. We

construct a maximal lamination λ with reference triangle P0 and give sufficient conditions

on G, θ and the representation ρ that ensure that there exists a transverse twisted cycle

ε ∈ HTwist(λ̂; aθ) that is non-zero, but such that Λε
0ρ = ρ. By definition, we have Λε

0ρ = ρ

if and only if ϕε
PγP = Id for all γ ∈ π1(S).

Let S be a surface of genus 2. Consider the finite maximal lamination λ from Example

3.8 (see Figure 3.2). As fixed reference triangle, we choose a lift of the yellow triangle and

denote it by P (see Figure 7.1). Further, denote by g, h and g′ the oriented geodesics

bounding a triangle adjacent to P as in Figure 7.1. Fix another component P̃ as in Figure

7.1. The component P̃ is separated from P by exactly one lift of a closed leaf.
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7. Injectivity properties of cataclysms

As a first step in the proof of Proposition 7.8 we have a closer look at the stretching maps

in our specific situation.

Lemma 7.10. Let the representation ρ : π1(S) → G, the lamination λ and H ∈ aθ be as

in Proposition 7.8. Let g, h and g′ be the oriented geodesics as in Figure 7.1. Then the

stretching maps satisfy TH
g = TH

h = TH
g′ .

Proof. Without loss of generality we can assume (P+
g , P

−
g , P

−
h ) = (P+

θ , P
−
θ , P

∗
θ ). In partic-

ular, (P+
g , P

−
g ) = (P+

θ , P
−
θ ), (P+

h , P
−
h ) = (P+

θ , P
∗
θ ) and (P+

g′ , P
−
g′ ) = (P−

h , P
−
g ) = (P ∗

θ , P
−
θ ).

In this case we have TH
g = exp(H). Let m ∈ N+

θ as in Proposition 7.8 be the unique

element such that m · P−
θ = P ∗

θ . By the assumption in Proposition 7.8 on m and H, we

have m ∈ ZG (exp(H)). It follows that

TH
h = m exp(H)m−1 = exp(H) = TH

g .

Since by assumption w0 ∈ Stab(P ∗
θ ), we have that w0mw

−1
0 (P+

θ , P
−
θ ) = (P ∗

θ , P
−
θ ). Recall

further that w0 exp(H)w−1
0 = exp(−ι(H)) as seen in the proof of Lemma 4.16. This gives

TH
g′ =

(
w0mw

−1
0

)
exp(H)

(
w0mw

−1
0

)−1

= w0m exp(−ι(H))m−1w−1
0

= w0 exp(H)w−1
0

= exp(−ι(H))

= exp(H)

= TH
g ,

where we used ι(H) = −H and m ∈ ZG(exp(H)). This concludes the proof.

Remark 7.11. We now define a transverse twisted cycle ε ∈ HTwist(λ̂; aθ). We will use

this cycle in the proof of Proposition 7.8 and show that it satisfies ϕε
P (γP ) = Id for all

γ ∈ π1(S). Let H ∈ aθ satisfy the prerequisites from Proposition 7.8, i.e. ι(H) = −H and

m ∈ ZG(exp(H)). We define the cycle on the level of arcs on S transverse to λ. Abusing

notation, we denote the leaves of λ on S with the same letters as their lifts to the universal

cover as in Figure 7.1. Let kg, kh, kg′ , kh̃, k1 and k2 be the oriented arcs shown in Figure

7.2. For example, kg is an oriented arc crossing a projection of the leaf g, drawn in green,

and has its negative endpoint in the yellow triangle, its positive endpoint in the white
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as translation along c1 in the direction indicated in Figure 7.3. Let R1 ⊂ S̃ \ λ̃ be such

that R1 separates P from c̃1 and that it has an endpoint of c̃1 as one of its vertices (see

Figure 7.3). Further, we require that R1 is in the same π1(S)-orbit as P , so there exists

some γ1 ∈ π1(S) such that R1 = γ1P . The component R1 is not unique. In particular, if

P itself has an endpoint of c̃1 as vertex, we can set R1 = P . Any other choice of R1 works

as well and the argument below is independent of the choice. Similarly, let R2 ⊂ S̃ \ λ̃
be such that it separates c̃1 from γP , that it has an endpoint of c̃1 as one of its vertices

and such that R2 = γ2P for some γ2 ∈ π1(S). Then ϕP (γP ) = ϕPR1ϕR1R2ϕR2γP . There

are only finitely many ideal triangles between P and R1 = γ1P and the same holds for

R2 = γ2P . As above, ϕPR1 and ϕR2(γP ) are finite concatenations of conjugates of the maps

as in (7.6), so ϕP (γP ) = ϕR1R2 . Denote by Q1 and Q2 the ideal triangles in S̃ \ λ̃ adjacent

to R1 and R2, respectively, and separating them from c̃1. The ideal triangles α−mR1 and

αmR2 accumulate to c̃1. The set CR1R2 is infinite. We can approximate it by a sequence

Cm defined as

Cm = {Q1, α
−1R1, α

−1Q1, . . . , α
−mR1, α

mR2, α
m−1Q2, · · · , αR2, Q2}.

So Cm contains all triangles separating R1 from c̃1 up to α−mR1 and all triangles separating

R2 from c̃1 up to αmR2. Denote by g2i the oriented geodesic separating α−iR1 from αiQ1,

and by g2i+1 the oriented geodesic separating α−iQ1 from α−(i+1)R1 (see Figure 7.3).

Analogously, define the geodesics h2i and h2i+1 for R2 and Q2. Then we have

ϕCm =
(
T−ε(R1,Q1)
g0 T−ε(R1,Q1)

g1

)(
T ε(R1,α−1R1)
g1 T−ε(R1,α−1R1)

g2

)
. . .

(
T ε(R1,α−mR1)
gm T−ε(R1,α−mR1)

gm+1

)(
T
ε(R1,αmR2)
hm

T
−ε(R1,αmR2)
hm−1

)
. . .

(
T
ε(R1,Q2)
h1

T
−ε(R1,Q2)
h0

)
T
ε(R1,R2)
h0

= ϕR1(αmR1)T
−ε(R1,αmR1)
gm+1

(
T
ε(R1,αmR2)
hm

T
−ε(R1,αmR2)
hm−1

)
. . .

(
T
ε(R1,Q2)
h1

T
−ε(R1,Q2)
h0

)
T
ε(R1,R2)
h0

= T−ε(R1,αmR1)
gm+1

(
T
ε(R1,αmR2)
hm

T
−ε(R1,αmR2)
hm−1

)
. . .
(
T
ε(R1,Q2)
h1

T
−ε(R1,Q2)
h0

)
T
ε(R1,R2)
h0

,

where we use that ϕR1αmR1 is the identity. Note that we have ε(R1, α
mR1) = 0 and

ε(R1, α
mR2) = 0 by definition of ε as seen in (7.5). This implies that for all j = 1, . . . ,m

we have

ε(R1, α
jR2) = ε(R1, α

mR2) + ε(αmR2, α
jR2) = ε(αmR2, α

jR2) and

ε(R1, α
jQ2) = ε(R1, α

mR2) + ε(αmR2, α
jQ2) = ε(αmR2, α

jQ2).
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As a consequence, the composition defining ϕCm simplifies to

ϕCm = T−ε(R1,αmR1)
gm+1

T
ε(R1,αmR2)
hm

T
−ε(R1,αmR2)
hm−1

ϕ(αmR2)R2

= ϕ(αmR2)R2

= Id

This holds for all m ∈ N, so also limm→∞ ϕCm = Id. In total, ϕP (γP ) = Id if there is exactly

one non-isolated leaf between P and γP .

With the same techniques, we can show that ϕPP̃ = Id, where P̃ ⊂ S̃ \ λ̃ is the connected

component shaded in purple in Figure 7.1. Here, we use that ε(k) = 0 if k is an arc

contained in Sr and that ε(P, P̃ ) = 0 by (7.4). Further, ϕP̃ (γP̃ ) = Id if P̃ and γP̃ are

separated by exactly one lift of the non-isolated leaf c3. This follows again from the fact

that ε is zero on all arcs that lie entirely in Sr. If P and γP are separated by several

non-isolated leaves, we can write ϕP (γP ) as a finite concatenation of shearing maps that

are conjugate to map that is of one of the following forms:

• ϕP (γ′P ) where P and γ′P are separated by finitely many leaves or by exactly one lift

of the non-isolated leaf c1,

• ϕPP̃ or

• ϕP̃ (γ′P̃ ) where P̃ and γ′P̃ are separated by finitely many leaves or by exactly one lift

of the non-isolated leaf c3.

We have considered these cases above and have seen that the shearing maps are the identity.

Hence, also ϕP (γP ) is the identity, which finishes the proof.

We now give explicit examples where Proposition 7.8 applies. These examples show that

there are representations ρ : π1(S) → G with different properties for which the cataclysm

deformation is not injective.

Example 7.12. Let G = SL(3,R). In this case, |∆| = 1, so every Anosov representation

is ∆-Anosov. In particular, being projective Anosov is the same as being ∆-Anosov.

Denote by e1, e2, e3 the standard basis vectors for R3. Then P+
∆ = (〈e1〉 ⊂ 〈e1, e2〉), P−

∆ =

(〈e3〉 ⊂ 〈e2, e3〉) and define P ∗
∆ := (〈e1 + e3〉 ⊂ 〈e1 + e3, e2〉). The flag P ∗

∆ is transverse to

both P+
∆ and P−

∆ and satisfies w0 · P ∗
∆ = P ∗

∆, where w0 =




1

−1

1


 represents the
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longest element in the Weyl group. The unique element m ∈ N+
∆ satisfying m · P−

∆ = P ∗
∆

is

m =



1 0 1

0 1 0

0 0 1


 .

Set

H =



a 0 0

0 −2a 0

0 0 a


 for a ∈ R.

Then ι(H) = −H and m ∈ ZG(exp(H)). Let ρ : π1(S) → SL(3,R) be a horocyclic rep-

resentation (see Subsection 2.4.3). Choosing a ∈ R small, ε as in Remark 7.11 defines a

cycle such that the cataclysm deformation along λ based at ρ exists. For all x ∈ ∂∞S̃, the

flag curve ζ for ρ is of the form

ζ(x) =



〈

a

0

b



〉

⊂
〈

a

0

b


 ,



0

1

0



〉
 (7.7)

as seen in Subsection 2.4.3. Since SL(2,R) acts transitively on triples of points in RP
1,

SL(3,R) acts transitively on triples of flags of the form (7.7). In particular, the triple

of flags (P+
g , P

−
g , P

−
h ) is conjugated to the triple (P+

∆ , P
−
∆ , P

∗
∆). Thus, the prerequisites of

Proposition 7.8 are satisfied and by Corollary 7.9, the cataclysm deformation is not injective

in this case. We will have a closer look at deformations of horocyclic representations in

Section 7.4 and determine explicitly for which they are trivial.

Example 7.13. We now give an example for projective Anosov representations in SL(n,R)

for n ≥ 3 for which Proposition 7.8 applies: We can directly generalize the counterexample

7.12 to (1, n − 1)-horocyclic representations into SL(n,R). In this case, the parabolic

subgroups satisfy P+
θ = (〈e1〉 ⊂ 〈e1, . . . , en−1〉) and P−

θ = (〈en〉 ⊂ 〈e2, . . . , en〉). We define

P ∗
θ := (〈e1 + en〉 ⊂ 〈e1 + en, e2, . . . , en−1〉) and

H =



a 0 0

0 −2a
n−2 Idn−2 0

0 0 a


 for a ∈ R.

The representation ρ : π1(S) → SL(n,R) can be chosen as (1, n − 1)-horocyclic repre-

sentation as defined in Subsection 2.4.3. Analogous to Example 7.12, the triple of flags

(P+
g , P

−
g , P

−
h ) is conjugated to the triple (P+

θ , P
−
θ , P

∗
θ ), and we can apply Proposition 7.8.
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Example 7.14. We now show that Proposition 7.8 not only applies to projective Anosov

representations, but that there exist also ∆-Anosov representations into SL(2n+ 1,R) for

which the cataclysm deformation is not injective. Let j4 : SL(2,R) → SL(4,R) be the

unique irreducible representation introduced in Subsection 2.4.2. For a suitable choice

of symplectic form, its image lies in Sp(4,R). Consider a principal Fuchsian represen-

tation j4 ◦ ρ0 : π1(S) → Sp(4,R). It is ∆Sp(4,R)-Anosov. Post-composing it with the

reducible representation ι4→5 : Sp(4,R) → SL(5,R) from Subsection 2.4.3, we obtain a

reducible ∆SL(5,R)-Anosov representation into SL(5,R) that we call ρ. The embedding

ι4→5 ◦ j4 : SL(4,R) → SL(5,R) induces a map ι+4→5 : RP
1 → Flag(R5) between the cor-

responding flag spaces. Let P±
∆ be the standard parabolic subgroups. We have that

P+
∆ = ι+4→5 ◦ j+4 (〈e1〉), P−

∆ = ι+4→5 ◦ j+4 (〈e2〉) and define P ∗
∆ := ι+4→5 ◦ j+4 (〈e1 + e2〉). By

construction, for the ∆SL(5,R)-Anosov representation ρ = ι4→5 ◦ j4 ◦ ρ0 : π1(S) → SL(5,R)

as above the triple of flags (P+
g , P

−
g , P

−
h ) is conjugate to the triple (P+

∆ , P
−
∆ , P

∗
∆). Further,

one can check that w0 · P ∗
∆ = P ∗

∆, where w0 is the representative of the longest element of

the Weyl group that has only entries on the anti-diagonal, all equal to 1 except the central

one which is −1. Set

H =




a

a

−4a

a

a




for a ∈ R.

Then ι(H) = −H, and m ∈ ZG(exp(H)), where m ∈ N+
∆ is the unique element such

that m · P−
∆ = P ∗

∆. Hence, all prerequisites of Proposition 7.8 are satisfied, so this pro-

vides an example of a reducible ∆SL(5,R)-Anosov representation into SL(5,R) for which the

cataclysm deformation based at ρ is not injective.

Remark 7.15. Example 7.14 shows that there exist ∆-Anosov representations into SL(2n+

1,R) for which the cataclysm deformation is not injective. In particular, the injectivity of

the cataclysm deformation stated in [Dre13, Corollary 35] is not correct.

Example 7.16. The examples considered so far are all reducible. We now show that there

also exist irreducible representations that satisfy the prerequisites of Proposition 7.8. We

consider hybrid representations. These were constructed for representations into Sp(4,R) in

[GW10, §3.3.1]. We use the same technique for SL(3,R) to obtain an irreducible represen-

tation whose restriction to a subsurface is reducible. Let S be a closed connected oriented

surface of genus at least 2 and let c be a simple closed separating curve (see Figure 7.4). Let

Sl and Sr be the connected components of S \ c. Then the fundamental group of S is the

amalgamated product π1(S) = π1(Sl) ∗c π1(Sr). Let ρ0 : π1(S) → SL(2,R) be discrete and

faithful. We can assume that ρ0(c) is diagonal with eigenvalues ea and e−a. For t ∈ [0, 1]
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7.4.1. Cataclysms deformations for (n, k)-horocyclic representations

Recall from Subsection 2.4.3 that an (n, k)-horocyclic representation is obtained by compos-

ing a Fuchsian representation ρ0 : π1(S) → SL(2,R) with an embedding ιn,k : SL(2,R) →
SL(k,R) whose image stabilizes a flag in F{k,n−k} for some k ≤ n

2 . In this subsection, we

assume that k < n
2 to exclude the case where k = n − k. Let θ := {k, n − k}. Then aθ is

two-dimensional.

We will see that if ρ is a horocyclic representation, then for the cataclysm deformation based

at ρ there are two directions in the parameter space HTwist(λ̂; aθ) with different behavior of

the deformations: In one direction, the deformed representation remains horocyclic, so has

image contained in ιn,k(SL(2,R)) in SL(n,R). In the other direction, it does not remain

horocyclic and the deformed representation is obtained from ρ by right-multiplication with

elements in the centralizer of ιn,k(SL(2,R)). For n = 3 and k = 1, these deformations

agree with linear u-deformations defined by Barbot [Bar10, Section 4.1]. Deformations of

this form also appear as bulging deformations of convex projective structures in [Gol13]

and [WZ18].

In Example 7.12, we have already seen that the cataclysm deformation Λε
0 for horocyclic

representations into SL(3,R) is not injective in general. In that example, we fixed a special

lamination λ. Now, we consider an arbitrary lamination λ and explicitly describe the space

of cycles ε ∈ HTwist(λ̂; aθ) for which the deformation Λε
0 is trivial, i.e. satisfies Λε

0ρ = ρ.

Let P ⊂ S̃ \ λ̃ be a fixed reference component and let Λ0 as in Theorem 5.12 be the

cataclysm deformation with respect to P . Let ρ0 : π1(S) → SL(2,R) be discrete and

faithful, and let ιn,k : SL(2,R) → SL(n,R) be the reducible representation introduced in

(2.5). Let a2 be the maximal abelian subalgebra for SL(2,R). The inclusion ιn,k induces

an inclusion (ιn,k)∗ : sl(2,R) → sl(n,R). On the abelian subalgebra a2, it is given by

(ιn,k)∗ :

(
a 0

0 −a

)
7→



aIdk

0n−2k

−aIdk


 .

Thus, (ιn,k)∗ satisfies (ιn,k)∗ (a2) ⊂ aθ. As seen in Example 5.23 we can apply Proposition

5.21 and obtain

Λ
(ιn,k)

∗
ε

0 (ιn,k ◦ ρ0) = ιn,k (Λ
ε
0ρ0) (7.8)

for every ε ∈ HTwist
(
λ̂; a2

)
, where (ιn,k)∗ is the embedding HTwist(λ̂; a2) →֒ HTwist(λ̂; aθ)

induced by (ιn,k)∗.
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7.4. Cataclysm deformations for reducible representations

Define the 1-dimensional subspace

a′ :=







aIdk

−2aIdn−2k

aIdk




∣∣∣∣∣∣∣
a ∈ R





⊂ a.

We can split aθ into the two 1-dimensional subspaces

aθ =







aIdk

0

−aIdk




∣∣∣∣∣∣∣
a ∈ R





⊕







aIdk

−2aIdn−2k

aIdk




∣∣∣∣∣∣∣
a ∈ R





= (ιn,k)∗ (a2)⊕ a′. (7.9)

We know by (7.8) how cycles with values in (ιn,k)∗ (a2) deform a representation. We now

examine what happens for cycles with values in a′. Let H ∈ a′, let g be an oriented

geodesic in S̃ and let mg ∈ SL(2,R) be such that mg · P±
∆ = ζ0(g

±), where P±
∆ are the

Borel subgroups in SL(2,R) and ζ0 is the boundary map for the Fuchsian representation

ρ0. Note that exp(H) ∈ ZSL(n,R)(ιn,k(SL(2,R))). Hence,

TH
g = ιn,k(mg) exp(H)ιn,k(mg)

−1 = exp(H).

In particular, all stretching maps TH
g with H ∈ a′ are diagonal and independent of the

oriented geodesic g. It follows that for all components P,Q ⊂ S̃ \ λ̃, the shearing maps

satisfy

ϕε
PQ =

∏

R∈PPQ

(
T
ε(P,R)

g0R
T
−ε(P,R)

g1R

)
T
ε(P,Q)

g0Q
= T

ε(P,Q)

g0Q
= exp(ε(P,Q)). (7.10)

By definition of Λ0, for γ ∈ π1(S), we have Λε
0ρ(γ) = ϕε

PγPρ(γ), so by (7.10), we have

Λε
0ρ = ρ if and only if ε(P, γP ) = 0 ∀γ ∈ π1(S). (7.11)

We now have a closer look at HTwist(λ̂; a′) and determine its dimension. Since a′ is 1-

dimensional, we can write every ε ∈ HTwist(λ̂; a′) as ε = ε1H, where ε1 ∈ H(λ̂;R) and H =

diag(1,−2, 1). Recall from Section 3.1 the orientation reversing involution R : Û → Û . By

the twist condition, we have R∗ε1 = −ε1, so ε1 lies in the (−1)-eigenspace of H(λ̂;R) with

respect to R∗. Thus, we can identify HTwist(λ̂; a′) with H(λ̂;R)−, where H(λ̂;R)− denotes

the (−1)-eigenspace of H(λ̂;R) with respect to R. As seen in the proof of Proposition 3.21,

H(λ̂;R)− has dimension −χ(λ)+n(λ), where n(λ) is the number of connected components
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of the lamination λ and χ(λ) is its Euler characteristic. In particular, if λ is maximal,

dim
(
H(λ̂;R)−

)
= 6g(S) − 5, where g(S) denotes the genus of the surface S. In the

following, we always identify HTwist(λ̂; a′) with H(λ̂;R)−.

By (7.11), to understand for which cycles the deformation is trivial, we have to understand

which cycles satisfy ε(P, γP ) = 0 for all γ ∈ π1(S). As a first step, we construct a vector

space homomorphism from H(λ̂;R)− into the group homomorphisms from π1(S) to R.

Lemma 7.17. Let P ⊂ S̃ \ λ̃ be a fixed reference component. The map

f : H(λ̂;R)− → Hom(π1(S),R),

ε 7→ (uε : γ 7→ ε(P, γP ))

is a well-defined vector space homomorphism, where we consider R as a group with addition.

Moreover, f does not depend on the component P ⊂ S̃ \ λ̃.

The proof of Lemma 7.17 is given in the Subsection 7.4.3 below, where we will also show

that f is surjective if the lamination λ is maximal.

Remark 7.18. In [Bar10, Section 4.1], Barbot considers for u ∈ Hom(π1(S),R) deformations

of a (3, 1)-horocyclic representation ρ, called u-deformations, that are defined as

ρu(γ) =




e
u(γ)
3

e−
2u(γ)

3

e
u(γ)
3


 ρ(γ),

for every γ ∈ π1(S). For ε ∈ HTwist(λ̂; a′), we see using (7.10) that Λε
0ρ = ρ f(ε)

3

with

f as in Lemma 7.17. So in this case, a cataclysm with cycle ε is a linear u-deformation.

Barbot moreover gives a precise condition for which u the deformation ρu is Anosov [Bar10,

Theorem 4.2]. Further, he not only defines linear u-deformations, but also deformations

of (3, 1)-horocyclic representations that are different from cataclysm deformations. The

resulting representations that he calls radial representations are Anosov under an extra

assumption. Whereas all cataclysm deformations of horocyclic representations stabilize the

line 〈e2〉 as well as the complementary hyperplane 〈e1, e3〉, Barbot’s radial representations
only stabilize 〈e2〉, but not the hyperplane 〈e1, e3〉. Thus, for reducible representations,

there exist interesting deformations that are not cataclysms.

Given the homomorphism f , we can now determine for which cycles with values in a′ the

cataclysm deformation is trivial:

Lemma 7.19. For ε ∈ HTwist(λ̂; a′) and an (n, k)-horocyclic representation ρ = ιn,k ◦ ρ0,
the following are equivalent:

110



7.4. Cataclysm deformations for reducible representations

(1) ε ∈ ker(f),

(2) Λε
0ρ = ρ,

(3) Λε
0ρ is (n, k)-horocyclic.

Proof. The equivalence between (1) and (2) is given in (7.11). The fact that (2) implies

(3) is trivial, since ρ is horocyclic. To show that (3) implies (1), assume that Λε
0ρ is

horocyclic and let γ ∈ π1(S). Let uε = f(ε) as in Lemma 7.17. For γ ∈ π1(S), let

ρ0(γ) =

(
a(γ) b(γ)

c(γ) d(γ)

)
. Then

Λε
0ρ(γ) = ϕε

PγPρ(γ)

=



euε(γ)Idk

e−2uε(γ)Idn−2k

euε(γ)Idk






a(γ)Idk 0 b(γ)Idk

0 Idn−2k 0

c(γ)Idk 0 d(γ)Idk


 .

Since this is (n, k)-horocyclic by assumption, the middle block has to equal Idn−k, which

implies that uε(γ) = 0. This holds for all γ ∈ π1(S), so ε ∈ ker(f).

We can now conclude for which cycles ε ∈ HTwist(λ̂; a) the cataclysm deformation is triv-

ial.

Proposition 7.20. Let ε ∈ HTwist(λ̂; a). Then Λε
0ρ = ρ if and only if ε takes values in a′

and lies in the kernel of f .

Proof. Assume first that ε takes values in a′ and that ε ∈ ker(f). Then Λε
0ρ = ρ by

Lemma 7.19. For the other direction, let ε = ε′ + (ιn,k)∗ (ε0), with ε0 ∈ HTwist(λ̂; a2) and

ε′ ∈ HTwist(λ̂; a′) ∼= H(λ̂;R)−. Assume that Λε
0ρ = ρ. By additivity of the cataclysm

deformation (Corollary 5.17),

ρ = Λε
0ρ = Λε′

0

(
Λ
(ιn,k)

∗
(ε0)

0 ρ

)
= Λε′

0 (ιn,k (Λ
ε0
0 ρ0)) ,

where we use Proposition 5.21. By Lemma 7.19, since both ρ and ιn,k (Λ
ε0
0 ρ0) are horocyclic,

we have ε′ ∈ ker(f) and ρ = Λ
(ιn,k)

∗
(ε0)

0 ρ = ιn,k (Λ
ε0
0 ρ0). Since cataclysm deformations in

SL(2,R) are injective by Corollary 7.7, we have ε0 = 0, so ε = ε′ ∈ ker(f).

Proposition 7.20 has as a consequence the following corollary.
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7. Injectivity properties of cataclysms

Corollary 7.21. There is a subspace Htrivial ⊂ H(λ̂; a) such that Λε
0ρ = ρ if and only if

ε ∈ Htrivial. The subspace Htrivial depends only on the maximal lamination λ, not on the

reference triangle P or the representation ρ. Moreover, the dimension of Htrivial can be

estimated by

−χ(λ) + n(λ) ≥ dimHtrivial ≥ −χ(λ) + n(λ)− 2g, (7.12)

where χ(λ) is the Euler characteristic of λ and n(λ) the number of connected components.

Proof. Set Htrivial := ker(f). From Proposition 7.20, we know that Λε
0ρ = ρ if and only

of ε ∈ Htrivial. From Lemma 7.17, we know that Htrivial is independent of the reference

triangle P . The only thing to check is the dimension of Htrivial = ker(f). We already know

that the dimension of dimH(λ̂;R)− is −χ(λ) + n(λ). Further, dimHom(π1(S),R) = 2g,

where g := g(S) is the genus of S, since π1(S) has 2g generators α1, β1, . . . , αg, βg and the

relation
∏

i[αi, βi] = Id becomes trivial in R. Thus

−χ(λ) + n(λ) ≥ dimker(f) = dimH(λ̂;R)− − dim Im(f) ≥ −χ(λ) + n(λ)− 2g,

which finishes the proof.

To summarize, there are different possibilities for deforming an (n, k)-horocyclic repre-

sentation by a cataclysms: If we deform with a cycle valued in (ιn,k)∗ (a2), we obtain a

different (n, k)-horocyclic representation. If we deform with a cycle in Htrivial, we do not

change the representation at all. Lastly, if we deform with a cycle valued in a′ that does

not lie in Htrivial, we move out of the copy of SL(2,R) and the deformed representation ρ′ is

obtained from ρ by right-multiplication with elements in the centralizer of ιn,k(SL(2,R)).

For (n, k) = (3, 1), these deformations are linear u-deformations in the sense of Barbot

[Bar10, Section 4.1]. If we use any combination of cycles valued in (ιn,k)∗ (a2) and in a′,

then by additivity of the deformation (Corollary 5.17), it is irrelevant in which direction we

deform first – the resulting representation will be the same. Note that the crucial points

in the considerations in this subsection are that twisted cycles with values in a′ can be

identified with H(λ̂;R)− and that the 2-dimensional space aθ can be split up as in (7.9).

In the following subsection, we consider reducible representations where the dimension of

aθ is bigger than 2.
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7.4. Cataclysm deformations for reducible representations

7.4.2. Cataclysm deformations for reducible Borel Anosov

representations

Now let us consider reducible ∆-Anosov representations into SL(2n+1,R) that are obtained

from composing a ∆Sp(2n,R)-Anosov representation ρ0 : π1(S) → Sp(2n,R) with a reducible

embedding ι2n→2n+1 : Sp(2n,R) → SL(2n + 1,R) (see (2.6) in Subsection 2.4.3). In this

case, ∆ = ∆SL(2n+1,R) is 2n-dimensional. The maximal abelian subalgebra a∆ can be

decomposed as

a∆ = (ι2n→2n+1)∗
(
aSp(2n,R)

)
⊕ a′ ⊕ a′′, (7.13)

where

a′ :=







aIdn

−2n · a
aIdn




∣∣∣∣∣∣∣
a ∈ R





and a′′ ⊂ a∆ is an (n − 1)-dimensional subalgebra such that the sum in (7.13) is di-

rect. As in the case of (n, k)-horocyclic representations, exp(a′) lies in the centralizer of

ι2n→2n+1 (Sp(2n,R)), so for ε ∈ HTwist(λ̂; a′) the shearing maps satisfy ϕε
PQ = ε(P,Q) for

all P,Q ⊂ S̃ \ λ̃. It follows that for cycles valued in a′, Λε
0ρ = ρ if and only if ε(P, γP ) = 0

for all γ ∈ π1(S), i.e. (7.11) holds also in this case. Further, transverse twisted cycles

with values in a′ are in one-to-one correspondence with elements in H(λ̂;R)−. With the

same arguments as for the case of (n, k)-horocyclic representations, we have the following

result:

Proposition 7.22. Let ρ : π1(S) → SL(2n+1,R) be ∆-Anosov of the form ι2n→2n+1 ◦ ρ0,
where ρ0 : π1(S) → Sp(2n,R) is ∆Sp(2n,R)-Anosov. Then there exists a subspace Htrivial ⊂
HTwist(λ̂; a∆) such that Λε

0ρ = ρ for all ε ∈ Htrivial. The dimension of Htrivial is at least

−χ(λ) + n(λ) − 2g, where χ(λ) is the Euler characteristic of λ and n(λ) the number of

connected components.

Proof. Set Htrivial := ker(f) with f : H(λ̂,R)− → Hom(π1(S),R) as in Lemma 7.17. Then

Λε
0ρ = ρ for all ε ∈ Htrivial, and the lower bound on the dimension follows as in the proof

of Corollary 7.21.

Note that here, in contrast to Corollary 7.21 we cannot prove the statement as if and only if,

because we cannot describe in detail how cataclysm deformations with values in a′′ behave.

What we can say, however, is that cataclysm deformations of ∆-Anosov representations

into SL(2n+ 1,R) are not injective in general.
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7. Injectivity properties of cataclysms

7.4.3. The homomorphism f : H(λ̂;R)− → Hom(π1(S),R)

In this subsection, we proof Lemma 7.17 and show that for a maximal lamination, the

homomorphism f is surjective. Recall that f : H(λ̂;R)− → Hom(π1(S),R) is defined by

f(ε) = uε, where for every γ ∈ π1(S), uε(γ) = ε(P, γP ) for a fixed component P of S̃ \ λ̃.

Proof of Lemma 7.17. We have to check that uε indeed is a group homomorphism. Let

γ1, γ2 ∈ π1(S), and assume first that γ1P separates P from γ1γ2P . Then by additivity of

ε and π1(S)-invariance, we have

uε(γ1γ2) = ε(P, γ1γ2P )

= ε(P, γ1P ) + ε(γ1P, γ1γ2P )

= ε(P, γ1P ) + ε(P, γ2P )

= uε(γ1) + uε(γ2).

If P separates γ1P from γ1γ2P , then we use that ε ∈ HTwist(λ̂;R)−, so ε(Q,P ) = −ε(P,Q)

for all Q ⊂ S̃ \ λ̃. This gives us

uε(γ1γ2) = ε(P, γ1γ2P )

= −ε(γ1P, P ) + ε(γ1P, γ1γ2P )

= ε(P, γ1P ) + ε(P, γ2P )

= uε(γ1) + uε(γ2).

The case where γ1γ2P separates P from γ1P works analogous.

If none of P , γ1P , γ1γ2P separates the other two, there exists some Q ⊂ S̃ \ λ̃ that pairwise

separates P , γ1P and γ1γ2P (as in Figure 5.1). UsingQ together with additivity of ε, π1(S)-

invariance and the fact that ε lies in H(λ̂;R)− , we can conclude that uε(γ1γ2) = uε(γ1) +

uε(γ2) for all γ1, γ2 ∈ π1(S). So indeed, uε is a group homomorphism and f : H(λ̂;R) →
Hom(π1(S),R) is a well-defined vector space homomorphism. To show independence of P ,

let Q ⊂ S̃ \ λ̃ be another connected component. Then, by the same arguments as above,

ε(Q, γQ) = ε(Q,P ) + ε(P, γP ) + ε(γP, γQ)

= −ε(P,Q) + ε(P, γP ) + ε(P,Q)

= ε(P, γP ).

Thus, f is independent of the choice of the component P ⊂ S̃ \ λ̃.
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7.4. Cataclysm deformations for reducible representations

We have estimated the dimension of the kernel of f in (7.12). For a maximal lamination λ,

we can compute the dimension of ker f exactly in terms of the genus g(S) of the surface.

Standing Assumption. For the rest of this subsection, we assume that the lamination

λ is maximal.

If λ is maximal, then (7.12) becomes

6g − 5 ≥ dimker(f) ≥ 4g − 5

We will show that f is onto, i.e. ker(f) is as small as possible. Since λ is maximal,

S \ λ consists of 4g − 4 connected components that are ideal triangles. Let C′
λ := {P =

Q0, Q1, . . . , Q4g−5} be a set of representatives of connected components of S̃ \ λ̃ such that

each component of S \λ has a lift contained in C′
λ. Let P be the fixed reference component,

and let Cλ := C′
λ \ {P}. Further, let αi, βi for i = 1, . . . , 4g(S) be generators of π1(S).

Lemma 7.23. The map

V : H(λ̂;R)− → R
2g × R

Cλ ,

ε 7→
(
(ε(P, αiP ), ε(P, βiP ))i=1,...,g , (ε(P,Q))Q∈Cλ

)

is an isomorphism of vector spaces.

Proof. It is straightforward to check that V is a vector space homomorphism. We want to

show that V (ε) uniquely determines ε, i.e. that V is injective. Let k̂ be an arc transverse

to λ̂, let k be the corresponding oriented arc transverse to λ (as in Remark 5.5) and let k̃

be a lift of k to the universal cover. Let R1 and R2 ∈ S̃ \ λ̃ be the components containing

the negative and positive endpoint of k̃. Then ε(k̂) = ε(R1, R2). In particular, if we know

ε(R1, R2) for all R1, R2 ⊂ S̃ \ λ̃, then we know ε(k̂) for every arc k̂ transverse to λ̂. We have

seen in the proof of Lemma 7.17 that for any three components R1, R2, R3 ⊂ S̃ \ λ̃, we have
ε(R1, R3) = ε(R1, R2) + ε(R2, R3). Note that here it is important that ε ∈ H(λ̂;R)−. Let

R1, R2 ⊂ S̃ \ λ̃ be arbitrary. Then there exists γ1, γ2 ∈ π1(S) and i1, i2 ∈ {0, . . . , 4g − 5}
such that R1 = γ1Qi1 and R2 = γ2Qi2 , where we set P = Q0. We have

ε(R1, R2) = ε(γ1Qi1 , P ) + ε(P, γ2Qi2)

= −ε(P, γ1Qi1) + ε(P, γ2Qi2)

= −ε(P, γ1P )− ε(γ1P, γ1Qi1) + ε(P, γ2P ) + ε(γ2P, γ2Qi2)

= −ε(P, γ1P )− ε(P,Qi1) + ε(P, γ2P ) + ε(P,Qi2).
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The right hand side, and thus also ε(R1, R2), is uniquely determined by V (ε). In particular,

if V (ε) = 0, then ε(R1, R2) = 0 for all R1, R2 ⊂ S̃ \ λ̃, so ε = 0. This shows that V is

injective. As dimH(λ̂;R)− = 6g−5 = dim
(
R
2g × R

Cλ
)
, it follows that V is also surjective,

so an isomorphism.

Corollary 7.24. If the lamination λ is maximal, then the homomorphism from f is sur-

jective, and Htrivial from Corollary 7.21 has dimension 4g − 5.

Proof. With f : H(λ̂;R)− → Hom(π1(S),R) as above, we have Htrivial = ker(f). Since

V as in Lemma 7.23 is an isomorphism, dimker(f) = dimker(f ◦ V −1). Identifying

Hom(π1(S),R) with R
2g, we see that

V −1 ◦ f : R2g × R
Cλ → R

2g ∼= Hom(π1(S),R),

(x1, . . . , x2g, y1, . . . , y4g−5) 7→ (x1, . . . , x2g),

and ker(V −1 ◦ f) = {0}2g ×R
Cλ . Hence, ker(f) has dimension |Cλ| = 4g − 5, so Im(f) has

dimension 2g. This shows that f is surjective, and that Htrivial = ker(f) has dimension

4g − 5.
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8. Generalized cataclysms for

representations into SL(n,R)

The goal of this chapter is to enlarge the parameter space for the cataclysm deformations

of Anosov representations into SL(n,R). The stretching maps TH
g that are the basic

building blocks for cataclysm deformations have the important property that they lie in

the stabilizer of the pair of flags (P+
g , P

−
g ) associated with the oriented geodesic g. This

stabilizer is conjugate to the Levi subgroup Lθ = P+
θ ∩ P−

θ . The size of Lθ depends on

the size of the set of simple roots θ ⊂ ∆ and becomes bigger if θ becomes smaller. For

example, for G = SL(4,R) and θ = {1, 3} ⊂ ∆, we have

Lθ =







x

A

y




∣∣∣∣∣∣∣
x, y ∈ R \ {0}, A ∈ GL(2,R), det(A) = x−1y−1




.

This space is bigger than L∆, which consists of all diagonal matrices in SL(4,R).

In contrast, the parameter space for cataclysms, i.e. the space of transverse twisted aθ-

valued cycles HTwist(λ̂; aθ), becomes smaller if θ becomes smaller by Proposition 3.21. The

reason for that is we can only use parameters H that lie in aθ, which is the centralizer of

Lθ in a. This is necessary for the stretching map TH
g to be well-defined. Ideally, we would

like to define deformations where the parameter space is not restricted to this small set.

In this section we make a first step in this direction and enlarge the parameter space

HTwist(λ̂; aθ) of cataclysms deformations for θ-Anosov representations into SL(n,R) to

HTwist(λ̂; a). To do so, we require the representation ρ to satisfy an additional requirement,

namely λ-admissibility (see Definition 8.3). In the first part of this section, we define what

it means for a representation to be λ-admissible and show that λ-admissibility allows us

to define cataclysm representations with parameters in HTwist(λ̂; a).

Standing Assumption. Throughout this section, λ is a maximal lamination with finitely

many leaves.

In this case, the non-isolated leaves of λ̃ are exactly lifts of closed leaves of λ, and every

bi-infinite leaf is isolated.
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8. Generalized cataclysms for representations into SL(n,R)

8.1. Admissible representations

Let ρ : π1(S) → SL(n,R) be θ-Anosov with θ = {i1, . . . , ik} ⊂ ∆ (see Example 2.3) and let

ζ : ∂∞S̃ → Fθ be its boundary map. For an oriented geodesic g in S̃, the pair of transverse

flags (P+
g , P

−
g ) = (ζ(g+), ζ(g−)) induces a splitting

R
n = V1(g)⊕ · · · ⊕ Vk+1(g) (8.1)

as in Example 2.11, where the subspaces Vj(g) are not necessarily 1-dimensional. For H ∈
aθ, the stretching map TH

g from Definition 4.13 acts on every subspace Vj(g) as a multiple

of the identity. We now define stretching maps that act on Vj(g) by stretching in different

directions. To do so, we need to find preferred directions within the subspaces Vj(g), i.e. a

line splitting of Rn that is subordinate to the splitting from (8.1). We distinguish between

isolated and non-isolated leaves of λ̃.

We start with considering the non-isolated leaves. Since the lamination λ is finite, those

are exactly the lifts of closed leaves of λ on S. Up to the action of π1(S), there exist

only finitely many non-isolated leaves in λ̃. Using the fixed hyperbolic metric on S, every

closed leaf γc in λ defines an element of π1(S) and acts on S̃ as translation along a geodesic

gc. This geodesic gc is a non-isolated leaf of λ̃. Assume that the representation ρ has the

property that ρ(γc) is diagonalizable with distinct eigenvalues for all of the finitely many

closed leaves γc of the lamination λ, i.e.

ρ(γc) ∼




λ1
. . .

λn


 , λ1 > · · · > λn.

We naturally obtain a line splitting

R
n = ℓ1(gc)⊕ · · · ⊕ ℓn(gc) (8.2)

associated to gc, where ℓi(gc) is the eigenspace of ρ(γc) with eigenvalue λi. If we consider

the same geodesic gc with reversed orientation, then we obtain the line splitting
⊕

i ℓi(gc)

with ℓi(gc) = ℓn−i+1(gc). If g′c is another lift of γc, g
′
c = η · gc for some η ∈ π1(S), set

ℓi(g
′
c) := ρ(η)ℓi(gc). The splitting obtained in this way is ρ-equivariant by construction

and subordinate to the splitting
⊕

j Vj(gc) defined by ρ in the sense that ℓj(gc) ⊂ Vl(gc)

for il−1 < j ≤ il. This follows from the fact that the boundary map ζ for ρ is dynamics-

preserving. Thus, under the assumption that ρ(γc) is diagonalizable with distinct eigen-

values for all closed leaves γc in λ, we obtain for every non-isolated leaf in λ̃ a line splitting

of Rn that is subordinate to the splitting from (8.1).
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8. Generalized cataclysms for representations into SL(n,R)

• the lines satisfy ℓi(F,E,G2, G1) = ℓn−i+1(E,F,G1, G2).

Further, we require the assignment (E,F,G1, G2) 7→ ℓi(E,F,G1, G2) from all splitting

admissible quadruples to RPn−1 to be smooth and equivariant, i.e. for M ∈ SL(n,R),

ℓi(M · E,M · F,M ·G1,M ·G2) =M · ℓi(E,F,G1, G2).

We can now define what it means for a representation ρ to be λ-admissible.

Definition 8.3. A θ-Anosov representation ρ : π1(S) → SL(n,R) is λ-admissible if

1. for every closed leaf γc of λ, ρ(γc) is diagonalizable with distinct eigenvalues, and

2. for every isolated leaf g of λ̃, the associated quadruple Qρ(g) of pairwise transverse

flags as in Notation 8.1 is splitting admissible.

Note that Condition 1 is an open condition in all θ-Anosov representations, since being

diagonalizable with distinct eigenvalues is an open condition in SL(n,R).

Example 8.4. Every ∆-Anosov representation into SL(n,R) is trivially λ-admissible: We

know that for ∆-Anosov representations, ρ(γ) is diagonalizable with distinct eigenvalues

for all γ ∈ π1(S). Further, the splitting R
n =

⊕n
i=1 Vi(g) is a line splitting, since in this

case, the spaces Vi(g) are 1-dimensional. However, we are not interested in ∆-Anosov

representations here, where a∆ = a and the parameter space of the cataclysm deformation

is already equal to HTwist(λ̂; a).

Given a λ-admissible representation ρ, we can assign to every oriented leaf g of λ̃ a line

splitting of Rn.

Lemma 8.5. Let ρ : π1(S) → SL(n,R) be θ-Anosov and λ-admissible. Then we can assign

to every oriented leaf g of the lamination λ̃ a line splitting

R
n =

n⊕

i=0

ℓi(g) (8.3)

that is ρ-equivariant and satisfies ℓi(g) = ℓn−i+1(g), where g denotes the geodesic g with

opposite orientation.

Proof. For the case that g is non-isolated, we can construct a line splitting as in (8.2).

For the case that g is isolated, we obtain a line splitting from the splitting admissible

quadruple Qρ(g) by setting ℓi(g) := ℓi(Qρ(g)). The ρ-equivariance of the lines ℓi(g) follows

from the ρ-equivariance of the flag curve ζ and the equivariance of the lines ℓi. Further,

the quadruple Qρ(g) is obtained from Qρ(g) by switching the first two and the last two

flags. The behavior of the line splitting under reversing orientation then follows from the

behavior of the lines ℓi under permutations of the flags.
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8.1. Admissible representations

Remark 8.6. If a representation ρ is ∆-Anosov, then it is also θ-Anosov for any θ ⊂ ∆ by

definition. Thus, we can consider a ∆-Anosov representation ρ as θ-Anosov representation.

In terms of boundary maps, this means that we forget about some parts of the flag. Assume

that ρ , considered as θ-Anosov representation, is λ-admissible. For every oriented geodesic

g in λ̃, we now have two line splittings: On one hand, the line splitting R
n =

⊕n
i=1 Vi(g)

coming from the boundary map in the complete flags, when viewing ρ as ∆-Anosov and

on the other hand the line splitting R
n =

⊕n
i=1 ℓi(g) from Lemma 8.5, when viewing ρ as

θ-Anosov. Those line splittings do not agree in general. This results form the fact that the

line splitting R
n =

⊕n
i=1 Vi(g) is independent of the vertices g1 and g2, whereas those are

crucial for the construction in Lemma 8.5. See also Example 8.18 for an explicit example

in SL(4,R).

Remark 8.7. The existence of a line splitting associated to every oriented geodesic g in λ̃

as in (8.3) now raises the question if we can use this splitting to define a boundary map

from the boundary of the lamination ∂∞λ̃ into the variety of complete flags Flag(Rn).

This is not possible. The boundary map into the partial flag variety ζ : ∂∞S̃ → Fθ can be

reconstructed from the splitting in (8.1) as

ζ(ij)(g+) =

il⊕

l=1

Vl(g), (8.4)

where g+ is the positive endpoint of g. However, we cannot construct a boundary map into

the variety of complete flags in the same way. The problem is that for a boundary point

x ∈ ∂∞λ̃, there are infinitely many oriented geodesics g having x as positive endpoints and

a construction as in (8.4) depends on the choice of g. See also Example 8.20 for an explicit

example in SL(4,R).

One main ingredient in the definition of cataclysms are the stretching maps from Section

4.2 with parameter H ∈ aθ ⊂ a. Using the line splitting for g constructed in Lemma (8.5),

we can enlarge the parameter space and define stretching maps with parameter H ∈ a.

Definition 8.8. Let H ∈ a and let g be an oriented geodesic in λ̃. Let mg ∈ SL(n,R) be

an element that maps the line splitting given by the standard basis vectors e1, . . . , en to the

line splitting given by g as in Lemma 8.5. Then T̂H
g := mg exp(H)m−1

g is the full-stretching

map along g by H.

We use the notation T̂ to distinguish the full-stretching maps from the stretching maps

from Section 4.2.

Remark 8.9. In a basis adapted to the line splitting for g, the full-stretching map T̂H
g is

diagonal with entries given by H ∈ a. By construction, the properties from Lemma 4.16
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8. Generalized cataclysms for representations into SL(n,R)

also hold for full-stretching maps, i.e. fro an oriented geodesic g in S̃ and H,H1, H2 ∈ a

we have

1. T̂H1
g T̂H2

g = T̂H1+H2
g

2.
(
T̂H
g

)−1
= T̂−H

g ,

3. T̂H
g = T̂

−ι(H)
g and

4. ρ-equivariance, i.e. T̂H
γg = ρ(γ)T̂H

g ρ(γ)
−1 for all γ ∈ π1(S).

For the proof of convergence of the shearing maps (Proposition 5.3) we needed the fact that

if two geodesics are close, also the corresponding stretching maps are close (Proposition

4.18). We want to establish the same result for full-stretching maps. Let g, h be oriented

geodesics in λ̃ and let Cgh be the set of all connected components of S̃ \ λ̃ between g and

h (see Notation 3.10). Let k̃ be an oriented arc tightly transverse to λ̃ that crosses first g,

then h. The proof of Proposition 4.18 uses the slithering map. In the situation at hand, we

cannot use slithering maps as we did for Proposition 4.18, because the element Σgh maps

the spaces Vj(h) to Vj(g), but not necessarily the lines ℓi(h) from Lemma 8.5 to ℓi(g).

Our first step is to show that the lines ℓi(g) from Lemma 8.5 are close for two oriented

geodesics g0R and g1R that bound a pinched inner component. Recall from Definition 3.13

that a component R ∈ Cgh is pinched if there are other components R− and R+ in Cgh
lying along k̃ directly before and after R, respectively, and such that the oriented geodesics

g0R− , g
1
R− , g

0
R, g

1
R, g

0
R+ and g1R+ all share an endpoint (see Figure 3.5).

Lemma 8.10. There exist constants C,A > 0, depending on k̃ and ρ, such that for every

pinched inner component R ∈ Cgh , for all i,

dRPn−1

(
ℓi(g

0
R), ℓi(g

1
R)
)
≤ Ce−Ar(R), (8.5)

where r(R) is the divergence radius (Lemma 3.11).

Proof. Let R ∈ Cgh be a pinched inner component. Without loss of generality assume that

g0R, g
1
R are oriented towards their common endpoint which we denote by

(
g0R
)+

=
(
g1R
)+

.

Likewise, let
(
g0R
)−

and
(
g1R
)−

be the negative endpoints of the oriented geodesics g0R and

g1R, respectively. Let d∞ be a distance function on ∂∞S̃ and, abusing notation, also on(
∂∞S̃

)4
, which is defined as sum of the element-wise distances in ∂∞S̃. For the distance

function on the space of oriented geodesics, we use the sum of the distances of the endpoints,

i.e. d(g, h) := d∞(g+, h+) + d∞(g−, h−), where g± are the endpoints of g, and the same

for h. Fix a distance function dRPn−1 on RPn−1.
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8.1. Admissible representations

For every oriented isolated leaf g, the lines ℓi(g) depend smoothly on the quadruple Qρ(g)

by the definition of being splitting admissible. Further, since the boundary map ζ is

Hölder continuous, the quadruple Qρ(g) depends Hölder continuously on the four points

(g+, g−, g1, g2) from Notation 8.1. Thus, the assignment from the quadruple of points

(g+, g−, g1, g2) to the lines ℓi(g) is locally Hölder continuous, i.e. there exist constants

C,A > 0 depending on k̃ and ρ such that

dRPn−1

(
ℓi(g

0
R), ℓi(g

1
R)
)

≤ Cd∞
(((

g0R
)+
,
(
g0R
)−
,
(
g0R
)1
,
(
g0R
)2)

,
((
g1R
)+
,
(
g1R
)−
,
(
g1R
)1
,
(
g1R
)2))A

= C
(
d∞
((
g0R
)+
,
(
g1R
)+)

+ d∞
((
g0R
)−
,
(
g1R
)−)

+d∞
((
g0R
)1
,
(
g1R
)1)

+ d∞
((
g0R
)2
,
(
g1R
)2))A

,

≤ C
(
d
(
g0R, g

1
R

)
) + d

(
g0R+ , g

1
R+

)
+ d

(
g0R− , g

1
R−

))A
.

Here, R− and R+ are the connected component of S̃ \ λ̃ adjacent to R and lying before and

after R, respectively, in the direction of k̃. In the last step, we used the definition of the

distance of two oriented geodesics as sum of the distances between the endpoints. Thus,

using Remark 4.2 and Lemma 3.11, there exist constants C ′, C ′′, A′ > 0 such that

dRPn−1

(
ℓi(g

0
R), ℓi(g

1
R)
)
≤ C ′

(
length(k̃ ∩R) + length(k̃ ∩R+) + length(k̃ ∩R−)

)A

≤ C ′′
(
e−A′r(R) + e−A′r(R+) + e−A′r(R−)

)A
.

Since the divergence radii r(R), r(R+) and r(R−) differ by a constant depending on k̃ by

Lemma 3.14, the claim follows.

Lemma 8.11. Let R ∈ Cgh be a pinched inner component. Then there exists and element

mg0Rg1R
∈ SL(n,R) sending the line splitting for g1R to the line splitting for g0R, and constants

C,A > 0 depending on k̃ and ρ such that

dSL(n,R)(Id,mg0Rg1R
) ≤ Ce−Ar(R).

Note that the elementmg0Rg1R
plays the role of the slithering map in the proof of Proposition

4.18. The estimates follows from Lemma 8.10 by carefully choosing mg0Rg1R
and suitable

norms. The details can be found in Section A.4.

We can now prove that, if two geodesics bound the same component and share an endpoint,

then the corresponding full-stretching maps are close. This is an analogue of Corollary

4.19.

123
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Lemma 8.12. Let k̃ be an oriented arc transverse to λ̃ and let R ⊂ S̃ \ λ̃ be a pinched

inner component. Then there exist constants C,A > 0 depending on k̃ and ρ such that

dSL(n,R)

(
T̂H
g0R
T̂−H
g1R

, Id
)
≤ C

(
e‖H‖

a + 1
)
e−Ar(R).

Proof. As in the proof of Prop 4.18, up to conjugation ρ by an element in SL(n,R), we

can assume that the splitting associated to g0R is the standard splitting given by the basis

vectors e1, . . . , en. Let m = mg0Rg1R
∈ SL(n,R) be as in Lemma 8.11. Then

dSL(n,R)

(
T̂H
g0R
T̂−H
g1R

, Id
)
= dSL(n,R)

(
T̂−H
g0R

, T̂−H
g1R

)

= dSL(n,R)
(
exp(−H),m exp(−H)m−1

)

≤ dSL(n,R) (exp(−H),m exp(−H))

+ dSL(n,R)
(
m exp(−H),m exp(−H)m−1

)

≤
∥∥Adexp(H)

∥∥
op(g)

dSL(n,R) (Id,m) + dSL(n,R)
(
Id,m−1

)

≤ C
(
e‖H‖

a + 1
)
e−Ar(R),

where for the second last inequality, we use left-invariance and almost right-invariance of

the metric dSL(n,R) (Lemma A.2), and for the last inequality we use Lemma A.3 and Lemma

8.11.

We can now define shearing maps as in Section 5.1 as a limit of a composition of full-

stretching maps. Their existence is guaranteed by Lemma 8.12. Note that it is sufficient

that Lemma 8.12 holds for pinched inner components only, because all but finitely many

components are pinched. If ρ is λ-admissible, and ε ∈ HTwist(λ̂; a∆) sufficiently small,

we can define Λ̂ε
0ρ, the generalized ε-cataclysm deformation of the Anosov representation ρ

along the maximal geodesic lamination λ with coefficients in ε ∈ HTwist(λ̂; a∆) with respect

to a fixed reference triangle P0.

In total, we have the following result.

Theorem 8.13. Let ρ : π1(S) → SL(n,R) be θ-Anosov and λ-admissible. Fix a reference

triangle P0 ⊂ S̃ \ λ̃. Then exists a neighborhood Vρ of 0 in HTwist(λ̂; a) and a continuous

map

Λ̂0 : Vρ → Hom(π1(S), SL(n,R))

ε 7→ Λ̂ε
0ρ

such that Λ̂0
0ρ = ρ.
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Note that the difference to Theorem 5.12 lies in the parameter space: The parameter space

in Theorem 5.12 is a subset of HTwist(λ̂; aθ), which has dimension |θ|(6 ·genus(S)−6)+ |θ′|
by Corollary 3.22, where θ′ ⊂ θ is a maximal subset satisfying θ′ ∩ ι(θ) = ∅. Now, for

λ-admissible representations, we can shear with parameters in HTwist(λ̂; a), which has

dimension (n−1)(6 ·genus(S)−6)+ ⌊n2 ⌋. In particular, the dimension of HTwist(λ̂; aθ) can

be independent on n, but HTwist(λ̂; a) grows linearly in n.

Remark 8.14.

(1) One can ask if it is possible to construct a parameter space that is bigger than

HTwist(λ̂; a) by using more general deformations of the subspaces Vj(g), not just

diagonal stretches. However, our construction does not give a basis for the spaces

Vj(g), but only a line splitting. Thus, we cannot use it to specify transformations on

Vj(g) that are different from diagonal stretches.

(2) The cataclysms defined in Section 5 can also be seen as a special case of the deforma-

tions defined in this section: Since aθ ⊂ a, we can identify HTwist(λ̂; aθ) with a subset

of HTwist(λ̂; a). If we only look at H ∈ aθ, then the stretching maps TH
g from Section

4.2 agree with the full-stretching maps T̂H
g , so for ε ∈ HTwist(λ̂; aθ), the resulting

cataclysm deformation is the same.

In the following two sections, we give examples for λ-admissible representations.

8.2. Admissibility for projective Anosov representations in

SL(4,R)

In this section we give an example for λ-admissible projective Anosov representations

into SL(4,R), so θ = {1, 3}. The flag curve is of the form ζ(x) =
(
ζ(1)(x) ⊂ ζ(3)(x)

)
for

x ∈ ∂∞S̃, with ζ(1)(x) ∈ RP 3 and ζ(3)(x) ∈ Gr3(4). Our construction of the line splitting is

based on the observation that generically, a quadruple of flags in F{1,3} satisfies additional

transversality properties.

Lemma 8.15. Let (E,F,G1, G2) be a quadruple of pairwise transverse flags in F{1,3} such

that

E(3) ∩ F (3) ∩G(3)
1 ∩G(3)

2 = {0}. (8.6)

Then (E,F,G1, G2) is splitting admissible.
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8. Generalized cataclysms for representations into SL(n,R)

Proof. Define ℓ1(E,F,G1, G2) := E(1) and ℓ4(E,F,G1, G2) := F (1). Note that, since the

flags are pairwise transverse, the intersection E(3) ∩ F (3) has dimension two and likewise

for the other flags. By looking at the dimension of the subspaces, we have

dim
(
E(3) ∩ F (3) ∩G(3)

1

)

= dim
(
E(3) ∩ F (3) ∩G(3)

1 ∩G(3)
2

)
+ dim

(
(E(3) ∩ F (3) ∩G(3)

1 ) +G
(3)
2

)
− dim(G

(3)
2 )

= 0 + 4− 3 = 1.

Set ℓ2(E,F,G1, G2) :=
(
E(3) ∩ F (3) ∩G(3)

1

)
. Analogously, we can compute that

dim
(
E(3) ∩ F (3) ∩G(3)

2

)
= 1 and

(
E(3) ∩ F (3) ∩G(3)

1

)
6=
(
E(3) ∩ F (3) ∩G(3)

2

)
.

Set ℓ3(E,F,G1, G2) :=
(
E(3) ∩ F (3) ∩G(3)

2

)
. The lines ℓi(E,F,G1, G2) give a line splitting

of R4. Let the spaces Vj be the subspaces of the splitting given by E and F as in Example

(2.11). We have

V1 = E(1) = ℓ1(E,F,G1, G2),

V2 = E(3) ∩ F (3) = ℓ2(E,F,G1, G2)⊕ ℓ3(E,F,G1, G2) and

V3 = F (1) = ℓ4(E,F,G1, G2),

so the line splitting is subordinate to the splitting given by the Vj . Further, the behavior

under permutations and the equivariance follow directly from the definition. As the inter-

section of subspaces in R
4 is smooth away from non-generic situations, the lines depend

smoothly on the quadruple.

From Lemma 8.15, we can conclude the following:

Corollary 8.16. Let ρ : π1(S) → SL(4,R) be projective Anosov such that ρ(γc) is diago-

nalizable with distinct eigenvalues for every closed leaf γc of λ and that for every isolated

leaf g of S̃, the quadruple Qρ(g) satisfies the intersection condition (8.6). Then ρ is λ-

admissible and Theorem 8.13 applies, i.e. there exists a cataclysm deformation Λ̂0 with

parameter space HTwist(λ̂; a).

Lemma 8.17. The subset of λ-admissible representation in all projective Anosov repre-

sentations into SL(4,R) is open.

Proof. We already know that the first condition is open. Further, the condition (8.6) is an

open condition in the space of quadruples of flags that are pairwise transverse. Since the

boundary map ζ is continuous and depends continuously on the representation ρ it follows
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that, for a fixed oriented geodesic g the set of all projective Anosov representations such

thatQρ(g) is splitting admissible is open. Since the lamination λ is finite and being splitting

admissible is invariant under SL(4,R), the set of projective Anosov representations such

that Qρ(g) is splitting admissible for every isolated leaf g is open as a finite intersection of

open sets. In total, the set of λ-admissible projective Anosov representations is open.

Example 8.18. We can now give an explicit example for Remark 8.6, i.e. show that if we

consider a ∆-Anosov representation in SL(4,R) as projective Anosov, then the two line

splittings we obtain do not agree. Consider the irreducible representation j4 : SL(2,R) →
SL(4,R) introduced in Subsection 2.4.2 and let j+4 : RP 1 → Flag(R4) be the induced j4-

equivariant map. Let E := j+4 (〈e1〉), F := j+4 (〈e2〉), G1 = j+4 (〈e1 + e2〉) and G2 :=

j+4 (〈e1 − e2〉). Then E is standard ascending flag , F is the standard descending flag F

and G
(i)
1 is spanned by v1, . . . , vi, G

(i)
2 is spanned by w1, . . . , wi, where

v1 =




1

−
√
3√
3

−1



, v2 =




√
3

−1

−1√
3



, v3 =




√
3

1

−1

−
√
3



,

w1 =




−1

−
√
3

−
√
3

−1



, w2 =




√
3

1

−1

−
√
3



, w3 =




−
√
3

1

1

−
√
3



.

Since these flags come from the elements in RP 1, the triangle invariants for the triples

(E,F,G1) and (F,E,G2) are all positive, so using Bonahon-Dreyer coordinates [BD17],

there exists a Hitchin representation ρ : π1(S) → SL(4,R) such that the quadruple of flags

(E,F,G1, G2) agrees with the quadruple Qρ(g) for some oriented geodesic g in S̃. On one

hand, considering ρ as ∆-Anosov, we obtain a line splitting with lines Vi(g) = 〈ei〉. On the

other hand, one computes that the line ℓ2(g) is given as

ℓ2(g) = E(3) ∩ F (3) ∩G(3)
1 =

〈



0

−1

1

0




〉
6= 〈e2〉.

A similar computation shows ℓ3(g) 6= 〈e3〉, so the line splitting from Lemma 8.5 does not

agree with the splitting given by the full flags E and F , which is the standard line splitting.

Remark 8.19. For two adjacent geodesics, the lines ℓi(g) are related: Let g and h be two

oriented geodesics in λ̃ that bound the same triangle and assume that g and h converge to

the same endpoint (see Figure 8.2). Further assume that the points g+, g−, h− appear in
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particular, the line splitting from Lemma 8.5 does not induce a well-defined boundary map

into the full flags.

One can now ask if we can find projective Anosov representations into SL(n,R) for n > 4

that are λ-admissible. In this case, the subspace V2(g) of the splitting from (8.1) has

dimension n − 2. To obtain a line splitting of V2(g) it is not sufficient to consider the

quadruple of flagsQρ(g). Instead, we need an n-tuple of pairwise transverse flags associated

to an oriented isolated geodesic. Further, these flags need to satisfy additional genericity

conditions in order to obtain a line splitting. It might be be possible to extend the definition

of λ-admissibility in this way to projective Anosov representations into SL(n,R), but this

requires additional choices and does not seem natural to us.

8.3. Admissibility for {αn}-Anosov representations in

SL(2n,R)

In this section we give an example for λ-admissible representations into SL(2n,R) that are

{αn}-Anosov representations, so the boundary map ζ maps into Grn(2n).

As a preparation, we have a look of the action of SL(2n,R) on quadruples of pairwise

transverse n-planes. Let e1, . . . , e2n be the standard unit vectors in R
2n, set fi := en+i and

let P1 := 〈e1, . . . , en〉 and P2 := 〈f1, . . . , fn〉 be fixed transverse n-planes that we use for

reference.

Lemma 8.21. The group SL(2n,R) acts transitively on pairs of transverse elements in

Grn(2n) and

StabSL(2n,R)(P1, P2) =

{(
A 0

0 D

) ∣∣∣∣∣ A,D ∈ GL(n,R), det(A)det(D) = 1

}
.

Proof. This is a direct consequence of the fact that SL(2n,R) acts transitively on projective

bases of R2n.

Next, we want to see how SL(2n,R) acts on triples of pairwise transverse n-planes.

Remark 8.22. Let Grn(2n)
P1,P2 be the set of all elements in Grn(2n) that are transverse

to both P1 and P2, i.e.

Grn(2n)
P1,P2 :=

{
P ∈ Grn(2n)

∣∣ P ⊕ P1 = R
2n = P ⊕ P2

}
.
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We can identify Grn(2n)
P1,P2 with GL(n,R) as follows: If P ∈ Grn(2n) is transverse to P2,

there exists a unique matrix XP ∈ Matn×n(R) such that the columns of the 2n×n-matrix

(
Idn

XP

)
(8.9)

form a basis for P . If P is in addition transverse to P1, then det(XP ) 6= 0, so XP ∈
GL(n,R). Vice versa, if X ∈ GL(n,R), then the columns of the matrix (8.9) span an

n-dimensional subspace transverse to P1 and P2. Note that this construction agrees with

classical coordinate charts for the Grassmannians, considered for the special case of n-

planes transverse to P1 and P2.

We sometimes abuse notation and identify an element P ∈ Grn(2n)
P1,P2 with the corre-

sponding matrix XP ∈ GL(n,R).

We define two more reference planes in Grn(2n)
P1,P2 : P+

3 := 〈e1 + f1, . . . , en + fn〉 and

P−
3 := JP+

3 = 〈e1 − f1, e2 + f2, . . . , en + fn〉, where

J :=

(
−1 0

0 Idn−1

)
∈ GLn(R). (8.10)

Lemma 8.23. The action of StabSL(2n,R)(P1, P2) on Grn(2n)
P1,P2 has two orbits repre-

sented by P+
3 and P−

3 and

StabSL(2n,R)(P1, P2, P
+
3 ) =

{(
A 0

0 A

) ∣∣∣∣∣ det(A)
2 = 1

}
,

StabSL(2n,R)(P1, P2, P
−
3 ) =

{(
A 0

0 JAJ

) ∣∣∣∣∣ det(A)
2 = 1

}
.

Proof. First, note that no element in StabSL(2n,R)(P1, P2) can map P+
3 to P−

3 , so the two

elements lie in different orbits. For P ∈ Grn(2n)
P1,P2 we either have det(XP ) > 0 or

det(XP ) < 0. Let P ∈ Grn(2n)
P1,P2 with det(XP ) > 0. The matrix

A := (detXP )
1
2n

(
Idn 0

0 X−1
P

)

lies in StabSL(2n,R)(P1, P2) and sends P to P+
3 . This shows that SL(2n,R) acts transitively

on elements in Grn(2n)
P1,P2 with det(XP ) > 0. Similarly, for P ∈ Grn(2n)

P1,P2 with
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det(XP ) < 0, define

A := (−det(XP ))
1
2n

(
Idn 0

0 JX−1
P

)
.

Then A has determinant 1, so is in StabSL(2n,R)(P1, P2) and sends P to P−
3 . Thus, there are

two StabSL(2n,R)(P1, P2)-orbits in Grn(2n)
P1,P2 distinguished by the sign of det(XP ) with

representatives P+
3 and P−

3 . The SL(2n,R)-stabilizers follow from a short computation.

As a consequence of Lemma 8.21 and Lemma 8.23, we obtain the following:

Corollary 8.24. The SL(2n,R)-action on triples of pairwise transverse planes has two

orbits represented by the triples (P1, P2, P
+
3 ) and (P1, P2, P

−
3 ).

Definition 8.25. A triple of pairwise transverse planes in R
4 is of positive type, if it lies

in the SL(2n,R)-orbit represented by (P1, P2, P
+
3 ). It is of negative type if it lies in the

SL(2n,R)-orbit represented by (P1, P2, P
−
3 ).

Note that the type of a triple depends continuously on the triple.

Remark 8.26. Let ρ : π1(S) → SL(2n,R) be an {αn}-Anosov representation with boundary

map ζ : ∂∞S̃ → Grn(2n) and let (x, y, z) ∈ ∂∞S̃ be a triple of pairwise distinct points in

positive order. Then (ζ(x), ζ(y), ζ(z)) is a triple of pairwise transverse n-planes, and its

type only depends on the connected component of the representation variety containing

ρ. This follows from the fact that the triple depends continuously on ρ and the type of

a triple depends continuously on the triple, so the type of (ζ(x), ζ(y), ζ(z)) is constant on

connected components of the representation variety. Further, it is independent of the triple

(x, y, z), since the space of triples of pairwise distinct points in positive order is connected.

Example 8.27. We want to understand what types of triples can appear for a maximal

representation ρ : π1(S) → Sp(2n,R) ⊂ SL(2n,R) with boundary map ζ : ∂∞S̃ → Grn(2n)

(see Subsection 2.4.4). In this case, ζ maps into the Lagrangians L(R2n) ⊂ Grn(2n), i.e. n-

dimensional subspaces on which the symplectic form ω vanishes. To a triple of Lagrangians,

one can associate the Maslov index which takes values in {−n,−n + 2, . . . , n − 2, n} (see

[BILW05, Section 8.1]). The group Sp(2n,R) acts transitively on triples of Lagrangians

with the same Maslov index. If x, y, z ∈ ∂∞S̃ are distinct points in the boundary, then the

Maslov index of (ζ(x), ζ(y), ζ(x)) is n if the triple (x, y, z) is positively ordered and −n if

it is negatively ordered by [BILW05, Lemma 8.3]. Consider the triple (〈e1〉, 〈e2〉, 〈e1 − e2〉)
in RP 1. It is positively ordered.

Since Hitchin representations into Sp(2n,R) are maximal it follows that the triple of La-

grangians
(
j+2n (〈e1〉) , j+2n (〈e2〉) , j+2n (〈e1 − e2〉)

)
has Maslov index n. Here, j2n : SL(2,R) →

Sp(2n,R) denotes the irreducible representation introduced in Subsection 2.4.2 and j+2n the
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induced map on flags.

Note that we only care about the n-dimensional parts of the flags and forget the others, and

that j+2n (〈e1〉) = P1 and j+2n (〈e2〉) = P2. Analogously, the triple (P1, P2, j
+
2n (〈e1 + e2〉))

has Maslov index −n. Now let (x, y, z) be a positively oriented triple in ∂∞S̃. Then,

since ζ is maximal, the triple (ζ(x), ζ(y), ζ(z)) has Maslov index n. As Sp(2n,R) acts

transitively on triples with the same Maslov index, we know that (ζ(x), ζ(y), ζ(z)) is of the

same type as (P1, P2, j
+
2n (〈e1 − e2〉)). Analogously, if (x, y, z) is negatively oriented, then

(ζ(x), ζ(y), ζ(z)) is of the same type as (P1, P2, j
+
2n (〈e1 + e2〉)).

For Sp(4,R), one computes that both triples (P1, P2, j
+
4 (〈e1 ± e2〉)) are of positive type.

In particular, if ρ : π1(S) → Sp(4,R) is maximal, then for any triple (x, y, z) in ∂∞S̃, the

triple (ζ(x), ζ(y), ζ(z)) is of positive type.

Let Grn(2n)
P1,P2,P

±
3 be the set of all elements in Grn(2n) that are transverse to P1, P2 and

P±
3 , i.e.

Grn(2n)
P1,P2,P

±
3 :=

{
P ∈ Grn(2n)

∣∣ P ⊕ Pi = R
2n for i = 1, 2, P ⊕ P±

3 = R
2n
}
.

Remark 8.28. We have seen in Remark 8.22 that every P ∈ Grn(2n)
P1,P2 can be identified

with a matrix XP ∈ GL(n,R). Transversality to P+
3 and P−

3 gives additional conditions

on the determinant, namely Grn(2n)
P1,P2,P

+
3 can be identified with the set of all matrices

X ∈ GLn(R) satisfying det(X − Idn) 6= 0 and Grn(2n)
P1,P2,P

−
3 can be identified with the

set of all matrices X ∈ GLn(R) satisfying det(X − J) 6= 0. This can be seen from the fact

that the (2n× n)-matrix from (8.9) and the columns of (Idn, Idn)
T for the case of P+

3 and

(Idn, J)
T for the case of P−

3 have to be linearly independent.

We now examine how StabSL(2n,R)(P1, P2, P
+
3 ) acts on Grn(2n)

P1,P2,P
+
3 .

Lemma 8.29. Let M = diag(A,A) ∈ StabSL(2n,R)(P1, P2, P
+
3 ) with A ∈ GL(n,R), P ∈

Grn(2n)
P1,P2,P

+
3 and let XP ∈ GL(4,R) as in Remark 8.22. Then the matrix representing

M · P is AXPA
−1. Vice versa, for any A ∈ GL(n,R), AXPA

−1 represents an element in

Grn(2n)
P1,P2,P

+
3 that lies in the same SL(2n,R)-orbit as P .

In other words, the StabSL(2n,R)(P1, P2, P
+
3 )-orbits of Grn(2n)

P1,P2,P
+
3 can be identified

with conjugacy classes of matrices in GL(n,R).

Proof. Use the notation as in the lemma. The n-plane M · P is spanned by the columns

of the (2n× n)-matrix

(
A 0

0 A

)(
Idn

XP

)
=

(
A

AXP

)
.
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By right-multiplying both blocks by A−1, which is a change of basis for P , we see that

P is spanned by the columns of the matrix

(
Idn

AXPA
−1

)
, which proves the first claim.

Vice versa, if we consider the matrix AXPA
−1 for some A ∈ GL(n,R), then the matrix

diag(A,A) is, after appropriate scaling, in StabSL(2n,R)(P1, P2, P
+
3 ) and maps P to the

n-plane defined by AXPA
−1.

An analogous result holds for the action of StabSL(2n,R)(P1, P2, P
−
3 ) on Grn(2n)

P1,P2,P
−
3 .

Lemma 8.30. Let M = diag(A, JA) ∈ StabSL(2n,R)(P1, P2, P
−
3 ) with A ∈ GL(n,R),

P ∈ Grn(2n)
P1,P2,P

+
3 . Let XP ∈ GL(n,R) such that JXP represents the n-plane P as

in Remark 8.22. Then the matrix representing M · P is JAXPA
−1. Vice versa, for any

A ∈ GL(n,R), JAXPA
−1 represents an element in Grn(2n)

P1,P2,P
−
3 that lies in the same

StabSL(2n,R)(P1, P2, P
−
3 )-orbit as P .

Proof. The proof is analogous to the proof of Lemma 8.29.

Remark 8.31. If P, P ′ ∈ Grn(2n)
P1,P2,P

+
3 are in the same StabSL(2n,R)(P1, P2, P

+
3 )-orbit,

then by Lemma 8.29, XP ′ = AXPA
−1 for some A ∈ GL(n,R). If ℓi is an eigenspace for

XP , then Aℓi is an eigenspace for XP ′ . Similarly, if P, P ′ ∈ Grn(2n)
P1,P2,P

−
3 lie in the same

StabSL(2n,R)(P1, P2, P
−
3 )-orbit, then XP ′ = J

(
AJXPA

−1
)
for some A ∈ GL(n,R).

With this preliminary work on the action of SL(2n,R) on the space of quadruples of pairwise

transverse n-planes, we can now give a sufficient condition for a quadruple (E,F,G1, G2)

to be splitting admissible.

Lemma 8.32. Let (E,F,G1, G2) be a quadruple of pairwise transverse elements in Grn(2n)

such that either

• (E,F,G1) is of positive type and (E,F,G1, G2) is in the SL(2n,R)-orbit of a standard

quadruple of the form (P1, P2, P
+
3 , P ) where XP ∈ GL(n,R) is diagonalizable with

distinct real eigenvalues, or

• (E,F,G1) is of negative type and (E,F,G1, G2) is in the SL(2n,R)-orbit of a standard

quadruple (P1, P2, P
−
3 , P ), where JXP ∈ GL(n,R) is diagonalizable with distinct real

eigenvalues.

Then (E,F,G1, G2) is splitting admissible.

Before we proof the Lemma, we make a remark.
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Remark 8.33. The condition in Lemma 8.32 is well-defined, i.e. does not depend on the

standard form (P1, P2, P
±
3 , P ): If M and M ′ ∈ SL(2n,R) both bring (E,F,G1, G2) to

standard form (P1, P2, P
±
3 , P ) and (P1, P2, P

±
3 , P

′), respectively, then (M ′)−1M lies in the

stabilizer of the triple (P1, P2, P
±
3 ) and XP ′ = AXPA

−1 for some A ∈ GL(n,R) by Lemma

8.29 if we consider quadruples of positive type. In particular, XP ′ is diagonalizable with

distinct eigenvalues if and only if XP is diagonalizable with distinct eigenvalues. The

argument for quadruples of negative type is similar. Further, this shows that the condition

in Lemma 8.32 is invariant under the SL(2n,R)-action.

Proof of Lemma 8.32. First, we look at quadruples of the form (P1, P2, P
+
3 , P ), i.e. stan-

dard quadruples where the first triple is of positive type. We would like to construct a

line splitting of Rn that is subordinate to the splitting given by the first two flags, which

in this case simply is P1 ⊕ P2. We first find n distinct lines in P1. By assumption, XP is

diagonalizable with distinct eigenvalues. For i = 1, . . . , n, let ℓi(P1, P2, P
+
3 , P ) ∈ RPn−1 be

the eigenline of XP corresponding to the ith eigenvalue, where the eigenvalues are ordered

by descending absolute value. They give a line splitting R
n =

⊕n
i=1 ℓi(P1, P2, P

+
3 , P ). We

can identify R
n with P1 using the inclusion

inclP1 : R
n → R

2n, x 7→
(
x

0

)
∈ P1 ⊂ R

2n. (8.11)

In this way, we obtain a line splitting

P1 =
n⊕

i=1

inclP1(ℓi(P1, P2, P
+
3 , P )).

In the following, we will omit the identification through inclP1 in the notation and interpret

ℓi directly as a line in P1 ⊂ R
2n.

Analogously, if (P1, P2, P
−
3 , P ) is a standard quadruple where the first triple is of negative

type, then the eigenspaces for JXP define a line splitting of Rn which under the identifi-

cation of Rn with P1 as in (8.11) gives a line splitting of P1. Since the eigenspaces of a

matrix depend smoothly on the matrix entries if the matrix remains diagonalizable with

distinct eigenvalues, the lines ℓi(P1, P2, P
+
3 , P ) depend smoothly on the quadruple.

Now look at a general quadruple (E,F,G1, G2) satisfying the condition from Lemma 8.32.

Let M ∈ SL(2n,R) be such that M · (E,F,G1, G2) = (P1, P2, P
±
3 , P ), i.e. M brings the

quadruple in standard position. Such an M exists because SL(2n,R) acts transitively on

triples of positive and negative type by Corollary 8.24. By what we have shown above, we

have a line splitting P1 =
⊕n

i=1 ℓi(P1, P2, P
±
3 , P ). ApplyingM

−1, we obtain a line splitting
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of E by

E =

n⊕

i=1

M−1ℓi(P1, P2, P
±
3 , P ).

We set ℓi(E,F,G1, G2) := M−1ℓi(P1, P2, P
±
3 , P ) for i = 1, . . . , n. This splitting does not

depend on the choice of M by Remark 8.31. So indeed, the splitting of E is independent

of the choice of M . To see the regularity, notice that if we vary the quadruple, the matrix

M varies smoothly with it. In total, the lines ℓi(E,F,G1, G2) depend smoothly on the

quadruple. If j = n+ i > n, set

ℓj(E,F,G1, G2) := ℓn−i+1(F,E,G2, G1).

Then F =
⊕2n

j=n+1 ℓj(E,F,G1, G2), and the lines ℓj(E,F,G1, G2) depend smoothly on the

quadruple as seen above. In total, this gives a line splitting of R2n that is subordinate to

the splitting R
2n = V1 ⊕ V2, since V1 = E and V2 = F . The behavior under permutation

as well as equivariance are satisfied by construction. In total, the quadruple (E,F,G1, G2)

is splitting admissible.

From Lemma 8.32, we can deduce a sufficient condition for an {αn}-Anosov representation

to be λ-admissible.

Corollary 8.34. Let ρ : π1(S) → SL(2n,R) be an {αn}-Anosov representation such that

ρ(γc) is diagonalizable with distinct eigenvalues for every closed leaf γc of λ and that for

every isolated leaf g of S̃, the quadruple Qρ(g) satisfies the condition in Lemma 8.32. Then

ρ is λ-admissible and Theorem 8.13 holds, i.e. there exists a cataclysm deformation Λ̂0 with

parameter space HTwist(λ̂; a).

By similar arguments as in Lemma 8.17, the set of representations satisfying the prerequi-

sites of Corollary 8.34 is open in all {αn}-Anosov representations.

Corollary 8.34 increases the parameter space for λ-admissible representations to the space

HTwist(λ̂; a), which is significantly bigger than HTwist(λ̂; a{αn}). In particular, the dimen-

sion of HTwist(λ̂; a{αn}) is independent on n, whereas the dimension of HTwist(λ̂; a) grows

linearly in n by Corollary 3.22.

135





A. Appendix

In the appendix, we collect technical proofs and results that we need in the thesis, but that

would not add significant value when presented in the main part.

A.1. An almost-right invariant distance on G

In this section we introduce a distance on the Lie group G that we use for computations.

This distance is induced by a Riemannian metric, that itself is induced by an inner product

on the Lie group g.

Remember that a distance d: G×G→ R on G is left-invariant respectively right-invariant

if for all a1, a2, b ∈ G,

d(ba1, ba2) = d(a1, a2) respectively d(a1b, a2b) = d(a1, a2).

A distance is bi-invariant if it is both left- and right-invariant. It is conjugation-invariant if

d(ba1b
−1, ba2b

−1) = d(a1, a2) holds for all a1, a2, b ∈ G. Bi-invariance implies conjugation-

invariance. In general, a bi-invariant distance on G does not exist.

This is why we introduce a weaker requirement.

Definition A.1. A distance dG : G×G→ R on G is almost right-invariant if there exists

a continuous function f : G→ R>0 such that for all a1, a2, b ∈ G, we have

dG(a1b, a2b) ≤ f(b)dG(a1, a2).

Similarly, one can define what it means for a distance dG to be almost conjugation-

invariant.

Remember that an inner product on g induces a complete left-invariant Riemannian metric

on G. Fix such an inner product on g, let ‖·‖g be the norm induced by this inner product

and let ‖·‖op(g) be the operator norm induced by ‖·‖g. Remember that Ad: G→ GL(g) is
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the adjoint representation, i.e. for b ∈ G, Adb is the derivative of the conjugation a 7→ bab−1

at the identity.

Lemma A.2 ([SS01, Lemma A]). Let G be a connected Lie group. The distance dG induced

by the Riemannian metric on G is left-invariant, almost conjugation-invariant and almost

right-invariant. More precisely, for every a1, a2, b ∈ G we have

dG(ba1b
−1, ba2b

−1) ≤ ‖Adb‖op(g) dG(a1, a2) and

dG(a1b, a2b) ≤ ‖Adb−1‖op(g) dG(a1, a2).

Proof. The left-invariance is a direct consequence of the left-invariance of the Riemannian

metric. The almost right-invariance follows from left-invariance and almost conjugation-

invariance. Hence, we show that the dG is almost conjugation invariant, i.e. that

dG(ba1b
−1, ba2b

−1) ≤ ‖Adb‖op(g) dG(a1, a2).

Let a1, a2 ∈ G and c : [0, 1] → G be a differentiable curve from a1 to a2. Then bcb−1 is a

differentiable curve from ba1b
−1 to ba2b

−1, and for every t ∈ [0, 1], ˙(bc(t)b−1) = Adbċ(t).

Thus

ℓ(bcb−1) =

∫ 1

0

∥∥∥ ˙(bc(t)b−1)
∥∥∥
g
dt

=

∫ 1

0
‖Adbċ(t)‖g dt

≤
∫ 1

0
‖Adb‖op(g) ‖ċ(t)‖g dt

= ‖Adb‖op(g) ℓ(c).

Since the distance between two points is given as the infimum of the length of piecewise

differentiable curves from a1 to a2, it follows that dG is almost conjugation-invariant.

We now want to estimate the factor ‖Adb−1‖op(g) for a specific choice of b ∈ G. To do so,

we define a norm on a as follows: For H ∈ a,

‖H‖a := max
α∈∆

|α(H)|. (A.1)

It is easy to check that this is indeed a norm. Note that this norm does in general not

agree with the restriction of the norm ‖·‖g to a.

Lemma A.3. There exists a constant C > 0 such that for all H ∈ a, we have

∥∥Adexp(H)

∥∥
op(g)

≤ Ce‖H‖
a .
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Proof. For computational purposes, we consider a norm on GL(g) different from ‖·‖op(g).
Recall the decomposition of g into root spaces

g = g0 ⊕
⊕

α∈Σ
gα

and choose a basis of g that is adapted to this decomposition. With respect to this basis,

we can identify gl(g) with quadratic matrices. Consider the infinity norm ‖·‖∞ on gl(g)

that is given by the maximal absolute row sum of the matrix. It restricts to a norm on

GL(g) ⊂ gl(g). Let H ∈ a, and ad: g → gl(g) be the adjoint representation on the level

of Lie algebras. With respect to the chosen basis, adH ∈ gl(g) is a diagonal matrix with

entries 0 and αi(H), where Σ = {α1, . . . , αl}, with multiplicity if the root spaces are more

than 1-dimensional. Thus, Adexp(H) = exp(adH) is diagonal with entries 1 and eαi(H),

i = 1, . . . , l, possibly with multiplicity. On a finite dimensional vector space, all norms are

equivalent, so there exists a constant C > 0 such that ‖A‖op(g) ≤ C ‖A‖∞ for all A ∈ gl(g).

In particular,

∥∥Adexp(H)

∥∥
op(g)

≤ C
∥∥Adexp(H)

∥∥
∞ = C ‖exp(adH)‖∞ ≤ Cmax

α∈Σ
e|α(H)| = Ce‖H‖

a .

This proves the Lemma.

A.2. Proof of additivity of the shearing maps

Here, we give the proof of additivity of the shearing maps (Proposition 5.15). We recall

the statement for the reader’s convenience.

Proposition A.4 (Proposition 5.15). Let P be the fixed reference component for the cat-

aclysm deformation Λ0. Then for η, ε ∈ HTwist(λ̂; aθ) small enough, for every component

Q ⊂ S̃ \ λ̃ it holds that

ϕ′ε
PQ = ϕε+η

PQ

(
ϕη
PQ

)−1
.

The ideas in the proof are similar to the ones for the slithering and shearing maps.

Proof. Recall that the shearing map ϕε
PQ is defined as limP→CPQ

ϕε
C , where C ⊂ CPQ is a

finite subset and ϕε
C is as in (5.3). We consider a specific sequence (Cr)r∈N going to CPQ.

Namely, for r ∈ N, let Cr := {R ∈ CPQ | r(R) ≤ r} be the set of all components between P

and Q that have divergence radius at most r. By Lemma 3.11, Cr is finite and there exists

a constant D such that nr := |Cr] ≤ D · r. We use the same notation as in Section 5.1. In
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particular, ψε
PQ = ϕε

PQT
−ε(P,Q)

g0Q
. To compute ϕ′ε

Cr , we first look at a one-element subset

{R} ⊂ CPQ. Using the relation between the stretching maps TH
g and TH′

g from (5.10),

the fact that for H1, H2 ∈ aθ we have TH1
g TH2

g = TH1+H2
g and additivity of the cycle, we

compute

ϕ′ε
{R} =

(
T ′ε(P,R)

g0R
T ′−ε(P,R)

g1R

)
T ′ε(P,Q)

g0Q

= ϕη
PR

(
T
ε(P,R)

g0R
T
−ε(P,R)

g1R

) (
ϕη
PR

)−1
ϕη
PQT

ε(P,Q)

g0Q

(
ϕη
PQ

)−1

=
(
ψη
PRT

η(P,R)

g0R

)(
T
ε(P,R)

g0R
T
−ε(P,R)

g1R

)
ϕη
RQT

ε(P,Q)

g0Q

(
ϕη
PQ

)−1

= ψη
PR

(
T
ε+η(P,R)

g0R
T
−(ε+η)(P,R)

g1R

)(
T
η(P,R)

g1R
ψη
RQT

η(R,Q)

g0Q

)
T
ε(P,Q)

g0Q

(
ϕη
PQ

)−1

= ψη
PR

(
T
ε+η(P,R)

g0R
T
−(ε+η)(P,R)

g1R

)(
T
η(P,R)

g1R
ψη
RQT

−η(P,R)

g0Q

)
T
ε+η(P,Q)

g0Q

(
ϕη
PQ

)−1
.

In the last equality, we used that η(R,Q) = η(P,Q)− η(P,R). Using the same techniques

on the finite subset Cr = {R1, . . . , Rnr} ⊂ CPQ we find

ϕ′ε
Cr =

nr∏

i=1

(
T ′ε(P,Ri)

g0i
T ′−ε(P,Ri)

g1i

)
T ′ε(P,Q)

g0Q

= ψη
PR1

nr∏

i=1

((
T
ε+η(P,Ri)

g0i
T
−(ε+η)(P,Ri)

g1i

)(
T
η(P,Ri)

g1i
ψη
RiRi+1

T
−η(P,Ri)

g0i+1

))

T
ε+η(P,Q)

g0Q

(
ϕη
PQ

)−1
.

Set

ψ̂η,ε
Cr := ϕ′ε

Cr

(
T
ε+η(P,Q)

g0Q

(
ϕη
PQ

)−1
)−1

.

We claim that limr→∞ ψ̂η,ε
Cr = ψε+η

PQ . Recall that

ψε+η
PQ = lim

r→∞
ψε+η
Cr = lim

r→∞

nr∏

i=1

(
T
ε+η(P,Ri)

g0i
T
−(ε+η)(P,Ri)

g1i

)
.

This converges to ψε+η
PQ as r goes to infinity. Thus, it suffices to show that dG(ψ

ε+η
Cr , ψ̂η,ε

Cr )

tends to 0 as r goes to infinity.

Using the triangle inequality, left-invariance and almost-right invariance of the metric dG,
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we have

dG(ψ
ε+η
Cr

, ψ̂η,εCr
)

= dG

(
ψε+ηCr

, ψηPR

nr∏

i=1

((
T
ε+η(P,Ri)

g0i
T

−(ε+η)(P,Ri)

g1i

)(
T
η(P,Ri)

g1i
ψηRiRi+1

T
−η(P,Ri)

g0i+1

)))

≤ dG
(
ψε+ηCr

, ψηPRψ
ε+η
Cr

)

+ dG

(
ψηPRψ

ε+η
Cr

, ψηPR

nr∏

i=1

((
T
ε+η(P,Ri)

g0i
T

−(ε+η)(P,Ri)

g1i

)(
T
η(P,Ri)

g1i
ψηRiRi+1

T
−η(P,Ri)

g0i+1

)))

≤
∥∥∥∥Ad(ψε+η

Cr
)
−1

∥∥∥∥ dG(Id, ψ
η
PR1

)

+ dG

(
nr∏

i=2

(
T
ε+η(P,Ri)

g0i
T

−(ε+η)(P,Ri)

g1i

)
,

nr∏

i=2

((
T
ε+η(P,Ri)

g0i
T

−(ε+η)(P,Ri)

g1i

)(
T
η(P,Ri)

g1i
ψηRiRi+1

T
−η(P,Ri)

g0i+1

)))

Iterating these estimates gives

dG(ψ
ε+η
Cr

, ψ̂η,εCr
) ≤

nr∑

i=0

∥∥∥∥Ad(
ψ

ε+η

Cr\{R1,...,Ri}

)−1

∥∥∥∥ dG
(
Id,
(
T
η(P,Ri)

g1i
ψηRiRi+1

T
−η(P,Ri)

g0i+1

))
. (A.2)

By Lemma 5.2, dG(Id, ψ
ε+η
C ) is uniformly bounded by a constant C0 for every finite subset C ⊂

CPQ, with C0 depending on k and ρ. Hence, also the factors

∥∥∥∥Ad(
ψ

ε+η

Cr\{R1,...,Ri}

)−1

∥∥∥∥ are uniformly

bounded. Further, we have for every i, using that the norm dG is almost-conjugation invariant,

dG

(
Id, T

η(P,Ri)

g1i
ψηRiRi+1

T
−η(P,Ri)

g0i+1

)
(A.3)

≤
∥∥∥∥∥Ad(

T
−η(P,Ri)

g0
i+1

)

∥∥∥∥∥ dG
(
Id, T

−η(P,Ri)

g0i+1
T
η(P,Ri)

g1i
ψηRiRi+1

)

≤
∥∥∥∥∥Ad(

T
−η(P,Ri)

g0
i+1

)

∥∥∥∥∥
(
dG

(
Id, T

−η(P,Ri)

g0i+1
T
η(P,Ri)

g1i

)
+ dG

(
Id, ψηRiRi+1

))
.

Combining (A.2) and (A.3), we obtain

dG(ψ
ε+η
Cr

, ψ̂η,εCr
) ≤ C0

nr∑

i=0

∥∥∥∥∥Ad(
T

−η(P,Ri)

g0
i+1

)

∥∥∥∥∥
(
dG

(
Id, T

−η(P,Ri)

g0i+1
T
η(P,Ri)

g1i

)
+ dG

(
Id, ψηRiRi+1

))
.

(A.4)

We estimate the terms separately. By definition, T
−η(P,Ri)

g0i+1
= mg0i+1

exp(η(P,Ri))m
−1
g0i+1

, so

Ad(
T

−η(P,Ri)

g0
i+1

) = Adm
g0
i+1

Adexp(η(P,Ri))Adm−1

g0
i+1

.

The oriented geodesics g0i+1 lie in a compact set depending on k, hence there exists a bound on
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∥∥∥Adm
g0
i+1

∥∥∥ and

∥∥∥∥Adm−1

g0
i+1

∥∥∥∥ depending on k and ρ only. By Lemma A.3 and Lemma 3.23, there

exist constants C1, B such that

∥∥∥∥∥Ad(
T

−η(P,Ri)

g0
i+1

)

∥∥∥∥∥ ≤
∥∥∥Adm

g0
i+1

∥∥∥
∥∥Adexp(η(P,Ri))

∥∥
∥∥∥∥Adm−1

g0
i+1

∥∥∥∥

≤ C1e
‖η(P,Ri)‖aθ

≤ C1e
C‖η‖(r(Ri)+1). (A.5)

By definition of Cr, all components between Ri and Ri+1 have divergence radius at most r + 1, so

we can apply Lemma 5.8 and obtain constants C2, A
′ such that

dG(Id, ψ
η
RiRi+1

) ≤ C2e
−A′r. (A.6)

Finally, with Proposition 4.18, there exists constants C3, A1 such that

dG

(
Id, T

−η(P,Ri)

g0i+1
T
η(P,Ri)

g1i

)
= dG

(
T

−η(P,Ri)

g0i+1
, T

η(P,Ri)

g1i

)

≤ C3

((
e‖η(P,Ri)‖ + 1

)
d(g0i+1, g

1
i )
A1

)
.

Note that we can apply Proposition 4.18, since for r big enough, Ri and Ri+1 are separated by

wedges. Using the same techniques as in the proof of Lemma 4.7, together with Lemma 3.23 , we

find that there exist constants C4, C and A such that

dG

(
Id, T

−η(P,Ri)

g0i+1
T
η(P,Ri)

g1i

)
≤ C4

(
eC‖η‖(r(Ri)+1) + 1

)
e−Ar. (A.7)

Note that here, the constants A and A′ from (A.6) satisfy A′ = −(C ‖η‖ − A) (see Lemma 5.8)

and C is as in (A.5), coming from Lemma 3.23. Combining the estimates from (A.4) to (A.7), and

using that r(Ri) ≤ r for all i = 1, . . . , nr, it follows that

dG(ψ
ε+η
Cr

, ψ̂η,εCr
)

≤ C0C1

nr∑

i=1

eC‖η‖(r(Ri)+1)
((
eC‖η‖(r(Ri)+1) + 1

)
e−Ar + C2e

−A′r
)

≤ C0C1

nr∑

i=1

eC‖η‖(r+1)
((
eC‖η‖(r+1) + 1

)
e−Ar + C2e

−A′r
)

≤ C0C1nr

(
eC‖η‖(r+1)

((
eC‖η‖(r+1) + 1

)
e−Ar + C2e

−A′r
))

≤ C3nre
2C‖η‖(r+1)−A′r

Thus, for ‖η‖ small enough,

dG(ψ
ε+η
Cr

, ψ̂η,εCr
) ≤ Cre−A

′′r

for constants C and A′′, where we additionally use that nr ≤ Dr for some constant D by Lemma

3.11. It follows that ψε+ηCr
and ψ̂η,εCr

have the same limit as r tends to infinity, so ψ̂η,εCr
converges to

ψε+ηPQ .
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As a consequence,we have

ϕ′ε
PQ = lim

r→∞
ϕ′ε

Cr

= lim
r→∞

ψ̂η,εCr
T

(ε+η)(P,Q)

g0
Q

(
ϕηPQ

)−1

= ψε+ηPQ T
(ε+η)(P,Q)

g0
Q

(
ϕηPQ

)−1

= ϕε+ηPQ

(
ϕηPQ

)−1

,

which finishes the proof.

A.3. Convergence of a sequence (γn)n∈N in π1(S)

In the proof of Theorem 6.1, we look at a non-isolated oriented leaf g of the lamination λ̃

and a sequence (γn)n∈N such that the sequence of leaves (γn · g)n∈N converges to g. We

want to show that, as a sequence in π1(S), (γn)n∈N converges to g+ ∈ ∂∞S̃ ∼= ∂π1(S).

Lemma A.5. Let g be an oriented geodesic in S̃ with endpoints g+ and g−, and (γn)n∈N be

a sequence such that limn→∞(γn ·g+) = g+ and limn→∞(γn ·g−) = g−. Then limn→∞ γn =

g+ in the sense that the sequence (γn)n∈N and the quasi-geodesic ray defining g+ have

bounded distance. Likewise, limn→∞ γ−1
n = g−.

Proof. The proof consists of several steps. In the first step, we show that the axes of

the elements γn converge to g. In the second step, we show that for a fixed basepoint

o on g, the sequence (γn · o)n∈N is a conical sequence in the sense that it lies within a

K-neighborhood of the geodesic g for some K > 0. It then follows that limn→∞ γn = g+.

Lastly, we conclude that also limn→∞ γ−1
n = g−.

For n ∈ N, let tn be the translation length of γn. Then tn goes to infinity as n tends

to ∞. To see this, let o be a base point on g, and let yn be the point on the axis of γn

that is closest to g. If g and the axis of γn intersect, then yn lies on g. Assume for a

contradiction that tn < t for some t < ∞. Then, by definition of the translation length,

tn = d(yn, γn · yn), so

d(o, γn · o) ≤ d(o, yn) + d(yn, γn · yn) + d(γn · yn, γn · o) = tn + 2d(o, yn).

If d(o, yn) is unbounded, then the axes of the elements γn collapse to a point in the

boundary. Since we know that γn · g converges to g, it follows that the translation lengths

tn converge to 0. Thus, there is a compact neighborhood of o containing infinitely many
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elements γn · o, contradicting the fact that π1(S) acts properly discontinuously. Hence,

d(o, yn) < C for some C, so d(o, γn · o) < t+ 2C for infinitely many n, again contradicting

the fact that π1(S) acts properly discontinuously. It follows that the sequence (tn)n∈N is

unbounded.

Let γ+n and γ−n be the attracting and repelling fixed points of γn in ∂∞S̃, respectively. Up

to a subsequence, (γ+n , γ
−
n ) converges to a pair (x+, x−) ∈

(
∂∞S̃

)2
. Since by assumption,

limn→∞ γn · g = g+, and the translations lengths do not go to 0, it follows that x+ = g+.

Further, x− = g−, because if we had x− 6= g−, then, since the translations lengths tn

go to infinity, limn→∞ γn · g− = g+, which is a contradiction. Hence, it follows that

limn→∞(γ+n , γ
−
n ) = (g+, g−), so the axes of γn converge to g. This finishes the first step of

the proof.

For n ∈ N, let dn be the distance between g and the axis of γn. By computations in the

upper half plane model, one sees that the fact that γn · g converges to g gives an explicit

asymptotic relation between the dn and the translation length tn, namely dn < e−tn for

large n. If the axis of γn and g intersect with angle φn, then similar arguments show that

φn < e−tn . Using this asymptotic relation, we can compute γn · o and see that it lies in a

K-neighborhood of the geodesic g for some K. Thus, the sequence (γn · o)n∈N is conical.

Let (αn)n∈N be a geodesic in (the Cayley graph of) π1(S) with limit g+. Then the sequence

(αn ·o)n∈N lies on a geodesic ray in S̃ with limit g+. Since the sequence (γn ·o)n∈N is conical,

for all n ∈ N, there exists mn ∈ N such that d(γn · o, αmn · o) ≤ K ′ for some K ′. Up to

taking a subsequence, we can assume that mn is strictly increasing in n. As the orbit map

π1(S) → S̃ is a quasi-isometry, it follows that d(γn, αmn) ≤ K ′′ for some K ′′, where now

the distance is in π1(S). Since two sequences in π1(S) that remain within bounded distance

define the same point in the boundary, it follows that limn→∞ γn = limm→∞ αm = g+.

To conclude the proof, note that for every n, γ−1
n and γn have the same axis and the same

translation length. This implies that the sequence of geodesics (γ−1
n · g)n∈N converges to

g, and with the same arguments as above, we conclude that ((γn)
−1 · o)n∈N is conical and

that limn→∞ γ−1
n = g−.

A.4. Proof of Lemma 8.11

In Section 8.1, we define full-stretching maps T̂H
g . For a distance estimate between two

full-stretching maps (Lemma 8.12), we need the auxiliary Lemma 8.11. In this section, we

prove Lemma 8.11. We recall the statement for the reader’s convenience. For the notation,

we refer back to Section 8.1.
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Lemma A.6 (Lemma 8.11). Let R ∈ Cgh be a pinched inner component. Then there exists

an element mg0Rg1R
∈ SL(n,R) sending the line splitting for g1R to the line splitting for g0R,

and constants C,A > 0 depending on k̃ and ρ such that

dSL(n,R)(Id,mg0Rg1R
) ≤ Ce−Ar(R).

Proof. As in the proof of Proposition 4.18, up to conjugating ρ by an element in SL(n,R),

we can assume that the splitting associated to g0R is the standard splitting given by the

basis vectors e1, . . . , en. In this case, mg0Rg1R
is an element sending the splitting given by

g1R to the standard line splitting.

The proof consists of two steps. In the first step, we relate dSL(n,R)(·, ·) to a matrix norm.

In the second step, we construct mg0Rg1R
and estimate its distance to Id with respect to this

matrix norm.

Let ‖·‖1 be the maximal column sum norm on Matn×n(R) which is defined as ‖A‖1 :=

maxj=1,...,n
∑n

i=1 |aij | for A = (aij)i,j ∈ Matn×n(R). Let V be a normal neighborhood of

the identity Id in SL(n,R). Then there exists a neighborhood U ⊂ sl(n,R) = TIdSL(n,R) of

0 ∈ g such that exp |U : U → V is an isomorphism and geodesics in G are images of straight

lines in V . For every m ∈ V ⊂ SL(n,R), we have dSL(n,R)(Id,m) =
∥∥exp |−1

U (m)
∥∥
sl(n,R)

.

The Lie group exponential is smooth, so in particular locally Lipschitz. By equivalence of

norms, since sl(n,R) ∼= Matn×n(R), there exists a constant C1 > 0 such that

dSL(n,R)(Id,m) =
∥∥∥(exp |U )−1 (Id)− exp |−1

U (m)
∥∥∥
sl(n,R)

≤ C1 ‖Id−m‖1 .

This finishes the first step.

For g0R and g1R sufficiently close, mg0Rg1R
is close to Id, and we can assume that it lies in a

normal neighborhood V . Hence, it is sufficient to show that
∥∥∥Id−mg0Rg1R

∥∥∥
1
≤ Ce−Ar(R)

for constants C,A > 0 depending on k̃ and ρ.

Let m′ be the matrix with columns a1, . . . , an, where a1, . . . , an is a basis adapted to the

line splitting from (8.3), chosen such that the angle ∡(ei, ai) is minimal and ‖ai‖2 = 1.

Then m′ 6∈ SL(n,R) in general, we only know m′ ∈ GL(n,R). Let m be the matrix with

columns a1, . . . , an−1,
1

det(m′)an, so m agrees with m′ on the first n − 1 columns and the

last column is scaled by the inverse of the determinant of m′. Then m maps the standard

line splitting to the line splitting for g1R as in (8.3) and is an element of SL(n,R). Set

mg0Rg1R
:= m−1. By left-invariance of the distance and with the considerations from above
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C,A > 0. Further, we have by definition of ‖·‖1, m and m′,

∥∥m′ −m
∥∥
1
=

∥∥∥∥an − 1

det(m′)
an

∥∥∥∥
1

=

∣∣∣∣1−
1

det(m′)

∣∣∣∣ ‖an‖1 ≤
∣∣∣∣1−

1

det(m′)

∣∣∣∣ ,

because ‖an‖2 = 1 implies that ‖an‖1 ≤ 1. It is left to show that

∣∣∣∣1−
1

det(m′)

∣∣∣∣ =
∣∣∣∣
det(m′)− 1

det(m′)

∣∣∣∣ ≤ Ce−Ar(R).

Since the function f(y) := y
y+1 is in O(y) for y → 0, we need to show that |det(m′)− 1| ≤

Ce−Ar(R), where we put y = det(m′)−1. The determinant function, as a map from Matn×n

to R is polynomial, so locally Lipschitz. Hence, if we are close enough to the identity,

|det(m′)− 1| ≤ C
∥∥m′ − Id

∥∥
1
= C ′e−Ar(R)

as we have seen above. After possibly adapting the constants, this finishes the proof.
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[DGK17] J. Danciger, F. Guéritaud, and F. Kassel. Convex cocompact actions in real projective

geometry. Apr. 2017. arXiv: 1704.08711 [math.GT].

[Dre13] G. Dreyer. Thurston’s cataclysms for Anosov representations. Jan. 2013. arXiv:

1301.6961 [math.GT].

[FG06] V. Fock and A. Goncharov. “Moduli spaces of local systems and higher Teichmüller

theory”. In: Publ. Math. Inst. Hautes Études Sci. 103 (2006), pp. 1–211.

[FLP12] A. Fathi, F. Laudenbach, and V. Poénaru. Thurston’s work on surfaces. Vol. 48.

Mathematical Notes. Translated from the 1979 French original by Djun M. Kim and

Dan Margalit. Princeton University Press, Princeton, NJ, 2012, pp. xvi+254.

[FM12] B. Farb and D. Margalit. A primer on mapping class groups. Vol. 49. Princeton

Mathematical Series. Princeton University Press, Princeton, NJ, 2012, pp. xiv+472.
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