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Abstract

We use methods from symplectic geometry to study periodic solutions of differen-
tial delay equations (DDEs, also known as retarded functional differential equations,
RFDEs). Using polyfold theory, we prove that near a given non-degenerate 1-periodic
orbit of a vector field in Rn, there is a 1-dimensional family of 1-periodic delay orbits
smoothly parametrized by delay. Then we generalize this result in several ways. More-
over, we prove an abstract compactness theorem for perturbed non-local unregularized
gradient flow lines in R2n, which is one step towards the construction of Floer theory
for Hamiltonian delay equations.

Zusammenfassung

Wir benutzen Methoden aus der symplektischen Geometrie, um periodische Lösun-
gen von Verzögerungsgleichungen (differential delay equations, DDEs, auch bekannt
als retardierte Differentialgleichungen, RFDEs) zu untersuchen. Mithilfe von Polyfold-
Theory beweisen wir, dass es nahe einem gegebenen, nicht-degenerierten 1-periodischen
Orbit eines Vektorfeldes in Rn eine 1-dimensionale Familie von 1-periodischen Delay-
Orbits gibt, die glatt durch die Verzögerung parametrisiert werden kann. Danach ver-
allgemeinern wir dieses Resultat auf verschiedene Art. Außerdem beweisen wir ein ab-
straktes Kompaktheits-Theorem für gestörte nicht-lokale deregularisierte Gradienten-
flusslinien in R2n, das einen Schritt in Richtung der Konstruktion einer Floer-Theorie
für Hamiltonsche Verzögerungsgleichungen darstellt.
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Chapter 1

Introduction

The purpose of this thesis is to study periodic delay orbits (that is, periodic solutions of
delay differential equations) by using methods from symplectic geometry. The project
was suggested by my supervisor Peter Albers, and it is related closely to the articles
[AFS19] and [AFS20] by him and his collaborators Urs Frauenfelder and Felix Schlenk.
Delay differential equations play a role in many parts of natural sciences; for instance,
modelling predator-prey dynamics or the spread of a disease usually involves a delay
given by the time between two generations of a species or by incubation time, respec-
tively. Not much is known in general about the existence of periodic solutions to delay
differential equations. On the other hand, symplectic geometry provides a plethora of
methods for the study of periodic solutions of Hamiltonian differential equations with-
out delay. In this thesis, I use some of these methods – in particular, polyfold theory
– to prove results about periodic delay orbits.

Let us start by defining the notion of periodic delay orbit. Suppose that X :
S1×Rn → Rn is a smooth time-dependent vector field which is periodic in time, where
S1 = R/Z. We write Xt(p) := X(t, p). A 1-periodic orbit of X is a map x : S1 → Rn

such that ∂tx(t) = Xt(x(t)) for all t ∈ S1. (Throughout this thesis, we denote the
derivative of x in direction of t by ∂tx. This avoids misleading notation at a later
point, and at the same time makes it easy to talk about the differential operator ∂t
taking x to ∂tx.) The corresponding delay equation with constant delay τ ∈ R is

∂tx(t) = Xt(x(t ‧ τ)), (1.1)

and a 1-periodic τ -delay orbit is a solution x : S1 → Rn of (1.1).1

Delay differential equations (DDEs) are much harder to deal with than usual differ-
ential equations. For instance, the initial value problem is non-local. Thus, there could
be different solutions of (1.1) passing through the same point at t = 0. In particular,
the dynamical behavior of equation (1.1) cannot be captured by a flow on Rn. More-
over, note that if we replace Rn by a manifold M , then (1.1) does not make sense as
stated, since the two sides of the equation typically belong to different tangent spaces.
However, one can think of many other useful and interesting delay equations on general
manifolds. There is a rich literature about delay differential equations, which we briefly
review in Chapter 2.

1In this thesis, we focus on 1-periodic solutions instead of solutions of another period T ∈ R only
for ease of presentation; everything works in the exact same manner for T -periodic (delay) orbits.
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After two chapters reviewing the background on DDEs and on polyfold theory, this
thesis is divided into two parts, which are devoted to the two main results.

Part I concerns the following questions: If we have a non-degenerate 1-periodic
orbit x0 (without delay) of a vector field X, does it persist for small delay τ? Can
we find a whole family of delay orbits near x0 smoothly parametrized by their (small)
delay? To the best of our knowledge, these questions have not been addressed in the
literature before. They seem very natural, though: When instead of delay we consider
a smooth perturbation of the vector field, then the answer is a clear yes, and it can be
shown by simply using the implicit function theorem for smooth Fredholm sections in
Banach bundles. However, for the case of delay, this strategy breaks down due to a lack
of smoothness. This is why we pass on to scale calculus, the analytical framework used
in polyfold theory, which was developed for the study of moduli spaces of (perturbed)
pseudoholomorphic curves. Indeed, using the M-polyfold implicit function theorem,
we can prove the following:

Theorem A (Theorem 4.1). If x0 is a non-degenerate 1-periodic orbit of X, then there
is τ0 > 0 such that for every delay τ with |τ | ≤ τ0 there exists a (locally unique) smooth
1-periodic solution xτ of the delay equation (1.1). Moreover, the parametrization τ ↦→
xτ is smooth.

Theorem A is a sample theorem in the sense that the same methods can be used to
prove the corresponding statement for a variety of other delay differential equations.
Some possible generalizations are Theorems 7.2, 7.13, 7.15, and 7.33.

The topic of Part II is a little more technical. Here, the idea is to understand pe-
riodic orbits of Hamiltonian delay equations as critical points of an action functional,
which allows using ideas from Floer homology. A crucial question is then compactness
of the space of gradient flow lines. Keeping this in mind, we prove an abstract com-
pactness result for non-local gradient flow lines. Very roughly, it could be stated as
follows:

Theorem B (a generalization of [AFS19, Theorem 2.4]). Let (wν)ν∈N be a sequence
of maps wν : I → H from an interval I to a certain function space H ⊃ C∞(S1,R2n).
Assume that each wν satisfies a certain non-local gradient flow equation depending
on some Rν ∈ R≥0, and assume that as ν → ∞, the numbers Rν converge to some
R∗ ∈ R≥0. Further assume that all wν are bounded in a certain topology. Then there is
a subsequence which converges (in the same topology) to a limit w∗, which is a solution
of the corresponding non-local gradient flow equation for R∗.

Neither delay equations nor polyfold theory appear explicitly in the compactness
theorem or in its proof, but they are the motivation behind the whole result.

We expect that many more interesting results can emerge in this way. We hope
that this thesis serves as an example of how fruitful it is to bring together ideas from
symplectic geometry and from the study of differential delay equations.
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Overview of this thesis

This thesis is organized as follows:
Part 0 contains some background on the two fields of research which we bring

together, namely delay differential equations (DDEs) and polyfold theory. Chapter
2 is a very brief overview of DDEs, their periodic orbits, and dependence of solutions
on the delay. We give references to both general textbooks about DDEs and articles
concerned with specific questions. In Chapter 3 we explain the fundamentals of scale
calculus and polyfold theory.

Part I is about Theorem A and its generalizations. The main result is stated again
as Theorem 4.1 and discussed in the beginning of Chapter 4. In the remaining part
of Chapter 4, we prove it in all detail. Chapter 5 presents an example in R2 where
the families of periodic delay orbits can be computed explicitly. Since the main result
excludes autonomous equations, we discuss this case in Chapter 6. In Chapter 7
we prove several generalizations of the main result. The case of time-dependent delay
(Section 7.4) involves a detailed analysis of the time-dependent shift map.

Part II is about Theorem B and the application we have in mind. In Chapter 8,
we briefly explain the context, before we pass on to state and prove the compactness
theorem in the abstract setting. Chapter 9 is then dedicated to proving that the
theorem indeed applies to perturbed gradient flow lines of Hamiltonian delay action
functionals.

Finally, in Chapter 10, we give a small outlook on possible future research in the
intersection of delay differential equations and symplectic geometry.

There are two appendices. Appendix A contains proofs for statements which are
mentioned in Section 4.2 but not needed for the proof of Theorem 4.1. Appendix B
reviews an argument from my master thesis [Sei17] which hopefully can be generalized
to the case of Hamiltonian delay equations with help of the compactness result from
Part II.

A note on previously published material

Theorem A was published by my supervisor Peter Albers and myself in the article
“Periodic delay orbits and the polyfold implicit function theorem” in Commentarii
Mathematici Helvetici [AS20]. Some sections have been copied more or less verbatim
from the article to this thesis:

• Section 2.3 corresponds to [AS20, Section 2];

• some definitions and the polyfold IFT from Chapter 3 (all originally due to Hofer–
Wysocki–Zehnder [HWZ21]) are the same as in [AS20, Sections 4–7];

• Sections 4.1–4.6 correspond to [AS20, Sections 1, 3–7];

• Section 7.2 corresponds to [AS20, Section 8];

• Appendix A corresponds to the appendix of [AS20].

Moreover, Section 3.1 may have certain similarities with Section 1 of the article
[BDS+21], which I published together with Franziska Beckschulte, Ipsita Datta, Anna-
Maria Vocke and Katrin Wehrheim.
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Background
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Chapter 2

A short guide to delay differential
equations

Delay equations (also known as delay differential equations (DDEs) or retarded func-
tional differential equations (RFDEs)) are differential equations of the form

∂tx(t) = F
(︁
t, x(t), x(t ‧ τ)

)︁
, (2.1)

where F : R × Rn × Rn → Rn is some function taking as inputs not only the time
parameter t ∈ R and the current state x(t) ∈ Rn, but also some past state x(t‧τ) ∈ Rn

of the system. Here, we understand x to be a function x : I → Rn from some interval
I to real n-dimensional space. Delay equations arise in a very natural way in biology.
The rate of expansion of a population of a given species at time t, for example, usually
depends on the size of the population some time before; also the spread of a disease
will typically depend on the number of infected individuals with a certain delay given
by incubation time.

At first sight, equation (2.1) does not look very different from an ordinary dif-
ferential equation (ODE). However, the delay makes a big qualitative change on the
equation. If we want to impose an initial condition on a solution x of (2.1), it is not
enough to specify x(0) ∈ Rn. Instead, we need to prescribe x on a whole interval of
length τ by demanding x|[−τ,0] = ϕ with a so-called initial history ϕ ∈ C0([−τ, 0],Rn).

There is, of course, a rich literature on differential delay equations and their solu-
tions. For an introduction to the beautiful mathematical theory and its many different
facets we recommend the books [DvGVLW95] and [Hal77]. Other books as [Smi11],
[Rih21], and [Kua93] complement it with their stronger focus on applications. Below
in Section 2.3 we mention literature on two different aspects of differential delay equa-
tions close to the topic of this thesis, namely the existence of periodic solutions and
the regularity of solutions with respect to the delay.

2.1 Solving DDEs by hand or numerically

Let us assume that the Function F : R × Rn × Rn → Rn is extraordinarily well
behaved, say it splits as F (t, y1, y2) = f(t)+g+h(y2), with g ∈ Rn fixed (in particular,
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independent of y1). Then, given an initial history ϕ ∈ C0([−τ, 0],Rn), we can find a
solution x of (2.1) on the interval [0, τ ] by simply integrating

x(t) = ϕ(0) +

∫︂ t

0

f(s) ds+ t · g +
∫︂ t

0

h
(︁
ϕ(s ‧ τ)

)︁
ds t ∈ [0, τ ].

Integrating further, we can extend x to the interval [τ, 2τ ], then to [2τ, 3τ ] and so
on. This is called the method of steps. It shows how existence and uniqueness results
about ODEs can be used to say something about DDEs as well, and it shows how
solutions of DDEs tend to become more and more differentiable over time.

For more complicated functions F , there are ways to numerically find solutions
with a given initial history, for example using the Matlab functions dde23 (for discrete
delay) and ddesd (also for time-dependent and state-dependent delay).

2.2 The solution semiflow

For an ordinary differential equation on Rn, initial values are elements of Rn, and –
under suitable conditions –, the equation defines a flow on Rn. In a similar manner,
the dynamics of a linear autonomous DDE can be seen as semiflow on a function
space C, which is the space of possible initial histories. For simplicity, think of C :=
C0([−τ, 0],Rn), although it turns out that for analytical reasons other function spaces
may be preferable2. The solution semiflow (St : C → C)t∈R≥0 is given by

St(ϕ) := φ
(︁
t, N(ϕ)|[t−τ,t]

)︁
,

where N(ϕ) is the extension of ϕ ∈ C to a function N(ϕ) : [−τ,∞) → Rn which
on (0,∞) is a solution of the delay equation (2.1), N(ϕ)|[t−τ,t] is its restriction to the
interval [t−τ, t], and φ(t, ·) means the shift by t which is needed to transport N(ϕ)|[t−τ,t]

back to an element of C. (St)t∈R≥0 is indeed a semiflow in the sense that S0 = id is the
identity and St+t′ = St ◦ St′ . Note that we cannot expect the existence of backwards
solutions, that is, St for t < 0, since even for a smooth ϕ ∈ C there is no reason why it
should be a solution of (2.1).

Associated to the solution semiflow (St : C → C)t of equation (2.1), there is its
infinitesimal generator A : D(A) → C, the closed linear operator defined on a dense
domain D(A) ⊆ C by

A(ϕ) := lim
t→0

St(ϕ)− ϕ

t
.

Many dynamical properties of (St)t can be studied by analysing A, for instance via its
spectral theory, see [DvGVLW95, Chapter 4], [Hal77, Chapter 7]. In particular, given
a constant solution x (that is an equilibrium of (St)t), under suitable conditions it is

2In the theory of DDEs, people use C⊙∗ a lot, where ⊙ is pronounced as “sun”. The space C⊙∗

is the dual of the space C⊙ ⊆ C∗, which in turn is the closure of the domain of the dual A∗ of the
infinitesimal generator A : C ⊃ D(A) → C of the solution semiflow (St)t. Note that this semiflow
depends on the exact form of the delay equation at hand, and so does C⊙∗. There is an embedding
C ↪→ C⊙∗. If C = C⊙∗, then C is said to be ⊙-reflexive with respect to (St)t. See e.g. [DvGVLW95,
Chapter II].
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possible to split C into a stable subspace, an unstable subspace and a center subspace,
resulting in a stable manifold, an unstable manifold and a center manifold. A similar
strategy can be used to study the behavior of the system near a periodic solution, see
[Hal77, Chapter 10], [DvGVLW95, Chapter XIV].

For non-autonomous (but still linear) DDEs, the dynamics cannot be captured in a
solution semiflow (St : C → C)t. Indeed, it is not sufficient to specify an initial history
ϕ and a time t ≥ 0 after which we are interested in the solution, because also the initial
time matters. This means that one has to consider a two-parameter family (Us,t)s,t of
operators with certain properties, a so-called forward evolutionary system on C. If the
dependency on time is periodic, one can do some kind of Floquet theory relating the
periodic linear DDE to an autonomous one, see [DvGVLW95, Chapter XIII].

If we are given a 1-parameter family of delay equations, it makes sense to ask about
how solutions change with the parameter. Indeed, under suitable assumptions, parts
of bifurcation theory carry over from the theory of ODEs to the delay setting, see
[DvGVLW95, Chapter X], [Hal77, Section 11.1]. Note that the assumptions include
that the family of equations is twice continuously differentiable with respect to the para-
meter; this makes it impossible in this context to handle varying delay as a bifurcation
parameter.

2.3 Results and literature related to this thesis

Let us now mention literature on two aspects of the theory of DDEs which are related
to the topic of this thesis. The first aspect is the existence of periodic solutions. The
second aspects concerns the regularity of the dependence on the delay of (not necessarily
periodic) solutions. These results are all very interesting and in some way related to
our work, but to the best of our knowledge none of them implies Theorem 4.1. (We
point out that we can only give a very limited glimpse into the existing literature on
differential delay equations and that it may be biased by our interest in geometric
approaches.) However, the use of the polyfold setting and, in particular, the polyfold
implicit function theorem is certainly new in the context of differential delay equations.

2.3.1 Existence of periodic solutions

One class of results concerns differential delay equations with fixed delay and asks for
existence of periodic solutions with arbitrary period. Here, Mallet-Paret [MP88] and
Nussbaum [Nus73] used global methods to find periodic solutions for some classes of
differential delay equations. Kaplan and Yorke [KY74] showed the existence (and some
properties) of periodic solutions of a differential delay equation with symmetries and
fixed delay by converting it to an ordinary differential equation in twice the dimension.
The uniqueness counterpart in the Kaplan–Yorke setting was recently solved by López
Nieto [LN20]. Existence results for periodic orbits with small delay were proven by
Arino–Hbid [AH90] and Hbid–Qesmi [HQ06] locally near a stable equilibrium of the
delay equation by bifurcation arguments. In these results the period is allowed to
vary with the delay, and there is no statement about the regularity with respect to
the delay. Sieber [Sie12] shows how to locally find families of periodic orbits even for
state-dependent delay, but he does not consider varying the delay. He uses the concept

7



of “extendable continuous differentiability” (mentioned before in [HKWW06]) which
seems to have a certain similarity with the scale differentiability by Hofer–Wysocki–
Zehnder [HWZ21].

2.3.2 Smooth dependence on initial history and delay

In the context of solving differential delay equations with the help of a semi-flow acting
on a function space, it is natural to ask whether solutions depend smoothly on the
initial history and on the delay. This means analyzing the regularity of the solution
map

(ϕ, τ) ↦−→ x (2.2)

sending an initial history ϕ : [−T, 0] → Rn and a delay τ ≤ T to the appropriate max-
imal solution x : [−T, Tϕ,τ ] → Rn of the considered delay equation. It turns out that
the differentiability of this map depends heavily on the choice of the space of initial
histories. Hale–Ladeira [HL91] showed that in case of W 1,∞ as history space, the de-
pendence is of class C1. Recently, Nishiguchi [Nis19] showed the same for history spaces
of general Sobolev type. Walther [Wal19] discusses different kinds of C1-differentiability
in Fréchet spaces. None of these articles touch upon the question of regularity beyond
C1.

However, dependence of solutions on delay in the sense of the map (2.2) above is
different from dependence of solutions on delay in the sense of the map

τ ↦−→ xτ (2.3)

that appears in Theorem 4.1. On one hand, we do not consider dependence on initial
histories at the same time, which circumvents the question of what history space to
use. This is why, in our case, C1-dependence is immediate from classical methods, see
the discussion in §4.2 (especially Remark 4.7). On the other hand, the parametrization
map (2.3) is not just the restriction of the solution map (2.2) to a fixed initial history.
Indeed, there is no reason why the periodic orbits from Theorem 4.1 should all agree
on an interval of length τ . Therefore, we do not see any direct connection between our
theorem and the articles [HL91, Nis19, Wal19] mentioned above.
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Chapter 3

A short guide to polyfold theory

Polyfold theory was developed by Helmut Hofer, Krzysztof Wysocki and Eduard Zehn-
der [HWZ09, HWZ10, HWZ21] as a general framework for the study of moduli spaces
of (perturbed) pseudoholomorphic curves. It builds on a new notion of differentia-
bility, called sc-differentiability3, for maps between Banach spaces with an additional
structure, called sc-Banach spaces. The power of the theory lies in the following:

• Polyfold theory gives a smooth structure to objects which are not smooth in
a classical sense, namely to ambient spaces of compactified moduli spaces of
pseudoholomorphic curves.

• Moreover, it provides an implicit function theorem (IFT) assuring that zero sets
of certain maps between these objects – namely the compactified moduli spaces
themselves – are finite-dimensional classically smooth manifolds.

All definitions and results about sc-differentiability, polyfold theory and the polyfold
IFT can be found in all details in the recently published book [HWZ21] by Hofer–
Wysocki–Zehnder. For a motivation of the theory, we recommend the survey [FFGW12]
or Section 1 of the article [BDS+21]. In this chapter, we sketch the idea of polyfold
theory and state the definitions which are relevant in the context of this thesis.

3.1 Motivation: Moduli spaces of pseudoholomor-

phic curves

Let (Σ, i) be a (not necessarily connected) Riemann surface and (M,J) an almost
complex manifold, that is, a smooth manifold M together with an automorphism J :
TM → TM of the tangent bundle (i.e. Jp : TpM → TpM for every p ∈ M) satisfying
J2 = −idTM . A map u : Σ → M is called pseudoholomorphic (or J-holomorphic if we
want to stress the almost complex structure) if

du ◦ i = J(u) ◦ du, (3.1)

3Here, “sc-” stands for “scale”. The polyfold community sometimes pronounces it as “scale”,
sometimes as “ess see”.
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that is, its differential respects the almost complex structure.4 (3.1) is called Cauchy–
Riemann equation. Pseudoholomorphic maps share many rigidity properties of holo-
morphic maps, see for instance [Wen15]. For symplectic geometers, pseudoholomorphic
maps are most interesting in the case when the manifoldM carries a symplectic form ω
and the almost complex structure J is compatible with ω, meaning that gJ := ω(J ·, ·)
defines a Riemannian metric on M . Given a symplectic manifold (M,ω), there are
plenty of compatible almost complex structures, and they can be used as a means to
study (M,ω) and the possible dynamics on it. There is a lot of literature on pseudo-
holomorphic curves; we refer particularly to the books [MS12] and [Wen18].

In symplectic and contact topology, moduli spaces of pseudoholomorphic curves
are used to define homological invariants like Hamiltonian Floer theory [Sal99, AD14],
Rabinowitz Floer homology [CF09, AF], symplectic homology [CO18], Gromov–Witten
invariants [FO99, HWZ17] or symplectic field theory [EGH00, FH18a, Wen16]. These
moduli spaces have the form

M(J) := {u : (Σ, i) → (M,J) | du ◦ i = J(u) ◦ du} / ∼,

where u ∼ v iff one is a biholomorphic reparametrization of the other, that is, if
there is ψ : (Σ, i) → (Σ, i) biholomorphic with u = v ◦ ψ. Usually, there are some
more conditions on the map u, for instance a prescribed homotopy class, an energy
estimate

∫︁
Σ
u∗ω < ∞ or point constraints u(zj) = pj (in this case the biholomorphic

reparametrizations are expected to fix the points zj ∈ Σ), or the Cauchy–Riemann
equation is perturbed to the Floer equation.

Such a moduli space is typically not compact, but under suitable assumptions it
has a natural compactification. If even more conditions on Σ, M and J are satisfied,
then the compactified moduli space M(J) is expected to have the structure of a finite-
dimensional smooth manifold, with dimension given by the Riemann–Roch formula.
When proving a result like this, one would like to use an implicit function theorem.
For this, it would be crucial to see M(J) as the zero set ∂̄−1

J (0) = M(J) of a transverse
Fredholm section ∂̄J : B → E in a Banach bundle (i.e. the total space E and the base
space B are Banach manifolds and each fiber is a Banach space). However, one runs
into the following problems:

(i) (varying domains) Due to bubbling and breaking phenomena, the compactifi-
cation M(J) contains equivalence classes of maps living on different Riemann
surfaces. Thus, even if we ignore the quotient by reparametrization for a while,
the compactified moduli spaces does not sit inside a function space of maps
u : Σ → M , but rather inside a bigger ambient space B which contains maps
from different Riemann surfaces to M . The topology on M(J) is defined via
so-called pregluing maps. These maps can be used to define a topology on B as
well. In some sense they even suggest what local charts should look like. How-
ever, these candidates for local charts are in general not homeomorphisms onto
open subsets of Banach spaces. Hence, this strategy does not give B the structure
of a smooth Banach manifold. (See e.g. [FFGW12], especially Example 2.1.4 and
Remark 2.1.5 therein.)

4The prefix “pseudo” reflects the fact that (M,J) is in general only almost complex; that is, J
does not necessarily give rise to a holomorphic atlas on M .
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(ii) (quotient, transition maps, non-trivial isotropy) The moduli space M(J) con-
sists of maps modulo reparametrization. Thus also the ambient space B should
consist of maps modulo reparametrization. This causes two problems. First,
the reparametrization group does not act smoothly on the function space. This
implies that even if we know how to define local charts (using a slice of the
action), the corresponding transition maps will not be smooth. Second, if the
reparametrization group acts on the function space with non-trivial isotropy, this
means that we should expect B to have the structure of an orbifold rather than
a manifold.

(iii) (transversality) For using an implicit function theorem, the transversality condi-
tion is important. Even for the space of J-holomorphic maps on a fixed domain
(i.e. without taking into account the quotient) this requires a detailed analysis
of the section ∂̄J and a careful choice of almost complex structure J . In some
situations, however, for geometric reasons it is not even possible to find a suitable
J for which ∂̄J is transverse. (See e.g. [MS12], [Wen15], [Wen18].)

Thus, in general there is no transverse Fredholm section ∂̄J : B → E in a Banach
bundle with ∂̄−1

J (0) = M(J). Instead, for proving thatM(J) is a manifold, one uses the
implicit function theorem only for the space of J-holomorphic maps (without quotient)
on a fixed domain, and then checks by hand that indeed the manifold structure descends
and extends to M(J). Polyfold theory was developed to overcome all these problems
in one unified framework. All the steps which usually need to be done for every single
moduli space individually should be incorporated into abstract theory. It is clear that
such a theory is necessarily quite complicated, but also very powerful.5

As mentioned above, polyfold theory builds on the notion of sc-differentiability
which we describe in detail in Section 3.2 below. The following is a very rough sketch
of how problems (i)-(iii) are approached in polyfold theory:

(i) (varying domains) The candidates for local charts map to open subsets of sc-
retracts in open quadrants of sc-Banach spaces, and these are exactly the local
models for (M-)polyfolds.

(ii) (quotient, transition maps, non-trivial isotropy) The reparametrization groups
act sc-smoothly on the function spaces at hand. Thus, the candidates for transi-
tion maps between local charts are sc-smooth, as they should be for (M-)polyfolds.
Moreover, the definition of polyfolds via groupoids includes orbifold behavior.

(iii) (transversality) Polyfold theory incorporates an abstract perturbation scheme.
With that at hand, there is no need to choose the almost complex structure J in
a specific way; instead, one works with the preferred J and perturbs the section
∂̄J abstractly. This way, not M(J) itself is given the structure of a smooth finite
dimensional manifold, but an arbitrarily small perturbation of it.

5The hope is that at some point people can build their polyfold bundles from existing polyfold
models via a ‘building-block system’ or an ‘imprinting method’, thus using the theory mainly as a
black box, see [FH18b]. At the moment, this is still difficult, since there are not yet that many polyfold
constructions to build on. For examples how polyfold theory can be used to prove famous results, see
[FW21a] and [BDS+21].
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More detailed discussions can be found in [FFGW12] or [BDS+21, Section 1]. Here we
pass on to state the definitions and results which are relevant in our context.

3.2 Sc-differentiability and sc-smoothness

Definition 3.1 ([HWZ21, Definition 1.1.1]). A sc-Hilbert space E is a Hilbert space
E0 together with a filtration

· · · ⊆ Em+1 ⊆ Em ⊆ · · · ⊆ E0

by subspaces Em, m ∈ N0, all of which are Hilbert spaces in their own right, in such a
way that all inclusions Em+1 ↪→ Em are compact and dense.

The norm on the Hilbert space Em will be denoted by ∥ · ∥Em . We use the notation

E1 =
(︁
(E1)m = Em+1

)︁
m∈N0

to denote the subspace E1 with the induced filtration. Elements of the intersection
E∞ := ∩m∈N0Em are called smooth points. We observe that every finite dimensional
Hilbert space E is a sc-Hilbert space E with the constant filtration Em = E. In the
infinite dimensional case, it follows from compactness of the inclusions that Em+1 ̸= Em

for all m ∈ N0. Note that products and sums of sc-Hilbert spaces are sc-Hilbert spaces
again.

We now state the definitions of sc-continuity, sc-differentiability and sc-smoothness
for maps between sc-Hilbert spaces. In the book [HWZ21], these notions are defined
more generally for maps between open subsets of quadrants of sc-Banach spaces.

Definition 3.2 ([HWZ21, Definition 1.1.13]). A map f : E → F between sc-Hilbert
spaces E and F is sc-continuous (sc0) if it satisfies f(Em) ⊆ Fm for all m ∈ N0 and the
induced maps f : Em → Fm are continuous.

Definition 3.3 ([HWZ21, Definition 1.1.15]). Let f : E → F be a map between sc-
Hilbert spaces. It is called sc-differentiable (sc1) if the following holds:

1. f is sc-continuous.

2. For every x ∈ E1 there exists a bounded linear operator df(x) : E0 → F0 such
that

lim
h∈E1,∥h∥E1

→0

∥f(x+ h)− f(x)− df(x)h∥F0

∥h∥E1

= 0.

3. The tangent map Tf given by

Tf : E1 ⊕ E −→ F1 ⊕ F

(x, h) ↦−→ df(x)h

is sc-continuous.
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Note that this definition does not require the map E1 → L(E0, F0), x ↦→ df(x) to
be continuous with respect to the operator norm. Indeed, in general this will not be the
case. In finite dimensions, since the sc-structure is constant, sc1-maps are differentiable
in the usual sense, and by Proposition 3.8 below they are exactly the C1-maps. Lots of
examples of sc1-maps in infinite dimensions can be found in [HWZ10].

Having the notion of sc-differentiability, we can proceed inductively to define sc-
smoothness:

Definition 3.4 ([HWZ21, below Remark 1.1.16]). Let k ≥ 2. A map f : E → F
between sc-Hilbert spaces E and F is sck if it is sck−1 and its tangent map is sck−1. It
is sc-smooth (sc∞) if it is sck for every k ∈ N.

In practice, when working with differentiability, one usually relies on a chain rule.
From the definition of sc-differentiability it is not obvious that there should be a chain
rule in sc-calculus: After all, in the definition of sc-differentiability there is a shift
in levels, and we might expect these shifts to add up when we concatenate maps.
However, Hofer–Wysocki–Zehnder showed that sc-differentiability satisfies a true chain
rule without any shift in levels:

Theorem 3.5 (chain rule, [HWZ21, Theorem 1.3.1]). Let f : E → F and g : F → G
be sc1-maps. Then g ◦ f : E → G is also sc1, and the tangent map satisfies T (g ◦ f) =
Tg ◦ Tf .

3.3 Properties and alternative

characterizations of sc-differentiability

The following two results are very useful in applications.

Proposition 3.6. [HWZ21, Proposition 1.2.2] Let f : E → F be sck. Then the induced
map f : E1 → F1 is also sck.

Proposition 3.7. [HWZ21, Proposition 1.2.4] Let f : E → F be a map such that for
every m ≥ 0 and 0 ≤ l ≤ k, it induces a map

f : Em+l → Fm

which is of class Cl+1. Then f is sck+1.

There are several alternative characterizations of sc-differentiability which are help-
ful in recognizing sc1-maps6. The following is due to Frauenfelder–Weber. It is similar
(but not equal) to [HWZ21, Proposition 1.2.1].

Proposition 3.8 ([FW21b, Lemma 4.6]). Let f : E → F be sc0. Then it is sc1 if and
only if the following conditions are satisfied:

(i) f : E1 → F0 is pointwise differentiable in the usual sense.

6In particular, comparing the properties of the shift map φ that we collect in Section 4.2 with the
conditions in Proposition 3.8 suggests that sc-calculus indeed is a good framework for the proof of
Theorem 4.1.

13



(ii) For every x ∈ Ek, the differential df(x) : E1 → F0 has a continuous extension
df(x) : E0 → F0.

(iii) For all m ≥ 0 and x ∈ Em+1, the continuous extension df(x) : E0 → F0 from
(ii) restricts to a continuous map df(x)|Em : Em → Fm such that

df |Em+1⊕Em : Em+1 ⊕ Em −→ Fm

is continuous.

In the same spirit, Frauenfelder–Weber [FW21b] gave a description of sck-maps in
terms of the classical kth derivative and its continuity with respect to the compact-
open topology. While the original definition of sck via tangent maps is very elegant,
the alternative characterization is easier to check in applications.

Proposition 3.9 ([FW21b, Proposition 4.10]7). Let f : E → F be sck−1. Then it is
sck if and only if the following conditions are satisfied:

(i) f : Ek → F0 is pointwise k times differentiable in the usual sense.

(ii) For every x ∈ Ek, the kth differential dkf(x) : Ek ⊕ · · · ⊕ Ek −→ F0 has a
continuous extension

dkf(x) : Ek−1 ⊕ · · · ⊕ Ek−1⏞ ⏟⏟ ⏞
k times

−→ F0.

(iii) For all m ≥ k− 1 and x ∈ Em+1, the continuous extension dkf(x) : Ek−1 ⊕ · · · ⊕
Ek−1 −→ F0 from (ii) restricts to a continuous k-fold multilinear map

dkf(x)|Em⊕···⊕Em : Em ⊕ · · · ⊕ Em⏞ ⏟⏟ ⏞
k times

−→ Fm−(k−1) = Fm−k+1

such that

dkf |Em+1⊕(Em⊕···⊕Em) : Em+1 ⊕ (Em ⊕ · · · ⊕ Em)⏞ ⏟⏟ ⏞
k times

−→ Fm−k+1

is continuous.

3.4 Sc-Hilbert manifolds and strong bundles

An n-dimensional smooth manifold is defined to be a topological space which is lo-
cally homeomorphic to Rn, in such a way that the transition maps between the local
charts are smooth. Using sc-Hilbert spaces as local models, we can make the following
definition:

7In comparison to [FW21b, Proposition 4.10], here we switched the roles of k and m, in order to
bring notation more in line with notation from [HWZ21].
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Definition 3.10. A sc-Hilbert manifold B is a paracompact Hausdorff space which
is locally homeomorphic to open subsets of sc-Hilbert spaces, in such a way that the
transition maps between the local charts are sc-smooth.
The filtration on the sc-Hilbert spaces induces a filtration B0 ⊇ B1 ⊇ . . . on B. In
particular, it makes sense to talk about smooth points x ∈ B∞ of a sc-Hilbert manifold.

The notion of a bundle over a sc-Hilbert space or manifold should of course respect
the sc-structure of base space and fiber. In order to define bundles, we need the
following notion.

Definition 3.11. [HWZ21, above Definition 2.6.1] Let E and F be sc-Hilbert spaces.
The non-symmetric product E ▷ F is the set E× F equipped with the double filtration

(E ▷ F)m,k := Em ⊕ Fk

for m ∈ N≥0, 0 ≤ k ≤ m + 1. For i = 0, 1, we define sc-manifolds (E ▷ F)[i] by their
filtrations

(E ▷ F)[i]m := Em ⊕ Fm+i.

The projection E▷F → E together with all this extra structure is called a trivial strong
sc-Hilbert bundle.

To make this clearer and to define non-trivial bundles, we need to say which prop-
erties of E ▷ F should be preserved by a bundle map.

Definition 3.12. [HWZ21, Definition 2.6.1] A map Φ : E ▷ F −→ E′ ▷ F′ is a strong
bundle map if

• it preserves the double filtration,

• it is of the form Φ(x, y) =
(︁
ϕ(x),Γ(x, y)

)︁
, where the map Γ is linear in y,

• and the maps

Φ[i] : (E ▷ F)[i] −→ (E′ ▷ F′)[i]

are sc-smooth for i = 0, 1.

A strong bundle isomorphism is an invertible strong bundle map whose inverse is also
a strong bundle map.

Finally, we are ready to define strong sc-Hilbert bundles over sc-Hilbert manifolds.

Definition 3.13. [HWZ21, special case of Definitions 2.6.4, 2.6.5] Let B be a sc-Hilbert
manifold, and let P : E → B be a surjective map from a paracompact Hausdorff space
E to B, such that for every x ∈ B the fiber P−1({x}) is a Hilbert space.

• A strong sc-Hilbert bundle chart for P : E → B consists of an open subset V ⊆ B
of B, an open subset O ⊂ E of a sc-Hilbert space E, a trivial strong sc-Hilbert
bundle E ▷ F, and a homeomorphism

Φ : P−1(V ) −→ O ▷ F

satisfying the following:
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– Φ covers a homeomorphism ϕ : V → O.

– For each x ∈ V , the homeomorphism Φ restricts to a bounded linear iso-
morphism between the Hilbert spaces P−1({x}) and ϕ(x)× F0

∼= F0.

• Two strong sc-Hilbert bundle charts with V ∩ V ′ ̸= ∅ are compatible if the tran-
sition maps

Φ′ ◦ Φ−1[i] : Φ
(︁
P−1(V ∩ V ′)

)︁
[i] −→ Φ′(︁P−1(V ∩ V ′)

)︁
[i]

are sc-smooth for i = 0, 1.

• A strong bundle atlas for P : E → B is a collection of strong bundle charts
covering E . Equivalence of atlases is defined in the usual way.

• The surjective map P : E → B together with an equivalence class of strong bundle
atlases is called a strong sc-Hilbert bundle over B.

3.5 M-polyfolds

All M-polyfolds and bundles considered in this thesis are in fact sc-Hilbert spaces
(resp. sc-Hilbert manifolds in Section 7.2) and trivial bundles (resp. strong sc-Hilbert
bundles). However, the implicit function theorem in sc-calculus that we will use (see
Theorem 3.23 below) is stated in the more general context of M-polyfold bundles.
Therefore, we chose to at least sketch the definitions of the notions of M-polyfolds8

and polyfolds as well. The reader who is not interested in these definitions may pass
on directly to Sections 3.7 and 3.8, replacing “M-polyfold” by “sc-Hilbert manifold”
everywhere.

So, how do sc-Hilbert manifolds generalize to M-polyfolds? One difference is that
from the very beginning, we do not demand a Hilbert space structure any more, just a
Banach space. This makes hardly any difference in the definitions and results. Only for
the implicit function theorem we need to make sure that there exist sc-smooth bump
functions; this is satisfied if everything is modeled on sc-Hilbert spaces, but in the
sc-Banach setting it is a non-empty condition. Another difference is that M-polyfolds
allow for boundary and corners. This means that all definitions, starting from sc-
continuity, sc-differentiability and the tangent, need to be generalized to open subsets
of partial quadrants in sc-Banach spaces, and that in some results boundary points play
a special role. The third and main difference is that M-polyfolds are not modeled on
open subsets of (partial quadrants in) sc-Banach spaces, but instead on open subsets
of sc-smooth retracts in (partial quadrants in) sc-Banach spaces.

Definition 3.14. [HWZ21, Definitions 2.1.1, 2.1.3, 2.1.12] A sc-smooth retraction is
a sc-smooth map r such that r ◦ r = r. A subset O ⊂ E of a sc-Banach space is a
sc-smooth retract if there exists a sc-smooth retraction r on a (relatively open subset
of a partial quadrant in a) sc-Banach space such that O = im(r). The tangent of a
sc-smooth retract O defined by a retraction r is TO = im(Tr).

8“M-polyfold” stands for “manifold-type polyfold” and means a polyfold without orbifold behavior.
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Figure 3.1: An M-polyfold with locally varying finite dimensions. The sketch is taken
from the book [HWZ21].

Passing to sc-smooth retracts does not only mean carrying more notation (because
the retraction comes into play) and more concerns about well-definedness (because one
retract could be defined via different retraction maps, resulting in a priori different
sc-smooth structures) – it really makes a qualitative change. While the images of clas-
sically smooth retractions are classical submanifolds (see [HWZ21, Proposition 2.1.2],
the images of sc-smooth retractions have different behavior: They can have locally
varying finite dimensions. The prototype example is [HWZ10, Example 1.22], where
the image of sc-smooth retraction is homeomorphic to

(︁
R≤0×{0}

)︁
∪
(︁
R> 0×R

)︁
⊂ R2.

Despite this non-differentiable appearance, Hofer–Wysocki–Zehnder were able to show
that the following notion of sc-smoothness for maps on sc-smooth retracts makes sense
and satisfies the chain rule.

Definition 3.15. [HWZ21, Definition 2.1.14] Let f : O → E be a map from a sc-
smooth retract O to a sc-Banach space E, and let r be a sc-smooth retraction for O.
Then f is sc-smooth if the composition f ◦ r is sc-smooth. In this case, the tangent
map of f is Tf := T (f ◦ r)|TO.

Given this definition, one can pass on to define charts and atlases in the usual
manner. In short, the notion of M-polyfold is defined as follows.

Definition 3.16. [HWZ21, Definition 2.3.4] AnM-polyfold is a paracompact Hausdorff
space which is locally homeomorphic to open subsets sc-smooth retracts, in such a way
that the transition maps between the local charts are sc-smooth.

One famous M-polyfold is sketched in Figure 3.1. We suspect, though, that this
M-polyfold has not been used in applications. Strong bundles over M-polyfolds are
defined similarly as strong bundles over sc-Hilbert manifolds: via strong bundle charts
covering M-polyfold charts. We skip the details here because they do not help for a
better understanding.
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3.6 Polyfolds

Passing from M-polyfolds to polyfolds means adding the orbifold behavior, hence an-
other level of abstraction. Before we give the definition of polyfolds, let us recall that
orbifolds can be defined via the notion of Lie groupoid. For this, we recommend the
survey [Moe02] and the references therein.

Definition 3.17. [Moe02, Sections 1.1, 1.2, 1.4, 1.5, 2.1, 2.4, 3.1, 3.2, and 3.3]

• A groupoid is a small category in which every morphism is an isomorphism.
Thus, a groupoid G consists of a set G0 of objects, a set G1 of isomorphisms and
structure maps s, t,m, u, and i satisfying various conditions. Here s, t : G1 → G0

are the source and target maps associating to each morphism its source and
target;

m : G1 ×G0 G1 := {(h, g) ∈ G1 ×G1 | s(h) = t(g)} −→ G1

(h, g) ↦−→ h ◦ g

is the (associative) composition or multiplication map; u : G0 → G1, x ↦→ 1x is
the unit map assigning to each object x the identity morphism 1x : x → x; and
i : G1 → G1, g ↦→ g−1 is the inverse map assigning to each morphism its inverse.

• A Lie groupoid is a groupoid G for which the setsG0 andG1 are smooth manifolds,
the structure maps s, t,m, u, i are smooth, and s, t : G1 → G0 are submersions.

• A homomorphism between Lie groupoids is a smooth functor. There is a notion
of equivalence of Lie groupoids.

• Let G be a Lie groupoid. Then for every object x ∈ G0, the set Gx := {g ∈
G1 | s(g) = t(g) = x} of morphisms from x to itself is a Lie group. It is called
the isotropy or stabilizer at x.

• Let G be a Lie groupoid. For every x ∈ G0 the set

t
(︁
s−1(x)

)︁
= {y ∈ G0 | ∃g : x→ y}

of targets of morphisms starting in x is called the orbit of x. It is a smooth
manifold. The collection of all orbits is called orbit space and denoted by |G|; it
is a quotient of G0, and in general it is not a manifold.

• A Lie groupoid G is called proper if the map (s, t) : G1 → G0 ×G0 proper.

• A Lie groupoid G is called étale if s and t are local diffeomorphisms.

• A Lie groupoid G is called a foliation groupoid if each isotropy group Gx is
discrete. In particular, every étale groupoid is a foliation groupoid.

• An orbifold groupoid is a proper foliation groupoid. If G is an orbifold groupoid,
then its orbit space |G| is a locally compact Hausdorff space.
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• If Z is a locally compact Hausdorff space, then an orbifold structure on Z consists
of an orbifold groupoid G and a homeomorphism f : |G| → Z. There is a notion
of equivalence of orbifold structures.

• An orbifold is a locally compact Hausdorff space equipped with an equivalence
class of orbifold structures.

The same strategy is used by Hofer–Wysocki–Zehnder to define polyfolds. However,
while the notion of étale proper Lie groupoids has a long history and is well studied,
the corresponding notion in polyfold theory (“ep-groupoids”) is new. Thus, a big part
of the book [HWZ21] is dedicated to establishing the theory of ep-groupoids, and the
definition of a polyfold is not stated untill Chapter 16, that is page 707 of the printed
book. Therefore, here we only sketch the definition and refer to [HWZ21] for all details.

Definition 3.18. [HWZ21]

• ([HWZ21, Definition 7.1.3]) An ep-groupoid is a groupoid G for which the sets
G0 and G1 are M-polyfolds, the structure maps s, t,m, u, i are sc-smooth, and

– (étale) s and t are local sc-diffeomorphisms,

– (proper)9 and every object x ∈ G0 has a neighborhood V ⊆ G0 such that
the map

t|s−1(V ) : s
−1(V ) → G0

is proper.

• ([HWZ21, Proposition 7.1.12]) Let G be an ep-groupoid. Then for every object
x ∈ G0 the isotropy Gx is finite.

• ([HWZ21, Theorem 7.3.1]) Let G be an ep-groupoid. Then the orbit space |G| is
a locally metrizable, regular, Hausdorff space. If in addition |G| is paracompact,
then it is metrizable.

• ([HWZ21, Definitions 16.1.1, 16.1.2]) If Z is a topological space, then a polyfold
structure on Z consists of an ep-groupoid G and a homeomorphism f : |G| → Z.
There is a notion of equivalence of polyfold structures.

• ([HWZ21, Definition 16.1.3]) A polyfold is a topological space equipped with an
equivalence class of polyfold structures.

3.7 The sc-Fredholm property

While the definition of the nonlinear sc-Fredholm property is quite involved (see below),
linear sc-Fredholm operators are defined in a straightforward way:

9This properness condition is stronger than the one for Lie groupoids. See also [HWZ21, below
Definition 7.1.4].
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Definition 3.19 ([HWZ21, Definition 1.1.9]). A sc-continuous linear operator T : E →
F is a sc-Fredholm operator if there are splittings E = K⊕X and F = C⊕Y respecting
the sc-structure such that the following holds:

• K is the kernel of T and finite dimensional.

• Y is the image of T and C is finite dimensional.

• T : X → Y is a sc-isomorphism.

The Fredholm index of T is the integer ind(T ) := dimK− dimC.

Another characterization of the linear sc-Fredholm property is the following.

Lemma 3.20 ([Weh12, Lemma 3.6]). A sc-continuous linear operator T : E → F is a
sc-Fredholm operator if and only if it is regularizing (that is, if e ∈ E0 and T (e) ∈ Fm,
then e ∈ Em) and T : E0 → F0 is a classical Fredholm operator.

The linear sc-Fredholm property is invariant under a class of perturbations called
sc+-perturbations. Kernel and cokernel of sc-Fredholm operators consist of smooth
points.

In classical calculus, a map is defined to be Fredholm if its linearization at any
point is a Fredholm operator. This implies the existence of a contraction normal form
which can be used to prove the implicit function theorem for Fredholm maps (see
[Weh12, Remark 4.2]). Hence, one might try to define sc-Fredholm maps as sc-smooth
maps with differentials that are linear sc-Fredholm operators. Again, this implies
the existence of a normal form. However, in sc-calculus this normal form does not
necessarily involve a contraction on the whole space, rather a contraction from one
level to another (see [Weh12, Remark 4.2]). In particular, there is no implicit function
theorem for this class of maps. Counterexamples and a detailed discussion of these
problems can be found in [FZW19]. To obtain an implicit function theorem, one has to
restrict to sc-smooth maps satisfying some extra condition. This nonlinear sc-Fredholm
property was defined by Hofer–Wysocki–Zehnder in terms of a special form (basic germ,
[HWZ21, Definition 3.1.7]) that the map needs to take after sc+-perturbation and a
sc-smooth coordinate change (see [HWZ21, Definitions 3.1.11, 3.1.16]). The proof of
the M-polyfold implicit function theorem (see Theorem 3.23 for the statement and
[HWZ21] for the proof) and the counterexamples and discussion in [FZW19] suggest
that this sc-Fredholm property is exactly what is needed to make an implicit function
theorem possible. However, in applications the right sc-smooth coordinate change may
be hard to find. Katrin Wehrheim suggested the following alternative definition of a
sc-Fredholm property (at a point) with respect to a splitting :

Definition 3.21 ([Weh12, Definition 4.3]). Let f : E → F be a sc-smooth map. Then
f is sc-Fredholm at 0 with respect to the splitting E = Rd ⊕ E′ if the following holds:

(i) f is regularizing as germ, that is for every m ∈ N0 there exists εm > 0 such that
f(e) ∈ Fm+1 and ∥e∥Em ≤ εm implies e ∈ Em+1.

(ii) E = Rd ⊕ E′ is a sc-isomorphism and for every m ∈ N0 there exists εm > 0

such that f(r, ·) : BE′
m

εm → Fm is differentiable for all ∥r∥Rd < εm. Moreover, for
fixed m ∈ N0, the differential dE′f(r0, e0) : E

′
m → Fm in direction of E′ has the

following continuity properties:

20



(a) For r ∈ BRd

εm the differential operator

BE′
m

εm −→ L(E ′
m, Fm)

e ↦−→ dE′f(r, e)

is continuous, and the continuity is uniform in a neighborhood of (r, e) =
(0, 0).

(b) For sequences Rd ∋ rν → 0 and eν ∈ B
E′

m
1 with ∥dE′f(rν , 0)eν∥Fm → 0,

ν → ∞, there exists a subsequence such that ∥dE′f(0, 0)eν∥Fm → 0.

(iii) The differential dE′f(0, 0) : E′ → F is a sc-Fredholm operator. Moreover,
dE′f(r, 0) : E ′

0 → F0 is classically Fredholm for all ∥r∥Rd < ε0, with Fred-
holm index equal to that for r = 0, and weakly regularizing, meaning that
ker dE′f(r, 0) ⊆ E ′

1.

As in [Weh12, Definition 4.3], above the sc-Fredholm property is defined only at the
origin (τ, x) = (0, 0). At a smooth point (τ ∗, x∗) ∈ R× C∞(S1,Rn) = R×

⋂︁
mHm the

appropriate conditions are obtained by conjugation with the sc-smooth map (τ, x) ↦→
(τ−τ ∗, x−x∗). This definition of the sc-Fredholm property (with respect to a splitting)
is not equivalent to the original one ([HWZ21, Definitions 3.1.11, 3.1.16]). However,
Wehrheim proved the following:

Theorem 3.22 ([Weh12, Theorem 4.5]). Let f : E → F be a sc-smooth map that is
sc-Fredholm at 0 with respect to a splitting E = Rd ⊕ E′. Then f |E1 : E1 → F1 is
sc-Fredholm at 0.

In the implicit function theorem, in the end one is interested only in the zero set
{f = 0} of a given sc-Fredholm map f , and this zero set is then automatically contained
in the set E∞ of smooth points. Therefore the shift in scales occuring in Theorem 3.22
is irrelevant for the conclusions of the implicit function theorem. This means that,
although the two definitions are not strictly equivalent, in practice one can choose
which one to work with.

3.8 The M-polyfold implicit function theorem

We now state the implicit function theorem in the context of strong M-polyfold bundles.
Some notions used in the theorem are not defined above because in the setting of this
thesis they are not important; see Remarks 3.24 and 3.25 below.

Theorem 3.23 (M-polyfold Implicit Function Theorem [HWZ21, Theorem 3.6.8]). Let
f be a sc-Fredholm section of a tame strong M-polyfold bundle Y → X. If f(x) = 0, and
if the sc-Fredholm germ (f, x) is in good position, then there exists an open neighborhood
V of x ∈ X such that the solution set S = {y ∈ V | f(y) = 0} in V has the following
properties.

• At every point y ∈ S, the sc-Fredholm germ (f, y) is in good position.

• S is a sub-M-polyfold of X and the induced M-polyfold structure is equivalent to
a smooth manifold structure with boundary with corners.
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Remark 3.24. Let us make a few comments on Theorem 3.23.

• The regularizing property of a sc-Fredholm section implies that the solution set
S is contained in X∞ =

⋂︁
m∈N Xm, the set of smooth points of X.

• If the M-polyfold X in Theorem 3.23 does not have boundary or corners, then
the solution space S is a smooth, finite-dimensional manifold without boundary
or corners.

• Being in good position consists of two conditions. The first one is surjectivity
of df at the point x ∈ X. The second condition is concerned with the case that
X has boundary or corners and is thus not relevant in our context, see Remark
3.25.

• As in the classical implicit function theorem, the tangent space of S at a point
y ∈ S is given by

TyS = ker df(y) ⊆ TyX

(see [HWZ21, Theorem 3.1.22]). In particular, the local dimension of the solution
space S equals the Fredholm index of the linearized section.

Remark 3.25. As mentioned before, all M-polyfolds considered in this thesis are in
fact sc-Hilbert spaces or sc-Hilbert manifolds. This leads to significant technical simpli-
fications. For instance, neither retraction maps nor boundaries need to be considered.
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Part I

Families of periodic delay orbits
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Chapter 4

The main theorem

4.1 Idea and statement

It is folklore knowledge that, under a non-degeneracy assumption, a periodic orbit of a
vector field persists under smooth perturbations of the vector field. The reason is that
periodic orbits correspond to zeroes of a suitable Fredholm section in a Banach space
bundle. This section is transverse to the zero section by non-degeneracy. Therefore
the implicit function theorem provides a smooth family of periodic orbits of dimension
equal to the Fredholm index. Here, instead of perturbing the vector field, we perturb
the equation ∂tx(t) = Xt(x(t)) by adding a delay and considering it as the perturbation
parameter. The result (see Theorem 4.1 below) is similar to the one for perturbations
of the vector field, but the methods to prove it are much more involved.

Let us be a bit more precise and suppose that we are given a smooth time-dependent
vector fieldX : S1×Rn → Rn, where S1 = R/Z. For a constant delay parameter τ ∈ R,
we want to study maps x : S1 → Rn which solve the corresponding delay equation

∂tx(t) = Xt(x(t ‧ τ)) for all t ∈ S1. (4.1)

For τ = 0, this recovers the case without delay, and solutions of (4.1) are exactly the
1-periodic orbits of X. For small τ ̸= 0, we think of (4.1) as a slight perturbation
of the ODE ∂tx(t) = Xt(x(t)), and so we might expect that non-degenerate periodic
orbits of X give rise to families of periodic delay orbits.

However, the corresponding Banach section is merely of class C1, see the discussion
below. Therefore, the classical implicit function theorem does not provide a smooth
family of periodic delay orbits. Instead, we use the implicit function theorem for M-
polyfold bundles ([HWZ21], stated here as Theorem 3.23), which was developed in the
context of symplectic field theory [EGH00], see below for details.

Recall that a 1-periodic orbit of a vector field X is called non-degenerate if the
linearized time-1-map of the flow of X at any point of the orbit does not have 1 as an
eigenvalue, see also Definition 4.15. We prove the following:

Theorem 4.1. If x0 is a non-degenerate 1-periodic orbit of X, then there is τ0 > 0
such that for every delay τ with |τ | ≤ τ0 there exists a (locally unique) smooth 1-
periodic solution xτ of the delay equation (4.1). Moreover, the parametrization τ ↦→ xτ
is smooth.
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The proof of Theorem 4.1 is given in Section 4.6. The idea behind the proof can be
used to cover more general delay equations (for instance, with more delay parameters
or on manifolds) as well. This is demonstrated in Chapter 7.

Note that we do not consider delay in the time-dependence of the vector field, that
is, equations of the form ∂tx(t) = Xt−τ (x(t)), since this is merely a deformation of the
vector field Xt and can therefore be treated by the classical implicit function theorem.

Let us now formulate the functional analytic setup. We denote by

φ : R× L2(S1,Rn) −→ L2(S1,Rn)

(τ, x) ↦−→ x(· ‧ τ).
(4.2)

the shift map, and define a map

s : R×W 1,2(S1,Rn) −→ L2(S1,Rn)

(τ, x) ↦−→ ∂tx−X(φ(τ, x)).
(4.3)

Then the set of solutions of the delay equation (4.1) for all delays τ ∈ R at once
corresponds to the zero set of s. Besides, every solution x0 of ∂tx(t) = Xt(x(t))
satisfies s(0, x0) = 0. Thus it seems plausible to use an implicit function theorem
to show that, under a suitable non-degeneracy assumption on x0, the zero set of s
carries the structure of a smooth submanifold of R ×W 1,2(S1,Rn) having dimension
equal to the Fredholm index of s. This Fredholm index is expected to be 1, because
∂t : W

1,2(S1,Rn) → L2(S1,Rn) has index 0.10 So the implicit function theorem would
prove existence of solutions of (4.1) and also give a parametrization. However, the map
s as defined in (4.3) is in general not smooth; we will see that it is, in general, only C1.
The reason is that the shift map φ is not smooth in τ , as will be explained in more
detail in Section 4.2. The lack of regularity of s implies that also the parametrization
which we get from a classical implicit function theorem can only be of regularity C1.

Analyzing the properties of this shift map in detail, we see that it is very natural to
pass from classical to sc-calculus. Recall from Chapter 3 that sc-calculus provides a new
notion of smoothness for maps between Banach spaces equipped with a scale structure,
and that it was developed by Hofer–Wysocki–Zehnder mainly for the study of moduli
spaces of J-holomorphic curves. In that context, non-smoothness of reparametrization
actions is one of the main problems, and sc-calculus was made to deal with this. Indeed,
Frauenfelder and Weber [FW21b] showed that the shift map φ defined above in (4.2)
is sc-smooth between appropriate sc-spaces. Thus, sc-calculus provides a natural way
to deal with the problem described above as follows. Using the definition of the sc-
Fredholm property in [Weh12], we show that the map s is a sc-smooth sc-Fredholm
section in a sc-Hilbert space bundle. Sc-Hilbert space bundles are the easiest examples
of tame strong M -polyfold bundles defined in [HWZ21]. Thus, to prove Theorem 4.1,
we can apply the implicit function theorem from sc-calculus [HWZ09, HWZ21] (stated
here as Theorem 3.23).

10The kernel consists of constant loops, the cokernel is generated by loops of non-zero integral,
hence both are isomorphic to Rn.
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4.2 Classical differentiability

From now on, for an integer m ≥ 0 we denote by

Hm := Wm,2 := Wm,2(S1,Rn) (4.4)

the Hilbert space of periodic maps of Sobolev class (m, 2) with values in Rn. In par-
ticular, H0 = L2 = L2(S1,Rn). Consider the following shift map:

φ : R×Hm −→ Hm

(τ, x) ↦−→ x(· ‧ τ)

It is easy to see that φ is continuous after evaluation, but it is not continuous in
the operator topology. This can be remedied by choosing a higher regularity level of
the domain while keeping the one on the target. In this section we collect these facts.
Proofs following Frauenfelder–Weber [FW21b] can be found in Appendix A. We use
the notation L(·, ·) for spaces of linear maps.

Lemma 4.2 ([FW21b, Lemma 2.1]). For every m ∈ N0, the map

R −→ L
(︁
Hm, Hm

)︁
τ ↦−→ φ(τ, ·)

is continuous with respect to the compact-open topology on L(Hm, Hm).

Lemma 4.3 ([FW21b, Lemma 2.2]). The shift map φ is not continuous as a map

φ : R −→ L
(︁
H0, H0

)︁
τ ↦−→ φ(τ, ·),

where the target space carries the operator norm topology.

Proof. For every small τ construct a function xτ ∈ H0 of norm 1 such that ∥φ(τ, xτ )−
φ(0, xτ )∥H0 = c > 0. This implies ∥φ(τ, ·) − φ(0, ·)∥L ≥ c. Note that by Lemma 4.2,
such a family (xτ )τ>0 cannot converge in H0 = L2. An easy construction of xτ with
c =

√
2 is contained in [FW21b].

Now let us consider the shift map φ as a map from R×H1 to H0.

Lemma 4.4. The shift map

φ : R×H1 −→ H0

(τ, x) ↦−→ x(· ‧ τ)

is differentiable with derivative at a point (τ, x) given by

dφ(τ, x) : R×H1 −→ H0

(T, x̂) ↦−→ φ(τ, x̂)− T · φ(τ, ∂tx). (4.5)

The statement of this Lemma 4.4 follows from [FW21b, Theorem 6.1] together with
[HWZ21, Proposition 1.2.3]. For convenience of the reader, we include a direct proof
in Appendix A.
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Remark 4.5. In fact, one can even show that the derivative is continuous as a map
dφ : R×H1 → L(R×H1, H0), that is, φ : R×H1 → H0 is C1.

In the same way, for each m ∈ N we can consider φ as a map

φ : R×Hm+1 −→ Hm

(τ, x) ↦−→ x(· ‧ τ)

and see that it is C1. This is easiest to prove if one works with the norm ∥x∥m :=
∥x∥L2 + ∥∂mt x∥L2 which is equivalent to the usual Sobolev norm ∥ · ∥Hm = ∥ · ∥Wm,2 . In
order to gain regularity, one might consider φ as a map φ : R × Hm −→ H0 to gain
regularity.

Lemma 4.6. For m ∈ N the map

φ : R×Hm −→ H0

(τ, x) ↦−→ x(· ‧ τ)

is of class Cm.

Remark 4.7. We recall from the introduction, see (4.3), the map s : R × Hm → H0

defined by

s : R×Hm −→ H0

(τ, x) ↦−→ ∂tx−X(φ(τ, x))
(4.6)

where X : S1 × Rn → Rn is some time-dependent smooth vector field. Since s is C1,
the classical implicit function theorem implies (s is indeed Fredholm) the existence of
zeroes of s (i.e. solutions of (4.1) for small τ ∈ R) under a suitable non-degeneracy
assumption. The implicit function theorem will guarantee the parametrization of these
solutions to be C1 in τ . A priori this parametrization will not be of higher regularity,
though. In order to gain better regularity one might be tempted to pass to the C2-map
s : R × H2 → H0. However, since s : R × H2 → H0 factors through the compact
embedding H1 ↪→ H0 it fails to be Fredholm. In addition, its linearization is never
surjective.

One aim of this thesis is to employ the natural framework of scale calculus and the
corresponding scale implicit function theorem in order to directly prove the existence
of a C∞-family of solutions to (4.1) leading to Theorem 4.1.

4.3 Sc-Smoothness

The goal of this section is to show that the map s (which was defined in equation (4.3)
and cuts out the solution space) is sc-smooth between appropriate sc-Hilbert spaces.

Consider the sc-Hilbert space defined by

H :=
(︁
Hm = Wm,2(S1,Rn)

)︁
m∈N0

,

that is the Hilbert space H0 = L2(S1,Rn) with filtration given by the numbers of weak
derivatives. Moreover, recall from Chapter 3 that R is a sc-Hilbert space with the
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constant filtration Rm ≡ R. Then the shift map φ is a map between these sc-spaces,
that is

φ : R× H −→ H

(τ, x) ↦−→ x(· ‧ τ).

When we compare the properties of φ established in Section 4.2 to the properties of
sc-differentiability mentioned in Section 3.3, it makes sense to expect the following
result by Frauenfelder–Weber:

Theorem 4.8 ([FW21b, Theorem 6.1]). φ : R× H → H is sc-smooth.

Now consider the sc-Hilbert space H1, that is H1 with the induced filtration. Then
equation (4.3) defines a map

s : R× H1 −→ H

(τ, x) ↦−→ ∂tx−X(φ(τ, x))
(4.7)

between sc-Hilbert spaces. Here, X : S1 × Rn → Rn is a time-dependent smooth
vector field on Rn. The implicit function theorem (Theorem 3.23) is formulated in the
language of sections in strong M-polyfold bundles. To translate s into this language
we define

S : R× H1 −→ R× H1 ▷ H

(τ, x) ↦−→ (τ, x, s(τ, x)).
(4.8)

S is a section in the trivial strong sc-Hilbert space bundle R× H1 ▷ H −→ R× H1.

Remark 4.9. As pointed out above, sc-Hilbert spaces are trivially M-polyfolds. In
fact, they admit global charts and do not require retractions. Moreover, the trivial
bundle R × H1 ▷ H −→ R × H1 is a strong bundle in the sense of Definition 3.13 and
[HWZ21, Definitions 2.6.4, 2.6.5]. The map s is the principal part of S, see [HWZ21,
Definition 2.6.3]. Finally, since we do not need to consider boundary nor retractions,
the tameness condition defined in [HWZ21, Definitions 2.5.2, 2.5.7] is trivially satisfied.
Thus, the bundle R × H1 ▷ H −→ R × H1 is a tame strong M-polyfold bundle. Since
everything is modeled on sc-Hilbert spaces, these M-polyfolds automatically admit
sc-smooth bump functions.

Proposition 4.10. The section S is sc-smooth. Its vertical sc-differential at the point
(τ, x) ∈ (R× H1)1 = R×H2 is

ds(τ, x) : R×H1 −→ H0

(T, x̂) ↦−→ ∂tx̂− dX(φ(τ, x)) · φ(τ, x̂) + T · dX(φ(τ, x)) · φ(τ, ∂tx). (4.9)

In particular, at (0, x) ∈ (R× H1)1 this simplifies to

ds(0, x)(T, x̂) = ∂tx̂− dX(x) · x̂+ T · dX(x) · ∂tx. (4.10)

28



Remark 4.11. Note that by dX(y) we mean the map

dX(y) : S1 −→ Rn

t ↦−→ dXt(y(t)).

Since S1 is compact and X is smooth, dX(y) has the same Sobolev regularity as y.

Proof of Proposition 4.10. First, we observe that the operator ∂t : H1 → H is sc-
smooth. Indeed, for every m, the operator ∂t : Hm+1 → Hm is a bounded linear map,
in particular it is classically smooth. Thus, by Proposition 3.7, ∂t is sc-smooth.

Next, note that Theorem 4.8 implies that φ is sc-smooth also as a map φ : R×H1 →
H1 ↪→ H since the inclusion H1 ↪→ H is level-wise compact.

Since the vector field X is smooth, the map H ∋ x ↦→ X(x) ∈ H is sc-smooth.
Now the chain rule from scale calculus implies that S is sc-smooth, and it also gives
the formula for the derivative. Here we may use the fact that φ is classically C1

and therefore sc1 and its sc-differential agrees with the classical differential given by
equation (4.5).

4.4 The sc-Fredholm property

Next we establish the sc-Fredholm property. We show that the section S is sc-Fredholm
in the sense of Definition 3.21, keeping in mind that this implies that – at least after
restricting S to a map R × H2 → R × H2 ▷ H1 – it is also sc-Fredholm in the sense of
Hofer–Wysocki–Zehnder.

Theorem 4.12. S is a sc-Fredholm section.

Proof. We first show that S is sc-Fredholm at (τ, x) = (0, 0) with respect to a splitting
by checking conditions (i), (ii), and (iii) of Definition 3.21. After this we revisit the
case of a general smooth point.

As a splitting, in the sense of Wehrheim, of the domain R × H1 we take the one
induced by the Cartesian product. In particular, we have d = 1.

(i) First we show that s is regularizing. Take (τ, x) ∈ (R× H1)m = R×Hm+1 with

s(τ, x) = ∂tx−X(φ(τ, x)) ∈ Hm+1.

Since x ∈ Hm+1, we have φ(τ, x) ∈ Hm+1 and thus X(φ(τ, x)) ∈ Hm+1. This
means that ∂tx = s(τ, x) +X(φ(τ, x)) lies in Hm+1 and so x ∈ Hm+2, thus

(τ, x) ∈ (R× H1)m+1

as desired.

(ii) For fixed τ ∈ R and m ∈ N, the map

sτ,m := s(τ, ·) : Hm+1 −→ Hm

x ↦−→ ∂tx−X(φ(τ, x))

is clearly classically smooth with differential

dsτ,m(x) : Hm+1 −→ Hm

x̂ ↦−→ ∂tx̂− dX(φ(τ, x)) · φ(τ, x̂).
(4.11)
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(a) For fixed m and small τ ,

dsτ,m : Hm+1 −→ L(Hm+1, Hm)

needs to be uniformly continuous in x near x = 0 (note that non-uniform
continuity follows from classical smoothness).

In more detail, we need to show that for every ε > 0 there exists some δ > 0
such that for all ∥x∥Hm+1 < δ, for all x′ ∈ Hm+1 with ∥x− x′∥Hm+1 < δ, and
for all x̂ ∈ Hm+1

∥dsτ,m(x)x̂− dsτ,m(x
′)x̂∥Hm ≤ ε · ∥x̂∥Hm+1

holds. Indeed, from equation (4.11) we get the following:

∥dsτ,m(x)x̂− dsτ,m(x
′)x̂∥Hm

= ∥ (dX(φ(τ, x′))− dX(φ(τ, x))) · φ(τ, x̂)∥Hm

≤ ∥dX(φ(τ, x′))− dX(φ(τ, x))∥Cm(S1,L(Rn,Rn)) · ∥φ(τ, x̂)∥Hm+1⏞ ⏟⏟ ⏞
=∥x̂∥Hm+1

The last estimate follows from the operator norm inequality for fixed t ∈ S1,
τ ∈ R and linear maps on Rn.

For δ small enough the first factor in this estimate is smaller than ε since
dX is continuous and ∥x − x′∥Hm+1 < δ implies ∥φ(τ, x) − φ(τ, x′)∥Cm <
const · ∥φ(τ, x)−φ(τ, x′)∥Hm+1 < const · δ (recall that φ is an isometry in its
second argument).

(b) Suppose we are given a sequence (τν , x̂ν)ν ⊆ (R × H1)m such that τν → 0
and ∥x̂ν∥Hm+1 < 1 such that

∥dsτν (0)x̂ν∥Hm −→ 0.

Then we need to find a subsequence of (x̂ν)ν (still denoted by the same
symbol) such that

∥ds0(0)x̂ν∥Hm −→ 0.

We compute

∥ds0(0)x̂ν∥Hm = ∥∂tx̂ν − dX(0) · φ(0, x̂ν)∥Hm

≤ ∥∂tx̂ν − dX(0) · φ(τν , x̂ν)∥Hm

+ ∥dX(0) · (φ(τν , x̂ν)− φ(0, x̂ν)) ∥Hm .

The first summand converges to zero by assumption. For the second sum-
mand we recall that dX(0) is still t-dependent: For every t ∈ S1 it denotes
the linear map dXt(0) : Rn → Rn. Since ∥x̂ν∥Hm+1 < 1 and the inclusion
Hm+1 ↪→ Hm is compact there exists a subsequence (still denoted by (x̂ν)ν)
with (x̂ν)ν → x̂ in Hm. Taking the corresponding subsequence of (τν)ν , we
get by Lemma 4.2 that φ(τν , x̂ν)−φ(0, x̂ν) → 0 in Hm. Finally, since dX(0)
is continuous it follows that

∥dX(0) · (φ(τν , x̂ν)− φ(0, x̂ν)) ∥Hm −→ 0.
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(iii) The third condition again consists of several parts.

(a) Since 0 ∈
⋂︁

m≥0H
1
m, by condition (ii) we have maps ds0,m(0) : H

1
m → Hm

for all m ∈ N. Together they define a sc0-map

ds0(0) : H
1 −→ H.

We have to show that ds0(0) is a linear sc-Fredholm operator (Defini-
tion 3.19, Lemma 3.20), meaning that it is regularizing and classically linear
Fredholm at the 0-level.

The regularizing property follows exactly as in (i). It remains to show that
the operator

W 1,2(S1,Rn) = H1 −→ H0 = L2(S1,Rn)

x̂ ↦−→ ∂tx̂− dX(0) · x̂
(4.12)

has closed image and finite dimensional kernel and cokernel. The operator ∂t
is Fredholm between these spaces. Indeed, its kernel is the space of constant
maps while its image consists of all periodic maps with mean zero. Thus,
kernel and cokernel are isomorphic to Rn. Since H1 ↪→ H0 is a compact
embedding, the second term in (4.12) represents a compact operator and
thus does not change the Fredholm property.

(b) The final condition is that for fixed τ near 0, the operator on 0-level

dsτ (0) : (H
1)0 = H1 −→ H0

x̂ ↦−→ ∂tx̂− dX(0) · φ(τ, x̂)

is classically linear Fredholm with the same index as ds0(0), and that it is
weakly regularizing, meaning

ker dsτ (0) ⊆ (H1)1 = H2

(as opposed to just ker dsτ (0) ⊆ H1 which holds by definition).

To verify these properties, note that the first term of dsτ (0) is the same in
ds0(0) and the second one is still compact. In particular, dsτ (0) is Fredholm
of the same index as ds0(0). Now take x̂ ∈ ker dsτ (0) ⊆ H1, then

∂tx̂ = dX(0) · φ(τ, x̂).

Since the shift does not change regularity, the right hand side lies in H1, so
∂tx̂ ∈ H1 and thus x̂ ∈ H2.

This finishes the proof that S is sc-Fredholm at (τ, x) = (0, 0). Now we review
conditions (i)-(iii) from above and see what needs to be changed for the sc-Fredholm
property at a general smooth point (τ, x) ∈ R × C∞(S1,Rn). We recall that these
conditions are obtained from a conjugation, as mentioned above.

(i) The proof of the regularization property for (0, 0) can be repeated verbatim at
any smooth point (τ, x) ∈ R× C∞(S1,Rn).
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(ii) The proof that sτ,m is classically differentiable for every m did not use τ = 0 and
continues to hold at any (τ, x) ∈ R× C∞(S1,Rn).

(a) In the proof of the uniform continuity of dsτ,m near x = 0 we neither used
that τ is small nor that ∥x∥Hm+1 is small. Again, the same proof continues
to work.

(b) Here we need to consider more generally sequences (τν , x̂ν)ν ⊆ (R × H1)m
with (τν)ν → τ and ∥x̂ν∥Hm+1 ≤ 1 such that

∥dsτν (x)x̂ν∥Hm → 0

and we need to find a subsequence of (x̂ν)ν (still denoted the same way)
such that

∥dsτ (x)x̂ν∥Hm → 0.

The following is a small modification of our previous argument. Again by
compactness of the embedding Hm+1 ↪→ Hm we pick a subsequence (x̂ν)ν
converging in Hm to some x̂, and the corresponding subsequence (τν)ν .
Again add zero and use the triangle inequality as follows:

∥dsτ (x)x̂ν∥Hm = ∥∂tx̂ν − dX(φ(τ, x)) · φ(τ, x̂ν)∥Hm

= ∥∂tx̂ν − dX(φ(τν , x)) · φ(τν , x̂ν)
+ dX(φ(τν , x)) · φ(τν , x̂ν)− dX(φ(τ, x)) · φ(τ, x̂ν)∥Hm

≤ ∥∂tx̂ν − dX(φ(τν , x)) · φ(τν , x̂ν)∥Hm⏞ ⏟⏟ ⏞
→0 by assumption

+ ∥dX(φ(τν , x)) · φ(τν , x̂ν)− dX(φ(τ, x)) · φ(τ, x̂ν)∥Hm

By Lemma 4.2 we have φ(τν , x) → φ(τ, x) in Hm+1 (hence also in Cm) as
well as φ(τν , x̂ν) → φ(τ, x̂) and φ(τ, x̂ν) → φ(τ, x̂) in Hm. By continuity of
dX it follows that

∥dX(φ(τν , x)) · φ(τν , x̂ν)− dX(φ(τ, x)) · φ(τ, x̂ν)∥Hm −→ 0.

(iii) Since x ∈ C∞ is a smooth point, by (ii) there are linear maps dsτ,m(x) : Hm+1 →
Hm for all m ≥ 0. We have to show that these define a linear sc-Fredholm map

dsτ (x) : H
1 −→ H

with Fredholm index not changing under small changes of τ .

We have

dsτ (x)x̂ = ∂tx̂− dX(φ(τ, x)) · φ(τ, x̂)

and so we see that dsτ (x) is of class sc0 and regularizing. For the Fredholm
property at the 0-level and the index we use that the second term is still compact.
That is, we use that the dependence on τ is only through compact operators.

32



This concludes the proof of Theorem 4.12.

We now compute the Fredholm index of ds at some point (τ = 0, x), where x ∈ H2.
The Fredholm index in sc-calculus is by definition the same as the classical Fredholm
index at the 0-level. The following computation applies in particular to the solution
x0 from Theorem 4.1.

Proposition 4.13. The Fredholm index of ds(0, x) is equal to 1.

Proof. The expression

ds(0, x)(T, x̂) = ∂tx̂− dX(x) · x̂+ T · dX(x) · ∂tx.

was derived in (4.10). The first term is the operator

(H1)0 = H1 −→ H0

x̂ ↦−→ ∂tx̂.

It is Fredholm of index 0, which was explained above in the proof of Theorem 4.12,
precisely condition (iiia) below equation (4.12).

The second term of ds(0, x), the operator H1 ∋ x̂ ↦→ −dX(x) · x̂ ∈ H0, is compact
(by compactness of H1 ↪→ H0) and thus does not change the Fredholm index. It
remains to see that adding the third term in ds(0, x) does not change the Fredholm
property and raises the index by 1. This follows from Lemma 4.14 below.

We prove the following obvious statement here for completeness.

Lemma 4.14. Assume that f : U → V is a linear Fredholm operator, and choose some
v ∈ V . Then the operator F : R×U −→ V , (T, u) ↦→ f(u)+T · v is Fredholm of index
ind F = ind f + 1.

Proof. We consider two cases. If v = f(u) ∈ im f , then im F = im f is still closed of
the same codimension and ker F = ({0} ⊕ ker f) ⊕ (R · (−1, u)), thus dim(ker F ) =
dim(ker f)+1. In the other case, v /∈ im f , the kernel ker F = {0}⊕ker f is isomorphic
to ker f and im F = im f ⊕ ⟨v⟩, therefore dim(coker F ) = dim(coker f)− 1.

4.5 Transversality

In order to apply an implicit function theorem, we need transversality of the section S
to the zero-section at our given solution, that is surjectivity of the vertical differential
ds(0, x0) of S at (0, x0) with s(0, x0) = 0. We now analyze what this condition means
for x0. For that, we recall the notion of non-degeneracy of a periodic orbit of a vector
field.

Definition 4.15. Denote the flow of X by Φt
X . A 1-periodic orbit x : S1 → Rn of X

is called non-degenerate if the linearized time-1-map dΦ1
X(x(0)) does not have 1 as an

eigenvalue.

Remark 4.16. We do not assume that X is complete. The existence of a 1-periodic
orbit x implies that in an open neighborhood of x(S1) in Rn the flow Φt

X is defined for
t ∈ [0, 1]. In particular, the notion of non-degeneracy is well-defined.
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Remark 4.17. If the vector field X is autonomous, that is, if Xt(·) = X(·) does not
depend on t ∈ S1, then there are no non-constant, non-degenerate periodic orbits.
Indeed, if x : S1 → Rn is a periodic orbit of X, then for every τ ∈ R and t ∈ S1 we
have

∂tx(t− τ) = X(x(t− τ)),

so every reparametrization φ(τ, x) of x is also a periodic orbit of X. We compute,
using again that X is autonomous,

dΦ1
X

(︁
x(0)

)︁(︁
∂tx(0)

)︁
= d

dt

⃓⃓⃓
t=0

Φ1
X(x(t))

= d
dt

⃓⃓⃓
t=0
x(t)

= ∂tx

and conclude that ∂tx is an eigenvector of dΦ1
X(x(0)) with eigenvalue 1.

Our main goal in this section is to show the following:

Proposition 4.18. The linear map ds0(x0) = ds(0, x0)(0, ·) : H1 → H0 is surjective if
and only if x0 is non-degenerate.

This has an immediate corollary:

Corollary 4.19. If x0 is non-degenerate, then ds(0, x0) : R×H1 → H0 is surjective.

The eigenvalues of dΦ1
X(x(0)) can be computed in terms of dX(x). This gives the

following well-known alternative characterization of non-degeneracy.

Lemma 4.20. Let x : S1 → Rn be a 1-periodic orbit of X. Set

A(t) := −dXt(x(t))
T : Rn −→ Rn

for every t ∈ S1 and let Y : R → Rn×n be the fundamental system for A : S1 → Rn×n,
that is, the solution of {︄

d
dt
Y (t) = A(t) · Y (t)

Y (0) = 1.
(4.13)

Then

dΦ1
X(x(0)) =

(︁
Y (1)T

)︁−1

In particular, x is non-degenerate if and only if Y (1) does not have 1 as an eigenvalue.

Proof. We use the flow Φt
X of X to define Z(t) := dΦt

X(x(0)). Then Z(0) = 1 and

d

dt
Z(t) =

d

dt

(︂
dΦt

X

(︁
x(0)

)︁)︂
= d

(︂ d

dt
Φt

X

(︁
x(0)

)︁)︂
= d

(︂
Xt

(︁
Φt

X(x(0))
)︁)︂

= dXt

(︁
Φt

X(x(0))⏞ ⏟⏟ ⏞
=x(t)

)︁
· dΦt

X(x(0))

= −A(t)T · Z(t)
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That is, Z(t) satisfies {︄
d
dt
Z(t) = −A(t)T · Z(t)

Z(0) = 1,

meaning that Z is a fundamental system of the so-called adjoint system of A. One can
easily compute, using the two initial value problems, that

Z(t)T · Y (t) = 1 ∀t ∈ R.

Therefore, we have

Y (t) =
(︁
Z(t)T

)︁−1 ∀t ∈ R,

in particular,

Y (1) =
(︁
Z(1)T

)︁−1
=
(︂
dΦ1

X(x(0))
T
)︂−1

.

This proves the lemma.

Remark 4.21. In case that X = XH is a Hamiltonian vector field (meaning that
dHt = ω(Xt, ·) for some time-dependent function Ht and a symplectic form ω), Lemma
4.20 simplifies slightly due to the fact that the matrix A(t) = dXt(x(0)) is skew-
symmetric. In particular, Y and Z solve the same initial value problem and are thus
identical and, in addition, symmetric matrices.

Another simplification occurs in the case of a fixed point of an autonomous vector
field. For instance, assume that X is autonomous and X(0) = 0. The constant orbit
x0(t) := 0 is then also a delay orbit of any delay, thus the existence of smoothly
parametrized delay orbits is immediate. However, Theorem 4.1 may still be applied to
show local uniqueness. We claim that in this situation non-degeneracy of the 1-periodic
orbit x0 is equivalent to dX(0) being invertible. Indeed, using the notation of Lemma
4.20 we see that A(t) = −dX(0)T is constant. Therefore, the fundamental system is
given by Y (t) = exp(tA). By considering a vector v ∈ Rn and the ODE that is satisfied
by v(t) := exp(tA)v, one easily sees that the matrix A has an eigenvalue a if and only
if exp(tA) has an eigenvalue eta. In particular, Y (1) = exp(A) has an eigenvalue 1 if
and only if A has an eigenvalue 0. The latter is, of course, equivalent to dX(0) having
a non-trivial kernel.

In preparation for the proof of Proposition 4.18, we recall the following theorem
from Floquet theory.

Theorem 4.22 ([Wal72]). Let A : S1 → Rn×n be a smooth 1-periodic matrix valued
function and let Y : R → Rn×n be the fundamental system for A defined by (4.13).
Then ∂tη(t) = A(t)η(t) has a non-trivial 1-periodic solution if and only if 1 is an
eigenvalue of Y (1). In this case, the solution is of the form η(t) = Y (t) · η(0) for all t
and η(0) being some eigenvector of Y (1) for the eigenvalue 1.

Finally, we are ready to prove Proposition 4.18.
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Proof of Proposition 4.18. In the proof of Theorem 4.12 we have shown that

ds0(x0) = ds(0, x0)(0, ·) : H1 −→ H0

x̂ ↦−→ ∂tx̂− dX(x0) · x̂

is classically Fredholm. In particular, ds0(x0) has closed image. Thus, im(ds0(x0)) =
H0 if and only if (im(ds0(x0)))

⊥ = {0} in H0 = L2. Therefore, failure of surjectivity of
ds0(x0) is equivalent to the existence of 0 ̸= η ∈ H0 satisfying

∀x̂ ∈ H1 : ⟨ds0(x0)x̂, η⟩H0 = 0.

Using the explicit formula above, we see that this is equivalent to

∀x̂ ∈ H1 : ⟨∂tx̂− dX(x0)x̂, η⟩H0 = 0.

This condition asserts that the weak derivative of η exists and equals

∂tη = −dX(x0)
Tη. (4.14)

In particular, bootstrapping shows that η ∈ C∞. If we set

A(t) := −dXt(x0(t))
T : Rn −→ Rn, (4.15)

then (4.14) becomes

∂tη(t) = A(t)η(t). (4.16)

Now Theorem 4.22 and Lemma 4.20 imply that such η exists if and only if dΦ1
X(x0(0))

has an eigenvalue 1, that is, if x0 is a degenerate periodic orbit of X.

4.6 The proof of Theorem 4.1

We finally use the M-polyfold implicit function theorem proved by Hofer, Wysocki and
Zehnder. The full theorem from [HWZ21] for a sc-Fredholm section f of a tame strong
M-polyfold bundle Y → X was stated above as Theorem 3.23.

In our situation, we haveX = R×H1 and Y = R×H1▷H, thus Y is the trivial bundle
and hence it is a tame strong M-polyfold bundle, as mentioned before in Remark 4.9.
The sc-Fredholm section f is given by S, see formula (4.8) and Theorem 4.12. The
solution set S consists of pairs (τ, xτ ) nearby (0, x0), where xτ is a τ -delay orbit of the
vector field X, see equation (4.1), as in Theorem 4.1.

Proof of Theorem 4.1. By Proposition 4.10, S is sc-smooth and by Theorem 4.12 it
is sc-Fredholm. Moreover, according to Proposition 4.18 and Corollary 4.19, non-
degeneracy of x0 implies that ds(0, x0) : R × H1 → H0 is surjective. Since S is
sc-Fredholm, its vertical differential ds(0, x0) : R × H1 → H at (0, x0) is a linear sc-
Fredholm operator. In particular, ds(0, x0) is surjective on all levels (cp. Definition
3.19), and thus the germ of S at (0, x0) is in good position. Therefore, we can apply
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the M-polyfold implicit function theorem, Theorem 3.23, and conclude that the solution
set

S = {(τ, x) ∈ R× H1 | s(τ, x) = 0}

is, near (0, x0), a finite-dimensional smooth manifold. The dimension of S equals the
Fredholm index, which is dimS = 1 by Proposition 4.13.

We have seen in Proposition 4.18 that non-degeneracy of x0 implies that ds0(x0) =
ds(0, x0)

⃓⃓
{0}×H1

: H1 → H0 is surjective. Moreover, ds0(x0) is a Fredholm operator of

index 0, thus an isomorphism. In particular, ker ds(0, x0) is not contained in {0}×H1.
Therefore, near (0, x0) the manifold S ⊂ R×H1 is a graph over R, that is, near (0, x0),
we can smoothly parametrize S as τ(τ ↦→ xτ ).

Remark 4.23. If it was possible to apply the M-polyfold implicit function theorem
near every pair (τ, x) ∈ S in the solution set S, then all of S would carry the structure of
a 1-dimensional manifold. However, for τ ̸= 0 the linearization ds(τ, xτ ) is significantly
more complicated than ds(0, x0). It is unclear to us how to formulate a criterion for
surjectivity of this map in terms of the vector field.
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Chapter 5

An illustrative example

Let us consider the plane R2 and identify it with C via z = x1+i·x2. We want to define
a time-dependent vector field X, examine its degenerate or non-degenerate 1-periodic
orbits and analyze the 1-periodic delay orbits near them.

5.1 Two functions

Let f : S1 = R/Z → R be any smooth function. For a real parameter δ ̸= 0 we define
a function gδ : R≥0 −→ R by

gδ(r) = δ · r · (r − 1)

and extend it to a continuous function gδ : C −→ R by

gδ(z) := gδ(∥z∥) = δ · ∥z∥ · (∥z∥ − 1) .

The function gδ is zero on the origin and on the circle of radius 1. It is negative on the
open ball of radius 1 without the origin and positive outside the disk of radius 1. Note
that gδ is smooth everywhere except in the origin.

5.2 The vector field

Now we can define a time-dependent vector field X : S1 × R2 → R2 as follows.

Xt(z) := gδ(z) ·
z

∥z∥
+ f

(︃
arg(z)

2π
− t

)︃
· 2πi · z

Here, arg(z) ∈ [0, 2π) denotes the argument of the complex number z ∈ R2 ∼= C.
Remark 5.1. Since gδ(z) = δ · ∥z∥ · (∥z∥ − 1), the vector field Xt is well-defined and
continuous in 0.

Remark 5.2. The first summand in the definition of Xt is the radial part, the second
is the angular part. Because of Xt(0) ≡ 0, the origin is a constant orbit of X. On
the ball of radius 1, the radial part is negative, so everything here is attracted by the
constant orbit. Outside the disk of radius 1, the radial part is positive, so everything
there is running off to infinity. Therefore, periodic orbits other than the constant one
in the origin necessarily have to lie on the circle of radius one.
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(a) The function f : S1 → (−2, 2) given by
f(t) = 1.5 · sin(2πt). Here, Z = {α1, α2}.

(b) The function g2π : R≥0 → R defined
by g2π(r) = 2π · r · (r − 1).

Figure 5.1: Examples of functions f and gδ.

Figure 5.2: The vector field Xt at time t = 0. Here we chose δ = 2π and f(t) =
1.5 · sin(2πt).
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5.3 1-periodic orbits

Denote Z = f−1({1}); this set could possibly be empty or infinite. For α ∈ Z we define

zα : S1 −→ C
zα(t) := e2πi(α+t).

Lemma 5.3. For every α ∈ Z the curve zα is a 1-periodic orbit of X.

Proof.

Xt(zα(t)) = Xt(e
2πi(α+t))

= 0 · e2πi(α+t) + f (α + t− t) · 2πi · e2πi(α+t)

= 2πi · e2πi(α+t)

= ∂tzα(t)

Lemma 5.4. Let z : S1 → C be any 1-periodic orbit of X. Then either z(t) ≡ 0, or
there is α ∈ Z such that z = zα.

Proof. If x is not the constant orbit in the origin, then by Remark 5.2 it has to be
located on the unit circle. Let us write z(t) = e2πiθ(t) with θ : S1 → S1. In particular,

∂tz(t0) = θ̇(t0) · 2πi · e2πiθ(t0). (5.1)

Moreover note that on the unit circle, our vector field is of the form

Xt(e
2πiθ) = f (θ − t) · 2πi · e2πiθ. (5.2)

Let us first assume that there is t0 ∈ S1 with θ̇(t0) = 1. Since z is an orbit of X, by
comparing (5.1) and (5.2) we find that f (θ(t0)− t0) = 1, in particular α := θ(t0)−t0 ∈
Z. The corresponding 1-periodic orbit zα satisfies

zα(t0) = e2πi(α+t0) = e2πiθ(t0) = z(t0).

Thus, z and zα are orbits of the same vector field, and at time t0 they take the same
value. This implies z = zα.

Now assume that there is no such t0, that is θ̇(t) ̸= 1 for all t ∈ S1. Again comparing
(5.1) and (5.2), we see that this means

either f (θ(t)− t) < 1 or f (θ(t)− t) > 1 for all t ∈ S1.

This implies that the map t ↦→ e2πi(θ(t)−(α+t)) has rotation number either ≤ −1 or ≥ 1.
In particular, there must be t0 ∈ S1 with e2πi(θ(t0)−(α+t0)) = 1, that is θ(t0) = α + t0,
hence z(t0) = e2πiθ(t0) = e2πi(α+t0) = zα(t0). But again, both are orbits of the same
vector field, so z = zα. This contradicts our assumption.
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5.4 Non-degeneracy

Lemma 5.5. The 1-periodic orbit zα is non-degenerate if and only if f ′(α) ̸= 0.

Proof. The non-degeneracy condition can most easily be examined if we pass to po-
lar coordinates (r, θ) ∈ R≥0 × R/2π on R2 \ {0}. Note that this is allowed since
non-degeneracy – in contrast to our notion of delay orbits – is a coordinate invariant
property. In polar coordinates, the vector field Xt is given by

Xt(r, θ) =

(︃
gδ(r), 2π · f

(︃
θ

2π
− t

)︃)︃
,

where gδ(r) = δ · r · (r − 1). The periodic orbit zα is given in polar coordinates by

zα(t) =
(︁
1, 2π(α + t)

)︁
Let us use some notation and the alternative description of non-degeneracy given in
[AS20, Lemma 6.6]. First we compute that

dXt(r, θ) =

(︃
g′δ(r) 0
0 f ′ (︁ θ

2π
− t
)︁)︃

In particular the matrix

A(t) := −dXt(zα(t))
T =

(︃
−δ 0
0 −f ′ (α)

)︃
occuring in [AS20, Lemma 6.6] is a time-independent diagonal matrix. Thus the fun-
damental system Y defined by [AS20, Equation (15)] is explicitly given by Y (t) = eAt,
and therefore

Y (1) = eA =

(︃
e−δ 0
0 e−f ′(α)

)︃
.

By [AS20, Lemma 6.6], zα is non-degenerate if and only if Y (1) does not have 1 as an
eigenvalue. This is equivalent to f ′(α) ̸= 0.

5.5 1-periodic delay orbits with small delay

Fix α ∈ Z with f ′(α) ̸= 0 (which, by Lemma 5.5, is equivalent to the orbit zα being
non-degenerate). For τ ∈ S1 we set

ε(τ, δ) :=
2π

δ
sin(2πτ). (5.3)

Note that ε(τ, δ) can be negative; it is ε(0, δ) = ε(1
2
) = 0, ε(1

4
, δ) = 2π

δ
, and ε(−1

4
, δ) =

−2π
δ
. Given a delay τ ∈ S1, for some reason that will become clear below we are

interested in finding a time tα,τ ∈ S1 near α ∈ S1 which satisfies

f(tα,τ ) = cos(2πτ). (5.4)
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Depending on f , α and τ , such tα,τ may or may not exist. Since f(α) = 1 and f ′(α) ̸= 0,
the function f has a local inverse f−1

α from a neighborhood of 1 to a neighborhood of
α. Hence, for small enough τ we can use this inverse to define a unique tα,τ by

tα,τ := f−1
α (cos(2πτ)) . (5.5)

For τ = 0 this is t0 = α; for τ near 0, tα,τ is a number near α. Also note that
tα,−τ = tα,τ .

Remark 5.6. (i) Above we talked about τ being “small”. Since τ is an element of
S1 = R/Z, by “small” we mean close to 0 in the metric of R/Z. For example,
3
4
≡ −1

4
is smaller than 1

2
≡ −1

2
. The distance between τ ∈ S1 and 0 will be

denoted by |τ |, e.g.
⃓⃓
−1

2

⃓⃓
= 1

2
,
⃓⃓
3
4

⃓⃓
= 1

4
.

(ii) How small is sufficient for our purpose depends on δ and f . This is discussed in
more detail in Section 5.6 below.

Remark 5.7. If we define tα,τ by (5.5), it makes sense to think about continuity and
smoothness of the map τ ↦→ tα,τ .

• Since f is smooth and we assumed f ′(α) ̸= 0, the inverse function theorem implies
that the local inverse f−1

α is smooth in a neighborhood of 1. Thus, τ ↦→ tα,τ is
smooth in a neighborhood of 0.

• The same argument works for any other τ ∈ S1 if for some reason we know that
f ′(tα,τ ) ̸= 0.

Given some τ ∈ S1 and a choice of tα,τ satisfying (5.4), let us now define a curve
zα,τ as follows:

zα,τ : S1 −→ C
zα,τ (t) :=

(︁
1− ε(τ, δ)

)︁
· e2πi(tα,τ+τ+t) (5.6)

Note that for τ = 0 this recovers the orbit zα = zα,0.

Lemma 5.8. If ε(τ, δ) ≤ 1, then the curve zα,τ is a 1-periodic τ -delay orbit of X.

Proof. From equation (5.6) we see that

∂tzα,τ (t) =
(︁
1− ε(τ, δ)

)︁
· 2πi · e2πi(tα,τ+τ+t).
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On the other hand, we compute

Xt (zα,τ (t− τ)) = Xt

(︁(︁
1− ε(τ, δ)

)︁
· e2πi(tα,τ+τ+t−τ)

)︁
= Xt

(︁(︁
1− ε(τ, δ)

)︁
· e2πi(tα,τ+t)

)︁
= gδ

(︁
1− ε(τ, δ)

)︁
· 1− ε(τ, δ)

|1− ε(τ, δ)|
· e2πi(tα,τ+t)

+ f (tα,τ + t− t) · 2πi ·
(︁
1− ε(τ, δ)

)︁
· e2πi(tα,τ+t)

= δ · (1− ε(τ, δ)) · (−ε(τ, δ)) · e2πi(tα,τ+t)

+ cos(2πτ) · 2πi ·
(︁
1− ε(τ, δ)

)︁
· e2πi(tα,τ+t)

=
(︁
1− ε(τ, δ)

)︁
· 2πi ·

(︃
−δ · ε(τ, δ)

2πi
+ cos(2πτ)

)︃
· e2πi(tα,τ+t)

=
(︁
1− ε(τ, δ)

)︁
· 2πi · (sin(2πτ) · i+ cos(2πτ)) · e2πi(tα,τ+t)

=
(︁
1− ε(τ, δ)

)︁
· 2πi · e2πiτ · e2πi(tα,τ+t)

=
(︁
1− ε(τ, δ)

)︁
· 2πi · e2πi(tα,τ+τ+t).

Therefore zα,τ is a τ -delay orbit of X.

Remark 5.9 (smoothness of the family (zα,τ )τ ). If τ ↦→ tα,τ is smooth, then it is clear
from the definition in equation (5.6) that the family (zα,τ )τ is smooth. By Remark 5.7
this is the case in a neighborhood of τ = 0 since we assumed f ′(α) ̸= 0.

Remark 5.10. The delay orbit zα,τ stays on the circle of radius 1 − ε(τ, δ) and has
constant speed. With that in mind, the whole orbit zα,τ ∈ C∞(S1,C) can be recovered
from zα,τ (0), its position at time t = 0. Hence, for a better understanding of the family
(zα,τ )τ ⊂ C∞(S1,C), it makes sense to analyse the smooth curve τ ↦→ zα,τ (0) ∈ C. It has
a self-intersection if there are τ0 ̸= τ1 with sin(2πτ0) = sin(2πτ0) and tτ0 + τ0 = tτ1 + τ1.
In this case, zα,τ0 = zα,τ1 is a delay orbit for two different delays. Additionally, the
image of the curve can have a cusp, see Remark 5.12.

Remark 5.11 (the degenerate situation). Our main theorem [AS20, Theorem 1.1]
only applies under the assumption of non-degeneracy. Here, in this example, we can
see what may happen if the original orbit zα is degenerate, which, by Lemma 5.5, is
equivalent to f ′(α) = 0.

• As long as α is just a saddle point of f , the construction of the delay orbits
zτ,α works exactly the same as for f ′(α) ̸= 0, but the map τ ↦→ tα,τ may not be
smooth in 0 any more.

• If f attains a local minimum in α, then for |τ | > 0 there is no tα,τ near α satisfying
(5.4), so we cannot find a τ -delay orbit near zα.

• If f attains a strict local maximum in α, then the definition of tα,τ involves a
choice between the solutions “to the left” and “to the right” of α. Thus we find
two 1-dimensional families of delay orbits near zα parametrized continuously by
delay, and they intersect in τ = 0.

For a more detailed illustration of the case when f attains a maximum in α, see the
concrete examples in Sections 5.7.3 and 5.7.4 below.
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(a) Here, tα,τ runs into a
minimum t∗ = tα,τ∗ with
f(t∗) > −1. For |τ | > |τ∗|,
tα,τ cannot be defined.

(b) For τ = ±1
4 , tα,τ needs

to pass through a zero of f .

(c) Here, tα,τ can be defined
for all t ∈ S1, resulting in
a smooth S1-family of peri-
odic delay orbits.

Figure 5.3: What might happen in the definition of tα,τ when τ grows.

5.6 Families of delay orbits parametrized by delay

In Section 5.5 we constructed 1-periodic τ -delay orbits zα,τ near zα whenever δ, f and
τ ∈ S1 are such that ε(τ, δ) ≤ 1 and tα,τ is defined. In particular, if we start with non-
degenerate zα, this gives a smooth 1-dimensional family of 1-periodic τ -delay orbits of
X near zα with small delay τ .

Now we may ask what happens for big τ : What problems occur in the construction?
How can they possibly be solved? In addition, we may have a closer look at the
degenerate case (see Remark 5.11). Then we can put together our insights to find
concrete instances of δ and f where we can see interesting (global) families of delay
orbits.

In the construction of the τ -delay orbit zα,τ , two problems can occur:

(I) In the proof that zα,τ is indeed a τ -delay orbit, we needed the fact that it lies on
the circle of radius 1− ε(τ, δ). This obviously only holds as long as ε(τ, δ) ≤ 1.

(II) The time tα,τ ∈ S1 was defined by f(tα,τ ) = cos(2πτ); for τ small enough we used
tα,τ = f−1

α (cos(2πτ)), where f−1
α is a local inverse of f from a neighborhood of 1

to a neighborhood of α ∈ S1. This local inverse is smooth near 1 and it gives us
a smooth family of times (tα,τ )τ near α (see figures 5.3b 5.3c). As τ gets bigger,
cos(2πτ) may leave the neighborhood where f−1

α is defined.

Since we defined ε(τ, δ) = 2π
δ
sin(2πτ), problem (I) can be solved by choosing δ ≥ 2π.

Problem (II) is more interesting, so let us have a closer look at what may happen.

• If there is t∗ ∈ S1 with f ′(t∗) = 0 but f is monotone around t∗, the local inverse
f−1
α is not differentiable any more, but it still exists and is continuous. It can be
used to define tα,τ near t∗. Hence the family of delay orbits persists, but it may
not be differentiable in the delays ±τ with cos(2πτ) = f(t∗).
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• If f attains a (local) minimum at some t∗ ∈ S1 with f(t∗) > −1, and t∗ = tτ∗ for
some τ ∈ S1, then for |τ | > |τ∗| there is no solution of f(tα,τ ) = cos(2πτ) near α
any more. See Figure 5.3a.

• If there is some β ∈ S1 with f(β) = −1 and f is monotone between11 α and
β, then tα,τ is defined for all τ ∈ S1 and t± 1

2
= β. See Figure 5.3c. Thus, we

find a continuous S1-family of delay orbits parametrized by delay. If f ′ is nonzero
between α and β, then the given family is smooth. If f ′(β) = 0, that is if f attains
a local minimum in β, then there is another family of delay orbits parametrized
by delay, and the two families intersect for τ = ±1

2
.

5.7 Concrete examples

In this section we want to analyse some very concrete examples of f where everything
can be computed.

5.7.1 A linear non-degenerate example

As a first example, consider δ = 2π and a smooth function f given by

f(t) =

{︄
4t− 2 if t ∈

[︁
1
8
, 7
8

]︁
mod 1

some smooth extension else

It is f
(︁
3
4

)︁
= 1, so in the notation from before we have 3

4
=: α ∈ Z, and the curve

zα(t) := e2πi(
3
4
+t) is a non-degenerate 1-periodic orbit of X. Note that as long as we

are only interested in the family of delay orbits through zα it is really not necessary
to specify the smooth extension of f outside [1

8
, 7
8
]; the family does not depend on this

extension at all. A local inverse of f is given by

f−1
α :

[︃
−3

2
,
3

2

]︃
→
[︃
−1

8
,
7

8

]︃
f−1
α (x) =

x+ 2

4
,

so we compute

tα,τ = f−1
α (cos(2πτ)) =

cos(2πτ) + 2

4
.

This is defined for alle τ ∈ S1, so we get an S1-family of 1-periodic delay orbits

zα,τ (t) =
(︁
1− ε(τ, δ)

)︁
· e2πi(tα,τ+τ+t)

=
(︁
1− sin(2πτ)

)︁
· e2πi(

cos(2πτ)+2
4

+τ+t).

11By “between α and β” we mean the part of S1 given by {tα,τ |τ ∈ S1}.
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(a) δ = 4π: The image of the curve is non-
smooth, but its parametrization is smooth.
The double point corresponds to τ = 0, 12 .
It exists because the orbit zα is at the same
time a 1

2 -delay orbit.
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(b) δ = 2π: The double point corresponding
to τ = 0, 12 is still there. Additionally, a
cusp appeared, corresponding to delay τ =
1
4 , when the family runs into the constant
orbit in the origin.

Figure 5.4: The curve S1 → C, τ ↦→ zα,τ (0), in the situation of Subsection 5.7.1.

For understanding this family, it is h to plot the curve

τ ↦−→ zα,τ (0) =
(︁
1− ε(τ, δ)

)︁
· e2πi(tτ+τ)

=

(︃
1− 2π

δ
sin(2πτ)

)︃
· e2πi(

cos(2πτ)+2
4

+τ)

of positions at time t = 0, see Figures 5.4a, 5.4b and Remark 5.10. Note that for
δ = 2π the image of the curve has a singularity in 0, corresponding to τ = 1

4
, although

it is smoothly parametrized. This singularity does not appear for δ > 2π. See also
Remark 5.12.

Remark 5.12. In general, for which choice of δ and f and non-degenerate orbit zα
does the image of the curve τ ↦→ zα,τ (0) have a cusp (as in Figures 5.4b, 5.5b)? A cusp

can appear only if d
dt
zα,τ (0) = 0. Computing d

dτ
tα,τ = −2π sin(2πτ)

f ′(tα,τ )
and

d

dt
zα,τ (0) =

(︃
4π2

δ
cos(2πτ) + 2πi ·

(︃
1− 2π

δ
sin(2πτ)

)︃
·
(︃(︃

d

dτ
tα,τ

)︃
+ 1

)︃)︃
· e2πi(tτ+τ),

we find that this happens if and only if δ = 2π and τ = 1
4
. For a specific function f ,

one could determine whether there really is a cusp by computing

d
dt
zα,τ (0)⃦⃦

d
dt
zα,τ (0)

⃦⃦ ∈ {z ∈ C | ∥z∥ = 1}

for τ ̸= 1
4
and analyzing whether it can be continued smoothly to τ = 1

4
.

5.7.2 Another non-degenerate example

Let us now analyse the situation for the function f defined by

f(t) = 1.5 sin(2πt).
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(a) δ = 4π: A smooth family of delay orbits,
this time without double point or cusp.
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(b) δ = 2π: Again, a cusp appeares for τ = 1
4

when the family runs into the constant orbit
at the origin.

Figure 5.5: The curve S1 → C, τ ↦→ zα1,τ (0), in the situation of Subsection 5.7.2.

This time, Z = {α1, α2}, where α1 = 1
2π

arcsin(2
3
) ≈ 0.116 and α2 = 1

2
− α1 ≈ 0.384.

The corresponding vector field was depicted in Figure 5.2. There are two 1-periodic
orbits of X, both are non-degenerate. A local inverse of f with image around α1 is
given by

f−1
α1

: [−1.5, 1.5] −→
[︃
−1

4
,
1

4

]︃
f−1
α1

(x) =
1

2π
arcsin

(︃
2

3
x

)︃
,

so for every τ ∈ S1 we can define

tα1,τ = f−1
α1

(cos(2πτ)) =
1

2π
arcsin

(︃
2

3
cos(2πτ)

)︃
.

For every choice of δ ≥ 2π, this gives a smooth S1-family (zα1,τ )τ∈S1 of periodic delay
orbits; it can be analyzed by plotting the curve

S1 −→ C

τ ↦−→ zα1,τ (0) =

(︃
1− 2π

δ
sin(2πτ)

)︃
· e2πi(

1
2π

arcsin( 2
3
cos(2πτ))+τ),

see Figures 5.5a, 5.5b. A similar family through zα2 can be found using a local inverse
of f with image around α2.

5.7.3 A degenerate example: The sine function

Let us now have a closer look at a degenerate example. For this, choose the function

f(t) = sin(2πt).
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Here, Z = {α} has only one element, namely α = 1
4
. Hence, the curve zα(t) = e2πi(

1
4
+t)

is the only 1-periodic orbit of X, and it is degenerate. The minimum of f is −1 and
it is obtained only in β = 3

4
; this means that there is exactly one delay orbit for the

delay τ = ±1
2
, corresponding to t 1

2
= β; let us denote it by zβ := zα, 1

2
. However, we

also see that α + 0 = β + 1
2
, so zα = zβ.

Let us now analyse the delay orbits for delay τ ̸= 0,±1
2
. There are two different

local inverses of f (none of them defined on an open neighborhood of 1, and both not
differentiable in 1,−1):

f−1
α,l : [−1, 1] −→

[︃
−1

4
,
1

4

]︃
= [β, α] ⊂ S1

x ↦−→ arcsin(x)

2π

f−1
α,r : [−1, 1] −→

[︃
1

4
,
3

4

]︃
= [α, β] ⊂ S1

x ↦−→ 1

2
− arcsin(x)

2π

Here, the subscripts l and r indicate that we consider the part of f that is to the left
or to the right of α respectively. We use both local inverses to define families of times
(tlrα,τ )τ and (trlα,τ )τ in the following way:

tlrα,τ : =

{︄
f−1
α,l (cos(2πτ)) if τ ∈

[︁
−1

2
, 0
]︁
⊂ S1

f−1
α,r(cos(2πτ)) if τ ∈

[︁
0, 1

2

]︁
⊂ S1

= τ +
1

4
∈ S1

trlα,τ : =

{︄
f−1
α,r(cos(2πτ)) if τ ∈

[︁
−1

2
, 0
]︁
⊂ S1

f−1
α,l (cos(2πτ)) if τ ∈

[︁
0, 1

2

]︁
⊂ S1

= −τ + 1

4
∈ S1

Here, the superscripts lr and rl indicate that in one family, we change from f−1
α,l to f

−1
α,r

in τ = 0 (and back to f−1
α,l in τ = 1

2
= −1

2
∈ S1) and in the other family the other way

round. Indeed, both definitions give rise to continuous maps S1 → S1, τ ↦→ tlrα,τ , t
rl
α,τ ,

and we see that moreover they are smooth.

Remark 5.13. We chose to switch from one local inverse to the other in τ = 0,±1
2

because it makes the families (tlrα,τ )τ , (t
rl
α,τ )τ smooth. In more general degenerate exam-

ples, the situation is similar, and it also makes sense to switch from one local inverse
to the other in τ = 0. See Subsection 5.7.4 below.

Using the definition above, for every δ ≥ 2π and corresponding ε(τ, δ) we find two
smooth S1-families of 1-periodic delay orbits:

zlrα,τ (t) =
(︁
1− ε(τ, δ)

)︁
· e2πi(tlrα,τ+τ+t)

zrlα,τ (t) =
(︁
1− ε(τ, δ)

)︁
· e2πi(trlα,τ+τ+t)
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(a) δ = 4π: The two families intersect in
zα twice, because each family has a self-
intersection there for τ = 0,±1

2 .
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(b) δ = 2π: There is an additional intersec-
tion in the constant orbit for τ = 1

4 . Both
families hav a cusp there.

Figure 5.6: The two curves S1 → C, τ ↦→ zlrα,τ (0) (blue) and τ ↦→ zrlα,τ (0) (orange) in
the situation of Subsection 5.7.3.

The two families intersect in zlrα,0 = zrlα,0 = zα for τ = 0 and again in zlr
α, 1

2

= zrl
α, 1

2

= zα

for τ = ±1
2
, because tlr0 = trl0 = 1

4
= α and tlr1

2

= trl1
2

= −1
4
. If δ = 2π, there is an

additional intersection for τ = 1
4
because zlr

α, 1
4

≡ 0 ≡ zrl
α, 1

4

(0). Again, for understanding

the families it makes sense to plot the curves

τ ↦−→ zlrα,τ (0) =

(︃
1− 2π

δ
sin(2πτ)

)︃
· e2πi(τ+

1
4
+τ)

τ ↦−→ zrlα,τ (0) =

(︃
1− 2π

δ
sin(2πτ)

)︃
· e2πi(−τ+ 1

4
+τ)

of points where the τ -delay orbits are at time t = 0. The plot for zrlα,τ is a straight line
because trlα1,τ

+ τ ≡ 1
4
. See Figures 5.6a, 5.6b.

5.7.4 Another degenerate example

In the previous example, the vector fieldX had only one 1-periodic orbit. We generalize
it by

f(t) = sin(2πkt), k ∈ N≥1.

Now, Z = {α0, . . . , αk−1}, where αj =
4j+1
4k

. Similarly, there is a set {β0, . . . , βk−1} of

times with f(βj) = −1 given by βj =
4j+3
4k

. The vector field X has exactly k periodic
orbits, namely zαj

, j = 0, . . . , k − 1, and they are all degenerate. As in the previous
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Figure 5.7: The vector field Xt corresponding to k = 3 in Subsection 5.7.4 at time
t = 0. The function is f(t) = sin(6πt) and we chose δ = 2π.

example, near each αj, j = 0, . . . , k − 1 we find two different local inverses:

f−1
αj ,l

: [−1, 1] −→ [βj−1, αj], x ↦−→ arcsin(x)

2πk
+
j

k

f−1
αj ,r

: [−1, 1] −→ [αj, βj], x ↦−→ 1

2k
− arcsin(x)

2πk
+
j

k

They are both smooth except in {±1} where their derivative explodes. As before, we
can define two different smooth families

tlrαj ,τ
: =

{︄
f−1
αj ,l

(cos(2πτ)) if τ ∈
[︁
−1

2
, 0
]︁

f−1
αj ,r

(cos(2πτ)) if τ ∈
[︁
0, 1

2

]︁
=

1

k

(︃
τ +

1

4

)︃
+
j

k
∈ S1

trlαj ,τ
: =

{︄
f−1
αj ,r

(cos(2πτ)) if τ ∈
[︁
−1

2
, 0
]︁

f−1
αj ,l

(cos(2πτ)) if τ ∈
[︁
0, 1

2

]︁
=

1

2k
− 1

k

(︃
τ +

1

4

)︃
+
j

k
∈ S1

and use these to find two families (zlrαj ,τ
)τ , (z

rl
αj ,τ

)τ of τ -delay orbits. However, if k ≥ 2,

we should now think of τ ∈
[︁
−1

2
, 1
2

]︁
as a real parameter, not as an element of S1 any

more, since tlr
αj ,− 1

2

̸= tlr
αj ,

1
2

and trl
αj ,− 1

2

̸= trl
αj ,

1
2

. Instead, because of

tlr
αj ,

1
2
= βj = tlr

αj+1,− 1
2

trl
αj ,− 1

2
= βj = trl

αj+1,
1
2

(5.7)
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we may glue the
[︁
−1

2
, 1
2

]︁
-families for all j = 0, . . . , k−1 together and obtain two smooth[︁

−1
2
, k − 1 + 1

2

]︁
-families as follows:

tlrτ := tlrαj ,τ−j for τ ∈
[︃
j − 1

2
, j +

1

2

]︃
trlτ := trlαk−j ,τ−j for τ ∈

[︃
j − 1

2
, j +

1

2

]︃
Here, of course we denote αk = α0.

Again using equation (5.7) we see that the maps[︃
−1

2
, k − 1 +

1

2

]︃
−→ S1

τ ↦−→ tlrτ

τ ↦−→ trlτ

can be continued k-periodically to all of R. They correspond to two k-periodic families

R −→ C∞(S1,R2)

τ ↦−→
[︃
zlrτ (t) =

(︃
1− 2π

δ
sin(2πτ)

)︃
· e2πi(tlrα,τ+τ+t)

]︃
τ ↦−→

[︃
zrlτ (t) =

(︃
1− 2π

δ
sin(2πτ)

)︃
· e2πi(trlα,τ+τ+t)

]︃
of 1-periodic delay orbits of X. These two families intersect themselves and each other
quite often. See Figures 5.8a, 5.8b for a plot in the case k = 3. For k = 3 we computed
the complete list of intersections:

• original orbits as multi-intersections:

zαj
= zlrj = zlr

j+ 3
2
= zrl−j = zrl−j+ 3

2
j = 0, 1, 2

• additional self-intersections of the first family:

zlr
j+ 1

8
= zlr

j+2+ 3
8

j = 0, 1, 2

zlr
j+ 5

8
= zlr

j+2+ 7
8

j = 0, 1, 2

• additional intersections of the two families:

zlr
j+ 1

6
= zrl

j+ 1
3

j = 0, 1, 2

zlr
j+2+ 1

3
= zrl

j+ 1
6

j = 0, 1, 2

zlr
j+ 2

3
= zrl

j+ 5
6

j = 0, 1, 2

zlr
j+ 5

6
= zrl

j+1+ 2
3

j = 0, 1, 2

• If δ = 2π, then there is an additional multi-intersection and multi-self-intersection
of the two families in the constant orbit, zlr

j+ 1
4

≡ 0 ≡ zrl
j+ 1

4

, j = 0, 1, 2.
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(a) δ = 4π: The two families intersect themselves and each other
many times.
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(b) δ = 2π: There is an additional multi-intersection and self-
intersection of the two families in the constant orbit, namely for
τ = 1

4 mod Z. Everything else is similar as for δ = 4π.

Figure 5.8: The 3-periodic curves R → C, τ ↦→ zlrτ (0) (blue) and τ ↦→ zrlτ (0) (orange)
in the situation of Subsection 5.7.4, k = 3.
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Remark 5.14. We analysed the case of the very concrete example function f(t) =
sin(2πkt), k ∈ N≥1. This made it possible to plot the results. However, the qualitative
behavior of the families of delay orbits does not change if we consider a more general
function f : Let us assume that

• f : S1 → [−1, 1] is smooth,

• there are α0, . . . , αk−1 with f(αj) = 1,

• there are β0, . . . , βk−1 with f(βj) = −1,

• and f is strictly monotone in between.

Then everything works exactly as for f(t) = sin(2πkt); the only difference is that we
were not yet able to prove (and are not sure whether to expect) smoothness of the
families in τ = m

2
, m ∈ Z.
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Chapter 6

The autonomous case

In this chapter we work with an autonomous vector field X, that is, Xt(·) = X(·) does
not depend on t ∈ S1. In this situation, orbits and delay orbits come in S1-families.
Indeed, if xτ : S1 → Rn is a 1-periodic τ -delay orbit of X and t0 ∈ S1, then

∂tφ(t0, xτ )(t) = ∂txτ (t− t0) = X
(︁
xτ (t− t0 − τ)

)︁
= X

(︁
φ(t0, xτ )(t− τ)

)︁
and hence φ(t0, xτ ) is again a τ -delay orbit of X. This is the reason why in the
autonomous situation every periodic orbit is degenerate (see also Remark 4.17). So the
best that we can hope for is a maximally non-degenerate periodic orbit.

Definition 6.1. A 1-periodic orbit x of an autonomous vector field X is called maxi-
mally non-degenerate if the eigenspace of the eigenvalue 1 of the linearized time-1-flow
dφ1

X(x(0)) is 1-dimensional.

In order to find only one delay orbit from each such family, we may choose to only
work with loops x that satisfy a certain condition at t = 0. Hence, below we introduce
transversal constraints and adapt our setting to looking for 1-dimensional families of
delay-orbits xτ parametrized by τ which all satisfy a constraint at t = 0. First, we
define splittings of the domain and target of the map s as direct sums. It is convenient
to use a shift in scales to make the splitting of the target well-defined.

Fix a maximally non-degenerate 1-periodic orbit x0 ofX. Without loss of generality
assume that x0(0) = 0 ∈ Rn. Denote L := R ·X(0) and let N := L⊥ be the orthogonal
complement of L in Rn. Let πL : Rn → L be the orthogonal projection. Now define

V := {x ∈ H2 | x(0) ∈ N}.

Then the vector space H2 splits as

H2
∼= V ⊕ L

x ↦→
(︁
x− πL(x(0)), πL(x(0))

)︁
where we identify each p ∈ L with the constant loop x(t) ≡ p. If H2 is interpreted as
a sc-Hilbert space H2 = (H2+m)m≥0 and V = (Vm)m≥0 = (V ∩ H2+m)m≥0 carries the
induced sc-structure, then the splitting above is a sc-Hilbert splitting H2 = V⊕L . As
for the inner products, every ⟨·, ·⟩m splits as ⟨·, ·⟩m = ⟨·, ·⟩m|V + ⟨·, ·⟩Rn .
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By maximal non-degeneracy, the matrix dΦ1
X(0) has a simple eigenvalue 1. Thus

also C = (dΦ1
X(0)

T )−1 has a simple eigenvalue 1. This matrix appeared already in the
proof of Proposition 4.18; note that in the Hamiltonian case we have C = dΦ1

X(0). Let
L′ be the eigenspace for the simple eigenvalue 1 of the matrix C, and set N ′ := L′⊥.
In the Hamiltonian case we get L = L′ and N = N ′.

Now let us use the embedding H1 = W 1,2(S1,Rn) ↪→ C0(S1,Rn) to define

W := {ξ ∈ H1 | ξ(0) ∈ N ′} (6.1)

with induced sc-structure W = (Wm)m≥0 = (W ∩H1+m)m≥0. This gives a sc-Hilbert-
splitting H1 ∼= W ⊕ L′. Let πW : H1 → W denote the projection given by πW (ξ) =
ξ − πL′(ξ(0)). Instead of

s : R× H1 −→ H

(τ, x) ↦−→ ∂tx−X(φ(τ, x))

we now work with

˜︁s : R× V −→ W

(τ, x) ↦−→ πW
(︁
s(τ, x)

)︁
= πW

(︁
∂tx−X(φ(τ, x))

)︁
or, to formulate it as a section in a trivial bundle,˜︁S : R× V −→ R× V×W

(τ, x) ↦−→ (τ, x, ˜︁s(τ, x)).
Unfortunately, ˜︁s(τ, xτ ) = 0 only implies that xτ solves (4.1) up to a constant error

in L′. This is why Theorem 6.5 below is only a weak analogue of Theorem 4.1.
We will show that ˜︁S is a sc-Fredholm section of index 1 and see how x0 being

maximally non-degenerate translates into surjectivity of d˜︁s(0, x0). This means that we
have to prove analogues of Proposition 4.10, Theorem 4.12, Proposition 4.13, Proposi-
tion 4.18, and Corollary 4.19.

Proposition 6.2 (cf. Proposition 4.10). The map ˜︁S is a sc-smooth section in a strong
M-polyfold bundle.

Proof. By Proposition 3.6, we can shift the scales in the domain and target and the
shifted map

s : R× H2 −→ H1

is still sc-smooth. Now restricting it to the sc-subspace R×V ⊂ R×H2 does certainly
not affect sc-smoothness. The projection πW is sc-smooth since H1 = W ⊕ L′ is a
sc-splitting. So the chain rule for sc-differentiability gives that ˜︁s is sc-smooth.

Note that the linearization of ˜︁s at (τ, x) is

d˜︁s(τ, x) : R× V −→ W

(T, x̂) ↦−→ πW ◦ ds(τ, x)(T, x̂)
= πW

(︁
∂tx̂
)︁
− πW

(︁
dX(φ(τ, x)) · φ(τ, x̂)

)︁
+ T · πW

(︁
dX(φ(τ, x)) · φ(τ, ∂tx)

)︁
.

(6.2)
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Theorem 6.3 (cf. Theorem 4.12 and Proposition 4.13). The section ˜︁S is sc-Fredholm
of index 1.

Proof. We adapt the proofs of Theorem 4.12 and Proposition 4.13. The splitting of
the domain is still the obvious one, that is R× V, so d = 1 in Definition 3.21.

(i) Recall that πW (ξ) = ξ − πL′(ξ(0)). This implies that for any ξ ∈ H1,

πW (ξ) ∈ Wm+1 = Hm+2 ∩W ⇐⇒ ξ ∈ Hm+2.

So ˜︁s is regularizing by the same argument that was used for s in the proof of
Theorem 4.12.

(ii) All differentiability and continuity properties that we showed in part (ii) of the
proof of Theorem 4.12 were for fixed scale m ∈ N, so the shift in scales has no
significance for this. Restriction to V does not cause problems for differentiability,
and the projection πW is classically differentiable. This implies that the classical
differentiability of ˜︁s in direction of the second factor and the continuity properties
(a) and (b) of this differential follow directly from the corresponding properties
of s.

(iii) We have to show that for every (τ, x) ∈ R× V∞, the derivative d˜︁sτ (x) : V → W
is a linear sc-Fredholm map, and that the index is invariant under small changes
of τ . We have

d˜︁sτ (x) : V −→ W

x̂ ↦−→ πW
(︁
∂tx̂
)︁
− πW

(︁
dX(φ(τ, x)) · φ(τ, x̂)

)︁
and so it is clear that this is of class sc0. As in (i), the regularizing property is
not affected by πW . It remains to show that at the 0-level, the map is classically
Fredholm with index not depending on τ . Moreover, we want its index to be
equal to 0. For this, we start by analysing the first summand. This means that
we want to show that

πW ◦ ∂t|V : V −→ W

is Fredholm of index 0. Indeed, we know that ∂t : H2 → H1 is Fredholm of index
0. Note that

{0} ⊕ L ⊂ ker ∂t

and

im(∂t) ∩ ({0} ⊕ L′) = {0}.

From this we deduce that

dim ker(πW ◦ ∂t|V ) = dim ker(∂t)− dim L = dim ker(∂t)− 1,
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and that the image of πW ◦ ∂t|V is isomorphic to the image of ∂t. Thus we have

dim coker(πW ◦ ∂t|V ) = dim coker(∂t)− 1.

So the Fredholm property of πW ◦ ∂t|V follows from the one of ∂t : H2 → H1 and
the index remains 0. In Section 4.4, we used that the summand

−dX(φ(τ, x)) · φ(τ, x̂)

was compact because it factored through the compact embedding H1 ↪→ H0.
Compactness certainly still holds after applying the projection πW . So

−πW
(︁
dX(φ(τ, x)) · φ(τ, x̂)

)︁
is compact and thus does not change the Fredholm property nor the index.

It remains to compute the index of the section ˜︁s. The sc-differential d˜︁s(τ, x) in
(6.2) is obtained from d˜︁sτ (x) by adding the R-factor in the domain and adding the
third summand. We can now use Lemma 4.14 again to see that this procedure raises
the index by 1.

Recall that to make the definitions in the beginning of this section, we fixed a
maximally non-degenerate orbit x0.

Proposition 6.4 (cf. Proposition 4.18 and Corollary 4.19). The vertical differential
d˜︁s0(x0) : V → W is surjective. In particular, d˜︁s(0, x0) : R × V → W is surjective as
well.

Proof. As in the proof of Proposition 4.18, we see that non-surjectivity of d˜︁s0(x0) :
V → W would imply the existence of 0 ̸= η ∈ W satisfying

∀x̂ ∈ V1 : ⟨∂tx̂− dX(x0)x̂, η⟩ = 0. (6.3)

As before, we find that such an η is automatically smooth and that it is a 1-periodic
solution of

∂tη(t) = A(t)η(t), (6.4)

where A : S1 → Rn×n is defined by (4.15). By Theorem 4.22, any solution of equation
(6.4) is of the form

η(t) = Y (t) · η(0),

where Y : R → Rn×n is the fundamental system given by (4.13) and η(0) is some
eigenvector of Y (1) for the eigenvalue 1. This means η(0) ∈ L′ \ {0}, by definition of
the space L′ above equation (6.1). So

η(0) /∈ N ′ = L′⊥.

By definition of W in (6.1) on page 56, this contradicts the fact that η ∈ W . So
there is no non-trivial η ∈ W satisfying (6.3). This proves that d˜︁s0(x0) : V → W is
surjective.
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By now we have collected all the ingredients for applying the M-polyfold IFT (The-
orem 3.23) to the case of a maximally non-degenerate periodic orbit of an autonomous
vector field. We get the following weak analogue of Theorem4.1.

Theorem 6.5 (cf. Theorem 4.1). If x0 is a maximally non-degenerate periodic orbit
of X, then there is τ0 > 0 such that for every delay τ with |τ | ≤ τ0 there is a locally
unique smooth xτ ∈ V satisfying

∂txτ (t) = X(xτ (t ‧ τ)) + lτ,X , t ∈ S1, (6.5)

where lτ,X := πL′
(︁
∂txτ (0)−X(xτ (‧τ))

)︁
∈ L′. The parametrization τ ↦→ xτ is smooth.

Proof. We combine Proposition 6.2, Theorem 6.3 and Proposition 6.4 with the M-
polyfold IFT (Theorem 3.23) to see that the zero set of ˜︁S is, near (0, x0), a smooth
1-dimensional submanifold of R× V that projects to a neighborhood of 0 in R.

Remark 6.6. Every xτ in Theorem 6.5 solves the delay equation (4.1) with delay τ
in direction of the codimension 1 subspace N ′ = L′⊥ ⊂ Rn. The number lτ,X ∈ L′ ∼= R
describes how far it is from satisfying the equation also in direction of L′. If we could
show that lτ,X = 0, we would have found a honest solution of (4.1). Conversely, if there
is any solution of (4.1) near x0, then it also satisfies (6.5) and so, by local uniqueness
of the solution in Theorem 6.5, it coincides with xτ and so we have lτ,X = 0. Thus,
lτ,X = 0 is equivalent to existence of a solution of (4.1) near x0.

Using (6.5) and that xτ is 1-periodic, we see that

0 = xτ (1)− xτ (0) =

∫︂ 1

0

∂txτ (t) dt =

∫︂ 1

0

X(xτ (t ‧ τ)) dt+ lτ,X

and so

lτ,X = −
∫︂ 1

0

X(xτ (t)) dt. (6.6)

This is a nice description of lτ,X , but we see no direct way to show that lτ,X = 0.
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Chapter 7

Generalizations

So far, we have been working with the delay equation

∂tx(t) = Xt

(︁
x
(︁
t ‧ τ

)︁)︁
for all t ∈ S1, (7.1)

where x : S1 → Rn is a loop in Rn and τ ∈ R a real number. The main result
was Theorem 4.1 about existence and uniqueness of a 1-dimensional smooth family of
solutions for small delay τ near a given solution x0 for vanishing delay τ = 0. In this
chapter, we elaborate on several different generalizations of the above equation. This
results in theorems that generalize Theorem 4.1 in different directions, see Theorems
7.2, 7.13, 7.15 and 7.33 below.

7.1 Finitely many discrete delays

Instead of a vector field X : S1×Rn → Rn let us now consider a map X : S1×(Rn)k →
Rn. An interesting delay equation is given by

∂tx(t) = Xt

(︁
x(t ‧ τ1), . . . , x(t ‧ τk)

)︁
for all t ∈ S1, (7.2)

where now τ1, . . . τk ∈ R are finitely many discrete delays. It seems that the behavior
of equation (7.2) should be similar to the one of equation (7.1). Before we can make
this statement precise in Theorem 7.2, we need another definition.

Definition 7.1. Let X : S1 × (Rn)k → Rn be a map. Then

XV : S1 × Rn −→ Rn

XV
t (x) := Xt(x, . . . , x)

is called the induced diagonal vector field.

Note that a map x0 : S
1 → Rn solves (7.2) with (τ1, . . . , τk) = (0, . . . , 0) if and only

if it is an orbit of the induced diagonal vector field XV .

Theorem 7.2 (cp. Theorem 4.1). Let X : S1 × (Rn)k → Rn be smooth, and let x0 be
a non-degenerate 1-periodic orbit of the induced diagonal vector field XV . Then there
is τ0 > 0 such that for every k-tuple τ = (τ1, . . . , τk) ∈ Rk with ∥τ∥Rk ≤ τ0 there exists
a (locally unique) smooth 1-periodic solution xτ of the delay equation (7.2). Moreover,
the parametrization (τ1, . . . , τk) = τ ↦→ xτ is smooth.
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Recall the shift map φ defined in (4.2). The solutions of (7.2) are cut out by the
map

s : Rk ×W 1,2(S1,Rn) −→ L2(S1,Rn)(︁
(τ1, . . . , τk), x

)︁
↦−→ ∂tx−X

(︁
φ(τ1, x), . . . , φ(τk, x)

)︁
which, as the map s from Chapter 4, defines a section

S : Rk × H1 −→ R× H1 ▷ H

(τ, x) ↦−→ (τ, x, s(τ, x))

in the trivial sc-Hilbert space bundle Rk × H1 ▷ H −→ Rk × H1. The zero set

{(τ, x) ∈ Rk × H1 | s(τ, x) = 0}

is the set of 1-periodic solutions of equation (7.2). The statements from Sections 4.3–4.6
carry over to the current set-up with minor modifications, see below. For convenience
we refer to the corresponding analogous statements in Chapter 4.

Proposition 7.3 (cf. Proposition 4.10). The section S is sc-smooth. Its vertical sc-
differential ds(τ, x) at the point (τ, x) ∈ (Rk × H1)1 = R×H2 is given by

ds(τ, x) : Rk ×H1 −→ H0(︁
(T1, . . . , Tk), x̂

)︁
↦−→ ∂tx̂− dX

(︁
φ(τ1, x), . . . , φ(τk, x)

)︁(︁
φ(τ1, x̂), . . . , φ(τk, x̂)

)︁
+ dX

(︁
φ(τ1, x), . . . , φ(τk, x)

)︁(︁
T1φ(τ1, ∂tx), . . . , Tkφ(τk, ∂tx)

)︁
.

In particular, at (0, x) this simplifies to

ds(0, x) : Rk ×H1 −→ H0 (7.3)(︁
(T1, . . . , Tk), x̂

)︁
↦−→ ∂tx̂− dX

(︁
x, . . . , x

)︁(︁
x̂, . . . , x̂

)︁
+ dX

(︁
x, . . . , x

)︁(︁
T1∂tx, . . . , Tk∂tx

)︁
. (7.4)

Proof. Sc-smoothness follows by chain rule from sc-smoothness of the shift map and
classical smoothness of f and X, together with sc-smoothness of ∂t, exactly as in the
proof of Proposition 4.10. The explicit formula for the vertical differential follows by
chain rule.

Theorem 7.4 (cf. Theorem 4.12 and Proposition 4.13). S is a sc-Fredholm section of
Fredholm index k.

Proof. The proof of Theorem 4.12 carries over with minor adaptations. The suitable
splitting of the domain R × H1 is again the one induced by the cartesian product, so
this time d = k in Wehrheims definition of the sc-Fredholm property (Definition 3.21).
We skip the details here.

Let us compute the index of ds(0, x). Again, the operator ∂t : H1 → H0 is Fredholm
of index 1, and

H1 −→ H0

x̂ ↦−→ dX(x, . . . , x)(x̂, . . . , x̂)

is compact by compactness of the embedding H1 ↪→ H0. It remains to argue why
adding the third term in ds(0, x) does not change the Fredholm property and raises
the index by k. This follows from Lemma 7.5 below.
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The statement of the following lemma (which was used above) is quite obvious; for
completeness we include a proof.

Lemma 7.5 (cf. Lemma 4.14). Assume that f : U → V is a linear Fredholm operator,
and that g : Rk → V is linear. Then f + g : Rk × U → V is Fredholm of index
ind(f + g) = ind(f) + k.

Proof. Let m = dim(im(f) ∩ im(g)). Then

ind(f + g) = dimker(f + g)− dim coker(f + g)

=
(︁
dimker(f) + (k − rank(g)) +m

)︁
−
(︁
dim coker(f)− (rank(g)−m)

)︁
= dimker(f)− dim coker(f) + k

= ind(f) + k.

The last step before we can prove Theorem 7.2 is to see how non-degeneracy of x0
as periodic orbit of the induced diagonal vector field XV implies transversality of s in
(0, x0).

Proposition 7.6 (cf. Proposition 4.18). Let x0 be a 1-periodic orbit of the induced
diagonal vector field XV . The linear map ds0(x0) = ds(0, x0)(0, ·) : H1 −→ H0 is
surjective if and only if x0 is non-degenerate.

Corollary 7.7 (cf. Corollary 4.19). If x0 is a non-degenerate periodic orbit of XV ,
then ds(0, x0) : Rk ×H1 −→ H0 is surjective.

Proof of Proposition 7.11. From equation (7.4) we see that

ds0(x0) : H1 −→ H0

ds0(x0)(x̂) = ∂tx̂− dX
(︁
x, . . . , x

)︁(︁
x̂, . . . , x̂

)︁
.

On the other hand, by definition of XV , we have

dXV (x)x̂ = dX(x, . . . , x)(x̂, . . . , x̂).

Hence, we are really in the situation of Section 4.5 for the vector field XV , and thus
our statement follows immediately from Proposition 4.18.

The results of this section together with the M-polyfold implicit function theorem
imply Theorem 7.2.

7.2 Delay equations on manifolds

As noticed in the introduction, if we pass from Rn to a manifoldM , equation (7.1) does
not make sense anymore. Still, of course there are interesting equations on manifolds
that involve a delay, for instance Lotka–Volterra equations with delay. For this and
further examples see [AFS20, Section 3].

Here, we focus on two different equations. In Subsection 7.2.1, the delay enters
only in a function which scales a vector field, so it makes sense on any manifold. In
Subsection 7.2.2 we consider Riemannian manifolds and use parallel transport along
the loops to map vectors to the right tangent space.
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7.2.1 A delay equation with delay entering by scaling

In the following, we want to focus on 1-periodic solutions x : S1 → M of equations of
the form

∂tx(t) = ft(x(t ‧ τ)) ·Xt(x(t)) for all t ∈ S1,

where X is some vector field and f a function on M , both depending smoothly on
time. This set-up can be generalized further.

We set B := W 1,2(S1,M) and equip B with the scale structure

Bm := W 1+m,2(S1,M).

Choosing a Riemannian metric ⟨·, ·⟩M on M turns B into a sc-Hilbert-manifold. For
each (τ, x) ∈ R × B denote by E(τ,x) := L2(S1, x∗TM) the Hilbert space of L2-vector
fields along x with scale structure E(τ,x),k = W k,2(S1, x∗TM). These form a bundle
p : E → R× B with fiber E(τ,x) over (τ, x). The double filtration

Em,k :=
{︁(︁

(τ, x), η
)︁ ⃓⃓

(τ, x) ∈ R× Bm, η ∈ E(τ,x),k
}︁

for 0 ≤ k ≤ m+ 1

gives p : E → R×B the structure of a tame strong M-polyfold bundle. Still, everything
is modeled on sc-Hilbert spaces. We define a section by

σ : R× B −→ E
(τ, x) ↦−→ ∂tx− f(φ(τ, x)) ·X(x). (7.5)

Then the zero set

{(τ, x) ∈ R× B | σ(τ, x) = 0}

is the set of 1-periodic solutions of equation (7.5). The statements from Sections 4.3–4.6
carry over to the current set-up with minor modifications, see below. For convenience
we refer to the corresponding analogous statements in the previous sections.

Proposition 7.8 (cf. Proposition 4.10). The section σ is sc-smooth. Its vertical sc-
differential dvσ(τ, x) at the point (τ, x) ∈ R× B1 is given by

dvσ(τ, x) : R× TxB −→ E(τ,x)
(T, x̂) ↦−→ ∇∂txx̂− f(φ(τ, x)) · ∇x̂X(x)

− df(φ(τ, x))
(︁
φ(τ, x̂)− T · φ(τ, ∂tx)

)︁
·X(x),

where ∇ is the Levi-Civita connection on M with respect to ⟨·, ·⟩M .

Proof. Sc-smoothness follows by chain rule from sc-smoothness of the shift map and
classical smoothness of f and X, together with sc-smoothness of ∂t, exactly as in the
proof of Proposition 4.10. To get the explicit formula for the vertical differential, we
use the product rule to compute

dvσ(τ, x)(T, x̂) = ∇∂txx̂−
(︂
d(f ◦ φ)(τ, x)(T, x̂) ·X(x) + f(φ(τ, x)) · ∇x̂X(x)

)︂
and, with the chain rule,

d(f ◦ φ)(τ, x)(T, x̂) = df(φ(τ, x))
(︁
dφ(τ, x)(T, x̂)

)︁
= df(φ(τ, x))

(︁
φ(τ, x̂)− T · φ(τ, ∂tx)

)︁
.
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Theorem 7.9 (cf. Theorem 4.12 and Proposition 4.13). σ is a sc-Fredholm section of
Fredholm index 1.

Since the sc-Fredholm property and the index computation is local, the proofs of
Theorem 4.12 and Proposition 4.13 work with minor adaptations. We skip the details
here.

Assume now that we have a solution x0 : S1 → M of equation (7.5) for τ = 0.
For simplicity we assume in the following that x∗0TM → S1 is trivial. This is, for
instance, the case, if M is orientable. The general case can be treated after suitable
modifications.

Definition 7.10. Denote the flow of fX by Φt
fX . Let x : S1 → M be a 1-periodic

orbit of fX with the property that x∗0TM → S1 is trivial. We call x non-degenerate if
the linearized time-1-map dΦ1

X(x(0)) does not have 1 as an eigenvalue.

We want to prove a statement about the existence of solutions of equation (7.5) with
small delay τ ̸= 0, similar to Theorem 4.1. In order to apply the M-polyfold implicit
function theorem it only remains to infer surjectivity of dvσ(0, x0) from non-degeneracy
of x0.

Proposition 7.11 (cf. Proposition 4.18). Assume that x∗0TM → S1 is the trivial
bundle. Then the linear map dvσ0(x0) = dvσ(0, x0)(0, ·) : Tx0B −→ E(0,x0) is surjective
if and only if x0 is non-degenerate as a 1-periodic orbit of the vector field fX.

As before the following is an immediate corollary.

Corollary 7.12 (cf. Corollary 4.19). If x0 is a non-degenerate periodic orbit of the
vector field fX and the pullback bundle x∗0TM → S1 is trivial, then dvσ(0, x0) : R ×
Tx0B −→ E(0,x0) is surjective.

Proof of Proposition 7.11. Since the bundle x∗0TM → S1 is trivial there is a neighbor-
hood U ⊂ M of x0(S

1) which is diffeomorphic to an open set V ⊂ Rn by a diffeomor-
phism ψ : U → V . Then ψ∗(fX) has ψ(x0) as 1-periodic orbit and x0 is non-degenerate
if and only if ψ(x0) is non-degenerate. Moreover, the section σ|R×BU

: R×BU → E|R×BU
,

with BU := W 1,2(S1, U), is conjugated via ψ and dψ to a section ˜︁σ of the form (4.8). Fi-
nally, dvσ(0, x0) is surjective if and only if dv˜︁σ(0, ψ(x0)) is surjective. This means that
we reduced the situation to the case of Rn and the assertion follows from Proposition
4.18.

Combining all these results and using the M-polyfold implicit function theorem, we
get the following generalization of our main theorem.

Theorem 7.13 (cf. Theorem 4.1). We consider a vector field X and a function f , both
smooth and 1-periodic, on a manifold M . Let x0 be a non-degenerate 1-periodic orbit of
the vector field fX. (In particular, we assume that x∗0TM → S1 is trivial.) Then there
is τ0 > 0 such that for every delay τ with |τ | ≤ τ0 there exists a (locally unique) smooth
1-periodic solution xτ of the delay equation (7.5). Moreover, the parametrization τ ↦→
xτ is smooth.
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Remark 7.14. In the case that x∗0TM is not the trivial bundle, a straightforward idea
is to consider the double cover y0 of x0 and work on the space of 2-periodic functions
instead. Then, assuming that y0 is non-degenerate as a 2-periodic orbit of fX, the
M-polyfold implicit function theorem will provide a smooth family of 2-periodic delay
orbits yτ near y0. In this situation non-degeneracy of y0 is equivalent to the condition
that dΦ1

fX(x0(0)) has neither 1 nor −1 as an eigenvalue.

7.2.2 A delay equation using parallel transport

In Subsection 7.2.1, we used a Riemannian metric ⟨·, ·⟩M on M just as an auxiliary
means needed to make the analysis work; the choice of metric was random and did not
have any impact on the equation. If, in contrast, we are given a Riemannian metric
⟨·, ·⟩M on the manifold M from the very beginning, then we might choose to work
with another delay equation – after all there is an obvious way of transporting tangent
vectors at the point x(t ‧ τ) to tangent vectors at the point x(t), namely via parallel
transport along the curve x. This means considering the delay equation

∂tx(t) = Γ(x)tt−τ

(︂
Xt

(︁
x(t ‧ τ)

)︁)︂
, (7.6)

where x : S1 →M is a loop and Γ(x)tt−τ : Tx(t‧τ)M → Tx(t)M denotes parallel transport.
To find solutions of (7.6) near a given solution x0 for τ = 0, one can use the

very same strategy as before. The notion of sc-smoothness is robust enough that it
certainly won’t be destroyed; the sc-Fredholm property is less robust, but after all
parallel transport is an isometry; and for transversality one works with τ = 0 anyway.

7.3 Higher order equations

Another direction of generalizing Theorem 4.1 is working with delay equations of higher
order. Let us, for example, consider the second order equation

∂2t x(t) = Xt

(︁
x(t ‧ τ)

)︁
(7.7)

where x : S1 → Rn and X : S1 × Rn → Rn is a vector field as in the original setting
of Chapter 4. One way to deal with equations of higher order is to translate them
to systems of equations of order 1, making it possible to apply the results established
before. Another way is to directly adjust the framework from Chapter 4. Below we
explain both approaches in detail for the second order equation (7.7); both strategies
can be adjusted for equations of order 3 or higher.

7.3.1 Reduction to a system of first order equations

Consider the following system of first order equations:{︄
∂tx(t) = y(t)

∂ty(t) = Xt

(︁
x(t ‧ τ)

)︁ (7.8)
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If x : S1 → Rn solves (7.7), then (x, ∂tx) : S
1 → Rn × Rn solves (7.8). Conversely, if

(x, y) : S1 → Rn × Rn is a solution of (7.8), then

∂2t x(t) = ∂tx(t) = Xt

(︁
x(t ‧ τ)

)︁
,

so x : S1 → Rn is a solution of (7.7). Thus we have translated the second order
equation on Rn to a system of two first order equations on Rn, that is one first order
equation on R2n.

This first order equation on R2n does not exactly fit into the framework of Theorem
4.1, because the right hand side does not only involve the shifted version of x, but
also the unshifted version of y. However, it fits into the more general framework of
Theorem 7.2, with k = 2, τ1 = 0 and τ2 = τ . Indeed, if we define˜︁X : S1 × R2n × R2n −→ R2n

˜︁Xt

(︃(︃
x1
y1

)︃
,

(︃
x2
y2

)︃)︃
:=

(︃
y1

Xt(x2)

)︃
,

then ˜︁X is a map as in Section 7.1 for k = 2, and the first order system (7.8) translates
to

∂t

(︃
x
y

)︃
(t) = ˜︁Xt

(︃(︃
x
y

)︃
(t),

(︃
x
y

)︃
(t ‧ τ)

)︃
,

which is exactly equation (7.2) for ˜︁X and τ1 = 0, τ2 = τ . Let us also recall from Section

7.1 the diagonal vector field ˜︁XV given by

˜︁XV
t

(︃
x
y

)︃
= ˜︁Xt

(︃(︃
x
y

)︃
,

(︃
x
y

)︃)︃
=

(︃
y

Xt(x)

)︃
.

Moreover, note that ∥(τ1, τ2)∥R2 ≤ τ0 implies τ2 ≤ τ0. Hence, Theorem 7.2 implies the
following:

Theorem 7.15 (cf. Theorems 4.1). Let x0 : S
1 → Rn be a solution of the second order

equation (7.7) for τ = 0, and assume that

(︃
x0
∂tx0

)︃
: S1 → R2n is non-degenerate as a 1-

periodic orbit of the induced diagonal vector field ˜︁XV on R2n. Then there is τ0 > 0 such
that for every τ with |τ | ≤ τ0 there exists a (locally unique) smooth 1-periodic solution
xτ of the delay equation (7.2). Moreover, the parametrization τ ↦→ xτ is smooth.

Remark 7.16. The condition that

(︃
x0
∂tx0

)︃
: S1 → R2n is non-degenerate as a 1-

periodic orbit of the induced diagonal vector field ˜︁XV is not very descriptive. Using
Lemma 4.20, we can translate the condition as follows: Define

A(t) := −d ˜︁XV
t

(︃
x0(t)
∂tx0(t)

)︃T

=

(︃
0 −dXt

(︁
x0(t)

)︁T
−1n 0

)︃
∈ R2n×2n

and let Y : R → R2n×2n be the fundamental system for A, that is, the solution of{︄
d
dt
Y (t) = A(t) · Y (t)

Y (0) = 12n.
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Then

(︃
x0
∂tx0

)︃
: S1 → R2n is non-degenerate as a 1-periodic orbit of ˜︁XV if and only if

Y (1) does not have 1 as an eigenvalue. In general, this is still hard to check, but in
concrete examples it might take an easier form.

Remark 7.17. When translating the second order equation (7.7) into a system of first
order equations, one might try with{︄

∂tx(t) = y(t ‧ τ
2
)

∂ty(t) = Xt

(︁
x(t ‧ τ

2
)
)︁

instead of (7.8). However, if (x, y) solves the system above, then

∂2t x(t) = ∂ty
(︂
t ‧

τ

2

)︂
= Xt‧ τ

2

(︁
x(t ‧ τ)

)︁
,

so x does not solve (7.7). This problem occurs as soon as the first equation in the
system involves a delay. It can be resolved by working with{︄

∂tx(t) = y(t ‧ τ
2
)

∂ty(t) = Xt+ τ
2

(︁
x(t ‧ τ

2
)
)︁

instead. However, now the system involves the delay parameter in an explicit way. This
is not a fundamental obstacle, but it it prevents us from directly applying Theorem 4.1
or Theorem 7.2.

7.3.2 Directly adjusting the framework

Define

s : R× H2 −→ H

(τ, x) ↦−→ ∂2t x−X(φ(τ, x)).
(7.9)

It is clear from the previous discussions that this section is sc-smooth and that its
second summand is still compact, because it factors through the compact embedding
H2 ↪→ H1 ↪→ H0. The first summand, ∂2t : H2 → H, is classically Fredholm of index 1.
Therefore, the sc-Fredholm property follows exactly as in Section 4.4.

The interesting part is, again, finding a suitable condition that ensures transver-
sality. Here, non-surjectivity of ds(0, x0) is equivalent to the existence of η ∈ C∞ with
∂2t η − dX(x0)

Tη = 0. This equation is without delay, so it can really be translated to
a system of equations of order 1. However, we do not see a geometric meaning of this
condition.

Remark 7.18. Here it is obvious that it is possible to add terms of lower order to
equation (7.7) without destroying sc-differentiability or the sc-Fredholm property. The
condition for transversality, though, will change with the equation.
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7.4 Time-dependent delay

In this section, instead of a discrete delay τ ∈ R we want to consider time-dependent
delay τ ∈ C∞(S1,R). With this, equation (7.1) generalizes to

∂tx(t) = Xt

(︁
x
(︁
t ‧ τ(t)

)︁)︁
for all t ∈ S1. (7.10)

If we vary τ in the infinite-dimensional space C∞(S1,R), there is little hope of
establishing a Fredholm property. Therefore we vary τ only inside a finite-dimensional
subspace T of C∞(S1,R), and without loss of generality we can assume that T is 1-
dimensional. On T all norms are equivalent; for convenience we work with the C∞-norm
∥ · ∥C∞ .

Following the strategy from before, we are tempted to define a time-dependent shift
map by

φ(τ, x)(t) := x
(︁
t ‧ τ(t)

)︁
(7.11)

for any map x : S1 → Rn. Concerning this “definition”, we may ask the following
questions:

(1) If x is square-integrable, does it follow from (7.11) that also φ(τ, x) is square-
integrable?

(2) If x = x′ in L2, does (7.11) imply that φ(τ, x) = φ(τ, x′)?

(3) If x ∈ Hk, k ≥ 0, can we expect φ(τ, x) ∈ Hk?

(4) Recall that we considered L2(S1,Rn) as a sc-Hilbert space H with the filtration

H =
(︂
H0 = L2(S1,Rn) ⊃ H1 = W 1,2(S1,Rn) ⊃ . . .

)︂
.

If we define φ : T × H → H as in (7.11), can we expect φ to be sc-smooth?

The answer to these questions is no, no, no and no! At least for general τ , see Example
7.19 below. However, if we pose additional assumptions on τ , the definition in (7.11)
does make sense after all. This is what we do in in Subsections 7.4.1-7.4.4. After these
initial difficulties, the strategy from before can be applied without major modification
to prove an analogon to Theorem 4.1, see Theorem 7.33 below.

Example 7.19. For question (2) above, consider a smooth map τ : S1 → R which
satisfies τ(t) = t for all t ∈ [0, 1

2
]. Then for every map x : S1 → Rn we have

x
(︁
t ‧ τ(t)

)︁
≡ x(0)

)︁
for all t ∈ [0, 1

2
]. (7.12)

Take maps x, x′ : S1 → Rn which differ only in the value at 0. Then x = x′ in L2.
However, with the “definition” in (7.11) together with equation (7.12) we get φ(τ, x) =
φ(τ, x′). Note that this problem occurs as soon as the map t ↦→ t ‧ τ(t) is constant on
a small interval.
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7.4.1 Well-definedness of the shift map

Let us define the following subset of T :

O :=
{︂
τ ∈ T

⃓⃓⃓
∃ d(τ) ∈ N such that τ̇(t) ∈

(︁
− d(τ), 1

)︁
for all t ∈ S1

}︂
(7.13)

The set O is convex and open in T , and it contains 0. However, it is not symmetric in
the sense that τ ∈ O would imply −τ ∈ O; this only holds if d(τ) can be chosen to be
1. From now on, for τ ∈ O we denote by d(τ) the minimal positive integer that can be
used in (7.13).

Remark 7.20. The integer d(τ) ∈ N satisfies the following:

• For any τ ∈ O and r ∈ [0, 1], it is d(r · τ) ≤ d(τ).

• For τ ∈ O small enough, d(τ) = 1.

Every delay function τ determines a map

σ : S1 −→ S1

t ↦−→ t ‧ τ(t)
(7.14)

which, following Nishiguchi [Nis19], we call the delayed argument function correspond-
ing to τ . Note that σ and τ determine each other uniquely; equation (7.11) translates
to φ(τ, x)(t) = x(σ(t)). For τ ∈ O, the map σ satisfies

σ̇(t) = 1− τ̇(t) ∈ (0, d(τ) + 1), (7.15)

in particular it is ‘monotone’ of degree d(τ). If d(τ) = 0, it follows that σ is a diffeomor-
phism of S1, meaning that φ(τ, x) is just a reparametrization of x by a diffeomorphism.

Remark 7.21. In [Har16], Ferenc Hartung analyzes differentiability of solutions of
differential equations with time-dependent delay with respect to the delay function.
His condition on the delay function is the following, see [Har16, equation (4.1), α = 1]:

∃ 0 ≤ κ(τ) < 1 such that |τ̇(t)| ≤ κ(τ) for a.e. t ∈ S1 (7.16)

In our situation, we assumed τ to be smooth, so the “almost every t ∈ S1” is the same
as “every t ∈ S1”. Hartung’s condition (7.16) implies (7.15) for d(τ) = 1. This is why
in [Nis19] it is called “some strict monotonicity assumption”.

For general d(τ) ∈ N, the delayed argument function σ may not be injective; but
we can split it up into several maps as follows. Without loss of generality we may
assume that σ(0) = 0. Denote t0 = td = 0. Let t1 < ... < td(τ)−1 ∈ (0, 1) be the
other d(τ)− 1 real numbers with σ(ti) = 0. Then the restrictions σ|[ti−1,ti] define d(τ)
bijective functions

σi := σ|[ti−1,ti] : [ti−1, ti]/ti−1∼ti
∼= S1 −→ S1, 1 ≤ i ≤ d(τ)

which are diffeomorphisms – except for possibly at the point where the ends of the
interval where glued together and the left and right derivatives of σi will in general not
coincide.
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Lemma 7.22. If τ ∈ O, then

φ(τ, ·) : H0 −→ H0

x ↦−→
[︂
t ↦→ x

(︁
t ‧ τ(t)

)︂]︂
is a well-defined bounded linear map.

Proof. Linearity is clear.
Boundedness: We need to show that ∥φ(τ, x)∥L2 is bounded in terms of ∥x∥L2 . For

that purpose, recall the d(τ) maps σi defined above. Using integration by substitution
for σi (u = σi(t), t = σ−1

i (u), dt = (σ−1
i )′(u)du), we find

∥φ(τ, x)∥2L2 =

∫︂ 1

0

∥x(σ(t))∥2Rn dt

=
d∑︂

i=1

∫︂ ti

ti−1

∥x(σi(t))∥2Rn dt

=
d∑︂

i=1

∫︂ 1

0

∥x(u)∥2Rn · (σ−1
i )′(u) du

≤ d(τ) · c(τ) · ∥x∥2L2 , (7.17)

since all |(σ−1
i )′(u)| are bounded by some constant c(τ) > 0 depending on τ . (See

Remark 7.23 for a more concrete description of c(τ).) Note that σ′
i may not be well-

defined at the gluing point ti−1 ∼ ti and thus σ−1′

i may not be well-defined at the point
0 ∼ 1 ∈ S1, but a point has measure 0 and so this does not matter for the integral.

Well-definedness: Let x, x′ : S1 → Rn be maps that are the same in L2, that is
∥x− x′∥L2 = 0. We need to show that φ(τ, x) and φ(τ, x′) are the same in L2, that is
∥φ(τ, x)− φ(τ, x′)∥L2 = 0. Using linearity and boundedness we see that

∥φ(τ, x)− φ(τ, x′)∥L2 = ∥φ(τ, x− x′)∥L2 ≤ c(τ) · ∥x− x′∥L2 = 0.

Remark 7.23. What can we say about the constant c(τ) which occured in (7.17), and
how does it depend on τ? Above it was only important that it satisfies |(σ−1

i )′(u)| ≤
c(τ) for all u ∈ S1; for further use it makes sense to define it more concretely. For
τ ∈ O, we set

τ̇max := max
{︁
τ̇(t) | t ∈ S1

}︁
< 1 and c(τ) := max

{︃
1

1− τ̇max

, 1

}︃
.

From σi(t) = t ‧ τ(t) we can conclude σ−1
i (u) = u + τ(σ−1

i (u)). Applying the chain
rule, we see that

(σ−1
i )′(u) =

1

1− τ̇(σ−1
i (u))

≤ 1

1− τ̇max

≤ c(τ), (7.18)

hence c(τ) meets the main requirement. Moreover, it satisfies the following:
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• For any τ ∈ O and r ∈ [0, 1], it is c(r · τ) ≤ c(τ).

• For τ ∈ O small enough, c(τ) is uniformly bounded by 2.

So far, we analyzed the shift by a fixed delay function τ . Next we want to vary τ .

Lemma 7.24. The shift map

φ : O ×H0 −→ H0

(τ, x) ↦−→
[︂
t ↦→ x

(︁
t ‧ τ(t)

)︂]︂
is well-defined and continuous.

Proof. The shift of x by τ is a well-defined element of H0 by Lemma 7.22. It remains to
show continuity, and for this we follow the proof of [AS20, Lemma 3.1]. Let (τi)i∈N ⊂ O
and (xi)i∈N ⊂ H0 be sequences such that τi → τ in C∞ and xi → x in H0. We need to
show that ∥φ(τ, x)− φ(τi, xi)∥H0 → 0.
Step 0: We claim that without loss of generality we can assume τ = 0. Indeed, it is

∥φ(τ, x)− φ(τi, xi)∥H0 =
⃦⃦
φ
(︁
τ, x)− φ(τi − τ, xi)

)︁⃦⃦
H0

≤
√︁
d(τ) ·

√︁
c(τ) · ∥x− φ(τi − τ, xi)∥H0

by equation (7.17) from the proof of Lemma 7.22. Here, d(τ) ∈ N is the degree of
the delayed argument function σ corresponding to the delay τ , and c(τ) is a constant
depending on τ . Note that to even write down φ(τi − τ, xi) on the right hand side we
need to know that τi − τ ∈ O; this is no problem since τi → τ and O ⊂ T is open and
contains 0.
Step 1: Let us show ∥xi − φ(τi, xi)∥H0 → 0 for the special case when xi ≡ x ∈ H0 is a
constant sequence. The map x may not be smooth, but it can be approximated in H0

by smooth elements. Fix ε > 0 and choose x̄ ∈ C∞(S1,Rn) with

∥x̄− x∥H0 ≤
ε

8
.

Now x̄ is uniformly continuous and τi → 0 in C∞, so for i sufficiently large we have

∥x̄(t)− x̄(t ‧ τi(t))∥Rn ≤ ε

8
for all t ∈ S1

and hence

∥x̄− φ(τi, x̄)∥H0 ≤
ε

8
.

Therefore

∥x− φ(τi, x)∥H0 ≤ ∥x− x̄∥H0 + ∥x̄− φ(τi, x̄)∥H0 + ∥φ(τi, x̄)− φ(τi, x)∥H0

≤ ∥x− x̄∥H0 + ∥x̄− φ(τi, x̄)∥H0 +
√︁
d(τi) ·

√︁
c(τi) · ∥x̄− x∥H0

≤ ε

8
+
ε

8
+
√
2 · ε

8

<
ε

2
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for i sufficiently large. Here, in the second step we used (7.17). In the third step we
used that for small τi we have d(τi) = 1 by Remark 7.20 and c(τi) ≤ 2 by Remark 7.23.
Step 2: Now we pass on to any converging sequence xi → x ∈ H0. In step 1 we have
shown that

∥x− φ(τi, x)∥H0 ≤
ε

2

for i large enough. After increasing i even further we may assume that ∥x−xi∥H0 ≤ ε
4
.

All in all we get

∥x− φ(τi, xi)∥Hm ≤ ∥x− φ(τi, x)∥Hm + ∥φ(τi, x)− φ(τi, xi)∥Hm

= ∥x− φ(τi, x)∥Hm +
√︁
d(τi) ·

√︁
c(τi) · ∥x− xi∥Hm

≤ ε

2
+
√
2 · ε

4
< ε

as desired.

7.4.2 Sc-continuity of the shift map

Lemma 7.25. The shift map φ : T ×H → H is sc-continuous (sc0), meaning that for
each m ∈ N, it restricts to a continuous map

φ : O ×Hm −→ Hm

x ↦−→
[︂
t ↦→ x

(︁
t ‧ τ(t)

)︂]︂
.

Proof. Let us first prove that if x ∈ Hm, then φ(τ, x) ∈ Hm. We need to show that
there is some ∂mt φ(τ, x) ∈ H0 which qualifies as m-th derivative of φ(τ, x).

The chain rule implies that the first derivative of φ(τ, x) – if it exists – should be
given by

∂tφ(τ, x) = (1− ∂tτ) · φ(τ, ∂tx). (7.19)

If x ∈ Hm, m ≥ 1, then from ∂tx ∈ Hm−1 and τ ∈ C∞(S1,R) it follows that equation
(7.19) really defines an element of Hm−1. A simple computation gives that the second
derivative of φ(τ, x) – if it exists – should be given by

∂2t φ(τ, x) = (1− ∂tτ)
2 · φ(τ, ∂2t x)− ∂2t τ · φ(τ, ∂tx). (7.20)

For x ∈ Hm, m ≥ 2, we see that this is indeed an element of Hm−2. Computing
derivatives inductively, we find that for every m ≥ 1, the derivative ∂mt φ(τ, x) is a
summand of products involving up to m derivatives of τ and shifts by τ of up to m
derivatives of x. Thus, for x ∈ Hm it is indeed an element of H0. So far we have shown
that

φ(O ×Hm) ⊆ Hm

for every m. Continuity of the restricted map φ : O × Hm → Hm now follows from
continuity of φ : O ×H0 → H0 together with continuity of taking sums and products
of functions over S1.
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7.4.3 Differentiability of the shift map

Next we want to show that φ : O×H1 → H0 is (classically) differentiable. Let us first
compute the expected derivative.

dφ(τ, x)(T, x̂) = dφ(τ, x)(T, 0) + dφ(τ, x)(0, x̂)

dφ(τ, x)(0, x̂) = φ(τ, x̂) as before and by linearity in direction of x

dφ(τ, x)(T, 0)(t) = d
ds

⃓⃓
s=0

φ(τ + s · T, x)(t)
= d

ds

⃓⃓
s=0

x
(︁
t ‧ τ(t) ‧ s · T (t)

)︁
= −T (t) · φ(τ, ∂tx)(t) (7.21)

This looks exactly the same as for time-independent delay! In particular, there is
only a shift by τ , not by T or anything else. This is good news, since there is no reason
why T or τ̇ should be contained in O (or rather, there is always T ∈ TτO = T which
does not belong to O).

From (7.21) we see that for every (τ, x) ∈ O×H1 there is a bounded linear operator

dφ(τ, x) : T ×H0 −→ H0

dφ(τ, x)(T, x̂) = φ(τ, x̂)− T · φ(τ, ∂tx)

which looks as if it is a derivative of φ. To prove that it is indeed the differential of φ,
we need an analogue of Lemma A.2 for time-dependent T .

Lemma 7.26 (cf. Lemma A.2). Let x ∈ H1. Then the following holds:

(i)
∥φ(T,x)−x∥H0

∥T∥C∞
≤
√︁
d(T ) · c(T ) · ∥∂tx∥H0 for every T ∈ O \ {0}

(ii) lim∥T∥→0
1

∥T∥C∞
∥φ(T, x)− x+ T · ∂tx∥H0 = 0

Recall that O ⊂ T is an open subset containing 0. In particular, for every small
enough T the shifted map φ(T, x) is indeed a well-defined element of H0, thus it makes
sense to write ∥T∥ → 0 in (ii).

Proof. We start as in the proof of Lemma A.2 but directly shift by T instead of −T
(because from T ∈ O it does not follow that −T ∈ O). Since x ∈ H1 is weakly
differentiable, we get

∥x(t)− x(t− h)∥ ≤
∫︂ 1

0

∥∂tx(t− h+ sh)∥|h| ds

for every t ∈ S1, h ∈ R. In particular, if we fix T ∈ O \ {0}, this holds for h = T (t).
Squaring this and using the Cauchy-Schwarz inequality leads to

∥x(t)− x(t− T (t))∥2 ≤ |T (t)|2
∫︂ 1

0

⃦⃦
∂tx
(︁
t− T (t) + sT (t)

)︁⃦⃦2
ds

≤ max |T |2
∫︂ 1

0

⃦⃦
∂tx
(︁
t− T (t) + sT (t)

)︁⃦⃦2
ds.
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As opposed to the proof of Lemma A.2, we now do not divide by |T (t)|2 (because it
may be 0) but leave it on the right hand side. We integrate over t ∈ S1 and get

∥x− φ(T, x)∥2H0
≤
∫︂ 1

0

max |T |2
∫︂ 1

0

⃦⃦
∂tx
(︁
t− (1− s) · T (t)

)︁⃦⃦2
ds dt

≤ ∥T∥2C∞ ·
∫︂ 1

0

∫︂ 1

0

⃦⃦
∂tx
(︁
t− (1− s) · T (t)

)︁⃦⃦2
dt ds

= ∥T∥2C∞ ·
∫︂ 1

0

⃦⃦
φ
(︁
(1− s) · T, ∂tx

)︁⃦⃦2
H0

ds

≤ ∥T∥2C∞ ·
∫︂ 1

0

c
(︁
(1− s) · T

)︁
· d
(︁
(1− s) · T

)︁
∥∂tx∥2H0

ds

≤ ∥T∥2C∞ ·
∫︂ 1

0

c(T ) · d(T ) · ∥∂tx∥2H0
ds

≤ ∥T∥2C∞ · c(T ) · d(T ) · ∥∂tx∥2H0
.

Here we used Remarks 7.20 and 7.23 to estimate c
(︁
(1− s) · T

)︁
and d

(︁
(1− s) · T

)︁
. The

calculation shows (i) for every T ∈ O \ {0}.
To show (ii), we approximate x in H1 by smooth functions xk ∈ C∞(S1,Rn). Using

the triangle inequality, for every k ∈ N we compute

1

∥T∥C∞
∥φ(T, x)− x+ T · ∂tx∥H0 ≤

1

∥T∥C∞
∥φ(T, x)− x− φ(T, xk) + xk∥H0

+
1

∥T∥C∞
∥φ(T, xk)− xk − T · ∂txk∥H0

+
1

∥T∥C∞
∥T · ∂txk − T · ∂tx∥H0 .

By (i) (and using φ(T, x) − φ(T, xk) = φ(T, x − xk)), the first term is bounded by√︁
d(T ) · c(T ) · ∥∂tx− ∂txk∥H0 . This can be made arbitrarily small by choosing k high

enough, since
√︁
d(T ) · c(T ) →

√
2 as ∥T∥C∞ → 0 by Remarks 7.20 and 7.23. The third

term can also be estimated by ∥∂txk − ∂tx∥H0 (using Hölder’s inequality). To see that
the second term tends to 0 as ∥T∥C∞ → 0, we use |T (t)| ≤ ∥T∥C∞ and the definition
of the derivative of the smooth map xk.

Lemma 7.27 (Analogue of Lemma 3.3). The shift map

φ : O ×H1 −→ H0

(τ, x) ↦−→
[︂
t ↦→ x(t ‧ τ(t))

]︂
is differentiable with derivative at a point (τ, x) given by

dφ(τ, x) : T ×H1 −→ H0

(T, x̂) ↦−→ φ(τ, x̂)− T · φ(τ, ∂tx). (7.22)

Proof. We have to show that for every (τ, x) ∈ O ×H1 it is

lim
∥(T,x̂)∥→0

1

∥(T, x̂)∥
∥φ(τ + T, x+ x̂)− φ(τ, x)− φ(τ, x̂) + T · φ(τ, ∂tx)∥H0 = 0,

75



where it is convenient to define the norm of the pair (T, x̂) by ∥(T, x̂)∥2 = ∥T∥2C∞ +
∥x̂∥2H1

. For convenience, we first use φ(τ + T, x) = φ(τ, φ(T, x)) and the estimate
∥φ(τ, x)∥2H0

≤ d(τ) · c(τ) · ∥x∥2H0
from (7.17) to shift the whole expression to τ = 0.

Then we use linearity of φ in the second argument and compute the following:

1

∥(T, x̂)∥2
∥φ(τ + T, x+ x̂)− φ(τ, x)− φ(τ, x̂) + T · φ(τ, ∂tx)∥2H0

≤ d(τ) · c(τ)
∥(T, x̂)∥2

∥φ(T, x+ x̂)− φ(0, x)− φ(0, x̂) + T · φ(0, ∂tx)∥2H0

=
d(τ) · c(τ)
∥(T, x̂)∥2

∥φ(T, x) + φ(T, x̂)− x− x̂+ T · ∂tx∥2H0

≤ d(τ) · c(τ)
∥(T, x̂)∥2

(︂
∥φ(T, x)− x+ T · ∂tx∥H0 + ∥φ(T, x̂)− x̂∥H0

)︂2
=
d(τ) · c(τ)
∥(T, x̂)∥2

∥φ(T, x)− x+ T · ∂tx∥2H0

+
d(τ) · c(τ)
∥(T, x̂)∥2

∥φ(T, x̂)− x̂∥2H0

+
2d(τ) · c(τ)
∥(T, x̂)∥2

∥φ(T, x)− x+ T · ∂tx∥H0 · ∥φ(T, x̂)− x̂∥H0

(7.23)

For the first term in (7.23) we use 1
∥(T,x̂)∥ ≤ 1

∥T∥C∞
and Lemma 7.26 (ii) to obtain

d(τ) · c(τ)
∥(T, x̂)∥2

∥φ(T, x)− x+ T · ∂tx∥2H0
−→ 0

as T → 0. For the second term in (7.23), from 1
∥(T,x̂)∥ ≤ 1

∥T∥C∞
, Lemma 7.26 (ii), and

Hölder’s inequality we see that

d(τ) · c(τ)
∥(T, x̂)∥2

∥φ(T, x̂)− x̂∥2H0
≤ d(τ) · c(τ)

∥T∥2C∞
∥T · ∂tx̂∥2H0

≤ d(τ) · c(τ) · ∥∂tx̂∥2H0
−→ 0

as x̂ → 0. For the product in the third term in (7.23) we use the same arguments to
treat both factors separately and see that both tend to 0.

7.4.4 Sc-differentiability and sc-smoothness of the shift map

Let us now show that the time-dependent shift map is sc-smooth, that is sck for every
k ≥ 1. We start with k = 1.

Proposition 7.28. The shift map

φ : O × H −→ H

(τ, x) ↦−→
[︂
t ↦→ x(t ‧ τ(t))

]︂
is sc-differentiable (sc1).
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Proof. We use the characterization of sc-differentiability by Frauenfelder–Weber, see
Proposition 3.8, and check conditions (i)-(iii).

(i) The first condition is classical differentiability of φ : O×H1 → H0; this is exactly
what we proved in Lemma 7.27.

(ii) The second condition is that the derivative dφ(τ, x) : T × H1 −→ H0 extends
to a bounded linear operator dφ(τ, x) : T × H0 −→ H0. Having a look at the
formula

dφ(τ, x)(T, x̂) = φ(τ, x̂)− T · φ(τ, ∂tx)

from (7.22), we see that dφ(τ, x)(T, x̂) ∈ H0 is also well-defined for x̂ ∈ H0.
Continuity of this extension in x̂ follows from continuity of φ : O×H0 → H0 (see
Lemma 7.24).

(iii) The third condition is that for every m ∈ N, if x ∈ Hm+1, the derivative dφ(τ, x)
restricts to a map dφ(τ, x) : T ×Hm −→ Hm in such a way that

dφ :
(︁
T ×Hm+1

)︁
⊕
(︁
T ×Hm

)︁
−→ Hm

is continuous. This again follows from the formula above, this time in combination
with Lemma 7.25.

With the same strategy we can show sc-smoothness.

Proposition 7.29. The shift map

φ : O × H −→ H

(τ, x) ↦−→
[︂
t ↦→ x(t ‧ τ(t))

]︂
is sc-smooth (sc∞).

Proof. We need to show that φ is k times sc-differentiable (sck) for every k ∈ N.
For this, we use the characterization of sck in terms of higher sc-differentials by
Frauenfelder–Weber, see Proposition 3.9.

(i) The first condition is that φ : O ×Hk → H0 is k times classically differentiable.
We have seen this for k = 1 in Lemma 7.27 and Proposition 7.28. For k = 2, the
chain rule implies that the second derivative of φ in the point (τ, x) ∈ O × H2

evaluated at (T1, x̂1), (T2, x̂2) ∈ T ×H2 needs to be

d2φ(τ, x)
(︁
T1, x̂1, T2, x̂2

)︁
= −T2 · φ(τ, ∂tx̂1)− T1 · φ(τ, ∂tx̂2) + T1T2 · φ(τ, ∂2t x).
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This is the same formula as for the case of time-independent τ in [FW21b, The-
orem 6.1]; the only difference is that τ, T1, T2 are now functions of time. Induc-
tively, we find that for (τ, x) ∈ O ×Hk there is a k-th derivative given by

dkφ(τ, x)
(︁
T1, x̂1, . . . , Tk, x̂k

)︁
=

k∑︂
j=1

(−1)k−1 · T1 · · · ˆ︁Tj · · ·Tk · φ(τ, ∂k−1
t x̂j)

+ (−1)k · T1 · · ·Tk · φ(τ, ∂kt x),
(7.24)

where T1 · · · ˆ︁Tj · · ·Tk means that Tj is omitted in the product. This classical k-th
derivative is evaluated on vectors (T1, x̂1), . . . (Tk, x̂k) ∈ T ×Hk.

(ii) The second condition is that dkφ(τ, x) : (T ×Hk)⊕· · ·⊕(T ×Hk) −→ H0 extends
continuously to (T ×Hk−1)⊕ · · · ⊕ (T ×Hk−1). Indeed, the expression in (7.24)
gives a well-defined element of H0 also for (T1, x̂1), . . . (Tk, x̂k) ∈ T ×Hk−1. The
extension is continuous because taking derivatives is continuous, taking products
is continuous and φ : O ×H0 → H0 is continuous by Lemma 7.24.

(iii) The third condition is concerned with restrictions of dkφ(τ, x) to higher levels.
For m ≥ k − 1 and (τ, x) ∈ O ×Hm+1, the extended k-th differential

dkφ(τ, x) : (T ×Hk−1)⊕ · · · ⊕ (T ×Hk−1)⏞ ⏟⏟ ⏞
k times

−→ H0

from (ii) needs to restrict to a continuous map

dkφ(τ, x) : (T ×Hm)⊕ · · · ⊕ (T ×Hm) −→ Hm−k+1,

and the evaluation

dkφ : (O ×Hm+1)⊕
(︁
(T ×Hm)⊕ · · · ⊕ (T ×Hm)

)︁
−→ Hm−k+1,

needs to be continuous. All this follows from the formula in equation (7.24)
together with Lemma 7.25.

7.4.5 The sc-Fredholm section

Now we are ready to define the section that cuts out the solutions of the time-dependent
delay equation (7.10). The map

s : O ×H1 −→ H0

(τ, x) ↦−→ ∂tx−X(φ(τ, x))

defines a section

S : O × H1 −→ O × H1 ▷ H

(τ, x) ↦−→
(︁
τ, x, s(τ, x)

)︁
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with principal part s in the trivial tame strongM -polyfold bundle O×H1▷H → O×H1.
At first sight, this section looks exactly as in Chapter 4, the only difference is that
instead of the original shift map φ : R × H → H it uses the time-dependent shift
map φ : O × H → H established in this chapter. The following is immediate from
sc-smoothness of the time-dependent shift map (Proposition 7.29) and the chain rule
for sc-smoothness (Theorem 3.5).

Proposition 7.30 (cf. Proposition 4.10). The section S is sc-smooth. Its vertical
sc-differential at the point (τ, x) ∈ (O × H1)1 = O ×H2 is

ds(τ, x) : T ×H1 −→ H0

(T, x̂) ↦−→ ∂tx̂− dX(φ(τ, x)) · φ(τ, x̂) + T · dX(φ(τ, x)) · φ(τ, ∂tx). (7.25)

In particular, at (0, x) ∈ (O × H1)1 this simplifies to

ds(0, x)(T, x̂) = ∂tx̂− dX(x) · x̂+ T · dX(x) · ∂tx. (7.26)

To see that S has the sc-Fredholm property, we need to go through the conditions
again.

Theorem 7.31 (cf. Theorem 4.12 and Proposition 4.13). S is a sc-Fredholm section
of index 1.

Proof. We adapt the proof of Theorem 4.12 and check all conditions for time-dependent
τ , this time directly centering at a smooth point (τ, x) ∈ O×C∞(S1,Rn). The splitting
of the domain is again the obvious one, that is O × H1, so d = 1 in Definition 3.21.

(i) s is regularizing: If (τ, x) ∈ (O × H1)m = O ×Hm+1 with s(τ, x) ∈ Hm+1, then

∂tx = s(τ, x) +X(φ(τ, x)),

is an element of Hm+1 by Lemma 7.25 and by smoothness of X. Hence (τ, x) ∈
O ×Hm+2 = (O × H1)m+1 as desired.

(ii) For fixed τ ∈ O and m ∈ N, the map

sτ,m := s(τ, ·) : Hm+1 −→ Hm

x ↦−→ ∂tx−X(φ(τ, x))

is classically smooth by Lemma 7.27 and the chain rule, with differential

dsτ,m(x) : Hm+1 −→ Hm

x̂ ↦−→ ∂tx̂− dX(φ(τ, x)) · φ(τ, x̂).
(7.27)

The continuity properties (a) and (b) are proved in a similar way as in the proof
of Theorem 4.12; we just need to be careful about referencing the right properties
of the time-dependent shift map.
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(a) Uniform continuity of dsτ,m : Hm+1 −→ L(Hm+1, Hm) near x: We need
to show that for every ε > 0 there exists some δ > 0 such that for all
x, x′ ∈ Hm+1 with ∥x− x′∥Hm+1 < δ and for all x̂ ∈ Hm+1 it is

∥dsτ,m(x)x̂− dsτ,m(x
′)x̂∥Hm ≤ ε · ∥x̂∥Hm+1 .

From equation (7.27) we get the following:

∥dsτ,m(x)x̂− dsτ,m(x
′)x̂∥Hm

= ∥ (dX(φ(τ, x′))− dX(φ(τ, x))) · φ(τ, x̂)∥Hm

≤ ∥dX(φ(τ, x′))− dX(φ(τ, x))∥Cm(S1,L(Rn,Rn)) · ∥φ(τ, x̂)∥Hm+1⏞ ⏟⏟ ⏞
≤
√

d(τ)·c(τ)·∥x̂∥Hm+1

The last estimate follows from the operator norm inequality for fixed t ∈ S1,
τ ∈ R and linear maps on Rn.

For δ small enough the first factor in this estimate is smaller than ε since
dX is continuous and ∥x − x′∥Hm+1 < δ implies ∥φ(τ, x) − φ(τ, x′)∥Cm <

const · ∥φ(τ, x)− φ(τ, x′)∥Hm+1 < const ·
√︁
d(τ) · c(τ) · δ.

(b) Given sequences (τν , x̂ν)ν ⊆ (O × H1)m with (τν)ν → τ and ∥x̂ν∥Hm+1 ≤ 1
such that

∥dsτν (x)x̂ν∥Hm → 0,

we need to find a subsequence of (x̂ν)ν (still denoted the same way) such
that

∥dsτ (x)x̂ν∥Hm → 0.

By compactness of the embedding Hm+1 ↪→ Hm we pick a subsequence (x̂ν)ν
converging in Hm to some x̂, and the corresponding subsequence (τν)ν . We
add zero and use the triangle inequality as follows:

∥dsτ (x)x̂ν∥Hm = ∥∂tx̂ν − dX(φ(τ, x)) · φ(τ, x̂ν)∥Hm

= ∥∂tx̂ν − dX(φ(τν , x)) · φ(τν , x̂ν)
+ dX(φ(τν , x)) · φ(τν , x̂ν)− dX(φ(τ, x)) · φ(τ, x̂ν)∥Hm

≤ ∥∂tx̂ν − dX(φ(τν , x)) · φ(τν , x̂ν)∥Hm⏞ ⏟⏟ ⏞
→0 by assumption

+ ∥dX(φ(τν , x)) · φ(τν , x̂ν)− dX(φ(τ, x)) · φ(τ, x̂ν)∥Hm

By Lemma 7.25 we have φ(τν , x) → φ(τ, x) in Hm+1 (hence also in Cm) as
well as φ(τν , x̂ν) → φ(τ, x̂) and φ(τ, x̂ν) → φ(τ, x̂) in Hm. By continuity of
dX it follows that

∥dX(φ(τν , x)) · φ(τν , x̂ν)− dX(φ(τ, x)) · φ(τ, x̂ν)∥Hm −→ 0.
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(iii) Since x ∈ C∞(S1,R) is a smooth point, by (ii) there are linear maps dsτ,m(x) :
Hm+1 → Hm for all m ≥ 0. We have to show that these define a linear sc-
Fredholm map

dsτ (x) : H
1 −→ H

with Fredholm index not changing under small changes of τ . This can be done
exactly as in the proof of Theorem 4.12, using sc-continuity of the time-dependent
shift map (Lemma 7.25) and compactness of the embeddings Hm+1 ↪→ Hm on
and on again.

We have shown that S is a sc-Fredholm section. The statement about the index follows
as in the proof of Proposition 4.13, just replacing Lemma 4.14 by the more general
Lemma 7.5.

7.4.6 Transversality and the theorem

In order to prove a statement analogous to the one from Theorem 4.1, the only remain-
ing step is to show transversality of s : O × H1 → H0 at a pair (0, x0), where x0 is a
non-degenerate 1-periodic orbit of X. This is immediate, though, from the results of
Chapter 4.

Corollary 7.32. If x0 is a non-degenerate 1-periodic orbit of X, then ds(0, x0) : T ×
H1 → H0 is surjective.

Proof. Let us fix the first input to 0 and consider the map ds(0, x0)(0, ·) : H1 → H0, x̂ ↦→
∂tx̂ − dX(x0) · x̂. It does not use any shift, neither time-dependent nor independent,
but really equals the corresponding map from Chapter 4. Thus, it is surjective by
Proposition 4.18. Hence ds(0, x0) : T ×H1 → H0 is also surjective.

Combining all these results and using the M-polyfold implicit function theorem, we
get the following generalization of our main theorem.

Theorem 7.33 (cf. Theorem 4.1). If x0 is a non-degenerate 1-periodic orbit of X,
then there is τ0 > 0 such that for every delay function τ ∈ O ⊂ T with |τ |C∞ ≤ τ0 there
exists a (locally unique) smooth 1-periodic solution xτ of the delay equation (7.10).
Moreover, the parametrization τ ↦→ xτ is smooth.

Remark 7.34. Theorem 7.33 holds for any choice of 1-dimensional subspace T of
C∞(S1,Rn). It is an obvious question whether we can find solutions of (7.10) for all
τ in a small ball around 0 in C∞(S1,Rn). We doubt this. Probably the example from
Chapter 5 could be adjusted to find a counterexample. Such a counterexample would
need to consist of a vector field X, a non-degenerate 1-periodic orbit x0 of X, and a
sequence (τν)ν∈N converging to 0 in C∞(S1,Rn) such that for each delay function τν
there is no 1-periodic solution of (7.10) near x0. However, in practice it is difficult
to show that for a given delay there is no 1-periodic solution of (4.1), and even more
difficult that for a given delay function there is no 1-periodic solution of (7.10).
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Part II

Compactness for non-local gradient
flow lines
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Chapter 8

Compactness for non-local gradient
flow lines

8.1 Context: Hamiltonian delay equations

Consider a symplectic manifold (M,ω) and and let H : M → R be any smooth
function, called Hamiltonian. By non-degeneracy of the two-form ω, the equation
ω(XH , ·) = −dH defines a vector field XH on M , called Hamiltonian vector field.
Ordinary differential equations of the form ẋ = XH(x) arise naturally in classical
mechanics.

The periodic orbits of a Hamiltonian vector field XH on a symplectic manifold
(M,ω) are the critical points of a certain action functional AH : L → R on the free
loop space L = C∞(S1,M). This approach allows to study the set Pc of contractible
periodic orbits by analyzing gradient flow lines on the loop space. In most situations,
it is not possible to use actual Morse theory. For instance, the index and co-index of
critical points are typically infinite; there are no stable and unstable manifolds; and
the equation does not define a flow on the loop space. However, starting with the work
of Floer, a lot of technical problems have been solved; the union of these methods is
now known as Floer theory. Hamiltonian Floer homology (known as “Morse homology
of the action functional”) is the homology of a chain complex generated by the set Pc

of contractible periodic orbits of a Hamiltonian vector field, with differential given by
“counting” gradient flow lines from one periodic orbit to another. This way, one can,
for instance, establish lower bounds on the cardinality of Pc depending on the topology
of the underlying manifoldM (cf. Arnold conjecture). A good reference is the beautiful
book [AD14] by Michèle Audin and Mihai Damian. Until today, many different Floer
type homologies and cohomologies have been defined, resulting in a variety of results
on periodic orbits.

One key idea of Floer theory is to translate the ordinary differential equation
∂su(s) = −∇AH(u(s)) for maps u : R → W 1,2(S1,M), which defines gradient flow
lines of AH , to a partial differential equation like the famous Floer equation

∂su(s, t) = J
(︁
u(s, t)

)︁(︂
XH

(︁
t, u(s, t)

)︁
− ∂tu(s, t)

)︂
(8.1)

for maps u : R× S1 →M from the cylinder to our manifold M . Here, J : TM → TM
is an ω-compatible almost complex structure on M . Note that (8.1) is a perturbed
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Cauchy–Riemann equation, so there are many tools available to analyse its solution
spaces. In particular, under suitable conditions on (M,ω), J and XH , the moduli
space of solutions of (8.1) (modulo reparametrization) with fixed asymptotic periodic
orbits is a finite-dimensional manifold, and it has a natural compactification. Loosely
speaking, the boundary consists of broken flow lines and J-holomorphic bubble trees.

What does all this have to do with the study of delay differential equations? There
have been several approaches to define Hamiltonian delay equations. Albers–Frauen-
felder–Schlenk [AFS20] give a nice overview of what has been done so far. Their
own approach is inspired by the Floer theoretic viewpoint: The periodic solutions of a
Hamiltonian delay equation should occur as critical points of an action functional on the
loop space. Albers–Frauenfelder–Schlenk present plenty of delay differential equations
arising in this way, including the famous Lotka–Volterra equations with delay. They
also show how to use polyfold theory to prove the Arnold conjecture for Hamiltonian
delay equations of a certain form on symplectically aspherical manifolds.

Of course, the analysis is much more complicated for Hamiltonian delay equations
than for classical Hamiltonian equations. In particular, the gradient equation is non-
local.12 Therefore, it does not translate to a PDE on the cylinder, but rather to a
DDE. Hence, there is need for a proper theory of non-local gradient flow lines. This
should include a suitable analytic setup, Fredholm theory and compactness results. In
the end, the goal would be to define Floer homology for Hamiltonian delay equations
whose periodic orbits arise as critical points of an action functional, as in [AFS20]. An
intermediate goal could be to prove an existence result for at least two periodic orbits
of a Hamiltonian delay equation (with fixed period and fixed delay) using a stretching
argument (as was done in the master thesis [Sei17] for the case without delay; see
Appendix B).

Here we make one step towards compactness of the space of perturbed gradient
flow lines of a Hamiltonian delay equation. In the current chapter, we generalize a
rather abstract compactness result by Albers–Frauenfelder–Schlenk [AFS19, Theorem
2.4] to the case when the equation depends explicitly on s ∈ R and also on an additional
parameter R ∈ R≥0. The theorem is formulated in the abstract setting of unregularized
vector fields in fractal scale Hilbert spaces. These spaces are examples of sc-Hilbert
spaces defined in polyfold theory (see Definition 3.1), so it indeed makes sense to ask
for compactness inside these spaces. However, for understanding the current and the
next chapter, it is not necessary to know any definitions from polyfold theory. Our
compactness result (Theorem 8.6 below) differs from [AFS19, Theorem 2.4] in that the
we allow the unregularized vector field V to depend both on s ∈ R and on R ∈ R≥0

(and that we work in RN instead of R).

In Chapter 9, we show that the case of perturbed gradient flow lines of Hamiltonian
delay equations is indeed covered by the abstract result.

12This sometimes also happens when the original differential equation is local, for instance in Ra-
binowitz Floer homology (RFH).
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8.2 Families of unregularized vector fields

The situation in which we want to define families of unregularized vector fields is nearly
the same as in [AFS19, Section 2], namely the setting of fractal scale Hilbert spaces
introduced by Frauenfelder [Fra09]. The only difference is that we allow Rn-valued
sequences, in order to match the applications.

Definition 8.1. Choose N ∈ N, and let f : N → (0,∞) be a monotone increasing
unbounded function. The (RN -valued) fractal scale Hilbert space corresponding to f is
defined as follows: Consider the Hilbert space ℓ2f as the vector space of all sequences
x = (xm)m∈N of vectors xm ∈ RN satisfying

∞∑︂
m=1

f(m) · ∥xm∥2 <∞

with the inner product given by

⟨x, y⟩f :=
∞∑︂

m=1

f(m)⟨xm, ym⟩.

For every k ∈ Z, denote

Hk := ℓ2fk , ⟨·, ·⟩Hk
:= ⟨·, ·⟩fk . (8.2)

The (RN -valued) fractal scale Hilbert space corresponding to f is the sequence

. . . H2 ⊂ H1 ⊂ H0 ⊂ H−1 ⊂ . . .

Note that every inclusion is dense and each Hk is dual to H−k with respect to the
standard inner product on H0 = ℓ2. In fact, H0 = ℓ2 together with the filtration
Hk+1 ⊆ Hk ⊆ · · · ⊆ H0 is a sc-Hilbert space as in Definition 3.1. See [Fra09], [Kan11]
for a detailed study of fractal scale Hilbert spaces. Moreover,

F(x) :=
(︂√︁

f(m) · xm
)︂
m∈N

(8.3)

defines an isometric isomorphism F : Hk+1 → Hk for every k ∈ Z. F is often called
the fundamental operator of the fractal scale Hilbert space (Hk)k∈Z.

For the sake of completeness, let us recall the notion of a moving frame from
[AFS19]:

Definition 8.2 ([AFS19, Def. 2.1]). A moving frame is a map Φ : H1 → L(H0, H0)
such that for every x ∈ H1 there is a continuous bilinear map DΦ(x) : H0 ×H0 → H0

such that the following axioms are satisfied:

(Φ1) For every x ∈ H1, the continuous linear map Φ(x) is an isomorphism.

(Φ2) The map H1 ×H0 → H0, (x, v) ↦→ Φ(x)v is continuous.
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(Φ3) For x ∈ H1 and v ∈ H0, it is

lim
h∈H1,∥h∥H1

→0

∥Φ(x+ h)v − Φ(x)v −DΦ(x)(h, v)∥H0

∥h∥H1

= 0.

(Φ4) The map H1 ×H0 ×H0 → H0, (x, h, v) ↦→ DΦ(x)(h, v) is continuous.

(Φ5) For every x ∈ H1, the isomorphism Φ(x) : H0 → H0 restricts to an isomorphism
Φ(x) : H1 → H1 such that the maps

H1 ×H1 −→ H1

(x, v) ↦−→ Φ(x)v

(x, v) ↦−→ Φ(x)−1v

are continuous.

(Φ6) For every κ > 0 there exists a constant c0 = c0(κ) such that for every x ∈ H1

with ∥x∥H1 ≤ κ it is

∥Φ(x)∥L(H0,H0)∩L(H1,H1) ≤ c0

∥Φ(x)−1∥L(H0,H0)∩L(H1,H1) ≤ c0

∥DΦ(x)∥Bil(H0×H0,H0) ≤ c0,

where ∥ · ∥Bil(H0×H0,H0) denotes the norm as a bilinear map H0 ×H0 → H0.

Remark 8.3. The trivial frame Φ ≡ idH0 is a moving frame with DΦ ≡ 0. We can use
it in the application as long as we are only working on (R2n, i). But if we work with
an almost-complex manifold , the complex structure will depend on the point, forcing
us to work with a non-trivial moving frame.

Albers–Frauenfelder–Weber defined unregularized vector fields V in [AFS19, Def.
2.2]. Here we want to work with families of such unregularized vector fields.

Definition 8.4. We define a uniform 2-parameter family of unregularized vector fields(︁
VR,s

)︁
R∈R≥0,s∈R

as follows. For each (R, s) ∈ R≥0 × R, VR,s is a map

VR,s = VR(s, ·) ∈ C0(H1, H0) ∩ C0(H2, H1)

such that

(V0) The maps

R −→ C0(H1, H0)

s ↦−→ VR,s

(for fixed R) and

R≥0 × R×H1 −→ H0

(R, s, x) ↦−→ VR,s(x) = VR(s, x)

are continuous.
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Moreover, at every x ∈ H1 the map VR,s is differentiable with differential denoted
by

DVR,s(x) : H1 −→ H0

and such that the following axioms are satisfied:

(V1) Each DVR,· is continuous in the compact-open topology, that is, the map

R×H1 ×H1 −→ H0

(s, x, x̂) ↦−→ DVR,s(x)x̂

is continuous.

(V2) There exists a moving frame Φ such that for every R ∈ R≥0, s ∈ R and x ∈ H1,
the map

Φ(x) ◦DVR,s(x) ◦ Φ(x)−1 −F : H1 −→ H0

extends to a continuous linear operator

PR,s(x) : H0 −→ H0

with the property that the maps

R −→ L(H0, H0)

s ↦−→ PR,s(x)

(for fixed x) and

H1 ×H0 −→ H0

(x, x̂) ↦−→ PR,s(x)x̂

(for fixed s) are continuous.

(V3) For every κ > 0 there exists a constant c1(κ) > 0 such that for every (R, s) and
x ∈ H1 with ∥x∥H1 ≤ κ it is

∥PR,s(x)∥L(H0,H0) ≤ c1(κ),

and if in addition x ∈ H2, then

∥x∥H2 ≤ c1(κ) · (∥VR,s(x)∥H1 + 1).

Moreover, concerning the s-dependence, we impose the following condition:

(V4) For every pair (R, s) and every x ∈ H1 the limit

∂sVR,s(x) := lim
h→0

VR,s+h(x)− VR,s(x)

h
∈ H0
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exists in H0 and this defines continuous maps

∂sVR,s : H1 −→ H0

x ↦−→ ∂sVR,s(x)

such that ∂sVR,s(x) ∈ H1 if x ∈ H2. Moreover, for every R we require the map

R −→ C0(H1, H0)

s ↦−→ ∂sVR,s

to be continuous.

We also require that for every κ > 0 there is a constant c2(κ) > 0 such that for
all x ∈ H1 with ∥x∥H1 ≤ κ and all pairs (R, s) it is

∥∂sVR,s(x)∥H0 ≤ c2(κ).

Remark 8.5. • Conditions (V1)–(V3) mean that each VR,s is an unregularized
vector field as defined by Albers, Frauenfelder and Schlenk in [AFS19], with
constants c1(κ) that can be chosen uniformly in R and s, and that the familiy
satisfies some continuity properties in s.

• Note that we do not require each VR,s to be elementary (i.e. satisfy assumption
(V3′) from [AFS19]). This is because in our main application (see Chapter 9) an
estimate of the form

∥x∥H1 ≤ c′1(∥VR,s(x)∥H0 + 1)

cannot be satisfied for a pair (R, s) with µR(s) = 0, since in this case we can find
x ∈ H1 with VR,s(x) = 0 and ∥x∥H1 arbitrarily large.

8.3 The compactness theorem

We want to prove the following theorem:

Theorem 8.6 (s-dependent version of [AFS19, Theorem 2.4]). Let VR,s be a family as
in Definition 8.4 and for every ν ∈ N, let

wν ∈ C0(IT , H1) ∩ C1(IT , H0)

be a function that satisfies

wν(s) ∈ H2 for almost every s ∈ IT (8.4)

and

∂swν(s) = VRν ,s(wν(s)) (8.5)
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for all s ∈ IT and some Rν ∈ R≥0. Suppose that as ν → ∞, the Rν converge to some
R∗ ∈ R≥0, and suppose there is a constant κ such that

∥wν∥C0(IT ,H1)∩C1(IT ,H0) ≤ κ (8.6)

for all ν ∈ N. Then there is a subsequence which converges in C0(IT , H1) ∩ C1(IT , H0)
to a limit w∗ which satisfies

∂sw∗(s) = VR∗,s(w∗(s))

for all s ∈ IT .

Note that this is a only a slight generalization of [AFS19, Theorem 2.4]. Thus,
everything in this chapter is along the lines of [AFS19], especially the proofs of Theo-
rem 8.6 and Lemma 8.9 are very similar to the corresponding proofs in [AFS19].

Remark 8.7 (Additional assumption wν(s) ∈ H2, part 1). The reader might notice
that in comparison to [AFS19, Theorem 2.4] we make the additional assumption (8.4).
This is because the statement is needed in the proof of Lemma 8.9 (and also in the proof
of [AFS19, Lemma 3.1]), and we do not see that it in general follows from the other
assumptions. However, in the applications which we have in mind, this assumption
will hold true automatically, so it does not cause any intricacies.

Another way of solving the problem – without assuming wν(s) ∈ H2 rightaway –
would be to slightly change the definition of the unregularized vector fields VR,s in
such a way that wν(s) ∈ H2 does indeed follow from the other assumptions. Again,
in all applications which we have in mind, the unregularized vector fields VR,s meets
this modified definition anyway. Hence, both solutions are feasible, and it is purely a
matter of taste whether one prefers the additional assumption (8.4) or the modified
definition of VR,s. Here we decided for the first one simply because it is more along the
lines of [AFS19]. See also Remarks 8.10 and 8.12.

8.4 Two lemmas

We want to prove Theorem 8.6 exactly as it is done for [AFS19, Theorem 2.4] for the
case of (R, s)-independent unregularized vector field V . This means establishing an
(R, s)-dependent analogue of [AFS19, Lemma 3.1] and combine it with the following
lemma by Albers–Frauenfelder–Schlenk.

Lemma 8.8 ([AFS19, Lemma 3.5]). For each T > 0, p ∈ N≥2 and l ∈ N, the inclusion

ι :
l⋂︂

k=0

W k,p(IT , Hl−k) −→
l−1⋂︂
k=0

Ck(IT , Hl−1−k)

is a compact operator.

(In [AFS19], this lemma is stated and proven in the setting of R-valued fractal scale
Hilbert spaces; but the proof works verbatim the same for RN -valued fractal scale
Hilbert spaces.)
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Lemma 8.9 (cf. [AFS19, Lemma 3.1]). Let VR,s be a family as in Definition 8.4, and
fix numbers κ ∈ R and 0 < T ′ < T . Then there is a constant c = c(κ, T ) such that the
following holds: For every R ∈ R≥0 and every function w ∈ C0(IT , H1) ∩ C1(IT , H0)
satisfying

w(s) ∈ H2 for almost every s ∈ IT (8.7)

and

∂sw(s) = VR,s(w(s)) for all s ∈ IT

and

∥w∥C0(IT ,H1)∩C1(IT ,H0) ≤ κ, (8.8)

we have w ∈
⋂︁2

k=0W
k,2(IT ′ , H2−k) with

∥w∥⋂︁2
k=0 W

k,2(IT ′ ,H2−k)
≤ c. (8.9)

Remark 8.10 (Additional assumption wν(s) ∈ H2, part 2). The assumption (8.7) is
new compared to [AFS19, Lemma 3.1]. See also Remarks 8.7 and 8.12.

Proof of Lemma 8.9. Denote by Φ the moving frame for the family (VR,s)R,s that exists
by assumption (V2) in Definition 8.4. We define

ξ := Φ(w)∂sw = Φ(w)VR,·(w) ∈ C0(IT , H0) (8.10)

and observe that, by (8.8) and (Φ6), it is

∥ξ∥C0(IT ,H0) ≤ c0(κ) · κ. (8.11)

Claim A (cf. [AFS19, Claim 3.2]). If we understand ξ as a map from IT ′ ⊂ IT to
H−1 ⊃ H0, then it is ξ ∈ C1(IT ′ , H−1) with derivative given by

∂sξ = DΦ(w)
(︁
Φ(w)−1ξ,Φ(w)−1ξ

)︁
+ Φ(w)

(︁
∂sVR,·(w)

)︁
+ P(w)ξ + Fξ. (8.12)

To prove this claim, let us approximate w by smooth functions. As in [AFS19], we
write ε := T−T ′

2
and choose a smooth cutoff function β ∈ C∞(IT , [0, 1]) with

β(s) =

{︄
1 if s ∈ IT ′

0 if s ∈ IT \ IT−ε

and a bunp function ρ ∈ C∞(R, [0,∞)) with

ρ(σ) = 0 for |σ| ≥ 1 and

∫︂ 1

−1

ρ(σ) dσ = 1.

Still as in [AFS19], for every δ > 0 we set ρδ(s) :=
1
δ
ρ
(︁
s
δ

)︁
and abbreviate

wν := ρε/ν ∗ (βw) ∈ C∞(IT , H1). (8.13)
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Then each wν has compact support in IT . Moreover, note that the sequence (wν |IT ′ )ν∈N
converges to w in C0(IT ′ , H1) ∩ C1(IT ′ , H0). We set

ξν := Φ(wν)VR,·(wν) ∈ C0(IT , H0). (8.14)

Since ∂swν(s) ∈ H1 for all s ∈ IT ′ , we can use the chain rule and properties (Φ2)−(Φ4)
and (V1), (V4) to see that ξν ∈ C1(IT , H0) with derivative

∂sξν = DΦ(wν)
(︂
∂swν ,VR,·(wν)

)︂
+ Φ(wν)

(︂
∂sVR,·(wν) + DVR,·(wν)∂swν

)︂
. (8.15)

Recall that by (V2) it is Φ(x)DVR,s(x) =
(︁
PR,s(x) + Fx

)︁
Φ(x) for all x ∈ H1. We use

this to rewrite (8.15) as

∂sξν = DΦ(wν)
(︁
∂swν ,VR,·(wν)

)︁
+ Φ(wν)

(︁
∂sVR,·(wν)

)︁
+ PR,·(wν)Φ(wν)∂swν + FΦ(wν)∂swν ∈ C0(IT ′ , H0).

Claim B. For ν → ∞, the restrictions ∂sξν |IT ′ converge in C0(IT ′ , H−1) to the map

η := DΦ(w)
(︁
∂sw,VR,·(w)

)︁
+ Φ(w)

(︁
∂sVR,·(w)

)︁
+ PR,·(w)Φ(w)∂sw + FΦ(w)∂sw ∈ C0(IT ′ , H−1).

Indeed, since wν |IT ′ → w|IT ′ in C0(IT ′ , H1) ∩ C1(IT ′ , H0), it is

• VR,·(wν) → VR,·(w) in C0(IT ′ , H0) by continuity of V ,

• ∂sVR,·(wν) → ∂sVR,·(w) in C0(IT ′ , H0) by (V4), and

• Φ(wν)∂swν → Φ(w)∂sw in C0(IT ′ , H0) by (Φ2).

So convergence of the first term follows from (Φ4), convergence of the second term fol-
lows from (Φ2) and convergence of the third term follows from (V2), all in C0(IT ′ , H0).
The fourth term converges in C0(IT ′ , H−1) since F : H0 → H−1 is an isometric isomor-
phism. Together, this proves Claim B.

Let us resume the proof of Claim A. In view of Claim B, the map η is our candidate
for the derivative of ξ. Note that H1 is, with respect to the inner product ⟨·, ·⟩H0 , the
dual space of H−1. For every compactly supported test function ϕ ∈ C∞(IT ′ , H1) we
compute ∫︂

IT ′

⟨η(s), ϕ(s)⟩H0 ds = lim
ν→∞

∫︂
IT ′

⟨∂sξν(s), ϕ(s)⟩H0 ds

= − lim
ν→∞

∫︂
IT ′

⟨ξν(s), ∂sϕ(s)⟩H0 ds

= −
∫︂
IT ′

⟨ξ(s), ∂sϕ(s)⟩H0 ds.

Thus, η is a weak derivative of ξ. But we already know that η ∈ C0(IT ′ , H−1) is
continuous, and so it is the derivative ∂sξ := η. Using the definition of ξ in (8.10) we
see that we have proved Claim A.

92



Next we want to see that ξ and ∂sξ are in fact even more regular than we knew.

Claim C (cf. [AFS19, Claim 3.3]). It is ξ ∈ L2(IT ′ , H1) ∩W 1,2(IT ′ , H0) with

∥∂sξ∥L2(IT ′ ,H0) ≤ c3(T, κ) and ∥ξ∥L2(IT ′ ,H1) ≤ c3(T, κ),

where c3(T, κ) > 0 is a constant only depending on T, κ and the family VR,s, but not
on w or R.

To prove Claim C, again we need some approximations. For every δ > 0 set

ξβδ := ρδ ∗ (βξ) ∈ C∞(IT , H0)

and note that these functions are compactly supported inside IT ′ ⊂ IT . From (8.12)
and since F is invertible we get that

ξ = F−1
(︂
∂sξ −DΦ(w)

(︁
Φ(w)−1ξ,Φ(w)−1ξ

)︁
− Φ(w)

(︁
∂sVR,·(w)

)︁
− PR,·(w)ξ

)︂
, (8.16)

and so with

ρδ ∗ (F−1β∂sξ) = (∂sρδ) ∗ (F−1βξ)− ρδ ∗ (F−1(∂sβ)ξ) (8.17)

we can compute

ξβδ = ρδ ∗ (βξ)

= ρδ ∗
(︂
βF−1

(︂
∂sξ −DΦ(w)

(︁
Φ(w)−1ξ,Φ(w)−1ξ

)︁
− Φ(w)

(︁
∂sVR,·(w)

)︁
− PR,·(w)ξ

)︂)︂
= ρδ ∗

(︃
F−1

(︂
β∂sξ −DΦ(w)

(︁
Φ(w)−1ξ,Φ(w)−1βξ

)︁
− βΦ(w)

(︁
∂sVR,·(w)

)︁
− PR,·(w)βξ

)︂)︃
(8.17)
= (∂sρδ) ∗

(︁
F−1βξ

)︁
− ρδ ∗

(︁
F−1(∂sβ)ξ

)︁
− ρδ ∗ F−1

(︂
DΦ(w)

(︁
Φ(w)−1ξ,Φ(w)−1βξ

)︁
+ βΦ(w)

(︁
∂sVR,·(w)

)︁
+ PR,·(w)βξ

)︂)︂
⏞ ⏟⏟ ⏞

=: rest

= (∂sρδ) ∗
(︂
F−1 βξ⏞⏟⏟⏞

∈ C0(IT , H0)

)︂
− ρδ ∗

(︂
F−1

(︁
(∂sβ)ξ + rest

)︁⏞ ⏟⏟ ⏞
∈ C0(IT , H0) by (Φ4), (V4) and (V2)

)︂
. (8.18)

Since F−1 : H0 → H1 is an isometric isomorphism, from equation (8.18) we see that
ξβδ ∈ C∞(IT , H1). Now we compute

∂sξ
β
δ −Fξβδ = ∂sξ

β
δ −F

(︂
(∂sρδ) ∗

(︁
F−1βξ

)︁)︂
+ F

(︂
ρδ ∗

(︁
F−1

(︁
(∂sβ)ξ + rest

)︁)︁)︂
= ∂sξ

β
δ − ∂sξ

β
δ + ρδ ∗

(︁
(∂sβ)ξ + rest

)︁
= ρδ ∗

(︁
(∂sβ)ξ + rest

)︁
. (8.19)

By Young’s inequality, it is

∥ρδ ∗
(︁
. . .
)︁
∥L2(IT ,H0) ≤ ∥ρδ∥L1(IT ,R) · ∥ . . . ∥L2(IT ,H0),
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and we have

∥ρδ∥L1(IT ,R) =

∫︂ T

−T

ρδ(s) ds =

∫︂ T

−T

1
δ
ρ( s

δ
) ds =

∫︂ T/δ

−T/δ

ρ(σ) dσ = 1.

Hence we can use (8.19) to estimate

∥∂sξβδ −Fξβδ ∥L2(IT ,H0) =
⃦⃦
ρδ ∗

(︁
(∂sβ)ξ + rest

)︁⃦⃦
L2(IT ,H0)

≤ ∥(∂sβ)ξ + rest∥L2(IT ,H0)

(8.11)

≤ ∥∂sβ∥L2(IT ,R) · c0(κ) · κ+ ∥ rest ∥L2(IT ,H0)

≤ ∥∂sβ∥L2(IT ,R) · c0(κ) · κ
+ ∥DΦ(w)

(︁
Φ(w)−1ξ,Φ(w)−1βξ

)︁
∥L2(IT ,H0)

+ ∥βΦ(w)
(︁
∂sVR,·(w)

)︁
∥L2(IT ,H0)

+ ∥PR,·(w)βξ∥L2(IT ,H0)

≤ ∥∂sβ∥L2(IT ,R) · c0(κ) · κ+
√
2T · c0(κ) ·

(︁
c0(κ) · c0(κ) · κ

)︁2
+ c0(κ) · c2(κ) +

√
2T · c1(κ) · c0(κ) · κ

=: c3(T, κ). (8.20)

Here we used (8.11) and the constants κ from (8.8), c0(κ) from (Φ6), c1(κ) from (V3),
and c2(κ) from (V4). Note that c3(T, κ) does not depend on δ.

Recall that F is self-adjoint and that ξβδ has compact support. We use integration
by parts to compute∫︂ T

−T

⟨∂sξβδ ,Fξ
β
δ ⟩H0 ds = −

∫︂ T

−T

⟨ξβδ ,F∂sξ
β
δ ⟩H0 ds

= −
∫︂ T

−T

⟨Fξβδ , ∂sξ
β
δ ⟩H0 ds

= −
∫︂ T

−T

⟨∂sξβδ ,Fξ
β
δ ⟩H0 ds,

which implies that ∫︂ T

−T

⟨∂sξβδ ,Fξ
β
δ ⟩ ds = 0.

Therefore,

∥∂sξβδ −Fξβδ ∥L2(IT ,H0) =

∫︂ T

−T

⟨∂sξβδ −Fξβδ , ∂sξ
β
δ −Fξβδ ⟩ ds

=

∫︂ T

−T

⟨∂sξβδ , ∂sξ
β
δ ⟩H0 ds+

∫︂ T

−T

⟨Fξβδ ,Fξ
β
δ ⟩H0 ds

− 2

∫︂ T

−T

⟨∂sξβδ ,Fξ
β
δ ⟩H0 ds

= ∥∂sξβδ ∥L2(IT ,H0) + ∥Fξβδ ∥L2(IT ,H0)

= ∥∂sξβδ ∥L2(IT ,H0) + ∥ξβδ ∥L2(IT ,H1). (8.21)
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Now from (8.21) together with (8.20) we can deduce the two estimates

∥∂sξβδ ∥L2(IT ,H0) ≤ c3(T, κ) and ∥ξβδ ∥L2(IT ,H1) ≤ c3(T, κ) (8.22)

Note that these estimates are independent of δ, and so, as δ → 0, there is a subsequence
of the family (ξβδ )δ>0 that converges weakly in L2(IT , H1) ∩W 1,2(IT , H0) to some ξβ0 .

But we already know that ξβδ → βξ strongly in L2(IT , H0), and so

βξ = ξβ0 ∈ L2(IT , H1) ∩W 1,2(IT , H0).

This means in particular that βξ has a weak derivative which we denote by ∂s(βξ).
Taking the limit of (8.22) we see that

∥∂s(βξ)∥L2(IT ,H0) ≤ c3(T, κ) and ∥βξ∥L2(IT ,H1) ≤ c3(T, κ). (8.23)

Now on the interval IT ′ the functions ξ and βξ coincide, so we get that

ξ ∈ L2(IT ′ , H1) ∩W 1,2(IT ′ , H0).

with

∥∂sξ∥L2(IT ′ ,H0) ≤ c3 and ∥ξ∥L2(IT ′ ,H1) ≤ c3.

This finishes the proof of Claim C.

Recall that ξ = Φ(w)∂sw and that in the end we want to show that w lies in⋂︁2
k=0W

k,2(IT ′ , H2−k) and that it satisfies the estimate (8.9) for some constant c which
only depends on κ and T .

Claim D (cf. [AFS19, Claim 3.4]). For every 0 < T ′ < T , the function ∂sw =
Φ(w)−1ξ has a weak derivative in L2(IT ′ , H0) which is given by

∂2sw = Φ(w)−1∂sξ − Φ(w)−1DΦ(w)(∂sw, ∂sw). (8.24)

As in the proof of Claim A, we will approximate the function by smooth functions
to compute a candidate for a weak derivative, and then verify that this candidate really
behaves well with test functions.

As before, we use the functions wν ∈ C∞(IT , H1) defined in (8.13), but this time we
do not work with ξν as before, but with

ζν := Φ(wν)∂swν ∈ C1(IT , H0).

Recall (from the proof of Claim B) that ζν = Φ(wν)∂swν converges to Φ(w)∂sw = ξ in
C0(IT ′ , H0), in particular pointwise. By (Φ3) and (Φ4), the map

s ↦−→ Φ(wν(s)) ∈ L(H0, H0)

is differentiable, and so ∂swν = Φ(wν)
−1ζν is differentiable with derivative

∂2swν = ∂s
(︁
Φ(wν)

−1ζν
)︁

= Φ(wν)
−1∂sζν + ∂s

(︁
Φ(wν)

−1
)︁
ζν

= Φ(wν)
−1∂sζν −

(︂
Φ(wν)

−1 ◦ ∂s
(︁
Φ(wν)

)︁
◦ Φ(wν)

−1
)︂
ζν

= Φ(wν)
−1∂sζν − Φ(wν)

−1 ◦
(︂
∂s
(︁
Φ(wν)

)︁)︂
∂swν

= Φ(wν)
−1∂sζν − Φ(wν)

−1 ◦DΦ(wν)
(︁
∂swν , ∂swν

)︁
∈ C0(IT , H0). (8.25)

95



From this we see that if ∂sw has a weak derivative, then it needs to be given by (8.24).
To verify that (after restriction to IT ′ ⊂ IT ) this is indeed the case, pick any compactly
supported test function ϕ ∈ C∞(IT ′ , H0). We claim that∫︂

IT ′

⟨∂sw,∂sϕ⟩H0 ds

=

∫︂
IT ′

⟨︁
Φ(w)−1ξ, ∂sϕ

⟩︁
H0

ds

(i)
= lim

ν→∞

∫︂
IT ′

⟨︁
Φ(wν)

−1ζν , ∂sϕ
⟩︁
H0

ds

(ii)
= − lim

ν→∞

∫︂
IT ′

⟨︂
Φ(wν)

−1∂sζν − Φ(wν)
−1 ◦DΦ(wν)

(︁
∂swν , ∂swν

)︁
, ϕ
⟩︂
H0

ds

(iii)
= −

∫︂
IT ′

⟨︂
Φ(w)−1∂sξ − Φ(w)−1 ◦DΦ(w)

(︁
∂sw, ∂sw

)︁
, ϕ
⟩︂
H0

ds.

Indeed:

(i) We know that ζν → ξ pointwise and that wν → w in C0(IT ′,H1). With (Φ2) it
follows that Φ(wν)

−1ζν → Φ(w)−1ξ pointwise. Moreover, since ∥wnu(s)∥H1 ≤ κ
for all s ∈ IT ′ , and so by (Φ6) the functions

⟨︁
Φ(wν)

−1ζν , ∂sϕ
⟩︁
H0

are (for large

enough ν ∈ N) bounded by some constant depending on ξ, ϕ and c0(κ). So this
equality follows from the dominated convergence theorem.

(ii) This equality follows by partial integration using the formula for ∂s(Φ(wν)
−1ζν)

in (8.25), since all functions are compactly supported inside IT ′ .

(iii) For this equality, let us consider the two terms on the left side of the inner product
separately. The first identity that needs to be shown,

lim
ν→∞

∫︂
IT ′

⟨︂
Φ(wν)

−1∂sζν , ϕ
⟩︂
H0

ds =

∫︂
IT ′

⟨︂
Φ(w)−1∂sξ, ϕ

⟩︂
H0

ds,

is equivalent to

lim
ν→∞

∫︂
IT ′

⟨︂
ζν , ∂s

(︂(︁
Φ(wν)

−1
)︁T
ϕ
)︂⟩︂

H0

ds =

∫︂
IT ′

⟨︂
ξ, ∂s

(︂(︁
Φ(w)−1

)︁T
ϕ
)︂⟩︂

H0

ds

and this follows – as in (i) – from the dominated convergence theorem, since we
already know pointwise convergence and get uniform bounds from ∥wnu(s)∥H1 ≤
κ together with (Φ6). The second one is

lim
ν→∞

∫︂
IT ′

⟨︂
Φ(wν)

−1 ◦DΦ(wν)
(︁
∂swν , ∂swν

)︁
, ϕ
⟩︂
H0

ds

=

∫︂
IT ′

⟨︂
Φ(w)−1 ◦DΦ(w)

(︁
∂sw, ∂sw

)︁
, ϕ
⟩︂
H0

ds

and again follows from pointwise convergence, the bounds from (Φ6), and the
dominated convergence theorem.
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This finishes the proof of Claim D.

It remains to show the estimate (8.9). We start by estimating

∥∂2sw∥L2(IT ′ ,H0)

Claim D

≤ ∥Φ(w)−1∂sξ∥L2(IT ′ ,H0) + ∥Φ(w)−1DΦ(w)(∂sw, ∂sw)∥L2(IT ′ ,H0)

(8.8),(Φ6)

≤ c0(κ) · ∥∂sξ∥L2(IT ′ ,H0) +
√
2T · c0(κ)2 · κ2

Claim C

≤ c0(κ) · c3(T, κ) +
√
2T · c0(κ)2 · κ2. (8.26)

From this we get

∥w∥2W 2,2(IT ′ ,H0)
= ∥∂2sw∥2L2(IT ′ ,H0)

+ ∥w∥2W 1,2(IT ′ ,H0)

≤ ∥∂2sw∥2L2(IT ′ ,H0)
+ 2T∥w∥2C1(IT ′ ,H0)

(8.8),(8.26)

≤
(︁
c0(κ) · c3(T, κ) +

√
2T · c0(κ)2 · κ2

)︁2
+ 2Tκ2

=: c4(T, κ).

Moreover,

∥∂sw∥L2(IT ′ ,H1)
(8.10)
= ∥Φ(w)−1ξ∥L2(IT ′ ,H1)

(Φ6), Claim C

≤ c0(κ) · c3(T, κ) (8.27)

and so

∥w∥2W 1,2(IT ′ ,H1)
= ∥∂sw∥2L2(IT ′ ,H1)

+ ∥w∥2L2(IT ′ ,H1)

(8.27),(8.8)

≤
(︁
c0(κ) · c3(T, κ)

)︁2
+ 2Tκ2

=: c5(T, κ).

Finally, using assumption (8.7) from this lemma and assumption (V3) from Defini-
tion 8.4,

∥w∥L2(IT ′ ,H2) =

(︄∫︂
IT ′

∥w(s)∥2H2
ds

)︄1
2

(8.8),(V3)
≤

√
2T ′c1(κ)

(︁
∥VR,·(w)∥L2(IT ′ ,H1) + 1

)︁
=

√
2T ′c1(κ)

(︁
∥∂sw∥L2(IT ′ ,H1) + 1

)︁
≤

√
2Tc1(κ)

(︁
∥w∥W 1,2(IT ′ ,H1) + 1

)︁
≤

√
2Tc1(κ)

(︁
c5(T, κ) + 1

)︁
=: c6(T, κ).

So with

c := max {c4(T, κ), c5(T, κ), c6(T, κ)}

we have verified (8.9).
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Remark 8.11. If the moving frame Φ for the family VR,s is trivial (that is, Φ ≡ idH0),
then the bound (8.8) in the assumption of Lemma 8.9 can be weakened to

∥w∥L2(IT ,H1)∩W 1,2(IT ,H0) ≤ κ.

Remark 8.12 (Additional assumption wν(s) ∈ H2, part 3). We comment again on
assumption (8.7), see also Remarks 8.7 and 8.10.

Note that (8.7) was only used in the very end of the proof of Lemma 8.9, where
we needed w(s) ∈ H2 for almost every s ∈ IT ′ in order to use (V) and to estimate
∥w∥L2(IT ′ ,H2). It is tempting to say that w ∈ W 2,2(IT ′ , H0) ∩ W 1,2(IT ′ , H1) implies
w(s) ∈ H2 for almost every s ∈ IT ′ . However, we do not see how this should follow
with the given definition of the unregularized vector fields VR,s, so we decided to make
the additional assumption.

Another possibility to solve the problem would be to change the definition of the
unregularized vector fields VR,s in the following way.

Recall that condition (V2) in Definition 8.4 requires that after conjugation with a
moving frame Φ, the linearization dVR,s(x) : H1 → H0 at x ∈ H1 splits as the sum of
the fundamental operator F : H1 → H0 and something which extends to a continuous
linear operator PR,s(x) : H0 → H0 (with certain continuity properties),

Φ(x) ◦DVR,s(x) ◦ Φ(x)−1 = PR,s(x) + F . (8.28)

This made it possible to write ξ = Φ(w)∂sw = Φ(w)VR,·(w) as the preimage of an
element of H0 under F , see (8.16). That way we could show that ∂sw, which was
originally an element of C0(IT , H0), lies in L2(IT ′ , H1). Let us now for a moment
assume that the moving frame Φ is trivial, and modify condition (V2). Instead of the
splitting above, we assume that VR,s : H1 → H0 itself splits as the sum of F : H1 → H0

and something which extends to a (non-linear) map QR,s : H0 → H0 (with certain
continuity properties),

VR,s = QR,s + F . (8.29)

Then we can see that

w = F−1
(︁
∂sw −Q(w)

)︁
takes values in H2. Moreover, when we linearize (8.29) at x ∈ H1, we find

dVR,s(x) = dQR,s(x) + F .

Hence, with PR,s(s) = dQR,s(x) we get back the splitting (8.28) from the original
version of (V2), and the conditions on PR,s can be written in terms of QR,s. If we pass
to a non-trivial moving frame, things get a little more complicated. Conjugation with
a moving frame does not make sense for the non-linear map VR,s. Instead, we may
assume that

VR,s(x) = I(x)
(︁
QR,s(x) + Fx

)︁
, (8.30)
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where I(x) : H0 → H0 is an isomorphism which respects the scales and depends on
x ∈ H1 in a “nice” way13. Then we find that

w = F−1
(︁
I(x)−1(∂sw)−Q(w)

)︁
indeed takes values in H2. Unfortunately, since we used postcomposition instead of
conjugation, linearizing (8.30) does not exactly give back a splitting of the form (8.28),
but something slightly different. Thus, if we really chose to modify the definition of
unregularized vector fields V in this way, we would have to adjust the proof of Lemma
8.9 at every point where the exact form of the splitting was used.

8.5 Proof of the compactness theorem

Proof of Theorem 8.6. For any fixed 0 < T ′ < T we can apply Lemma 8.9 to all
functions wν and get that

(︂
wν

⃓⃓
IT ′

)︂
ν∈N

⊆
2⋂︂

k=0

W k,p(IT , H2−k)

is uniformly bounded, that is,⃦⃦⃦
wν

⃓⃓
IT ′

⃦⃦⃦
⋂︁2

k=0 W
k,2(IT ′ ,H2−k)

≤ c(κ, T ′).

On the other hand, from Lemma 8.8 we know that the inclusion

2⋂︂
k=0

W k,p(IT ′ , H2−k) −→
1⋂︂

k=0

Ck(IT ′ , H1−k)

is compact, and so
(︁
wν |IT ′

)︁
ν∈N has a convergent subsequence in C0(IT ′ , H0)∩C1(IT ′ , H0).

Denote the limit by w∗. Since every function wν satisfies

∂swν(s) = VRν ,s(wν(s))

for all s ∈ IT , this limit satisfies the corresponding equation with R∗ for all s ∈ IT ′ .
Letting T ′ < T grow bigger and bigger and choosing a diagonal sequence, we find a
subsequence of (wν)ν∈N converging to a limit w∗ ∈ C0(IT , H0)∩C1(IT , H0) that satisfies
that equation for all s ∈ IT .

13In the application described in Chapter 9, when VR,s(x) = −J(x)
(︁
∂tx − µR(s)X (x)

)︁
, we have

(8.30) with I(x) = −i · J(x) and QR,s(x) = iµR(s)X (x)− 1
2x.
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Chapter 9

The main application of the
compactness theorem

Important applications of the compactness result from Chapter 8 are in the context
of (perturbed) gradient flow lines of a Hamiltonian delay equation (cf. Section 8.1).
In Appendix 9), we outline a stretching argument which should prove the existence of
at least two periodic orbits of a Hamiltonian delay equation on a suitable symplectic
manifold. Here, we want to show that the compactness part of that argument indeed
fits into the setting of Chapter 8, so that Theorem 8.6 can be applied.

For fixed R ∈ R≥0, the equation considered in Appendix B reads

∂sw(s) = −J
(︁
w(s)

)︁(︂
∂tw(s)− µR(s) · X (w(s))

)︂
. (9.1)

Here, w is a sufficiently regular function w : R → L2(S1,R2n); µR denotes a fam-
ily of cutoff functions parametrized by R ∈ R≥0, see Remark 9.2 below; and X :
L2(S1,R2n) → L2(S1,R2n) is a map coming from a vector field X on R2n. It is defined
by X (x)(t) := Xt(x(t ‧ τ)), where τ ∈ R is the delay parameter.

For the argument outlined in Appendix B, one needs the space of perturbed gradient
flow lines to be compact in a suitable topology. That is, consider a sequence of pairs
(Rν , wν) where each wν satisfies equation (9.1) for the corresponding Rν . Further
assume that Rν → R∗ for ν → ∞, and that the wν satisfy certain gradient bounds.
Theorem 8.6 should imply that in this case there is a sufficiently regular w∗ such that
wν → w∗ and w∗ satisfies the equation for R∗.

To make this rigorous, we need to describe the fractal scale Hilbert space Hk, k ≥ 0
(including the corresponding monotone unbounded function f : N → R) and show
that the right hand side of equation (9.1) defines a uniform 2-parameter family of
unregularized vector fields as in Definition 8.4.

Remark 9.1. In the setting for Floer theory without delay (as in [AFS19, Section 5]),
the map X would be defined by X (x)(t) := Xt(x(t)). Note that in that case, one can
consider −J(p) ·Xt(p), p ∈ R2n as a new vector field, and then apply −J(w(s)) only to
the first summand in (9.1), as in [AFS19, Section 5]. In the same way, we could work
with X (x)(t) := J(x(t) ·Xt(x(t ‧ τ) and apply −J(w(s)) only to the first summand on
the right hand side in equation (9.1).
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µ 1
2

µ1
µR

0−R −R + 1 R− 1 R−1 1

Figure 9.1: Sketch of µR : R → R for several values of R.

Remark 9.2 (The cutoff functions µR). Here and in Appendix B, we use a smooth
family of smooth cutoff functions µR : R → [0, 1], where R ∈ R≥0. For Section 9.3 and
Section 9.4 it is enough to know that this family is as nice as can be: Everything is
smooth, and we can take the derivatives to be uniformly bounded.

For reasons of completeness, we here include everything that one should assume
about the family for making the stretching argument work. It is a family of smooth
functions µR : R → [0, 1] smoothly varying in R ∈ [0,∞) with the following properties:

• µR(s) = 0 for s ≤ −R + δ and for s ≥ R− δ for some δ > 0,

• µR(s) = 1 for −R + 1 ≤ s ≤ R− 1 (this can only happen for R ≥ 1),

• µR(s) ≤ R for all s ∈ R

• µ0 ≡ 0,

• d
ds
µR(s) is bounded uniformly in R and s and

• d
dR
µR(s) is bounded uniformly in R and s.

A possible family is sketched in figure 9.1.

9.1 The spaces Hk

In our application we will use the same setting as in [AFS19, Section 5]: We want to
have

Hk
∼= W k,2(S1,R2n) (9.2)

as long as we are working with the standard complex structure on R2n = Cn (see
Section 9.3) and

Hk
∼= W k+1,2(S1,R2n) (9.3)
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for the case of a general almost complex structure J on R2n (see Section 9.4). Moreover,
we want the fundamental operator F : Hk+1 → Hk to be given by

F : W k+1,2(S1,Rn) ↪→ W k,2(S1,Rn)

z ↦→ −i∂tz + 1
2
z.

(9.4)

In (9.2) and (9.3) above, by “∼=” we linear bijections on each level which commute
with the inclusions and with the fundamental operators on both sides and respect the
norms on both sides. Note that we do not need isometries (which would respect also
the inner product); this is because in the end, for the compactness result in Theorem
8.6 we only care about the norm, not about the inner product.

It is implicitly used in [AFS19] that such isomorphisms exist, so that the compact-
ness result formulated in the setting of fractal scale Hilbert spaces can be used in the
setting of Sobolev spaces W k,2(S1,R2n). In this section, we give a detailed proof of
that fact in the case of (9.2). The case of (9.3) follows then by a simple shift of the
monontone unbounded function f : N → (0,∞).

Readers without interest in these details can directly move on to Section 9.2.

Lemma 9.3. There is a monotone increasing unbounded function f : N → (0,∞)
such that for the R2n-valued fractal scale Hilbert space (Hk = ℓ2

fk)k∈Z there are linear

bijections Hk
∼= W k,2(S1,R2n) for every k ≥ 0 which commute with the inclusions

Hk+1 ↪→ Hk and W k+1,2(S1,R2n) ↪→ W k,2(S1,R2n).

Proof. Let us start with k = 0. We identify R2n ∼= C. Then every z ∈ L2(S1,R2n) =
W 0,2(S1,R2n) can be written as a Fourier series

z(t) =
∑︂
j∈Z

e2πijtzm, (9.5)

where by a slight abuse of notation i denotes the matrix⎛⎜⎜⎝
i 0 . . . 0
0 i . . . 0
. . . . . . . . . . . .
0 0 . . . i

⎞⎟⎟⎠ ∈ Cn×n (9.6)

and each zj is an element of Cn = R2n. Since z is square integrable, the series in (9.5)
converges at almost every t ∈ S1, and so we can understand (9.5) as an equation of
L2-functions. This identifies z ∈ L2(S1,R2n) with the sequence (zj)j∈Z. However, we
need a sequence of vectors indexed by N. Therefore, consider the following bijection:

χ : Z → N

j ↦→

{︄
2j + 1 j ≥ 0

−2j j < 0

m odd
m− 1

2

m even
−m
2

⎫⎪⎬⎪⎭ ↦→m

(9.7)
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Then by

xm := zχ−1(m), m ∈ N (9.8)

we get a sequence indexed by N. The condition that z is square integrable translates
to ∑︂

m∈N

∥xm∥2 =
∑︂
j∈Z

∥zj∥2 <∞.

This means we have established a linear bijection L2(S1,R2n) ∼= H0.
Let us now move on to k > 0. From equation (9.5) we see that a formula for the

kth derivative of z ∈ L2(S1,R2n) it is given by

z(k)(t) =
∑︂
j∈Z

(2πij)ke2πijtzj,

and so the first k derivatives of z are square integrable if and only if∑︂
j∈Z

(2πj)2k∥zj∥2 <∞,

which is equivalent to ∑︂
j∈Z

(2πj + 1
2
)2k∥zj∥2 <∞. (9.9)

We define

f̄ : Z → R>0

f̄(j) := (2πj + 1
2
)2.

Then f := f̄ ◦ χ−1 : N → R>0 is a monotone increasing unbounded function, and∑︂
m∈N

fk(m)∥xm∥2 =
∑︂
m∈N

f̄k(χ−1(m))∥xm∥2 =
∑︂
j∈Z

f̄k(j)∥zj∥2 =
∑︂
j∈Z

(2πj + 1
2
)2k∥zj∥2.

Thus, z is an element of W k,2(S1,R2n) if and only if the corresponding sequence
(xm)m∈N is an element of Hk = ℓ2

fk . Hence we have constructed linear bijections

Hk
∼= W k,2(S1,R2n) for all k ≥ 0 and seen that they commute with the inclusions.

On every Hk, the inner product (8.2) induces the norm

∥x∥2Hk
=
∑︂
m∈N

f(m)k∥xm∥2.

By the linear bijections above, this norm can be pushed forward to a norm ∥ · ∥Hk
on

W k,2(S1,R2n), which then reads

∥z∥2Hk
=
∑︂
j∈Z

f̄(j)k∥zj∥2. (9.10)

Of course, we need this norm to be equivalent to the usual Sobolev norm ∥·∥Wk,2 . Note
that we do not need equivalence of the inner products arising in the same way.
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Lemma 9.4. For every k, the norm ∥ · ∥Hk
from (9.10) is equivalent to the usual

Sobolev norm ∥z∥2
Wk,2 =

∑︁k
j=0 ∥∂

j
t z∥2L2.

Proof. Let us start with the case k = 0. Take any z ∈ W 0,2(S1,R2n). Recall that i
denotes the matrix (9.6) and that each Fourier coefficient zj is an element of Cn. We
have

∥z∥2W 0,2 = ∥z∥2L2 =

⃦⃦⃦⃦
⃦∑︂
j∈Z

e2πij·zj

⃦⃦⃦⃦
⃦
2

L2

=

∫︂ 1

t=0

⃦⃦⃦⃦
⃦∑︂
j∈Z

e2πijtzj

⃦⃦⃦⃦
⃦
2

Cn

dt

=
∑︂
j∈Z

⃦⃦
e2πij·

⃦⃦2
L2(S1,Cn×n)

∥zj∥2

=
∑︂
j∈Z

∥zj∥2

= ∥z∥2H0
,

since (t ↦→ e2πijt)j∈Z is an orthonormal linearly independent subset of L2(S1,Cn×n). So
for k = 0 the norms are not only equivalent, but equal.

For general k ≥ 0, we use the formula for the derivatives of x and see that

∥z∥2Wk,2 =
k∑︂

l=0

∥∂ltz∥2L2 =
k∑︂

l=0

⃦⃦⃦⃦
⃦∑︂
j∈Z

(2πij)le2πij·zj

⃦⃦⃦⃦
⃦
2

L2

=
k∑︂

l=0

⃦⃦⃦⃦
⃦∑︂
j∈Z

(2πij)le2πij·

⃦⃦⃦⃦
⃦
2

L2(S1,Cn×n)

∥zj∥2Cn

=
∑︂
j∈Z

k∑︂
l=0

(2πj)2l∥zj∥2Cn .

This used again the orthonormal set from above. For every fixed k one can find
constants ck, Ck > 0 such that for every j ∈ Z it is

ck ≤ 1
f̄k(j)

k∑︂
l=0

(2πj)2l =
k∑︂

l=0

(2πj)2l

(2πj + 1
2
)2k

≤ Ck

and so

ck ·
∑︂
j∈Z

f̄k(j)∥zj∥2 ≤
∑︂
j∈Z

k∑︂
l=0

(2πj)2l∥zj∥2 ≤ Ck ·
∑︂
j∈Z

f̄k(j)∥zj∥2

for all sequences (zj)j ⊂ Cn. Thus, the norms ∥ · ∥Wk,2 and ∥ · ∥Hk
are equivalent.

Lemma 9.5. Under the identifications Hk
∼= W k,2(S1,R2n) from above, the fundamen-

tal operator F(z) := −i∂tz+ 1
2
z defined in (9.4) corresponds to the one defined in (8.3),

where f = f̄ ◦ χ−1 : N → R>0.
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Proof. With the definition of F in (9.4) and z(t) =
∑︁

j∈Z e
2πijtzj we get that

F(z)(t) = −i∂tz(t) + 1
2
z(t)

= −i
∑︂
j∈Z

(2πij) · e2πijtzj + 1
2

∑︂
j∈Z

e2πijtzj

=
∑︂
j∈Z

(︁
2πj + 1

2

)︁
· e2πijtzj

=
∑︂
j∈Z

√︂
f̄(j) · e2πijtzj,

so applying F means multiplying every zj with
√︁
f̄(j). Hence, if (xm)m∈N denotes the

N-indexed sequence for z as defined in (9.8), then the N-indexed sequence for F(z) is
given by

x̄m :=
√︂
f̄(χ−1(m)) · zχ−1(m) =

√︁
f(m) · zχ−1(m) =

√︁
f(m) · xm, m ∈ N.

This exactly matches the definition of the fundamental operator F in (8.3).

9.2 The map X and the cutoff function µR

Let X : S1 × R2n → R2n be a smooth time-dependent vector field, and choose a
parameter τ ∈ R. We define a map X : L2(S1,R2n) → L2(S1,R2n) by

X (x)(t) = Xt(x(t− τ)) (9.11)

for all t ∈ S1. We now establish some properties of X that will be used below in
Sections 9.3 and 9.4.

Lemma 9.6. If X is defined by (9.11), then it has the following properties:

(i) X : W 1,2(S1,R2n) −→ L2(S1,R2n) is continuous.

(ii) X : W 1,2(S1,R2n) −→ L2(S1,R2n) is continuously differentiable with differential

DX : W 1,2(S1,R2n)×W 1,2(S1,R2n) −→ L2(S1,R2n)

defined by
(︁
DX (x)x̂

)︁
(t) = DXt(x(t− τ))x̂(t− τ).

(iii) X restricts to continuous maps

X : W 2,2(S1,R2n) −→ W 1,2(S1,R2n)

X : W 3,2(S1,R2n) −→ W 2,2(S1,R2n).

(iv) DX is also continuous when interpreted as

DX : W 2,2(S1,R2n)×W 1,2(S1,R2n) −→ W 1,2(S1,R2n).
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Proof. (i) We use the embedding W 1,2 ↪→ C0: If a sequence (xn)n∈N converges to
some x in W 1,2(S1,R2n), then xn(t) → x(t) for all t ∈ S1. Thus Xt(xn(t− τ)) →
Xt(x(t− τ)) for all t, in particular X (xn) → X (x) in L2.

(ii) For fixed x ∈ H1 ↪→ C0, the matrix norm ∥DXt(x(t − τ))∥L(R2n,R2n) is bounded,
and so

(︁
DX (x)x̂

)︁
(t) := DXt(x(t− τ))x̂(t− τ) defines a bounded linear operator

DX (x) ∈ L(W 1,2, L2). To see that this operator really qualifies as the derivative
of X , we note that ∥x̂(t)∥ ≤ ∥x̂∥C0 ≤ const · ∥x̂∥W 1,2 for all t ∈ S1, which implies

1
∥x̂∥W1,2

≤ const
∥x̂(t)∥ , and compute

lim
∥x̂∥W1,2→0

∥X (x+ x̂)−X (x)−
(︁
DX (x)x̂

)︁
∥2L2

∥x̂∥2W 1,2

≤ const · lim
∥x̂∥W1,2→0∫︂ 1

0

∥Xt(x(t ‧ τ) + x̂(t ‧ τ))−Xt(x(t ‧ τ))−DXt(x(t ‧ τ))x̂(t ‧ τ)∥2

∥x̂(t)∥2
dt

= 0.

In the last line we used that ∥x̂∥W 1,2 → 0 implies ∥x̂(t)∥ → 0 for every t ∈ S1

and so the expression inside the integral converges to 0 for every t by definition
of the differential DXt(x(t− τ)). This shows that DX (x) is the differential of X
in x.

We need to show that this is a continuous derivative, in the sense that the map

DX : W 1,2(S1,R2n) −→ L
(︁
W 1,2(S1,R2n), L2(S1,R2n)

)︁
x ↦−→ DX (x)

is continuous. Again consider a sequence (xn)n∈N converging to x inW 1,2(S1,R2n)
and thus pointwise. We compute that

∥DX (x)−DX (xn)∥2L(W 1,2,L2)

= sup
∥x̂∥W1,2≤1

∥DX (x)x̂−DX (xn)x̂∥2L2

≤ sup
∥x̂∥W1,2≤1

∫︂ 1

0

∥DXt(x(t− τ))−DXt(xn(t− τ))∥2L(R2n,R2n)⏞ ⏟⏟ ⏞
→0 by continuity of DXt

·∥x̂(t− τ)∥2 dt

−→ 0.

This shows continuity of DX .

(iii) For continuity of X : W 2,2(S1,R2n) → W 1,2(S1,R2n), we use the embedding
W 2,2 ↪→ C1 to see that if xn → x in W 2,2(S1,R2n), then

∂t
(︁
X (xn)

)︁
(t) =

(︁
∂tX

)︁
(t)(xn(t− τ)) + DXt(xn(t− τ))∂txn(t− τ)

converges to

∂t
(︁
X (x)

)︁
(t) =

(︁
∂tX

)︁
(t)(x(t− τ)) + DXt(x(t− τ))∂tx(t− τ)
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for every t ∈ S1, in particular ∂t
(︁
X (xn)

)︁
→ ∂t

(︁
X (x)

)︁
in L2.

For continuity of X : W 3,2(S1,R2n) → W 2,2(S1,R2n), in the same way we use the
embeddingW 3,2 ↪→ C2 to see that if xn → x in W 2,2(S1,R2n), then ∂2t

(︁
X (xn)

)︁
→

∂2t
(︁
X (x)

)︁
pointwise and thus in L2.

(iv) Given sequences xn → x in W 2,2 and x̂n → x̂ in W 1,2, we have to show that
DX (xn)x̂n → DX (x)x̂ in W 1,2. Convergence in L2 was shown in (ii) already, so
what remains to show is that ∂t

(︁
DX (xn)x̂n

)︁
→ ∂t

(︁
DX (x)x̂

)︁
in L2. We compute

∂t
(︁
DX (xn)x̂n

)︁
(t) =

(︂ (︁
d
dt
DXt

)︁ (︁
∂txn(t− τ)

)︁)︂
· x̂n(t− τ)

+ DXt

(︁
xn(t− τ)

)︁
· ∂tx̂n(t− τ).

Because of the embeddings W 1,2 ↪→ C0 and W 2,2 ↪→ C1, we know that

∂txn(t− τ) → ∂tx(t− τ), x̂n(t− τ) → x̂(t− τ), xn(t− τ) → x(t− τ)

converge pointwise. Together with smoothness of the family Xt this implies that
the whole expression converges in L2.

9.3 VR,s with J ≡ i

With the standard (constant) complex structure i on R2n ∼= Cn, the uniform elementary
family of unregularized vector fields will be defined by

VR,s(x) := −i
(︂
∂tx− µR(s)X (x)

)︂
(9.12)

for x ∈ H1. The map X and the family of cutoff functions µR : R → [0, 1] were defined
in Section 9.2.

Recall that X involves a shift by a “delay” parameter τ ∈ R. With τ = 0 we recover
the easier case of no delay, where equation (8.5) is local and the maps w : R → H0 can
be treated as maps u : R× S1 → R2n.

Proposition 9.7. The family (VR,s)R∈R≥0,s∈R defined in equation (9.12) is a uniform

2-parameter family of unregularized vector fields as in Definition 8.4.

Proof. This proof is mostly taken from [AFS19, Section 5.1, pp. 23–24]. The only
differences are that here the definition of X in equation (9.11) involves a delay τ ; that
we apply −i also to the second summand in (9.12), see Remark 9.1; and that we have
the s-dependent factor µR(s). Moreover, we include more detailed computations than
in [AFS19].

Recall from Lemma 9.4 that the norms on H0 = L2 and H1 = W 1,2 coming from
the setting of sequences used in Definition 8.4 are equivalent to the usual L2 and W 1,2

norms, so we can work with the latter ones.
We have to check that if x ∈ H1, then VR,s(x) ∈ H0, and if x ∈ H2, then VR,s(x) ∈

H1. This is clear from (9.12) and (9.11). Moreover, the maps VR,s : H1 → H0 and
VR,s : H2 → H1 are continuous: ∂t : Hk+1 → Hk is continuous for every k ∈ N,
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and X : H1 → H0 and X : H2 → H1 are continuous by Lemma 9.6 (i),(iii). Strong
continuity in s follows from the fact that each µR is smooth in s. Furthermore we see
that evaluation of V·,s in R is continuous since µR(s) ∈ R depends continuously on R.
For fixed (R, s) and x ∈ H1 we have a differential

DVR,s(x) : H1 = W 1,2(S1,R2n) −→ L2(S1,R2n) = H0

DVR,s(x)x̂ = −i
(︂
∂tx̂− µR(s) ·DX (x)x̂

)︂
,

where DX is as in Lemma 9.6 (ii).

We now have to verify (V1), (V2), (V3) and (V4).

(V1) This property is continuity of DVR,· after evaluation in s, x and x̂. It is immediate
from the formula for DVR,s(x)x̂ and continuity of DX : W 1,2 → L(W 1,2, L2).

(V2) Let us use the constant moving frame Φ ≡ idH0 . We get

PR,s(x)x̂ = DVR,s(x)x̂−F(x̂)

= −µR(s) · i ·DX (x)x̂− 1
2
x̂, (9.13)

which indeed extends to x̂ ∈ H0 = L2(S1,R2n). Again, this is certainly strongly
continuous in s ∈ R, and also in x ∈ H1 since DX : H1 → L(H1, H0) is continuous
by Lemma 9.6(ii).

(V3) By continuity of the embedding H1 = W 1,2 ↪→ C0, all images of maps x ∈ H1

with ∥x∥H1 ≤ κ are contained in a big ball B in R2n with radius depending only
on κ. Smoothness of the vector field Xt now implies that there is a constant C(κ)
depending only on κ and X such that

∥Xt(x(t− τ))∥R2n ≤ C(κ) (9.14)

∥(∂tXt)(x(t− τ))∥R2n ≤ C(κ) (9.15)

∥DXt(x(t− τ))∥L(R2n,R2n) ≤ C(κ) (9.16)

for all such x with ∥x∥H1 ≤ κ and all t ∈ S1. So from equation (9.13) we see that

∥PR,s(x)∥L(H0,H0) ≤ ∥DX (x)∥L(H0,H0) +
1

2

= sup
∥x̂∥H0

≤1

∥DX (x)x̂∥H0 +
1

2

= sup
∥x̂∥H0

≤1

(︃∫︂ 1

0

∥DXt(x(t− τ))(x̂(t− τ))∥2 dt
)︃1

2

+
1

2

≤ C(κ) +
1

2
, (9.17)

where we used (9.16) in the last line.

109



Moreover we can use (9.14), (9.15) and (9.16) to estimate

∥X (x)∥H1 ≤ ∥X (x)∥L2 + ∥∂t(X (x))∥L2

≤ ∥X (x)∥L2 + ∥(∂tX)(x(· − τ))∥L2 + ∥DXt(x(· − τ))∂tx(· − τ)∥L2

≤ C(κ) + C(κ) + C(κ) · κ
= (2 + κ)C(κ) (9.18)

Now if x ∈ H2 and ∥x∥H1 ≤ κ, then

∥VR,s(x)∥H1 = ∥ − i∂tx− µR(s)X (x)∥H1

≥ ∥i∂tx∥H1 − ∥µR(s)X (x)∥H1

≥ ∥∂tx∥H1 − ∥X (x)∥H1

≥ ∥∂tx∥H1 − (2 + κ)C(κ). (9.19)

We further note that

∥x∥H2 = ∥x∥W 2,2 =
(︁
∥x∥2L2 + ∥∂tx∥2L2 + ∥∂2t x∥2L2

)︁1
2

≤ ∥x∥L2 +
(︁
∥∂tx∥2L2 + ∥∂2t x∥2L2

)︁1
2

≤ κ+ ∥∂tx∥H1

and continue the estimate (9.19) by

∥VR,s(x)∥H1 ≥ ∥∂tx∥H1 − (2 + κ)C(κ)

≥ ∥x∥H2 − (κ+ (2 + κ)C(κ)).

This implies (using that without loss of generality κ+ (2 + κ)C(κ) ≥ 1) that

∥x∥H2 ≤ ∥VR,s(x)∥H1 + κ+ (2 + κ)C(κ)

≤ (κ+ (2 + κ)C(κ)
(︂
∥VR,s(x)∥H1 + 1

)︂
. (9.20)

Combining the estimates (9.17) and (9.20), with

c1(κ) :=max

{︃
C(κ) +

1

2
, κ+ (2 + κ)C(κ)

}︃
we have verified (V3).

(V4) For the derivative in s-direction in some x ∈ H1 we find

∂sVR,s : H1 −→ H0

∂sVR,s(x) = −µ′
R(s) · i · X (x).

This is continuous by Lemma 9.6 (i). Continuity of ∂sVR,s in s ∈ R follows from
smoothness of µR.
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For the estimate recall the constant C(κ) which we introduced above for (V3).
For every x ∈ H1 with ∥x∥H1 ≤ κ and every (R, s) ∈ R≥0 × R we have

∥∂sVR,s(x)∥H0 = |µ′
R(s)| · ∥X (x)∥L2

≤ C · C(κ)
=: c2(κ)

with some constant C > 0 such that |µ′
R(s)| ≤ C for all s ∈ R.

So our family (VR,s)R∈R≥0,s∈R matches Definition 8.4.

9.4 VR,s with general J

Now we start to work with a general almost complex structure J on R2n ∼= Cn. This
means that we define the family of unregularized vector fields by

VR,s(x) := −J(x)
(︂
∂tx− µR(s)X (x)

)︂
(9.21)

for x ∈ H1, where X is defined in (9.11) and involves a delay by τ ∈ R. Here, J(x)
varies with the function x, so from now on we will have to work with a non-trivial
moving frame Φ.

Since J(p) varies smoothly with p ∈ R2n, there is a smooth function Ψ : R2n →
GL(R2n) into the invertible 2n-matrices with

Ψ(p) ◦ J(p) ◦Ψ(p)−1 = i for all p ∈ R2n. (9.22)

For x ∈ H1 and v ∈ H0 we want to define Φ(x)v by(︁
Φ(x)v

)︁
(t) := Ψ

(︁
x(t)

)︁
v(t). (9.23)

Unfortunately though, with H0 = L2 and H1 = W 1,2 as above, this does not qualify
as a moving frame. Loops x ∈ L2 do not have to be continuous, and so smoothness
of Ψ does not suffice to deduce properties (Φ2), (Φ4) and (Φ6) of a moving frame. It
seems that (Φ2) and (Φ4) could be satisfied if we assume additional properties of Ψ,
but the estimate ∥DΦ(x)∥Bil(H0) ≤ c0 will not be satisfied.

This means that from now on we have to work with

Hk := W k+1,2(S1,Cn),

as mentioned already in Section 9.1.

Proposition 9.8 ([AFS19, Prop. 5.2]). With Hk = W k+1,2(S1,Cn), equation (9.23)
defines a moving frame Φ : H1 → L(H0, H0) as in Definition 8.2, with derivative
DΦ(x) ∈ L(H0 ×H0, H0) defined by DΦ(x)(h, v)(t) := DΨ(x(t))(h(t), v(t)).

Proposition 9.9. The family (VR,s)R∈R≥0,s∈R defined by equation (9.21) is a uniform

2-parameter family of unregularized vector fields as in Definition 8.4.
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Proof. This proof is mostly taken from [AFS19, Section 5.1, pp. 22-23]. The only
differences are that here the definition of X in equation (9.11) involves a delay τ ; that
we apply −J(x) also to the second summand in (9.12), see Remark 9.1; and that we
have the s-dependent factor µR(s). Moreover, we include more detailed computations
than in [AFS19].

Recall that for reasons of the moving frame Φ defined in (9.23) we needed to change
the scales from Hk = W k,2 to Hk = W k+1,2. Thus also in the parts where no moving
frame is involved we cannot just copy the proof of Proposition 9.7 but have to adjust
the norms everywhere.

Since ∂t : Hk+1 → Hk is continuous for all k ∈ N and X : Hk+1 → Hk is continuous
for k = 0, 1 by Lemma 9.6 (iii), from (9.21) we see that every VR,s is in C0(H1, H0) ∩
C0(H2, H1).

Strong continuity in s and weak continuity in R (needed for axiom (V0)) can be
shown as in the proof of Prop. 9.7. For x ∈ H1, we compute that the differential is

DVR,s(x) : H1 = W 2,2(S1,R2n) −→ W 1,2(S1,R2n) = H0

DVR,s(x)x̂ = −DJ(x)
(︁
x̂, ∂tx

)︁
− J(x)∂tx̂+DJ(x)

(︁
x̂, µR(s) · X (x)

)︁
+ µR(s) ·DX (x)x̂

with DX as in Lemma 9.6 (ii). It is a bounded linear operator by Lemma 9.6 (iv) and
since ∥x̂∥C0 is controlled by ∥x̂∥H1 and J is smooth.

We now need to verify (V1)− (V4).

(V1) Continuity of

R×H1 ×H1 −→ H0

(s, x, x̂) ↦−→ DVR,s(x)x̂

follows from continuity of DX : W 2,2 × W 2,2 → W 1,2 (see Lemma 9.6 (iv))
together with continuity of DJ : R2n → L(R2n,L(R2n,R2n)) ∼= L(R2n×R2n,R2n)
and continuity of µR : R → R.

(V2) Consider the moving frame Φ from (9.23). For every (R, s) ∈ R≥0 × R and
x, x̂ ∈ H1, we see that(︂

Φ(x) ◦DVR,s(x) ◦ Φ(x)−1
)︂
x̂ = −Φ(x)

(︂
DJ(x)

(︁
Φ(x)−1x̂, ∂tx

)︁)︂
− Φ(x)

(︂
J(x)∂t

(︁
Φ(x)−1x̂

)︁)︂
+ Φ(x)

(︂
DJ(x)

(︁
Φ(x)−1x̂, µR(s) · X (x)

)︁)︂
+ Φ(x)

(︂
µR(s) ·DX (x)

(︁
Φ(x)−1x̂

)︁)︂
.

From

∂t
(︁
Φ(x)−1x̂

)︁
= ∂t

(︁
Φ(x(t))−1

)︁
x̂+ Φ(x)−1∂tx̂

= −Φ(x)
(︂
DΦ(x)

(︁
∂tx,Φ(x)

−1x̂
)︁)︂

+Ψ(x)−1∂tx̂

112



together with (9.23) and (9.22) we get that

Φ(x)
(︂
J(x)∂t

(︁
Φ(x)−1x̂

)︁)︂
= −iDΦ(x)

(︁
∂tx,Φ(x)

−1x̂
)︁
+ i∂tx̂

and so(︂
Φ(x) ◦DVR,s(x) ◦ Φ(x)−1

)︂
x̂ = −Φ(x)

(︂
DJ(x)

(︁
Φ(x)−1x̂, ∂tx

)︁)︂
+ iDΦ(x)

(︁
∂tx,Ψ(x)−1x̂

)︁
− i∂tx̂

+ Φ(x)
(︂
DJ(x)

(︁
Φ(x)−1x̂, µR(s) · X (x)

)︁)︂
+ Φ(x)

(︂
µR(s) ·DX (x)

(︁
Φ(x)−1x̂

)︁)︂
.

Recall the fundamental operator F from (9.4). Now

PR,s(x)x̂ :=
(︂
Φ(x) ◦DVR,s(x) ◦ Φ(x)−1

)︂
x̂−F x̂

= −Φ(x)
(︂
DJ(x)

(︁
Φ(x)−1x̂, ∂tx

)︁)︂
+ iDΦ(x)

(︁
∂tx,Φ(x)

−1x̂
)︁

− i1
2
x̂

+ Φ(x)
(︂
DJ(x)

(︁
Φ(x)−1x̂, µR(s) · X (x)

)︁)︂
− Φ(x)

(︂
µR(s) ·DX (x)

(︁
Φ(x)−1x̂

)︁)︂
(9.24)

extends to a continuous linear operator

PR,s(x) : H0 −→ H0.

Indeed, there is no derivative of x̂ involved, thus we have PR,s(x)x̂ ∈ H0 for x̂ ∈
H0, and we already know that Φ(x) ∈ L(H0, H0) by definition of a moving frame,
DΦ(x) ∈ L(H0 ×H0, H0) by (Φ4), and DX (x) ∈ L(H0, H0) by Lemma 9.6 (iv).

Continuity of R → L(H0, H0), s ↦→ PR,s(x) (for fixed x ∈ H1) follows from
continuity of µR. For continuity of

H1 ×H0 −→ H0

(x, x̂) ↦−→ PR,s(x)x̂

we use that

– Φ : H1 ×H0 → H0 is continuous by (Φ2),

– DΦ : H1 ×H0 ×H0 → H0 is continuous by (Φ4),

– DVR,s : H1 ×H1 → H0 is continuous by (V1),
– DX : H1 ×H0 → H0 is continuous by Lemma 9.6 (iv), and
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– x ∈ W 2,2 ↪→ C1, Φ(x)−1x̂ ∈ W 1,2 ↪→ C0 and smoothness of J imply that
also the first term of (9.24) is continuous with respect to the H0 = W 1,2

topology in the target.

(V3) From (9.24) we see that

∥PR,s(x)∥L(H0,H0) = sup
∥x̂∥H0

≤1

∥PR,s(x)x̂∥H0

≤ sup
∥x̂∥H0

≤1

(︄⃦⃦
Φ(x)

(︂
DJ(x)

(︁
Φ(x)−1x̂, ∂tx

)︁)︂⃦⃦
H0

+
⃦⃦
DΦ(x)

(︁
∂tx,Φ(x)

−1x̂
)︁⃦⃦

H0

+
⃦⃦
1
2
x̂
⃦⃦
H0

+ ∥Φ(x)
(︁
DJ(x)

(︁
Φ(x)−1x̂, µR(s) · X (x)

)︁)︁
∥H0

+
⃦⃦
Φ(x)

(︂
µR(s) ·DX (x)

(︁
Φ(x)−1x̂

)︁)︂⃦⃦
H0

)︄
,

(9.25)

whereH0 = W 1,2. This means we have to show that for ∥x∥H1 ≤ κ and ∥x̂∥H0 ≤ 1,
the L2 norms of all these five expressions and of their derivatives are bounded
independently of x.

We use the embedding H1 = W 2,2 ↪→ C1 to see that the union of images⋃︂
x∈H1,∥x∥H1

≤κ

x(S1) ∪ ∂tx(S1) ⊂ R2n

is contained in a big ball of radius depending only on κ. So by smoothness of J ,
Ψ and X there is a constant D(κ) depending only on κ, J , Ψ and X such that
for all x ∈ H1 with ∥x∥H1 and for all t ∈ S1 it is

∥x(t)∥R2n ≤ D(κ)

∥∂tx(t)∥R2n ≤ D(κ)

∥Ψ(x(t))∥L(R2n,R2n) ≤ D(κ)

∥Ψ(x(t))−1∥L(R2n,R2n) ≤ D(κ)

∥DΨ(x(t))∥Bil(R2n×R2n,R2n) ≤ D(κ)

∥DΨ(x(t))∥−1
Bil(R2n×R2n,R2n) ≤ D(κ)

∥DΨ(∂tx(t))∥Bil(R2n×R2n,R2n) ≤ D(κ)

∥DJ(x(t))∥Bil(R2n×R2n,R2n) ≤ D(κ)

∥DDJ(x(t))∥Tril(R2n×R2n×R2n,R2n) ≤ D(κ)

∥DXt

(︁
x(t− τ)

)︁
∥L(R2n,R2n) ≤ D(κ)

∥
(︁

d
dt
DXt

)︁ (︁
∂tx(t− τ)

)︁
∥L(R2n,R2n) ≤ D(κ)

(9.26)

et cetera for all the other corresponding expressions that show up in the deriva-
tives of the maps in (9.28). Moreover, because of H0 ↪→ C0 there is a constant E
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such that

∥x̂(t)∥R2n ≤ E

for all t ∈ S1 and all x̂ ∈ H0 with ∥x̂∥H0 ≤ 1. These pointwise estimates together
with the L2-estimates ∥x∥H1 ≤ κ and ∥x̂∥H0 ≤ 1 can be used to estimate (9.25)
further by a constant F (κ) that does not depend on x.

As an example, we estimate the first term in (9.25) as follows:

⃦⃦
Φ(x)

(︂
DJ(x)

(︁
Φ(x)−1x̂, ∂tx

)︁)︂⃦⃦
H0

≤
⃦⃦
Φ(x)

(︂
DJ(x)

(︁
Φ(x)−1x̂, ∂tx

)︁)︂⃦⃦
L2

+
⃦⃦
∂t

(︂
Φ(x)

(︂
DJ(x)

(︁
Φ(x)−1x̂, ∂tx

)︁)︂)︂⃦⃦
L2

≤
⃦⃦
Φ(x)

(︂
DJ(x)

(︁
Φ(x)−1x̂, ∂tx

)︁)︂⃦⃦
L2

+
⃦⃦
DΦ(∂tx)

(︂
DJ(x)

(︁
Φ(x)−1x̂, ∂tx

)︁)︂⃦⃦
L2

+
⃦⃦
Φ(x)DDJ(x)

(︁
∂tx,Φ(x)

−1x̂, ∂tx
)︁⃦⃦

L2

+
⃦⃦
Φ(x)DJ(x)

(︁
DΦ(x)−1(∂tx, x̂), ∂tx

)︁⃦⃦
L2

+
⃦⃦
Φ(x)DJ(x)

(︁
Φ(x)−1∂tx̂, ∂tx

)︁⃦⃦
L2

+
⃦⃦
Φ(x)DJ(x)

(︁
Φ(x)−1x̂, ∂2t x

)︁⃦⃦
L2

=

(︃∫︂ 1

0

⃦⃦
Ψ(x(t))

(︂
DJ(x(t))

(︁
Ψ(x(t))−1x̂(t), ∂tx(t)

)︁)︂⃦⃦2
dt

)︃1
2

+

(︃∫︂ 1

0

⃦⃦
DΨ(∂tx(t))

(︂
DJ(x(t))

(︁
Ψ(x(t))−1x̂(t), ∂tx(t)

)︁)︂⃦⃦2
dt

)︃1
2

+

(︃∫︂ 1

0

⃦⃦
Ψ(x(t))DDJ(x(t))

(︁
∂tx(t),Ψ(x(t))−1x̂(t), ∂tx(t)

)︁⃦⃦2
dt

)︃1
2

+

(︃∫︂ 1

0

⃦⃦
Ψ(x(t))DJ(x(t))

(︁
DΨ(x(t))−1(∂tx(t), x̂(t)), ∂tx(t)

)︁⃦⃦2
dt

)︃1
2

+

(︃∫︂ 1

0

⃦⃦
Ψ(x(t))DJ(x(t))

(︁
Ψ(x(t))−1∂tx̂(t), ∂tx(t)

)︁⃦⃦2
dt

)︃1
2

+

(︃∫︂ 1

0

⃦⃦
Ψ(x(t))DJ(x(t))

(︁
Ψ(x(t))−1x̂(t), ∂2t x(t)

)︁⃦⃦2
dt

)︃1
2

≤ D(κ)4∥x̂∥L2 +D(κ)4∥x̂∥L2 +D(κ)5∥x̂∥L2 +D(κ)5∥x̂∥L2

+D(κ)4∥∂tx̂∥L2 +D(κ)3E
⃦⃦
∂2t x
⃦⃦
L2

≤ 2D(κ)5 + 3D(κ)4 +D(κ)3Eκ

Similarly estimating the other terms in (9.25), we see that there is a constant F (κ)
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(depending on the constants D(κ), E and κ) such that

∥PR,s(x)∥L(H0,H0) ≤ sup
∥x̂∥H0

≤1

(︄⃦⃦
Φ(x)

(︂
DJ(x)

(︁
Φ(x)−1x̂, ∂tx

)︁)︂⃦⃦
H0

+
⃦⃦
DΦ(x)

(︁
∂tx,Φ(x)

−1x̂
)︁⃦⃦

H0

+
⃦⃦
1
2
x̂
⃦⃦
H0

+ ∥Φ(x)
(︁
DJ(x)

(︁
Φ(x)−1x̂, µR(s) · X (x)

)︁)︁
∥H0

(9.27)

+
⃦⃦
Φ(x)

(︂
µR(s) ·DX (x)

(︁
Φ(x)−1x̂

)︁)︂⃦⃦
H0

)︄
≤ F (κ) (9.28)

For (V3), it remains to prove the additional estimate for x ∈ H2. In (9.18),
we estimated ∥X (x)∥H1 for H1 = W 1,2 and ∥x∥H1 ≤ 1 using the constant C(κ)
and equations (9.14), (9.15) and (9.16). In the same way, for H1 = W 2,2 and
∥x∥H1 ≤ 1 we can use the constant D(κ) to estimate

∥X (x)∥H1 ≤ G(κ), (9.29)

where G(κ) is a constant that only depends on κ and D(κ) and not on x. The
computation is similar to the one in (9.18), just involving more derivatives.

For x ∈ H2 and ∥x∥H1 ≤ κ, we use (9.29) to see that

∥VR,s(x)∥H1 = ∥ − J(x)(∂tx− µR(s)X (x))∥H1

≥ ∥∂tx∥H1 − ∥µR(s)X (x)∥H1

≥ ∥∂tx∥H1 − ∥X (x)∥H1

≥ ∥∂tx∥H1 −G(κ). (9.30)

We compute

∥x∥H2 = ∥x∥W 3,2 =
(︁
∥x∥2L2 + ∥∂tx∥2L2 + ∥∂2t x∥2L2 + ∥∂3t x∥2L2

)︁1
2

≤ ∥x∥L2 +
(︁
∥∂tx∥2L2 + ∥∂2t x∥2L2 + ∥∂3t x∥2L2

)︁1
2

≤ κ+ ∥∂tx∥H1

and continue the estimate (9.30) by

∥VR,s(x)∥H1 ≥ ∥∂tx∥H1 −G(κ)

≥ ∥x∥H2 − (κ+G(κ)).

This implies (using that without loss of generality κ+G(κ) ≥ 1) that

∥x∥H2 ≤ ∥VR,s(x)∥H1 + κ+G(κ)

≤ (κ+G(κ)
(︂
∥VR,s(x)∥H1 + 1

)︂
. (9.31)
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Combining the estimates (9.28) and (9.31), with

c1(κ) :=max {F (κ), κ+G(κ)}

we have verified (V3).

(V4) The parameter s ∈ R only appears in the second term of VR,s (defined in (9.21)).
Thus the derivative in s-direction in some x ∈ H1 is

∂sVR,s : H1 −→ H0

∂sVR,s(x) = −µ′
R(s)J(x) · X (x),

and this is continuous by Lemma 9.6 (iii).

For the estimate, recall the constant D(κ) that was introduced in (9.26). We use
the estimate (9.29) to see that for every x ∈ H1 with ∥x∥H1 ≤ κ it is

∥X (x)∥H0 ≤ ∥X (x)∥H1 ≤ G(κ).

and thus for every (R, s) ∈ R≥0 × R we have

∥∂sVR,s(x)∥H0 = |µ′
R(s)| · ∥X (x)∥H0

≤ C ·G(κ)
=: c2(κ)

with some constant C > 0 such that |µ′
R(s)| ≤ C for all s ∈ R.

We have shown that equation (9.1) fits into the setting of Chapter 8. Before one can
apply Theorem 8.6, one still needs to find an estimate of the form (8.6). See Appendix
B for a brief discussion and further references.
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Chapter 10

Conclusion

In this thesis, we have described two instances of cases where methods from symplectic
geometry can be used to study periodic solutions of delay differential equations.

In Part I, we used polyfold theory to show the existence of a smooth family of delay
orbits parametrized by delay near a given non-degenerate orbit with zero delay. First
we proved this for equations of the type ẋ(t) = Xt(x(t ‧ τ)) on Rn, then we generalized
it to several other types of equations. We expect that it can be further generalized, for
instance to equations distributed delay (that is, involving an integral like

∫︁ 0

−T
x(t‧τ)dτ ,

also known as delay integro-differential equations). It would be great to tackle also the
question of neutral DDEs (that is, equations of the form ẋ(t) = Ft(ẋ(t ‧ τ)) or more
complicated) or state-dependent delay, but we are in doubt that this can be done
with polyfold theory alone. It would be very interesting to bring together the current
research on neutral DDEs and state-dependent delay with polyfold methods.

In Part II, we proved a compactness theorem which can be applied to what should
be (perturbed) gradient flow lines connecting periodic orbits of Hamiltonian delay
equations. As mentioned in Section 8.1, the compactness result is one step towards
proving the existence of such periodic Hamiltonian delay orbits with a given delay. A
next task would be to complete this proof by carefully adjusting all the steps of the
stretching argument described in Appendix B. The long-term objective is to define a
Floer homology for Hamiltonian delay equations and (hopefully) prove some kind of
Arnold conjecture.
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Appendix A

Proofs for classical differentiability

In this appendix we give proofs for the facts that were mentioned in §4.2. The following
basic observation is repeatedly used throughout this appendix.

Remark A.1. From ∥φ(τ, x)∥Hm = ∥x∥Hm and linearity of φ in the second variable
we conclude that φ(τ, ·) is an Hm-isometry, that is, ∥φ(τ, x)−φ(τ, y)∥Hm = ∥x−y∥Hm .
Therefore, for every x ∈ Hm, every sequence (xi)i ⊂ Hm and every τ ∈ R it is

φ(τ, xi) → φ(τ, x) ⇐⇒ xi → x.

Proof of Lemma 4.2. Let us recall that continuity of φ : R → L(Hm, Hm) with respect
to the compact-open topology means the following: For sequences (τi)i∈N in R and
(xi)i∈N in Hm, if τi → τ in R and xi → x in Hm as i→ ∞, it follows that

φ(τi, xi) −→ φ(τ, x)

in Hm as i→ ∞. We first note that it is enough to prove continuity at τ = 0 since

φ(τi, xi) → φ(τ, x) ⇐⇒ φ(τi − τ, xi) → x

by the previous remark. This means that for any ε > 0 we need to show that

∥x− φ(τi, xi)∥Hm ≤ ε

for i sufficiently large. As a first step, we show the claim in the case of a constant
sequence xi ≡ x ∈ Hm. For m = 0, this is Lemma 2.1 from [FW21b], and we extend
their proof to the case m ̸= 0.

The map x may not be smooth, but it can be approximated in Hm by smooth
elements. Fix ε > 0 and choose x̄ ∈ C∞(S1,Rn) with

∥x̄− x∥Hm ≤ ε

6
.

Now x̄ and its derivatives ∂kt x̄, k = 0, . . . ,m, are uniformly continuous, thus

∥∂kt x̄(t)− ∂kt x̄(t ‧ τi)∥Rn ≤ ε

6(m+ 1)
for all t ∈ S1
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for all k = 0, . . . ,m and i sufficiently large. In particular, the H0-distance satisfies

∥∂kt x̄− φ(τi, ∂
k
t x̄)∥H0 ≤

ε

6(m+ 1)

and we can estimate

∥x̄− φ(τi, x̄)∥Hm ≤
m∑︂
k=0

∥∂kt x̄− ∂kt φ(τi, x̄)∥H0

=
m∑︂
k=0

∥∂kt x̄− φ(τi, ∂
k
t x̄)∥H0

≤ (m+ 1) · ε

6(m+ 1)
=
ε

6
.

Hence,

∥x− φ(τi, x)∥Hm ≤ ∥x− x̄∥Hm + ∥x̄− φ(τi, x̄)∥Hm + ∥φ(τi, x̄)− φ(τi, x)∥Hm

= ∥x− x̄∥Hm + ∥x̄− φ(τi, x̄)∥Hm + ∥x̄− x∥Hm

≤ ε

6
+
ε

6
+
ε

6
=
ε

2
.

In particular, we have proved the statement for any constant sequence xi ≡ x ∈ Hm.
Now for the general case, let (xi)i ⊆ Hm be a sequence converging to x. For ε > 0 and
i sufficiently large we established

∥x− φ(τi, x)∥Hm ≤ ε

2
.

After increasing i even further, we may assume that ∥x − xi∥Hm ≤ ε
2
since xi → x

converges in Hm. All in all we get

∥x− φ(τi, xi)∥Hm ≤ ∥x− φ(τi, x)∥Hm + ∥φ(τi, x)− φ(τi, xi)∥Hm

= ∥x− φ(τi, x)∥Hm + ∥x− xi∥Hm

≤ ε

2
+
ε

2
= ε

as desired.

To prove Lemma 4.4, we need the following elementary lemma about difference
quotients of H1-functions.

Lemma A.2. Let x ∈ H1. Then the following holds:

(i)
⃦⃦⃦
φ(T,x)−x

T

⃦⃦⃦
H0

≤ ∥∂tx∥H0 for T ∈ R \ {0}.

(ii) lim
T→0

⃦⃦⃦⃦
φ(T, x)− x

T
− ∂tx

⃦⃦⃦⃦
H0

= 0.
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Proof. Since the map x ∈ H1 is, in particular, weakly differentiable, we get

∥x(t+ T )− x(t)∥ ≤
∫︂ 1

0

∥∂tx(t+ sT )∥|T | ds

for every t ∈ S1, T ∈ R. Squaring this and using the Cauchy-Schwarz inequality leads
to

∥x(t+ T )− x(t)∥2 ≤ |T |2
∫︂ 1

0

∥∂tx(t+ sT )∥2 ds

which is of course equivalent to

∥x(t+ T )− x(t)∥2

T 2
≤
∫︂ 1

0

∥∂tx(t+ sT )∥2 ds.

Now we integrate over t ∈ S1 and get

⃦⃦⃦⃦
φ(−T, x)− x

T

⃦⃦⃦⃦2
H0

=

∫︂ 1

0

∥x(t+ T )− x(t)∥2

T 2
dt

≤
∫︂ 1

0

∫︂ 1

0

∥∂tx(t+ sT )∥2 ds dt

= ∥∂tx∥2H0
.

Using ∥φ(T, x)− x∥H0 = ∥φ(−T, x)− x∥H0 the first assertion follows.

To show (ii), we approximate x in H1 by smooth functions xk ∈ C∞(S1,Rn). Using
the triangle inequality we compute⃦⃦⃦⃦

φ(T, x)− x

T
− ∂tx

⃦⃦⃦⃦
H0

≤
⃦⃦⃦⃦
φ(T, x)− x

T
− φ(T, xk)− xk

T

⃦⃦⃦⃦
H0

+

⃦⃦⃦⃦
φ(T, xk)− xk

T
− ∂txk

⃦⃦⃦⃦
H0

+ ∥∂txk − ∂tx∥H0

for every k. The second term on the right-hand side goes to 0 for T → 0 because xk is
smooth. The first term is bounded by ∥∂tx − ∂txk∥H0 according to (i) using linearity
of φ in its second argument. Therefore, the second assertion follows.

Proof of Lemma 4.4. We have to show that

lim
∥(T,x̂)∥→0

1
∥(T,x̂)∥∥φ(τ + T, x+ x̂)− φ(τ, x)− φ(τ, x̂) + T · φ(τ, ∂tx)∥H0 = 0,

where it is convenient to define the norm of the pair (T, x̂) by ∥(T, x̂)∥2 = |T |2+∥x̂∥2H1
.
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Using ∥φ(τ, x)∥H0 = ∥x∥H0 , we compute the following:

1
∥(T,x̂)∥2∥φ(τ + T, x+ x̂)− φ(τ, x)− φ(τ, x̂) + T · φ(τ, ∂tx)∥2H0

= 1
∥(T,x̂)∥2∥φ(T, x+ x̂)− φ(0, x)− φ(0, x̂) + T · φ(0, ∂tx)∥2H0

= 1
∥(T,x̂)∥2∥φ(T, x) + φ(T, x̂)− x− x̂+ T · ∂tx∥2H0

≤ 1
∥(T,x̂)∥2

(︂
∥φ(T, x)− x+ T · ∂tx∥H0 + ∥φ(T, x̂)− x̂∥H0

)︂2
= 1

∥(T,x̂)∥2∥φ(T, x)− x+ T · ∂tx∥2H0

+ 1
∥(T,x̂)∥2∥φ(T, x̂)− x̂∥2H0

+ 2
∥(T,x̂)∥2∥φ(T, x)− x+ T · ∂tx∥H0 · ∥φ(T, x̂)− x̂∥H0

(A.1)

For the first term in (A.1) we use 1
∥(T,x̂)∥ ≤ 1

|T | and obtain

1
∥(T,x̂)∥2∥φ(T, x)− x+ T · ∂tx∥2H0

≤
⃦⃦⃦⃦
φ(T, x)− x

T
+ ∂tx

⃦⃦⃦⃦2
H0

−→ 0

as T → 0, where we used Lemma A.2 (ii). For the second term in (A.1) we similarly
use 1

∥(T,x̂)∥ ≤ 1
∥x̂∥H1

and see

1
∥(T,x̂)∥2∥φ(T, x̂)− x̂∥2H0

≤ 1
∥x̂∥2H1

∥∂tx̂∥2H0
· T 2 −→ 0

as T → 0, where we used Lemma A.2 (i). For the product in the third term in (A.1)
we use the same arguments to treat both factors separately and see that both tend to
0.

Proof of Lemma 4.6 (sketch). Using the formula (4.5) for the first derivative of φ, we
get that if a second derivative of φ exists at the point (τ, x) ∈ R×Hm, then it has to
be

d2φ(τ, x)
(︂
(T1, x̂1), (T2, x̂2)

)︂
= −T2 · φ(τ, ∂tx̂1)− T1 · φ(τ, ∂tx̂2) + T1 · T2 · φ(τ, ∂2t x)

which is well-defined if x ∈ H2. Iteratively computing what an m-th derivative of φ at
(τ, x) should look like, we see that as a multilinear map

dmφ(τ, x) : (R×Hm)× · · · × (R×Hm)⏞ ⏟⏟ ⏞
m times

−→ H0

(︂
(T1, x̂1), . . . , (Tm, x̂m)

)︂
↦−→ · · ·+ (−1)m

m∏︂
i=1

Ti · φ(τ, ∂mt x)
(A.2)

it has a lot of summands that involve shifts by τ of the maps x̂m, ∂tx̂m−1, ∂
2
t x̂m−2, . . . ,

∂m−1
t x̂1 and ∂mt x. Thus it needs an m-th derivative of x. To show that (A.2) really

meets the definition of a derivative, one can estimate each summand exactly as in the
proof of Lemma 4.4. Again, one can show that all these derivatives are continuous, so
the map φ : R×Hm → H0 is Cm.
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Appendix B

A stretching argument

In this appendix, we give a rough sketch of the stretching argument from [Sei17] which
was mentioned in Chapters 8 and 9. We also comment on how to generalize it to the
setting of Hamiltonian delay equations.

In the master thesis [Sei17], the following statement (which can be deduced from
Hamiltonian Floer theory) is proven by a stretching argument.

Theorem B.1. Let (M,ω) be a closed, symplectically aspherical manifold. Assume
that H : S1 × M → R is a Hamiltonian function (degenerate or not) such that
the Hamiltonian flow ϕt

H : M → M has only finitely many 1-periodic orbits. Then
there are two contractible 1-periodic orbits x and y with AH(x) ̸= AH(y), where
AH : C∞

contr(S
1,M) → R denotes the Hamiltonian action functional.

The argument in [Sei17] is roughly14 as follows:

(I) Contractible 1-periodic orbits of ϕ1
H are exactly the critical points of AH .

(II) The L2-gradient of A is given by ∇AH(x) = J(x)
(︁
∂tx−XH(x)

)︁
, where XH de-

notes the Hamiltonian vector field, J is an ω-compatible almost complex struc-
ture, and the metric on M is deduced from ω and J .

(III) Choose a family of cutoff functions µR : R → [0, 1], R ∈ R≥0 with

• µR(s) = 0 for s ≤ −R + δ and for s ≥ R− δ for some δ > 0,

• µR(s) = 1 for −R + 1 ≤ s ≤ R− 1 (this can only happen for R ≥ 1),

see Figure 9.1.

(IV) For each R ∈ R≥0, consider the following perturbed Floer equation for maps
u : R× S1 →M :

∂su(s, t) + J
(︁
u(s, t)

)︁(︂
∂tu(s, t)− µR(s)XHt

(︁
u(s, t)

)︁)︂
= 0 (B.1)

14Not all the steps are mentioned here. For instance, for the analysis part it makes sense to
compactify the cylinder R×S1 to the sphere S2 and to write (B.1) in a coordinate-free way. However,
these details would rather distract from the main argument, so they are omitted here.
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For R = 0 this is the Cauchy–Riemann equation; for R → ∞ it converges to the
unperturbed Floer equation

∂su(s, t) + J
(︁
u(s, t)

)︁(︂
∂tu(s, t)−XHt

(︁
u(s, t)

)︁)︂
= 0. (B.2)

(V) Choose a point P ∈ M which is not part of a periodic orbit of ϕt
H , and define a

moduli space by

M :=
{︁
(R, u) | R ∈ R≥0, u ∈ C∞(R× S1,M), u(0, 0) = P, (R, u) satisfies (B.1)

}︁
plus some topological condition on u.

(VI) For R = 0, equation (B.1) has exactly one solution (namely the constant one).

(VII) For suitable J , the moduli space M is cut out of R × W 1,2(R × S1,M) by a
transverse Fredholm section of index 1, therefore it is a 1-dimensional manifold
with boundary contained in {0} ×W 1,2(R× S1,M).

(VIII) If M was compact, we would have found a compact 1-dimensional manifold with
boundary consisting of one point – a contradiction. Therefore, M is not compact.

(IX) So-called bubbling cannot happen because of symplectic asphericity of (M,ω),
and so-called breaking is excluded by the condition u(0, 0) = P . Therefore,
the only source of non-compactness is that there are solutions (Rν , uν)ν∈N with
Rν → ∞.

(X) These solutions converge to a solution of the unperturbed Floer equation.

(XI) Such an unperturbed Floer cylinder u : R × S1 → M is a gradient flow line of
AH connecting two critical points of AH . Hence, there are two 1-periodic orbits
x and y of ϕt

H with AH(x) ̸= AH(y).

We expect that the stretching argument can be generalized to periodic orbits of
Hamiltonian delay equations in the sense of [AFS20]. Recall from Section 8.1 that
[AFS20] define a Hamiltonian delay equation on a manifoldM by the property that its
periodic solutions arise as critical points of an action functional A : C∞

contr(S
1,M) → R

on the loop space. This functional will typically use several functions H,K, · · · : J → R
which we may call Hamiltonians.

Most of the steps above do not directly generalize to the case of Hamiltonian delay
equations, but have to be adjusted. For instance, in order to generalize step (II), we
will need further assumptions on A to ensure that it has a gradient of the form

∇A(x) = J(x)
(︂
∂tx−X (x)

)︂
,

where the delay equation is encoded in a map X from the loop space to itself, which
should satisfy certain continuity and differentiability properties. In the case of a delay
equation given by a vector field X in R2n, we would have X (x)(t) = Xt

(︁
x(t ‧ τ)

)︁
for a
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fixed delay parameter τ ∈ R (cf. Section 9.2). Another step which should be treated
carefully is step (XI); this is closely related to [AF13].

The compactness theorem from Chapters 8 and 9 of this thesis are part of general-
izing step (X): Given a sequence of pairs (Rν , uν) ∈ M, ν ∈ M, with Rν → R∗ ∈ R≥0,
one needs to show that a subsequence of (uν)ν converges to some u∗ such that (R∗, u∗) ∈
M. So one first needs to translate this to the setting of fractal scale Hilbert spaces from
Chapter 8, as shown in Chapter 9. Next, one should argue why there is a bound of the
form (8.6). This can probably be done by considering only (perturbed) gradient flow
lines with action in a fixed compact interval (yielding a bound on ∥∂swν∥L2(IT ,H0)) and
combining this with the bubbling analysis from step (IX) and elliptic regularity, see
also [AFS19, Remark 2.6]. Then one can apply our compactness result (Theorem 8.6)
to see that (uν)ν converges to some u∗ in C0(IT , H1) ∩ C1(IT , H0), that is on compact
subsets IT ⊂ R and in a somewhat weak topology. Finally, using the Arzelà–Ascoli
theorem and elliptic regularity, one should be able to show that convergence is actually
in C∞

loc

(︁
R, C∞(S1,R2n)

)︁
.
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