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Abstract

Maximal representations into Lie groups of Hermitian type have been introduced in [7],
and further studied in [2, 6, 26]. All maximal representation are discrete embeddings,
and spaces of maximal representations are unions of connected components of the
character varieties, hence they provide examples of so-called higher Teichmüller
spaces. Connected components of spaces of maximal representations have complicated
topology which is not well understood.
In this thesis, we study classical Hermitian Lie groups of tube type and give a

parametrization of spaces of decorated (maximal) representations of the fundamental
group of a punctured surface into a Hermitian Lie group of tube type. Using this
parametrization, we describe the topology and the structure of the spaces of maximal
representations.

In the first chapter, we introduce coordinates on the space of Lagrangian decorated
representations of the fundamental group of a surface with punctures into the sym-
plectic group Sp(2n,R). These coordinates provide a noncommutative generalization
of the parametrization of the space of representations into SL(2,R) given by V. Fock
and A. Goncharov. The locus of positive coordinates maps to the space of decorated
maximal representations. We use this to determine the homotopy type and the
homeomorphism type of the space of decorated maximal representations, and when
n = 2, to describe its finer structure as a smooth locus and kind of singularities.
In the second chapter, we study Hermitian Lie groups of tube type and their

complexifications uniformly as Sp2(A) over some special real algebra A. We use this
approach to describe the flag variety of such groups corresponding to a maximal
parabolic subgroup, a maximal compact subgroup and different models of the sym-
metric space. For complexified groups this construction is new. Further, we introduce
in these terms coordinates on the space of decorated maximal representations of the
fundamental group of a punctured surface into a Hermitian Lie group of tube type
and use them to determine the homotopy type and the homeomorphism type of the
space of decorated maximal representations.
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Zusammenfassung

Maximale Darstellungen in Hermitesche Lie-Gruppen wurden in [7] eingeführt und
danach in [2,6, 26] untersucht. Alle maximalen Darstellungen sind diskrete Einbet-
tungen, und Räume der maximalen Darstellungen sind Vereinigungen von Zusam-
menhangskomponenten von der Charaktervarietät. Somit liefern sie Beispiele von
den sogenannten höheren Teichmüller Räumen. Zusammenhangskomponenten der
Räume der maximalen Darstellungen haben komplizierte Topologie, die noch nicht
wohlverstanden ist.

In dieser Doktorarbeit untersuchen wir klassische Hermitesche Lie-Gruppen von
Tubentyp und parametrisieren Räume der dekorierten (maximalen) Darstellungen
der Fundamentalgruppe einer punktierten Fläche in eine Hermitesche Lie Gruppe
vom Tubentyp. Mithilfe von dieser Parametrisierung beschreiben wir die Topologie
und die Struktur der Räume der maximalen Darstellungen.
Im ersten Kapitel führen wir Koordinaten auf dem Raum von mit Lagrange

Unterräumen dekorierten Darstellungen der Fundamentalgruppe einer punktierten
Fläche in die symplektische Gruppe Sp(2n,R) ein. Diese Koordinaten liefern eine nicht
kommutative Verallgemeinerung von den von V. Fock und A. Goncharov eingeführten
Parametrisierungen der Räume von Darstellungen in SL(2,R). Der Unterraum von
positiven Koordinaten wird auf den Raum von maximalen Darstellungen abgebildet.
Wir verwenden das, um den Homotopietyp und Homeomorphietyp des Raums der
dekorierten maximalen Darstellungen zu bestimmen und im Falle n = 2 seine feinere
Struktur sowie die Glattheitsbereich und Typen der Singularitäten zu beschreiben.

Im zweiten Kapitel untersuchen wir Hermitesche Lie-Gruppen vom Tubentyp und
ihre Komplexifizierungen auf einheitliche Weise als Sp2(A) für spezielle reelle Al-
gebren A. Wir verwenden diesen Ansatz, um die zu den maximalen parabolischen
Untergruppen zugehörigen Fahnenvarietäten, maximale kompakte Untergruppen und
verschiedene Modelle der symmetrischen Räume von diesen Gruppen zu beschreiben.
In diesen Termen führen wir Koordinaten auf dem Raum der dekorierten maximalen
Darstellungen der Fundamentalgruppe einer punktierten Fläche in eine Hemitesche
Lie-Gruppe vom Tubentyp ein und verwenden sie, um den Homotopietyp und den
Homeomorphietyp des Raums der dekorierten maximalen Darstellungen zu bestim-
men.
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0 Introduction

0.1 Higher Teichmüller theory: from hyperbolic
structures to representation varieties

Higher Teichmüller theory was developed as a generalization of classical Teichmüller
theory that studies moduli spaces of complex structures on a fixed topological surface
S of negative Euler characteristic. This moduli space is called Teichmüller space
T (S), and it can also be seen as the moduli space of marked complete hyperbolic
structures on the surface S. Teichmüller space T (S) can be naturally embedded
into the representation variety Hom(π1(S),PSL(2,R))/PSL(2,R) as a connected
component which consists entirely of discrete and faithful representations.
Higher Teichmüller theory generalizes this approach and studies representations

of π1(S) into a reductive Lie group G of higher rank. A higher Teichmüller space
is a subset of Rep(π1(S), G) := Hom(π1(S), G)/G which is a union of connected
components that consist entirely of discrete and faithful representations. There are
two well-known families of Higher Teichmüller spaces: Hitchin components and spaces
of maximal representations.
Hitchin components are defined when G is a split real simple Lie group (e.g.

SL(n,R)) [11,20,21]. The space of maximal representations is defined when G is a
noncompact simple Lie group of Hermitian type (e.g. Sp(2n,R)) [6, 7]. They have
been discovered from very different points of view and by very different methods.
They also have different properties, e.g. Hitchin components are always contractible
and homeomorphic to an Euclidean ball. In contrast, connected components of spaces
of maximal representations have nontrivial complicated topology. Nevertheless, as
described before, they also share many properties [6, 21]. Moreover, in the case when
G = PSL(2,R), the Hitchin component and the space of maximal representations
agree and coincide with the Teichmüller space T (S) [28].
However, higher Teichmüller spaces do not exist for every Lie group G. Discrete

and faithful representations form in general only a closed subset of Rep(π1(S), G)
but not connected components. In fact, there are special families of Lie groups for
which higher Teichmüller spaces exist.

One example of Lie groups which admit higher Teichmüller spaces is conjectured to
be Lie groups with a notion of positivity. The theory of Θ-positivity was developed
by O. Guichard and A. Wienhard and generalizes Lusztig’s total positivity for split
real Lie groups and maximality for Hermitian Lie groups to a larger class of simple
Lie groups (e.g. SO(p, q), p 6= q) [16].
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0.2 Fock–Goncharov’s X -space

In their seminal paper [11], Fock and Goncharov introduced an X -moduli space,
which is closely related to the variety of representations of the fundamental group
of a surface Sg,k of genus g with k punctures into a split real simple Lie group G.
They introduced explicit cluster X -coordinates on this space associated to an ideal
triangulation of Sg,k. Changing the triangulation, the coordinates change by positive
rational functions. Thus the locus of positive coordinates is independent of the choice
of triangulation. When G is SL(2,R), the positive locus in the X -space is closely
related to the Teichmüller space, and the Fock–Goncharov coordinates are extensions
of Thurston’s shear coordinates. When G is a split real group of higher rank, this
moduli space gives higher Teichmüller space, and the positive locus of the X -space is
closely related to the Hitchin component in the representation variety.

The set of positive representations of Fock–Goncharov and the Hitchin components
account only for one family of higher Teichmüller spaces, another family is given by
maximal representations into Lie groups of Hermitian type. The symplectic groups
Sp(2n,R) form essentially the only family of Lie groups that are both split real forms
and of Hermitian type.

In the first chapter of this thesis, we generalize the work of Fock and Goncharov in
the following way. We introduce a new moduli space, an X -space of representations
of the fundamental group of Sg,k into the symplectic group Sp(2n,R), and describe
non-commutative A1-type cluster coordinates on them. We show that the positive
locus of the X -space corresponds precisely to maximal representations into Sp(2n,R);
we use this to determine the homeomorphism type and the homotopy type of the
space of maximal representations, and for Sp(4,R) also its finer structure as a smooth
locus and kind of singularities.

In Fock–Goncharov’s work, an important role is played by Lusztig’s total positivity,
in our work, a similar role is played by positivity related to the Maslov index. As
such, our work fits well in the framework of Θ-positivity, recently introduced by
O. Guichard and A. Wienhard [14–16,28], that generalizes Lusztig’s total positivity
and provides a unifying framework for the different higher Teichmüller spaces.

When the Fock–Goncharov’s approach is applied to the group Sp(2n,R), they
define a positive locus in the space of symplectic representations. It is important to
remark that the positive locus that our approach gives in the space of symplectic
representations is larger than the Fock–Goncharov’s one (see Section 1.3.6 in Chapter
1 for more details). This is because the two theories are based on two different
Θ-positive structures on Sp(2n,R): respectively the one for split groups and the one
for groups of Hermitian type. The perspective chosen in the present thesis is the one
which is suitable for describing the spaces of maximal representations.

We now describe our results in more detail.
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0.3 Generalization of X -moduli space

In the first chapter of the thesis, we introduce the space of decorated symplectic
representations (i.e. a representation π1(Sg,k)→ Sp(2n,R) together with a consistent
choice of Lagrangian subspaces, which are fixed by peripheral elements in π1(Sg,k))
which serves as our X -space.

Fixing an ideal triangulation T of Sg,k, we introduce systems of X -coordinates,
using invariant of triples, 4-tuples, and 5-tuples of Lagrangian subspaces. A system of
X -coordinates consists of a triangle invariant for each triangle, which is given by the
Maslov index of the three Lagrangians associated to the vertices of the triangle, an
edge invariant for every edge of the triangulation, which can be seen as a cross-ratio
function of four Lagrangians, and an angle invariant, associated to each corner of
a triangle, which comes from an invariant of 5-tuples of Lagrangians. We then
describe in detail a map denoted by rep from the set X (T ) of X -coordinates to the
space of decorated representations. A special role is played by the set X+(T ) of
positive X -coordinates, those for which the triangle invariants are equal to n, the
edge invariants are just n-tuples of positive real numbers, and the angle invariants
take values in O(n).

Theorem 0.3.1. The map rep induces a proper surjection with generically finite
fibers from X+(T ) to the space of decorated maximal representations

Let us emphasize that the correspondence between positive X -coordinates and
decorated maximal representations is not a one-to-one. To every decorated maximal
representation corresponds a system of positive X -coordinates, but in general only
the edge invariants are uniquely determined, the angle invariants involve some
choices. We also explicitly describe the fibers of the map rep (Proposition 1.3.8 and
Theorem 1.5.18).

0.4 Topology of the space of maximal representations

We now discuss the applications to the topology of the space of (decorated) maximal
representations. Let us point out that contrary to the space of positive representations
or the Hitchin component, which are contractible, the space of maximal representations
has non-trivial topology. In the case of maximal representations of fundamental groups
of closed surfaces, the topology of the space of maximal representations has been
studied using the theory of Higgs bundles in [1, 5, 12, 13]. These techniques do not
apply easily to the case of maximal representations of fundamental groups of surface
with punctures, in particular since we do not fix the holonomy along peripheral curves
on the surface.
Here we rely on Theorem 0.3.1 and the positive locus of the X -coordinates to

determine the topology of the space of maximal representations. Note that the
positive locus of the X -coordinates does not parametrize the space of decorated
maximal representations, but maps surjectively to it. The fibers of this surjection are
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complicated to describe, because they depend on the shape of the edge invariants.
Studying this fibration, we can describe precisely the homeomorphism type of the
space of decorated maximal representations:

Theorem 0.4.1. The space of decorated maximal representations into Sp(2n,R) is
homeomorphic to

Sym+(n,R)6g+3k−6 ×O(n)2g+k−1/O(n)

where Sym+(n,R) is the space of all symmetric positive definite matrices and O(n)
acts by simultaneous conjugation in every factor.

As consequence of this statement, we derive the homotopy type of the space of
decorated maximal representations any connected central extension of PSp(2n,R),
see Theorem 1.6.6.

Theorem 0.4.2. The space of decorated maximal representations into Sp(2n,R)
admit as a deformation retract the space O(n)2g+k−1/O(n), where the action of O(n)
is by simultaneous conjugation.

As a corollary, we obtain a different proof of [26, Theorem 7.2.7] on the number of
connected components.

Corollary 0.4.3. The space of maximal representations and the space of decorated
maximal representations into Sp(2n,R) have 22g+k−1 connected components. The
space of decorated maximal representations into PSp(2n,R) has 22g+k−1 connected
components when n is even; it is connected if n is odd.

When n = 2, we analyze this space in more detail and show that all connected
components except one are orbifolds, one connected component contains a non-orbifold
singularity, see Section 1.4.3.

0.5 Hermitian Lie groups of tube type

In the second chapter of this thesis, we study classical Hermitian Lie groups of
tube type. We prove that all of them can be seen as a noncommutative analog
of the symplectic group Sp2(R) = SL2(R). More precisely, it is possible to see all
classical Hermitian Lie groups of tube type uniformly as Sp2(A, σ) over some special
noncommutative R-algebra with an anti-involution (A, σ) or as Sp2(G, σ) where G is
a Lie group of some special type.

To be exact, sometimes, the entire algebra (A, σ) is to large to construct the group
Sp2(A, σ), and it is reasonable to consider a suitable Lie subgroup G of A× that is
closed under σ and such that the Lie algebra B of G admits a G-invariant proper
convex cone Bsym

+ inside the space of σ-symmetric elements Bsym := FixB(σ). For
such G, the group Sp2(G, σ) can be defined. Moreover, the case of Sp2(A, σ) can be
seen as a special case of Sp2(G, σ) taking G = A×.

In fact, the group Sp2(G, σ) generalizes the case of Sp2(A, σ) at the cost of additional
complications. Therefore, first in Section 2.1, we discuss the easier case, defining the
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group Sp2(A, σ) and studying its properties, and only later in Section 2.6, we give
the most general definition of Sp2(G, σ).
For example, the real symplectic group Sp(2n,R) discussed in the first chapter is

isomorphic to Sp2(A, σ) for A = Mat(n,R) and the anti-involution σ corresponds
to the matrix transposition. The group U(n, n) can be seen as Sp2(A, σ) for A =
Mat(n,C) and the anti-involution σ corresponds to the complex conjugation composed
with the matrix transposition. The group SO∗(4n) is isomorphic to Sp2(A, σ) for
A = Mat(n,H) and the anti-involution σ corresponds to the quaternionic conjugation
composed with the matrix transposition. In contrast, the group Spin(2, n) can only be
seen as Sp2(G, σ), where G is the so-called Clifford group, but it cannot be described
as Sp2(A, σ).
Moreover, using this approach, it becomes possible to describe a wider class of

groups. Namely, we can see in this picture groups that are complexifications of
Hermitian groups of tube type (e.g. Sp(2n,C), GL(4n,C) and O(4n,C)). For this
wider class of groups, we study their maximal compact subgroups and the space of
isotropic A- and G-lines as the flag variety corresponding to a maximal parabolic
subgroup of Sp2(A, σ), resp. Sp2(G, σ). In fact, this flag variety generalizes the real
projective space RP2 which the group Sp2(R) = SL2(R) is acting on. We discuss
properties of the action of Sp2(A, σ) and Sp2(G, σ) on this flag variety and find out
what are invariants of tuples of isotropic lines under this action. These invariants are
closely related to the well-known invariants as the Maslov index and the cross ratio
that we discussed in the first chapter for such action of the group Sp(2n,R) on the
Lagrangian Grassmannian.
Further, we discuss the symmetric spaces of Sp2(A, σ) and Sp2(G, σ). We are

considering two cases: classical Hermitian Lie groups of tube type and their com-
plexifications. In both cases, we can describe their symmetric spaces with models.
More precisely, we construct the upper half space model, the projective model, the
precompact model (that is usually called bounded model in the literature) and the
complex structure model (for real groups) and the quaternionic structure model (for
complexified group). We also discuss the natural compactification of these symmetric
spaces and an analog of the Shilov boundary for complexified groups. These models
are well-known for Hermitian Lie groups [6], but in the case of the complexified groups
these results are new.
At the end of the second chapter, we discuss decorated maximal representations

of the fundamental group of a punctured surface Sg,k into classical Hermitian Lie
groups that we see as Sp2(G, σ). We define noncommutative positive X -coordinates
in terms of the group G that generalize positive X -coordinates associated to an
ideal triangulation of the surface that we defined in the first chapter. As before, we
associate to every edge of the ideal triangulation an n-tuple of positive real numbers
where n is the rank of G. The angle invariants take value in the group

U(G, σ) = {g ∈ G | σ(g)g = 1}.

As in the first chapter, we obtain the map rep that maps surjectively the space
of positive X -coordinated onto the space of decorated maximal representations.
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Analysing this map rep, we obtain the generalization of the Theorem 0.4.1 describing
the homeomorphism type of the space of decorated maximal representations into
Sp2(G, σ):

Theorem 0.5.1. The space of decorated maximal representation into Sp2(G, σ) is
homeomorphic to

(Bsym
+ )6g+3k−6 × U(G, σ)2g+k−1/U(G, σ)

where U(G, σ) acts by simultaneous conjugation in every factor.

As corollary from this Theorem, we derive the homotopy type of the space of
decorated maximal representations into Sp2(G, σ):

Theorem 0.5.2. The space of decorated maximal representations admits as a defor-
mation retract the space U(G, σ)2g+k−1/U(G, σ). The quotient is taken by the action
of U(G, σ) on U(G, σ)2g+k−1 by simultaneous conjugation.

0.6 Structure of the thesis

The present thesis contains the Introduction and two Chapters. The first Chapter
is dedicated to the study of the decorated representations into the group Sp(2n,R).
In Section 1.1, we introduce the invariants of Lagrangians which are used to define
coordinates. In Section 1.2, we introduce the spaces of decorated representations,
recall the definition and key properties of maximal representations. In Section 1.3, we
introduce positive X -coordinates, and construct the map to decorated maximal repre-
sentations. The applications for the topology of the space of maximal representations
are proven in Section 1.4. The general X -coordinates are introduced in Section 1.5,
and in Section 1.6 we generalize them to representations into central extensions of
PSp(2n,R). The first Chapter is part of the joint work with Daniele Alessandrini,
Olivier Guichard and Anna Wienhard and is published on the arXiv as [2]. Main
contributions of the author in this project are the definition of general X -coordinates,
the standard form of a pair of bilinear forms and the description of the topology and
homotopy type of the space of maximal representations.

The second Chapter is dedicated to the study of Hermitian groups of tube type in
terms of the symplectic group Sp2 over noncommutative algebras. In Sections 2.1,
we introduce Hermitian algebras with anti-involution (A, σ), their complexifications
and the group Sp2(A, σ), discuss their properties and give examples. In Section 2.2,
we construct the space of isotropic lines and discuss the action of Sp2(A, σ) on it
and find invariants of tuples of isotropic lines. In Sections 2.3 and 2.4, we construct
different models of symmetric space of Sp2(A, σ), discuss its compactification and
Shilov boundary. In Section 2.5, we implement these models for examples of classical
Hermitian Lie groups and their complexifications. In Section 2.6, we define Hermitian
Lie algebras with an anti-involution (B, σ) and Lie groups (G, σ) corresponding to
such Lie algebras. In Section 2.7, we define the group Sp2(G, σ) and discuss its
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properties. In Section 2.8, we construct the space of isotropic G-lines and discuss
invariants of tuples of isotropic G-lines. In Sections 2.9, we introduce different models
of symmetric space of Sp2(G, σ), discuss its compactification and Shilov boundary.
In Section 2.10, we describe the group Spin(2, n) as Sp2(G, σ). In Section 2.11,
decorated maximal representations into Sp2(G, σ) are discussed. The second Chapter
will appear in a joint work with Daniele Alessandrini, Arkady Berenstein, Vladimir
Retakh and Anna Wienhard. Main contributions of the author in this project are the
development of the general theory of Sp2(G, σ), describing the right conditions for
G such that the group Sp2(G, σ) is well-defined, including the group Spin(2, n) into
this context and the description of models of the symmetric spaces for complexified
groups.
The Appendix contains a description of the invariants of pairs of non-degenerate

symmetric bilinear forms that are used in Section 1.5 and explicit constructions of
isomorphisms between matrix algebras that are used in Sections 2.5 to construct
examples of symmetric spaces.
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1 Noncommutative coordinates for symplectic
representations

1.1 Invariants of Lagrangian subspaces

1.1.1 Lagrangian Grassmannian

We consider the symplectic vector space (R2n, ω) where ω is the standard symplectic
form on R2n, i.e.

ω(x, y) =
n∑
i=1

xiyn+i −
n∑
i=1

xn+iyi,

for x =
∑2n

i=1 xiei, y =
∑2n

i=1 yiei where (e1, . . . , e2n) is the standard basis of R2n.
With respect to the standard basis, ω can be written as

ω =

(
0 Idn
− Idn 0

)
(1.1.1)

Every basis of R2n such that ω, expressed in that basis, has the form (1.1.1) is
called a symplectic basis. We will usually write a symplectic basis as (e, f), where
e = (e1, . . . , en), f = (f1, . . . , fn), and ω(ei, fj) = δij .
We denote by Sp(2n,R) the symplectic group,

Sp(2n,R) = {g ∈ GL(2n,R) | gTωg = ω},

and by PSp(2n,R) = Sp(2n,R)/{± Id} the projective symplectic group.

Definition 1.1.1. A subspace L of R2n is called Lagrangian if dim(L) = n and
ω(u, v) = 0 for all u, v ∈ L. The set of all Lagrangian subspaces of (R2n, ω) is called
Lagrangian Grassmannian, we denote this set by Lag(2n,R).

Definition 1.1.2. A framed Lagrangian is a pair (L,v), where L ∈ Lag(2n,R) and
v is a basis of L. The set of all framed Lagrangians of (R2n, ω) is called framed
Lagrangian Grassmannian, we denote this set by Lagfr(2n,R). The natural projection
to Lag(2n,R) turns this space into a principal GL(n,R)-bundle.

The group Sp(2n,R) acts naturally on Lag(2n,R) and Lagfr(2n,R):

g(L) := {g(x) | x ∈ L},
g(L, (v1, . . . , vn)) := (g(L), (g(v1), . . . , g(vn))).
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These actions are transitive, hence the spaces Lag(2n,R) and Lagfr(2n,R) are
homogeneous spaces over the symplectic group. To better see this structure, consider
the stabilizers of a point:

P = StabSp(2n,R)(L), (1.1.2)

U = StabSp(2n,R)((L, v)). (1.1.3)

The group P is a parabolic subgroup of Sp(2n,R), and U ⊂ P is its unipotent
subgroup. As homogeneous spaces, we have

Lag(2n,R) = Sp(2n,R)/P,

Lagfr(2n,R) = Sp(2n,R)/U.

Anyway, the action of Sp(2n,R) on Lag(2n,R) is not effective, it has kernel {± Id}.
The actual group of symmetries of Lag(2n,R) is the projective symplectic group
PSp(2n,R).

Definition 1.1.3. Two Lagrangians L1, L2 ∈ Lag(2n,R) are called transverse if
L1 ⊕ L2 = R2n.

We now describe charts for Lag(2n,R). Since we will work in these charts regularly,
we describe them and the coordinate changes in detail. Given a Lagrangian L∞, we
denote by UL∞ the subset of Lag(2n,R) consisting of all the Lagrangians transverse
to L. This is an open dense subset of Lag(2n,R). Fixing a Lagrangian L0 ∈ UL∞ any
other Lagrangian L ∈ UL∞ is the graph of a linear map LL0→L∞ : L0 → L∞, i.e. for
each v ∈ L0, LL0→L∞(v) is the unique element in L∞ such that v + LL0→L∞(v) ∈ L.
If L is also transverse to L0, this map, which we denote just by L if there is no danger
of confusion, is a linear isomorphism.
We will often use an explicit matrix expression for this linear map. If we choose

e = (e1, . . . , en) a basis of L0, there exists a unique basis f = (f1, . . . , fn) of L∞ such
that (e, f) is a symplectic basis. Given a symplectic basis (e, f), we will more generally
write then

Le := Span(e),

Lf := Span(f).

We write [LLe→Lf ]e,f for the matrix of the map LLe→Lf with respect to the bases e, f.
It is easy to check that this matrix is symmetric. The linear map L and its matrix
[LLe→Lf ]e,f will be used often in this thesis.

We thus have a map

Ψ(e,f) : ULf 3 L→ [LLe→Lf ]e,f ∈ Sym(n,R)

This map is a homeomorphism to the vector space of symmetric matrices. To see
that it is invertible, the inverse map is given by the formula

Le,f(A) := L = Span(e + fA)
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The set
{(ULf ,Ψ(e,f)) | (e, f) symplectic basis }

is a manifold atlas for the space Lag(2n,R).
Remark 1.1.4. We can write the transition functions of this atlas. Assume (e, f) and
(e′, f′) are two symplectic bases. There is a unique symplectic matrix B ∈ Sp(2n,R)
such that (e′, f′) := (e, f)B−1. Write B as

B =

(
B11 B12

B21 B22

)
∈ Sp(2n,R),

where the Bij are n× n matrices. For every L ∈ ULf ∩ ULf ′ , denote by

A := Ψ(e,f)(L)

A′ := Ψ(e′,f′)(L)

Then
A′ = (B11 +B12A)−1(B21 +B22A) ∈ Sym(n,R). (1.1.4)

Remark 1.1.5. Formula (1.1.4) also represents the action of the matrix B on
Lag(2n,R), when restricted to a coordinate chart ULf : for a Lagrangian L such
that both L,B(L) ∈ ULf ,

A := Ψ(e,f)(L)

AB := Ψ(e,f)(B(L))

we have
AB = (B11 +B12A)−1(B21 +B22A) ∈ Sym(n,R).

In fact the action of Sp(2n,R) on Lag(2n,R) is formally similar to the action by
Möbius transformations of SL(2,R) on CP1 (which is the case n = 1).
The action of Sp(2n,R) on pairs of transverse Lagrangians is transitive, but

the action of Sp(2n,R) on triples, quadruples and 5-tuples of pairwise transverse
Lagrangians is not transitive any more. We will now describe invariants of such tuples
of Lagrangians, which will lie the foundation for the rest of the thesis.

Similarly, the action of Sp(2n,R) on pairs ((L, v), L′), where (L, v) ∈ Lagfr(2n,R),
L′ ∈ Lag(2n,R) and L,L′ are transverse, is transitive and free. But when we consider
pairs (L, v), (L′, v′) ∈ Lagfr(2n,R), the action is not transitive any more, and we
describe invariants of such pairs.

1.1.2 Maslov index

In this section we review properties of the Maslov index of three pairwise transverse
Lagrangians, for a more general discussion we refer the reader to [22].

Let L1, L2, L3 be three pairwise transverse Lagrangians. As in the previous section,
we consider the linear map L3L1→L2 . When this does not cause confusion, we will
denote the linear map just by L3.
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Using the symplectic form ω, we can define a bilinear form β3 on L1 in the following
way: for v1, v2 ∈ L1

β3(v1, v2) := ω(v1, L3(v2)).

We also denote the bilinear form β3 by [L1, L3, L2].

Proposition 1.1.6. The bilinear form β3 = [L1, L3, L2] is non degenerate and
symmetric.

Proof. Since L3(v) + v ∈ L3 for all v ∈ V1,

0 = ω(L3v + v, L3w + w) = ω(L3v, w) + ω(v, L3w).

Therefore,

β3(v, w) = ω(v, L3w) = −ω(L3v, w) = ω(w,L3v) = β3(w, v)

The form β3 is non-degenerate because L3 is a linear isomorphism between two
transverse Lagrangians L1 and L2, i.e. ω|L1×L2 is non-degenerate.

We will denote the signature of β3 by

sgn(β3) = (p, q),

where p is the dimension of a maximal subspace of L1 on which β3 is positive definite
and q is the dimension of a maximal subspace of L1 on which β3 is negative definite.
They satisfy p+ q = n. We will also sometimes express the signature as

dsgn(β3) = p− q ∈ {−n,−n+ 2, . . . , n− 2, n}.

Definition 1.1.7. The Maslov index of the triple of Lagrangians (L1, L3, L2) is the
signature dsgn([L1, L3, L2]) and denoted by µ(L1, L3, L2).

For n = 1, the three Lagrangians (L1, L3, L2) correspond to distinct points in the
circle RP1. The Maslov index is 1 if the three points are cyclically ordered, and it is
−1 if they are in the reverse cyclic order.

Proposition 1.1.8 (Properties of Maslov index). The Maslov index

• is invariant under the action of Sp(2n,R) on Lag(2n,R);

• is anti-symmetric when two of its variables are exchanged;

• satisfies the cocycle relation, i.e. for all pairwise transverse L1, L2, L3, L4 ∈
Lag(2n,R)

µ(L1, L2, L3)− µ(L1, L2, L4) + µ(L1, L3, L4)− µ(L2, L3, L4) = 0

• the group Sp(2n,R) acts transitively on the set of triples of pairwise trans-
verse Lagrangians with the same Maslov index, i.e. Sp(2n,R)-orbits of pairwise
transverse triples of Lagrangians are in 1-1 correspondence with the Maslov
indices.
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1.1.3 Cross ratio

Let L1, L2, L3, L4 be four Lagrangians such that L3 and L4 are transverse to L1 and
L2. We use the linear isomorphisms L3 : L1 → L2 and L4 : L2 → L1 to introduce the
map

[L1, L3, L2, L4] := L4 ◦ L3 : L1 → L1

which is a linear automorphism of L1.

Definition 1.1.9. The map

[L1, L3, L2, L4] : L1 → L1

is called the cross ratio of the 4-tuple of Lagrangians (L1, L3, L2, L4).

For related invariants of 4 Lagrangians, see [3,4,18,23–25,29]. For n = 1, the cross
ratio is a linear map from a line to itself. This is just the multiplication by a scalar,
which is exactly the cross ratio of four lines in R2 in the classical sense.

Proposition 1.1.10 (Properties of cross ratio).

• The cross ratio is equivariant under the action of Sp(2n,R) on Lag(2n,R).

• [L1, L3, L2, L4] = [L1, L4, L2, L3]−1;
[L1, L3, L2, L4] = L−1

3 ◦ [L2, L4, L1, L3] ◦ L3.

• The group Sp(2n,R) acts transitively on quadruples of pairwise transverse
Lagrangians having conjugate cross ratios, i.e. the Sp(2n,R)-orbits of pair-
wise transverse quadruples of Lagrangians are in 1-1 correspondence with the
conjugacy classes of cross ratios.

Proposition 1.1.11. The cross ratio B := [L1, L3, L2, L4] is a symmetric linear
map with respect to the bilinear forms [L1, L3, L2] and [L1, L4, L2].

Proof. Let β3 = [L1, L3, L2] and β4 = [L2, L4, L1] be a symmetric bilinear form on
L2. Let v, w ∈ L1. Then:

β3(Bv,w) = ω(L4L3v, L3w) = −ω(L3w,L4L3v) =

= −β4(L3w,L3v) = −β4(L3v, L3w) = −ω(L3v, L4L3w) =

= ω(L4L3w,L3v) = β3(Bw, v) = β3(v,Bw).

Corollary 1.1.12. If [L1, L3, L2] and [L2, L4, L1] are positive definite, then
−[L1, L3, L2, L4] is diagonalizable with positive eigenvalues.

Proof. We set as before β3 = [L1, L3, L2] and β4 = [L2, L4, L1]. Let e be a basis of
L1 such that [β3]e = Id and [B]e = −diag(λ1, . . . , λn). We take the unique basis f of
L2 such that ω(e, f) = Id. Then L3(e) = f and [L3]e,f = Id.
In the basis f the bilinear form β4 is diagonal because for every two basis vectors

fi, fj
β4(fi, fj) = ω(fi, L4(fj)) = ω(L3L

−1
3 (fi), L4L3L

−1
3 (fj)) =

= ω(L3ei, Bej) = −ω(Bej , L3ei) = −β3(Bej , ei) = λiδij

Since β4 is positive definite, we have λi > 0 for all i.
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1.1.4 Angles

We will also make use of invariants of five Lagrangians, here we describe it in the
simplest case, when all the Maslov indices are maximal. For the general version of
this invariant, see Section 1.5.1. Let L1, . . . , L5 be pairwise-transverse Lagrangians,
which we will think as the vertices of a pentagon, as in Figure 1.1.1. Assume that

µ(L1, L3, L2) = µ(L2, L4, L1) = µ(L1, L5, L3) = n.

The bilinear forms β3 = [L1, L3, L2] and β4 = [L2, L4, L1] are positive definite,
therefore, by Corollary 1.1.12, there exists a basis e1 of L1 such that [β3]e1 = Id and
[L1, L3, L2, L4]e1 = −diag(λ1, . . . , λn) with λ1 ≥ · · · ≥ λn > 0.

Figure 1.1.1:

We can do the same for the quadruple (L3, L2, L1, L5) and find a basis g of L3 such
that the bilinear forms [L3, L2, L1]g = Id and −[L3, L2, L1, L5]g = diag(µ1, . . . , µn)
with µ1 ≥ · · · ≥ µn > 0.

We take the unique basis e2 on L1 such that ω(g, e2) = Id. In the basis e2 of L1

we have
[β3]e2 = [L1, L2, L3]e2 = [L3, L2, L1]g = Id .

Let U ∈ O(n) be the change-of-basis matrix from the basis e2 to the basis e1. We
will call this matrix an inner angle in the pentagon of Lagrangians (L1, L4, L2, L3, L5)
(see Figure 1.1.1).

The matrix U is not uniquely defined because the bases e1 and g are not
unique. In general, U is only well defined as an element of the double coset space
Stab1 \O(n)/ Stab2, where

Stab1 := {A ∈ O(n) | Adiag(λ1, . . . , λn)AT = diag(λ1, . . . , λn)},

Stab2 := {A ∈ O(n) | Adiag(µ1, . . . , µn)AT = diag(µ1, . . . , µn)}.

We denote by [L1, L5, L3, L2, L4] the class of U in Stab1 \O(n)/ Stab2. If bases e1
and e2 are chosen as above, we will write

U =: [L1, L5, L3, L2, L4]e1,e2 .
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1.2 Representation varieties

One goal of this thesis is to give a parametrization of spaces of representations of the
fundamental group of a punctured surface into Sp(2n,R), which can be viewed as a
non-commutative generalization of the parametrization of representations into SL(2,R)
by Thurston and Penner coordinates. We will in fact not directly parameterize the
representation variety, but an extension of it, which we call decorated or framed
representations.

1.2.1 Representation spaces

Let S be a punctured surface of genus g with k > 0 punctures. We assume that the
Euler characteristic χ(S) of S is negative. In this case the fundamental group π1(S)
of S is free with 2g + k − 1 = |χ(S)|+ 1 ≥ 2 generators.

Definition 1.2.1. An element g ∈ π1(S) is called peripheral if g is freely homotopic
to a loop contained in an arbitrarily small neighborhood of a puncture. We denote
by πper1 (S) the subset of π1(S) containing all peripheral elements. Since we consider
only punctured surfaces, πper1 (S) 6= ∅.

By Hom(π1(S), G) we denote the set of all representations of the fundamental group
π1(S) of the surface S into some Lie group G. The group G acts on Hom(π1(S), G)
by conjugation.

Definition 1.2.2. The quotient space

Rep(π1(S), G) := Hom(π1(S), G)/G

is called the moduli space of representations. We denote by [ρ] the class in
Rep(π1(S), G) of the representation ρ ∈ Hom(π1(S), G).

Remark 1.2.3. The action of G on Hom(π1(S), G) by conjugation is not proper,
hence the quotient is, in general, not Hausdorff. The action is proper on the subset
of reductive representations, which has an Hausdorff quotient, usually called the
character variety. In this thesis, it is more natural to consider the quotient of all
representations, and to deal with a quotient space which is not Hausdorff.

Definition 1.2.4. A representation ρ ∈ Hom(π1(S),Sp(2n,R)) will be called periph-
erally parabolic if for every g ∈ πper1 (S), the matrix ρ(g) lies in a subgroup conjugate
to P (see Formula (1.1.2)).

In other words, a representation is parabolic if and only if every peripheral element
leaves invariant a Lagrangian in (R2n, ω). We will denote by HomP (π1(S), G) the
subset of Hom(π1(S), G) consisting of peripherally parabolic representations.

Definition 1.2.5. The quotient space

RepP (π1(S), Sp(2n,R)) := HomP (π1(S), Sp(2n,R))/ Sp(2n,R)

is called the moduli space of peripherally parabolic representations.
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Remark 1.2.6. The space Rep(π1(S), G) does not depend very much on the surface
S, because it depends only on π1(S), and there are several surfaces with the same
fundamental group. For this reason, it is not easy to study this space using topological
decompositions of S. In the space RepP (π1(S), G) however we put conditions on the
peripheral elements in π1(S), and thus it depends on and is more closely related to
the topology of S.

Definition 1.2.7. A representation ρ ∈ Hom(π1(S), Sp(2n,R)) will be called periph-
erally unipotent if for every g ∈ πper1 (S), the matrix ρ(g) lies in a subgroup conjugate
to U (see Formula (1.1.3)).

In other words, a representation is peripherally unipotent if and only if every
peripheral element leaves invariant a framed Lagrangian in (R2n, ω). We will denote
by HomU (π1(S), G) the subset of Hom(π1(S), G) consisting of peripherally unipotent
representations.

Definition 1.2.8. The quotient space

RepU (π1(S),Sp(2n,R)) := HomU (π1(S),Sp(2n,R))/Sp(2n,R)

is called the moduli space of peripherally unipotent representations.

1.2.2 Decorated representations

For a peripherally parabolic representation there might be many ways to choose the
invariant Lagrangians. A decoration is a special way to make this choice.

Definition 1.2.9. A decoration of ρ is a map

D : πper1 (S)→ Lag(2n,R)

satisfying the following properties:

(a) D(g) is invariant under ρ(g) for all g ∈ πper1 (S).

(b) If g1, g2 ∈ πper1 (S), h ∈ π1(S) such that hg1h
−1 = g2, then

ρ(h)(D(g1)) = D(g2).

(c) For every k ∈ Z \ {0} and for every g ∈ πper1 (S),

D(g) = D(gk).

A decorated representation is a pair (ρ,D), where ρ is a representation and D a
decoration of ρ.

Remark 1.2.10. By properties a), b), c) of decorations, for every puncture, one has
to choose a Lagrangian for only one peripheral element going around the puncture.
Then the Lagrangians associated to the other peripheral elements going around the
same puncture are determined.
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We denote by Homd(π1(S), Sp(2n,R)) the set of all decorated representations. The
action of Sp(2n,R) on Hom(π1(S),Sp(2n,R)) and on Lag(2n,R) induces an action
on Homd(π1(S), Sp(2n,R)). We will study the quotient:

Definition 1.2.11. The quotient space

Repd(π1(S), Sp(2n,R)) := Homd(π1(S),Sp(2n,R))/ Sp(2n,R)

is called the moduli space of decorated representations. We denote by [ρ,D] the class
of (ρ,D) in the moduli space of decorated representation.

Remark 1.2.12. We have natural surjective maps

Homd(π1(S), Sp(2n,R)) → HomP (π1(S),Sp(2n,R))
(ρ,D) 7→ ρ

.

Repd(π1(S), Sp(2n,R)) → RepP (π1(S), Sp(2n,R))
[ρ,D] 7→ [ρ]

.

These maps are generically 2nk : 1-map, where k is the number of punctures.

1.2.3 Transverse representations

We now fix an ideal triangulation T of S.

Definition 1.2.13. We say that (ρ,D) ∈ Homd(π1(S, b),Sp(2n,R)) is transverse
with respect to T if the following condition holds: for every edge e of T connecting
punctures pi and pj , for every point b′ ∈ Int(e) and for every curve γ connecting
b and b′, we require that the Lagrangians D(γ ∗ αi ∗ γ−1) and D(γ ∗ αj ∗ γ−1) are
transverse, where the curves αi and αj are as in Figure 1.2.1.
We denote by Homd

T (π1(S, b),Sp(2n,R)) the set of all decorated representations
which are transverse with respect to the triangulation T .

Remark 1.2.14. The transversality property required in the previous definition does
not depend on the choice of the path γ and the base point b. Moreover, this property
is invariant under the action of Sp(2n,R), hence we can define the quotient:

RepdT (π1(S),Sp(2n,R)) := Homd
T (π1(S, b),Sp(2n,R))/Sp(2n,R)

Remark 1.2.15. For each T , the space RepdT (π1(S),Sp(2n,R)) is an open dense
subspace of Repd(π1(S),Sp(2n,R)).
Let T be a triangle of T with boundary ∂T . Using the orientation of S, we can

orient ∂T so that T is to the left from ∂T . This gives us a cyclic order on the vertices
{p1, p2, p3} of T . We assume that (p1, p2, p3) are in positive cyclic order.

Definition 1.2.16. Let [ρ,D] ∈ RepdT (π1(S), Sp(2n,R)), and consider elements
g1, g2, g3 ∈ πper1 (S, b) that go around p1, p2, p3 (see Figure 1.2.2). We can consider the
Maslov index µT := µ(D(g1), D(g2), D(g3)). Since µ is Sp(2n,R)-invariant, µT is a
well defined invariant of [ρ,D] for each triangle T of T . We call µT the Maslov index
of the positive oriented triangle T for [ρ,D].
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Figure 1.2.1:

1.2.4 Toledo number and maximal representations

An important invariant for representations [ρ] ∈ Rep(π1(S), Sp(2n,R)) is the Toledo
number, here denoted by Tρ, which was defined in [7] using bounded cohomology. It
is a real number which satisfies the Milnor–Wood inequality:

−n|χ(S)| ≤ Tρ ≤ n|χ(S)|.

Moreover, for all representations [ρ] ∈ RepP (π1(S), Sp(2n,R)), this invariant takes
only integer values. The representations where this invariant achieves its maximum
have particularly nice geometric properties, see [7].

Definition 1.2.17. A representation [ρ] ∈ Rep(π1(S),Sp(2n,R)) is called maximal
if Tρ = n|χ(S)|.

We denote byM(π1(S),Sp(2n,R)) the subspace of Rep(π1(S),Sp(2n,R)) consist-
ing of all maximal representations. Similarly, we denote byMd(π1(S), Sp(2n,R)) the
subspace of Repd(π1(S),Sp(2n,R)) of all decorated maximal representations, and by
Md
T (π1(S),Sp(2n,R)) the subspace of all decorated maximal representations which

are transverse with respect to a chosen triangulation T . The following facts are
proven in [7].

Proposition 1.2.18. [7]

(a) M(π1(S), Sp(2n,R)) ⊂ RepP (π1(S),Sp(2n,R)). In particular, the natural pro-
jection map

Md(π1(S),Sp(2n,R)) → M(π1(S), Sp(2n,R)).

is surjective.
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Figure 1.2.2:

(b) Maximal representations are transverse with respect to any ideal triangulation T :

Md
T (π1(S),Sp(2n,R)) =Md(π1(S), Sp(2n,R)).

(c) All maximal representations are reductive, hence the spacesM(π1(S), Sp(2n,R))
and Md(π1(S), Sp(2n,R)) are Hausdorff (cfr. Remark 1.2.3).

Remark 1.2.19. A representation [ρ] ∈ Rep(π1(S),Sp(2n,R)) is called almost maximal
if Tρ > (n− 1)|χ(S)| (see [9]). The Remark 1.2.18 (c) holds also for the subsets of
the moduli spaces consisting of all almost maximal representations.

We now show that the Toledo number of a decorated representation can be computed
easily using an ideal triangulation. In the special case of a pair of pants the following
proposition was proven in [26].

Proposition 1.2.20. Let T be an ideal triangulation of S and (ρ,D) ∈
Homd

T (π1(S), Sp(2n,R)). The Toledo number Tρ of ρ can be computed from the
following formula:

Tρ =
∑
T∈T

µT

where µT is the Maslov index of the positive oriented triangle T for [ρ,D].

Corollary 1.2.21. The number
∑

T∈T µ
T only depends on the representation. In

particular it does not depend on the choice of decoration nor on the ideal triangulation.

The fact that
∑

T∈T µ
T does not depend on the triangulation can also be seen

directly since every two triangulations are connected by a sequence of flips, and
for a flip the statement follows from the cocycle relation of the Maslov index (see
Remark 1.1.8).
As a corollary of the previous proposition, we can recognize decorated maximal

representations using a triangulation:
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Corollary 1.2.22. Given a decorated representation ρ, and an ideal triangulation
T of S, we have that ρ is maximal if and only if the Maslov index of each positively
oriented triangle T in T is n.

The proof of Proposition 1.2.20 will take the rest of this subsection. It will use, as
tools, the Souriau index and the rotation number, whose properties we will briefly
discuss.

Let G̃ be the universal covering of G := Sp(2n,R) and L̃ag(2n,R) be the universal
covering of Lag(2n,R). In [7] it is shown that G̃ acts on L̃ag(2n,R) in a compatible
way with respect to the action of G on Lag(2n,R), i.e. for all g̃ ∈ G̃ and for all
L̃ ∈ L̃ag(2n,R):

p(g̃.L̃) = pG(g̃).p(L̃)

where p : L̃ag(2n,R)→ Lag(2n,R), pG : G̃→ G are natural projections of coverings,
and by . we denote the actions of corresponding groups.
The Souriau Index is a map

m : L̃ag(2n,R)× L̃ag(2n,R)→ R

which is G̃-invariant and satisfies the following relation: for each L̃1, L̃2, L̃3 ∈
L̃ag(2n,R)

m(L̃1, L̃2) +m(L̃2, L̃3) +m(L̃3, L̃1) = µ(L1, L2, L3)

where Li = p(L̃i) for i ∈ {1, 2, 3}. See [8] and [26] for a precise definition.
We also need the rotation number R̃ot : G̃→ R, a conjugation invariant function

defined in [7] using the theory of bounded cohomology. We will need the following
properties:

Lemma 1.2.23 ( [26]). Let g̃ ∈ G̃, L̃ ∈ L̃ag(2n,R) and let p(L̃) ∈ Lag(2n,R) be a
fixed point of pG(g̃) ∈ G. Then

R̃ot : G̃ → R
g̃ 7→ m(g̃L̃, L̃)

Lemma 1.2.24 ( [7, Thm. 12]). Let ρ ∈ Hom(π1(S), Sp(2n,R)) and

π1(S) = 〈a1, b1, . . . , ag, bg, c1, . . . , ck | c1 . . .k [bg, ag] . . . [b1, a1] = 1〉

be a presentation of π1(S). Let ρ̃ ∈ Hom(π1(S), G̃) be a lift of ρ to the universal
covering G̃ of Sp(2n,R). The Toledo number of ρ can be computed as:

Tρ = −
k∑
i=1

R̃ot(ρ̃(ci))

We are finally ready to present the
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Proof of Proposition 1.2.20. First we fix a presentation of π1(S):

π1(S) = 〈a1, b1, . . . , ag, bg, c1, . . . , ck | c1 . . .k [bg, ag] . . . [b1, a1] = 1〉

where g is the genus of S, k is the number of punctures. We choose a lift ρ̃ : π1(S)→ G̃.
From ρ̃, we can compute Tρ using Lemma 1.2.24.

We can assume that ρ̃(ci) have a fixed point zi, i ≥ 2 in L̃ag(2n,R). So R̃ot(ρ̃(ci)) =
0. This is possible since ρ(c2), . . . , ρ(ck) have fixed points in Lag(2n,R). We also
denote by y0 a lift of a fixed point of ρ(c1).
We denote for all admissible i:

Ai := ρ(ai), Ãi := ρ̃(ai),

Bi := ρ(bi), B̃i := ρ̃(bi),

Ci := ρ(ci), C̃i := ρ̃(c̃i).

By induction, we denote
yi := B̃−1

i Ã−1
i B̃iÃiyi−1

for i ∈ {1, . . . , g}.
We consider a polygon model of S and the ideal triangulation as in Figure 1.2.3,

where the vertices of the triangulation are decorated by lifted fixed points of the
corresponding peripheral elements, and the edges are marked by letters and arrows cor-
responding to the generators of the fundamental group and gluing/cutting directions.

To write the sum of Maslov indices, we use the Souriau index [26, 3.2]:

∑
T∈T

µTρ =

g∑
i=1

(m(yi−1, Ã
−1
i B̃iÃiyi−1) +m(Ã−1

i B̃iÃiyi−1, B̃iÃiyi−1)+

+m(B̃iÃiyi−1, Ãiyi−1) +m(Ãiyi−1, B̃
−1
i Ã−1

i B̃iÃiyi−1))+

+m(yg, C̃
−1
k . . . C̃−1

3 z2)+

+
k−1∑
i=2

m(C̃−1
k . . . C̃−1

i+1zi, C̃
−1
k . . . C̃−1

i+2zi+1) +
k−1∑
i=2

m(zi+1, zi) +m(z2, y0).

Using the G̃-invariance of the Souriau index and its anti-symmetry we can see that

m(B̃iÃiyi−1, Ãiyi−1) = m(Ã−1
i B̃iÃiyi−1, yi−1) = −m(yi−1, Ã

−1
i B̃iÃiyi−1)

m(Ã−1
i B̃iÃiyi−1, B̃iÃiyi−1) = m(B̃−1

i Ã−1
i B̃iÃiyi−1, Ãiyi−1) =

= −m(Ãiyi−1, B̃
−1
i Ã−1

i B̃iÃiyi−1).

Therefore, the first sum is equal to zero. Moreover,

m(C̃−1
k . . . C̃−1

i+1zi, C̃
−1
k . . . C̃−1

i+2zi+1) = m(C̃−1
i+1zi, zi+1) =
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Figure 1.2.3:

= m(zi, C̃i+1zi+1) = m(zi, zi+1).

Therefore, the second sum is equal to minus the third sum. So we get:∑
T∈T

µT = m(yg, C̃
−1
k . . . C̃−1

3 z2) +m(z2, y0) =

= m(yg, C̃
−1
k . . . C̃−1

3 C̃−1
2 z2) +m(z2, y0) =

= m(C̃2C̃3 . . . C̃kyg, z2) +m(z2, y0) = m(C̃−1
1 y0, z2) +m(z2, y0) =

= m(C̃−1
1 y0, y0) = R̃ot(C̃−1

1 ) = −R̃ot(C̃1) = Tρ.

1.3 X -coordinates for maximal representations

In this section we introduce positive X -coordinates. They will give a parametrization
of the space of maximal representations: we restrict our attention here to this
special case because the definition is significantly simpler than in the general case.
The definition of general X -coordinates for decorated representations that are not
necessarily maximal will be given in Section 1.5.
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1.3.1 Ideal triangulations of surfaces

Let T be an ideal triangulation of a punctured surface S = S̄ \ P where P =
{p1, . . . , pk} is the set of punctures. We consider T as a graph T = (P,E) embedded
in S̄ so that the complement of T in S̄ is a disjoint union of triangles which we call
faces or triangles of the triangulation T . We denote by F the set of all faces of T .

The X -coordinates will in general consist face invariants, edge invariants, and angle
invariants. The face coordinates essentially come form the Maslov index, so they
take values in a discrete set, and for positive X -coordinates, they are all constant
equal to n, so that we can suppress them. For the angle coordinates it is important
to introduce the angles of the triangulation, which is what we do know.
For each edge e ∈ E there are up to homotopy two parametrizations ~e : [0, 1]→ e

and ~e −1 : [0, 1]→ e, where ~e −1(t) = ~e(1− t). The restrictions ~e,~e −1 : (0, 1)→ e \P
are bijective. The choice of ~e for e ∈ E is called an orientation of the edge e ∈ E. We
denote by Eor the set of all oriented edges of T .
The orientation of S defines maps:

r : Eor → F

l : Eor → F

which associate to an oriented edge ~e the unique face whose closure contains this edge
and which lies to the right (resp. to the left) of ~e.

Definition 1.3.1. An ideal triangulation T together with a chosen orientation for
every edge is called an oriented ideal triangulation.

Definition 1.3.2 (Positive and negative angles). The triple (~e1, ~e2, f) ∈ E2
or × F is

called a positive angle of the triangulation T if

• ~e1(1) = ~e2(0) ⊆ P ∩ f̄ ,

• l(~e1) = l(~e2) = f .

Similarly, the triple (~e1, ~e2, f) ∈ E2
or×F is called a negative angle of the triangulation

T if

• ~e1(1) = ~e2(0) ⊆ P ∩ f̄ ,

• r(~e1) = r(~e2) = f .

We denote by W+ (resp. W−) the set of all positive (resp. negative) angles of T ,
and by W the set of all angles of T , i.e. W = W+ ∪W−.

For each angle w = (~e1, ~e2, f) the opposite angle is defined as:

w−1 = (~e −1
2 , ~e −1

1 , f) ∈W.

Obviously, the opposite angle of a positive angle is negative and vice versa.
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Definition 1.3.3 (Positive triple). We call a triple of different positive angles
(w1, w2, w3) positive if

w1 = (~e1, ~e2, f), w2 = (~e2, ~e3, f), w3 = (~e3, ~e1, f)

for ~e1, ~e2, ~e3 ∈ Eor.

Obviously, the positivity of a triple of positive angles is invariant under cyclic
permutations.
For simplicity we will draw orientation of angles using arrows as on Figure 1.3.1

Figure 1.3.1:

1.3.2 Positive X -coordinates

Let S be a surface with an oriented ideal triangulation T . We use the notation
introduced in Section 1.3.1.

Definition 1.3.4 (Positive X -coordinates). A system of positive X -coordinates of
rank n on (S, T ) is a map

x : E tW+ → Rn>0 tO(n)

such that

• the edge invariant x(e) for an edge e ∈ E is an n-tuple of positive real numbers
x(e) = (λ1, . . . , λn) ∈ Rn>0 with λi ≥ λi+1 ;

• the angle invariant x(w) for a positive angle w ∈W+ is an orthogonal matrix
x(w) ∈ O(n). The angle coordinates are subject to the following relation: for
each positive triple of positive angles (w1, w2, w3) we require

x(w3)x(w2)x(w1) = Id .

We denote by X+(S, T , n) the set of all positive systems of X -coordinates of rank
n on (S, T ).
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As a convenient notation, if x ∈ X+(S, T , n) is a system of X -coordinates and
w ∈W− is a negative angle, we will write x(w) = x(w−1)−1.

Given a system of positive X -coordinates, we can construct a decorated transverse
homomorphism of the fundamental group π1(S, b) for an appropriately chosen b ∈ S.
We describe this procedure in two steps, first constructing the homomorphism and
then the decoration.
For this we lift the triangulation T of S to a triangulation T̃ = (P̃ , Ẽ) of the

universal covering S̃ of S.
We define a graph Γ on the surface in the following way: in every triangle we

choose three points close to the three edges, these points will be the vertices of the
graph. The edges of Γ are segments connecting the three points in one triangle and
segments connecting the two points in neighboring triangles that are close to the
same edge of the triangulation (see Figure 1.3.2).

Figure 1.3.2:

We assume that the base point b coincide with one of vertices of Γ. Now, every
element α ∈ π1(S, b) has a representative which is a closed simplicial path in the
graph Γ. We can write α as composition of paths

α = αk ◦ · · · ◦ α1,

where every αi is a path along one edge of Γ.
To define the representation ρ = rep+(x), we will associate to every α the matrix

ρ(α) = Ak · · ·A1.

We introduce the following notation, if x(r) is an edge invariant, i.e. it a an n-tuple
of positive real numbers (λ1, . . . , λn) ∈ Rn>0 with λi ≥ λi+1, then diag(x(r)) denotes
the diagonal matrix whose ith-entry is λi.
Then Ai is defined as follows:
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• If αi is going along an edge of Γ which crosses the oriented edge ~r of the
triangulation from the right to the left assuming that the edge ~r is oriented
upwards, we have

Ai :=

(
0 −

√
diag(x(r))√

diag(x(r))
−1

0

)

where
√

diag(x(r)) is a coordinatewise positive square root.

• If αi is going along an edge of Γ which crosses the oriented edge ~r of the
triangulation from the left to the right assuming that the edge ~r is oriented
upwards, we have

Ai := −

(
0 −

√
diag(x(r))√

diag(x(r))
−1

0

)

where
√

diag(x(r)) is a coordinatewise positive square root.

• If αi is along an edge of Γ that follows the angle w of the triangulation, consider
the matrices

Û :=

(
x(w)T 0

0 x(w)T

)
,

Tr =

(
− Id Id
− Id 0

)
, Tl = (Tr)

−1.

We have Ai = TrÛ (resp. Ai = TlÛ) if when going from αi−1 to αi we are
turning to the right (resp. to the left). Notice that, Tr and Û commute:
TrÛ = ÛTr, TlÛ = ÛTl.

All the matrices Ai are symplectic, so ρ(α) ∈ Sp(2n,R). It is easy to check that this
matrix only depends on the homotopy class of α, and that the map is a group homo-
morphism. In this way we constructed a representation ρ ∈ Hom(π1(S, b), Sp(2n,R)).

We now construct a decoration D for this representation. First, consider the case
of a puncture that is a vertex of an edge of T which is close to the basepoint b. A
simple peripheral element of π1(S, b) around this puncture can be represented by
a circle c going around this puncture. Then going around c we always are turning
either to the right or to the left. Therefore, either Le = Span(e) or Lf = Span(f)
is preserved by ρ(c), where (e, f) is the standard symplectic basis of (R2n, ω) (see
Figure 1.3.3).

Now we extend this definition to general punctures. First, we note that if α is any
path in the graph Γ, we write α = αk ◦ · · · ◦ α1, where every αi is a path along one
edge of Γ. The definition of the matrix ρ(α) given above can be applied also to this
path α, even if it is not closed.

Finally, for each simple peripheral curve γ around some puncture p with start- and
endpoint b, we can take a point b′ which lies in a triangle adjacent to p. Then we can
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Figure 1.3.3:

decompose γ up to homotopy into a path α from b to b′, circle c around p and the
inverse path α−1 from b′ to b. The representation ρ associates to this element the
matrix

ρ(γ) = ρ(α−1)ρ(c)ρ(α)

We have already seen how to construct a Lagrangian L preserved by the matrix ρ(c),
we can then associate to γ the matrix D(γ) := ρ(α−1)L.

For each non-simple peripheral curve which is a power of some simple one, we define
a decoration of non-simple peripheral curve to be the decoration of the corresponding
simple curve. All other non-simple curves are of the form γ = β−1αnβ, where α is
simple closed curve, β is some closed curve. So we define D(γ) := ρ(β).D(α).
In this way, starting from a system of X-coordinates x, we defined an element

(ρ,D) ∈ Homd
T (π1(S, b), Sp(2n,R)). We define rep+(x) := (ρ,D).

1.3.3 Properties of the map rep+

We now describe properties of the map

rep+ : X+(S, T , n)→ Homd
T (π1(S, b),Sp(2n,R)).

For this we introduce the notion of coordinates that are admissible with respect to
a decorated representation [ρ,D] ∈ Md

T (π1(S, b),Sp(2n,R)). Note that we can lift
the decoration D to a map D̃ : P̃ → Lag(2n,R).

Definition 1.3.5. x ∈ X+(S, T , n) is called admissible for a maximal representation
[ρ,D] ∈Md

T (π1(S, b),Sp(2n,R)) if

• for each edge e ∈ Ẽ on the boundary of the triangles T = (t1, t3, t2) and
T ′ = (t2, t4, t1) of T̃ , the cross ratio [D̃(t1), D̃(t3), D̃(t2), D̃(t4)] is conjugated
to −diag(x(e));
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• for each pentagon in T̃ as in Figure 1.3.4, the orthogonal matrix x(w) belongs
to the double coset [D̃(t1), D̃(t5), D̃(t3), D̃(t2), D̃(t4)].

Figure 1.3.4:

Remark 1.3.6. This definition is independent on the choice of (ρ,D) ∈ [ρ,D] and of
the lift D̃ of D.

Proposition 1.3.7. For every x ∈ X+(S, T , n), the image rep+(x) is a decorated
maximal representation , and x is admissible for the representation rep+(x).

Proof. A direct calculation in one triangle shows that for the decoration constructed
above each positive oriented triangle has maximal Maslov index. Similarly, a direct
calculations in a quadrilateral and in a pentagon show admissibility of x for rep(x).

We denote by [rep+](x) the conjugacy class of rep+(x). We just constructed a map

[rep+] : X+(S, T , n)→Md
T (π1(S, b), Sp(2n,R)).

This map is surjective (see Corollary 1.3.13) but it is not injective: sometimes
changing the angle coordinates, the image representation stays the same. We describe
this ambiguity explicitly.

Proposition 1.3.8. Let x ∈ X+(S, T , n). Consider two triangles adjacent by an
edge e. Let x(e) = Λ and consider the angle coordinates be defined as in Figure 1.3.5.
Let us change angle coordinates in the following way:

U ′1 = WU1, V
′

1 = V1W
′−1,

U ′2 = U2W
−1, V ′2 = W ′V2.

We denote by x′ the changed coordinates. Then [rep+](x) = [rep+](x′) if and only if

W ∈ O(n) ∩O(diag(Λ)),

W ′ := D−1W TD,
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Figure 1.3.5:

D :=
√

diag Λ.

Moreover, if [rep+](x) = [rep+](x′) for some x, x′ ∈ X+(S, T , n) then x(e) = x′(e)
for all edges e and there exists a finite sequence of changing of angle coordinates
defined by formulas above which puts x(w) to x′(w) for all angles w.

Remark 1.3.9. The ambiguity in a choice of angle coordinated around an edge e
depends on how generic the tuple x(e) =: Λ is. Let λ1 > · · · > λk are different entries
of Λ with multiplicities l1, . . . , lk, then W ∈ O(l1)× · · · ×O(lk) ≤ O(n) (diagonally
embedded). In particular, for generic Λ with all entries different, W ∈ Zn2 . On the
other hand, if Λ = (λ, . . . , λ) for some λ > 0, then W ∈ O(n).

Proposition 1.3.8 will be proven in Section 1.5 where we treat general X -coordinates.

1.3.4 The set of positive X -coordinates associated to a representation

So far we only constructed a decorated maximal representation given a system of
positive X -coordinates. Now we describe how, given an ideal triangulation, we can
associate a system of positive X -coordinates to a decorated maximal representation
[(ρ,D)] so that [rep+(x)] = [(ρ,D)]. The basic idea is clear, we want a system
of coordinates that is admissible for [(ρ,D)] - so essentially for each edge e of the
triangulation there are two adjacent triangles, whose vertices are decorated by four
Lagrangian subspaces L1, L2, L3, L4, and the edge invariant x(e) is the ordered set
of eigenvalues of the cross ratio map [L1, L2, L3, L4] : L1 → L1, and for every
angle, we have a decoration by five Lagrangians, and the angle coordinate is the angle
[L1, L2, L3, L4, L5], see Figure 1.1.1. However one has to be a bit careful when making
the precise definitions, because we do not only want the the system of coordinates
is admissible with respect to [(ρ,D)], but that moreover that [rep+(x)] = [(ρ,D)].
And in general there are admissible system of X -coordinates x ∈ X+(S, T , n) for
[ρ,D] ∈Md

T (π1(S, b),Sp(2n,R)) such that [rep+](x) 6= [ρ,D].
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So we take an ideal triangulation T of S and choose b0 ∈ S. Let (ρ,D) ∈
Homd

T (π1(S, b0),Sp(2n,R)) be a decorated maximal representation.
We lift the oriented triangulation T of S to the oriented triangulation T̃ of the

universal covering S̃. We also fix a lift b ∈ S̃ of b0 ∈ S. Punctures are lifted to visual
boundary points of S̃ (after choice of some Riemannian metric of finite area). Using
the decoration D, each boundary point can be decorated by a Lagrangian in a unique
way. This decoration is π1(S, b0)-equivariant.

We consider the graph Γ associated to this triangulation as in Section 1.3.2, see
Figure 1.3.2. We can assume that Γ is invariant under the action of π1(S, b0) on S̃.
First, we associate a symplectic basis to each vertex of Γ and a tuple (λ1, . . . , λn)
with λ1 ≥ · · · ≥ λn > 0 to each edge of lifted triangulation T .

For each vertex b of Γ there is the unique edge r close to which this vertex
lies and unique triangle T in which b lies. We take an orientation of the edge ~r
such that the vertex b lies to the right from ~r. We consider the triangle, which
is adjacent to T across the edge r. Thus we have a quadrilateral decorated by
Lagrangians (L1, L3, L2, L4). Since the representation is maximal, the bilinear form
β3 := [L1, L2, L3] : L1 → L∗1 is well defined and positive definite, and the cross ratio
map F := [L1, L3, L2, L4] : L1 → L1 is well defined and symmetric with respect to β3

with positive eigenvalues.
We say that the four tuple (L1, L2, L3, L4) is in standard position with respect

to a symplectic basis (e, f) if L1 = Le, and L2 = Lf , [L3]e,f = Id, and [L4]e,f =
−diag(λ1, . . . , λn), where [F ]e = −diag(λ1, . . . , λn).
We then define the edge invariant x(r) = x(~r) = (λ1, . . . , λn) and associate the

symplectic bases B(b) = (e, f) to the vertex b of Γ.
Because the oriented edge ~r defines the point b uniquely, sometimes we will say

that the basis B(b) is associated to the oriented edge ~r and write B(~r).
By construction, the map x for oriented edges is π1(S, b0)-invariant, therefore, x is

well-defined for oriented edges of triangulation T of S. Moreover, the easy calculation
shows that x(~r) = x(~r −1), therefore x(r) is well defined and does not depend on the
choice of orientation. We have to take care of two other issues:

1. For each oriented edge ~r of triangulation there are two vertices b1, b2 of Γ lying
close to ~r. In general, there are many possibilities to define B(b2) if B(b1) is
fixed. We fix one of them, which is consistent with the construction of the map
rep+, namely with the matrix associated to the crossing of an edge. Assume
~r is oriented upwards, b1 lies to the right from ~r and b2 lies to the left. Let
B(b1) =: (e, f) then B(b2) := (−f

√
diag(λ1, . . . , λn), e

√
diag(λ1, . . . , λn)

−1
)

where x(r) = (λ1, . . . , λn).

2. The choice of bases B is in general not unique. But it can always be chosen in
a ρ-equivariant way with respect to the action of Sp(2n,R) on symplectic bases
because the lifted decoration by Lagrangians is ρ-equivariant. We will always
assume that B is ρ-equivariant.

To define the angle coordinate, we consider a pentagon decorated by Lagrangians
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as on the Figure 1.3.6. To each oriented diagonal ~r0 and ~r1 of this pentagon are
associated bases B(~r0) =: (e0, f0) of (L1, L2) and B(~r1) =: (e1, f1) of (L3, L1). So
we can define the angle invariant x(w) to be x(w) := [L1, L5, L3, L2, L4]e0,f1 .

Figure 1.3.6:

Remark 1.3.10. Since the map B is ρ-equivariant, the map x for angles is π1(S, b0)-
invariant. Therefore, x is well-defined for all oriented angles of the triangulation T of
S.

Remark 1.3.11. Ordered tuple x(r) = (λ1, . . . , λn) for each edge r is uniquely defined.
In contrast, the matrices U for each angle are in general not uniquely defined by the
representation ρ. To define U , we have chosen a map B fixing a symplectic basis for
each oriented edge which is not unique in general.

Lemma 1.3.12. Let [ρ,D] ∈ Md
T (π1(S, b), Sp(2n,R)). Consider x ∈ X+(S, T , n)

constructed from [ρ,D] as above. Then [rep+](x) = [ρ,D].

Proof. Notice, the bases on vertices of Γ were chosen in compatible way with the
construction of the map rep+, i.e. let b1, b2 be vertices of Γ connected by an edge r.
To r the matrix E is associated as in the previous section (going along an angle or
crossing an edge of triangulation). Then E maps the basis B(b1) to B(b2).
Therefore, by induction, for every loop α based in b, rep+(α)(B(b)) = B([α]b),

where by [α]b we understand the action of [α] ∈ π1(S, b) on vertices of Γ ⊆ S̃. But
the choice of B is ρ-equivariant, i.e. rep+(α)(B(b)) = B([α]b) = ρ(α)B(b). But
the action of Sp(2n,R) on symplectic bases is exact, therefore, rep+(α) = ρ(α) for
all [α] ∈ π1(S, b), where ρ(α) is written as a matrix with with respect to the basis
B(b).

Corollary 1.3.13. The map [rep+] is surjective.

1.3.5 Change of coordinates

The constructions of positive X -coordinates depends on a choice of ideal triangulation
T of S, however the representation [rep+(x)] is independent of the triangulation. If we
choose a different ideal triangulation T ′ we get a different set of positive X -coordinates.
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In the work of Fock and Goncharov, it was essential that the coordinate changes
going from one triangulation to another are given by positive rational functions,
because these implies that the set of positive representations is independent of the
triangulation used to define it. Here we know here a priori that the image of [rep+]
is independent of the triangulation, because it is the set of maximal representations,
which can be defined without reference to any triangulation. It is of interest of interest
to understand the coordinate changes.

Since every ideal triangulation T ′ can be obtained from any other ideal triangulation
T by a sequence of flips, i.e. changing the triangulation just by taking a quadrilateral
and exchanging one diagonal for the other one, the coordinate change of a flip is the
central ingredient.

In the case of positive X -coordinates it is quite difficult to write explicit formulas for
this coordinate change. In particular the angle coordinates are given rather implicitly.
However in the case of "scalar" edge invariants. Let x(r) = l Id then

Figure 1.3.7: Flip along “scalar” edge

Ũ1 = U1U2, Ṽ1 = V2V1

W1 = Ṽ2Ũ2, W2 = Ũ3Ṽ3

(triangles and angles are oriented counterclockwise).

1.3.6 Comparison with Fock–Goncharov coordinates

In this section we show that a maximal representation is not always positive in
terms of Fock–Goncharov coordinates [11]. To do this, we take a positive 4-tuple
of Lagrangians and show that it does not have always positive Fock–Goncharov
coordinates.
To do this, first, we fix some symplectic basis (e, f) = (e1, e2, f1, f2) on (R4, ω)

and consider the following four Lagrangians: L1 := Le, L2 := Lf , L3 := Le,f (Id),
L4 := Le,f (− Id). This 4-tuple has as X -coordinate (1, . . . , 1).
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Since the Fock–Goncharov coordinates are defined for decorations by full flags, we
have to choose a line in each Lagrangian. We choose:

l1 = 〈e1 + θe2〉 ≤ L1

l2 = 〈f1 + λf2〉 ≤ L2

l3 = 〈e1 + f1 + µ(e2 + f2)〉 ≤ L3

l4 = 〈e1 − f1 + ν(e2 − f2)〉 ≤ L4

where θ, λ, µ, ν ∈ R some constants. Then the corresponding full flag for each
i ∈ {1, 2, 3, 4} is (li, Li, l

⊥
i ), where l⊥i = {v ∈ R4 | ω(li, v) = 0}.

Figure 1.3.8:

So we get the following coordinates:

D1 = −(µθ + 1)(λ− ν)

(νθ + 1)(λ− µ)
D2 =

(λ− µ)(θ − ν)

(θ − µ)(λ− ν)
D3 = −(νλ+ 1)(θ − µ)

(µλ+ 1)(θ − ν)

T1 = −(µθ + 1)(θ − λ)

(λθ + 1)(θ − µ)
T2 = −(λθ + 1)(λ− µ)

(λµ+ 1)(λ− θ)
T3 = −(λµ+ 1)(µ− θ)

(θµ+ 1)(µ− λ)

T4 = −(λθ + 1)(θ − ν)

(νθ + 1)(θ − λ)
T5 = −(νλ+ 1)(λ− θ)

(θλ+ 1)(λ− ν)
T6 = −(θν + 1)(ν − λ)

(λν + 1)(ν − θ)
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We are going to show that all these coordinates can not be all positive for fixed
θ, λ, µ, ν ∈ R. Assume first:

θ − λ
λθ + 1

> 0

Since T2 > 0, we get
λ− µ
λµ+ 1

> 0

Since T5 > 0, we get
λ− ν
νλ+ 1

> 0

Therefore,

D2D3 = −(λ− µ)(θ − ν)

(θ − µ)(λ− ν)

(νλ+ 1)(θ − µ)

(µλ+ 1)(θ − ν)
= −(νλ+ 1)(λ− µ)

(µλ+ 1)(λ− ν)
< 0

and D2 and D3 cannot be positive at the same time.
If we assume

θ − λ
λθ + 1

< 0

then, since T2 > 0, we get
λ− µ
λµ+ 1

< 0

Since T5 > 0, we get
λ− ν
νλ+ 1

< 0

Therefore,

D2D3 = −(λ− µ)(θ − ν)

(θ − µ)(λ− ν)

(νλ+ 1)(θ − µ)

(µλ+ 1)(θ − ν)
= −(νλ+ 1)(λ− µ)

(µλ+ 1)(λ− ν)
< 0

and D2 and D3 cannot be positive at the same time.
This shows that the 4-tuple (L1, L2, L3, L4) is not positive in the sense of Fock–

Goncharov for each choice of lines li ∈ Li, i ∈ {1, 2, 3, 4}.

1.4 Topology of the space of maximal representations

We now use positive X -coordinates to understand the topology of the space of
(decorated) maximal representations, focussing first on the homotopy type and then
on the homeomorphism type. Note that our results are for surfaces with punctures;
in the case of a closed surface, topological information about the space of maximal
representations in Sp(2n,R) can be obtained using Higgs bundles [1, 5, 12,13].
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1.4.1 Homeomorphism type of the space of maximal representations

In this section we go further to determine not only the homotopy type, but actually
the homeomorphism type of the space of decorated maximal representations.
We recall from the description of positive X -coordinates, that if T is an idea

triangulation of the oriented surface S of genus g with k punctures, the three angle
coordinates associated to the three corners of one triangle satisfy the relation that
their product is equal to the identity. We therefore choose in every triangle two
independent angles, the third one is then uniquely defined. We denote the set of
chosen independent angles by W ′.
The space of positive X -coordinates

X+(S, T , n) ∼= (R>0 × Rn−1
≥0 )E ×O(n)W

′

can be seen as a trivial bundle

θ : X+(S, T , n)→ (R>0 × Rn−1
≥0 )E =: B

with compact fiber O(n)W
′ .

Let y ∈ B, then y(e) = (y1(e), . . . , yn(e)). Consider the set {y1(e), . . . , yn(e)}, let k
be the cardinality of this set, so {y1(e), . . . , yn(e)} = {λ1, . . . , λk} for λi > λi+1 for all
1 ≤ i ≤ k − 1. We denote by nei the multiplicity of λi in the tuple (y1(e), . . . , yn(e)).

We define the stabilizer of y to be

Stab(y) :=
∏
e∈E

O(ne1)× · · · ×O(ner).

By Proposition 1.3.8 the stabilizer of y acts on the fiber θ−1(y) ⊆ X+(S, T , n) over
y ∈ B. So we can consider the following singular fibration:

θ−1(y)/ Stab(y) ↪→ X+(S, T , n)/ ∼
↓

y ∈ B

where the equivalence relation ∼ is defined fiberwise by action of Stab(y) on θ−1(y) ∼=
O(n)W

′ .
By proposition 1.3.8, the map

[rep+] : X+(S, T , n)→Md
T (π1(S),Sp(2n,R))

is constant on each orbit of Stab(y) on θ−1(y). Therefore, the map

[rep+]′ := [rep+] ◦ q−1 : X+(S, T , n)/ ∼→Md
T (π1(S),Sp(2n,R))

well-defined and is a homeomorphism, where

q : X+(S, T , n)→ X+(S, T , n)/ ∼
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is the quotient map.
Since θ−1(y) ∼= O(n)W

′ , we have the following description ofMd
T (π1(S),Sp(2n,R)):

O(n)W
′
/ Stab(y) ↪→ Md

T (π1(S), Sp(2n,R))
↓

y ∈ (R>0 × Rn−1
≥0 )E

Proposition 1.4.1. The space X+(S, T , n) has #W ′ = 2#T connected components
that are all diffeomorphic to each other.

The connected components of X+(S, T , n) can be labeled by elements of the set
{0, 1}W ′.
Moreover, for each y ∈ B

θ−1(y) =
⊔

p∈{0,1}W ′
Fp(y)

where Fp(y) is the fiber in the connected component Cp over y ∈ B, p ∈ {0, 1}W ′ . For
all y ∈ B and for all p, q ∈ {0, 1}W ′ fibers Fp(y) and Fq(y) are diffeomorphic.

Proof. The set of connected components of X+(S, T , n) can be identified with the
set {0, 1}W ′ , where to each independent angle w we associate 0 if it is x(w) ∈ SO(n)
and 1 otherwise (x ∈ X+(S, T , n)).

The diffeomorphism between connected components Cp and Cq for p, q ∈ {0, 1}W ′

is given by multiplication of angle coordinates x(w) with a matrix Up(w)q(w) for all
w ∈W ′ where U ∈ O(n) \ SO(n). This diffeomorphism is given fiberwise, therefore,
Fp(y) and Fq(y) are diffeomorphic for all y ∈ B and for all p, q ∈ {0, 1}W ′

Proposition 1.4.2. Each connected component Cp is mapped by [rep+] surjectively
onto some connected component ofMd

T (π1(S),Sp(2n,R)).

Proof. First of all, we fix some connected component Cp and consider the restriction
of [rep+] to this component. [rep+](Cp) is path connected and, therefore, is contained
in some connected component ofMd

T (π1(S),Sp(2n,R)) which we denote by Cp.
Since θ|Cp : Cp → B is surjective, it is enough to show that [rep+] maps each fiber

of Cp surjectively to each fiber of Cp over B. We take some y ∈ B and consider the
fiber F (y) ⊆ Cp, the fiber Fp(y) ⊆ Cp and F (y)′ := θ−1(y) ∩ [rep+]−1(Cp).
Since F (y) = F (y)′/ Stab(y) is a quotient be an action of a group, the map

[rep+]|F (y)′ : F (y)′ → F (y) = F (y)′/ Stab(y) is open.
F (y)′ = tq∈QFq(y) where Q is some subset in {0, 1}#W ′ and p ∈ Q. So F (y)′ is

a union of finitely many diffeomorphic connected components, and Fp(y) is one of
them. Therefore Fp(y) is open in F (y)′.
Moreover, since Fp(y) is compact, [rep+]Fp(y) is open and compact in F (y), so it

is closed and, therefore, [rep+]Fp(y) = F (y).

35



Theorem 1.4.3. The space of decorated maximal representation
Md(π1(S), Sp(2n,R)) is homeomorphic to

Sym+(n,R)6g+3k−6 ×O(n)2g+k−1/O(n)

where Sym+(n,R) is the space of all symmetric positive definite matrices and O(n)
acts by simultaneous conjugation in every factor.

Proof. To proof this theorem, first, we need the next technical proposition. But
before state it, we fix the following notation:

∆n := {diag(d1, . . . , dn) | d1 ≥ · · · ≥ dn > 0} ⊂ Sym+(n,R).

Stab(D) := O(n) ∩O(D)

for D ∈ ∆n. Note that ∆n is diffeomorphic to R>0 × Rn−1
≥0 . We freely identify edge

coordinates with elements of ∆n.

Proposition 1.4.4. The space of decorated maximal representation
Md
T (π1(S), Sp(2n,R)) is homeomorphic to the singular fibration

FD ↪→ E
↓

D ∈ ∆n

which is obtained from the trivial bundle

Sym+(n,R)6g+3k−7 ×O(n)2g+k−1 ↪→ Sym+(n,R)6g+3k−7 ×O(n)2g+k−1 ×∆n

↓
D ∈ ∆n

by dividing fiberwise by the action by common conjugation of Stab(D) on the fiber
over D ∈ ∆n, i.e.

FD =
(

Sym+(n,R)6g+3k−7 ×O(n)2g+k−1
)
/ Stab(D)

where Stab(D) acts on Sym+(n,R)6g+3k−7 ×O(n)2g+k−1 by common conjugation.

Proof. We consider a special ideal triangulation of S, see Figure 1.4.1.
This triangulation divides the surface in blocks of four different types. The blocks

of type 1, see Figure 1.4.2, the clock of type 2, see Figure 1.4.4, and the blocks of
type 3 and 4, see Figure 1.4.6.
We parametrize each block and then describe, how to glue the different blocks

together. Recall that we chose two independent angles in each triangle, the third
angles coordinate is then uniquely determined.
Block of type 1: We choose independent angles as indicated in Figure 1.4.2, with

coordinates U1, ..., U6 and denote by D0, D1, D2, D3 the edge coordinates (considered
as diagonal n× n-matrices, where the entries are ordered by size).
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Figure 1.4.1: Triangulation of S. Sides with the same labels are identified

Figure 1.4.2: Block of type 1

We define three maps:

f1(U1, D1, U2) = (U1D1U
−1
1 , U1U

−1
2 ) =: (S1, V1),

f2(U3, D2, U4) = (U−1
3 D2U3, U

−1
3 U−1

4 ) =: (S2, V2),

f3(U5, D3, U6) = (U−1
5 D3U5, U

−1
5 U6) =: (S3, V3),

where Si are symmetric matrices, and Vi are orthogonal matrices. By definition, these
maps are invariant under changing of angles along edges with coordinates D1, D2, D3.
We consider (Si, Vi) as new coordinates on the block of type 1 (see Figure 1.4.3 left).

From the remaining “unused” edge coordinate D0 we get an additional equivalence
relation for the new coordinates {(Si, Vi)} (see Proposition 1.3.8). We could multiply
the angle coordinates U1, U6, U2, U3 by elements of Stab(D0). This induces the
following equivalence relation:

S1 ∼WS1W
−1

S2 ∼WS2W
−1
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Figure 1.4.3: New coordinates on the block of type 1

V1 ∼ V1W
−1

V2 ∼WV2

V3 ∼ V3W
−1

for W ∈ Stab(D0). We therefore define the map:

f4(S1, S2, V1, V2, V3, D0) :=

= (V1S1V
−1

1 , V1S2V
−1

1 , V1D0V
−1

1 , V1V2, V3V
−1

1 ) =

=: (S′1, S
′
2, S0, V

′
2 , V

′
3).

By definition, these maps are invariant under changing of angles along the edges with
coordinates D0. We consider (S0, S

′
1, S
′
2, S3, V

′
2 , V

′
3) as new coordinates on the block

of type 1 (see Figure 1.4.3 right). They define the old edge and angle coordinates
exactly up to equivalence relation given by Proposition 1.3.8.

Note, that we have not yet used the left edge. this edge will play a role when gluing
the different blocks . Changing of angle coordinates along this edge induces a global
conjugation on all new coordinates of the block of type 1.

Block of type 2: We now proceed in a similar way, we choose independent angles as
indicated in Figure 1.4.4 with coordinates U1, ..., U8 and denote by D0, D1, D2, D3, D4

the edge coordinates.
We introduce new coordinates (Si, Vi) on the block of type 2 (see Figure 1.4.5 left)

by defining
f1(U1, D1, U2) = (U2D1U

−1
2 , U−1

1 U−1
2 ) =: (S1, V1),

f2(U3, D2, U4) = (U−1
3 D2U3, U

−1
3 U−1

4 ) =: (S2, V2),

f3(U5, D3, U6) = (U−1
5 D3U5, U

−1
5 U6) =: (S3, V3),

f4(U7, D3, U8) = (U7D4U
−1
7 , U7U

−1
8 ) =: (S4, V4).

By definition, these maps are invariant under changing of angles along edges with
coordinates D1, D2, D3, D4.
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Figure 1.4.4: Block of type 2

Figure 1.4.5: New coordinates on the block of type 2

The “unused” edge with coordinate D0 gives us an additional equivalence relation
We could multiply U7, U6, U2, U3 by elements of Stab(D0). This induces the following
equivalence relation:

S1 ∼WS1W
−1

S2 ∼WS2W
−1

S4 ∼WS4W
−1

V1 ∼ V1W
−1

V2 ∼WV2

V3 ∼ V3W
−1

V4 ∼WV4

for W ∈ Stab(D0). Therefore we set :

f4(S1, S2, S4, V1, V2, V3, V4, D0) :=
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= (V3S1V
−1

3 , V3S2V
−1

3 , V3S4V
−1

3 , V3D0V
−1

3 , V1V
−1

3 , V3V2, V3V4) =

=: (S′1, S
′
2, S
′
4, S0, V

′
1 , V

′
2 , V

′
4).

and consider (S0, S
′
1, S
′
2, S3, S

′
4, V

′
1 , V

′
2 , V

′
4) as a new coordinates on the block of type

2 (see Figure 1.4.5 right). They define the old edge and angle coordinates exactly up
to equivalence relation given by Proposition 1.3.8.
Block of type 3: We choose independent angles as indicated in Figure 1.4.6 left,

with coordinates U1, ..., U4 and denote by D1, D2 the edge coordinates. Consider

f1(U1, D1, U2) = (U−1
2 D1U2, U

−1
1 U2) =: (S1, V1),

f2(U3, D2, U4) = (U4D2U
−1
4 , U3U

−1
4 ) =: (S2, V2).

By definition, these maps are invariant under changing of angles along edges with
coordinates D1, D2, and we consider (Si, Vi) as a new coordinates on the block of
type 3 (see Figure 1.4.7 left).

Figure 1.4.6: Block of type 3 (left), block of type 4 (right)

Figure 1.4.7: New coordinates on the block of type 3 (left) and on the block of type
4 (right)
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Block of type 4: We choose independent angles as indicated in Figure 1.4.6 right,
with coordinates U1, U2 and denote by D1 the edge coordinate. We define

f(U1, D1, U2) = (U−1
1 D1U1, U2U1) =: (S, V ),

and consider (S, V ) as a new coordinates on the block of type 4 (see Figure 1.4.7
right). Note, the right edge which we have not used yet will play a role in the gluing
of blocks. Changing of angle coordinates along this edge induces a global conjugation
of the new coordinate.
With this, for every block we have now a parametrization given by several copies

of Sym+(n,R) and of orthogonal groups O(N). We now explain how to glue the
different blocks.
We will glue blocks from the right to the left as on the Figure 1.4.1 by induction.

Assume that the part of the surface laying to left has the parametrization Pl = O(n)×
O(n)× P ′r, the block lying to the right has parametrization Pr = Sym+(n,R)N1 ×
O(n)N2 for some N1, N2 > 0 and this is not the last step of gluing so it is not the
block of the type 4. We assume as well that changing of angles around the gluing
edge by an angle W ∈ Stab(D) induces a conjugation of all coordinates in Pl by W .
We can assume that this holds by induction, since in the first step, when gluing a
block of type 1 with some other block it holds.

We describe the gluing of two blocks along an edge with coordinate D and coordi-
nates around this edge as in Figure 1.4.8. We denote by Ki the coordinates in Pl.

Figure 1.4.8: Gluing, intermediate step

The edge with coordinate D gives us an additional equivalence relation for coordi-
nates Pl and (U1, U2):

Ki ∼WKiW
−1

U1 ∼ U1W
−1

U2 ∼WU2

for W ∈ Stab(D) and for all Ki coordinates of Pr. So we can define the map:

fgl(U1, U2, (Ki), D) := (U1U2, U1DU
−1
1 , (U1KiU

−1
1 )).
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By definition, this map is invariant under changing of angles along edges with
coordinates D. We consider these as the new coordinates on the glued block. They
define the old coordinates exactly up to equivalence relation given by Proposition 1.3.8.
Note, that there is a right edge which we have not used yet. Changing of angle
coordinates along this edge induces conjugation on the new coordinate of glued block.

Now we describe the last step of gluing with a block of type 4. We can write again
Pr = Sym+(n,R)N1 × O(n)N2 for some N1, N2 > 0 and Pl = Sym+(n,R) × O(n).
Coordinates on the glued edge is D (see Figure 1.4.9).

Figure 1.4.9: Gluing, last step

As we have seen, the changing of angles around this edge by some W ∈ Stab(D)
induces the common conjugation by W of all coordinates in Pr and Pl. To define the
space which is in 1-1 correspondence with theMd

T (π1(S),Sp(2n,R)) we have to take
a quotient by conjugation depending on D. It can be seen as a singular fibration
coming from the projection map:

p : P → ∆n

of P := Pr × Pl ×∆n to ∆n by dividing of the equivalence relation ∼ such that for
each K,K ′ ∈ P with p(K) = p(K ′) it is K ∼ K ′ if and only if (K ′i) = (WKiW

−1)
for some W ∈ Stab(p(K)), where K = (Ki),K

′ = (K ′i).

Now we finish the proof of the theorem:
Notice that Sym+(n,R)6g+3k−7 ×O(n)2g+k−1 × Sym+(n,R) is homeomorphic to

Sym+(n,R)6g+3k−7×O(n)2g+k−1×O(n)×∆n/ ∼ where ∼ is the equivalence relation
given fibrewise by the action of Stab(y) < O(n) for y ∈ ∆n in the following way:
Stab(y) does not act on Sym+(n,R)6g+3k−7×O(n)2g+k−1, acts by right multiplication
on O(n) and does not act on ∆n. The homeomorphism

Sym+(n,R)6g+3k−7×O(n)2g+k−1×O(n)×∆n/ ∼→ Sym+(n,R)6g+3k−7×O(n)2g+k−1×Sym+(n,R)

is given by the diagonalization in the last Sym+(n,R)-factor

(s1, . . . , s6g+3k−7, u1, . . . , u2g+k−1, v, d) 7→ (s1, . . . , s6g+3k−7, u1, . . . , u2g+k−1, vdv
−1)
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Now, consider the space Sym+(n,R)6g+3k−6 × O(n)2g+k−1/O(n) =
Sym+(n,R)6g+3k−7 × O(n)2g+k−1 × Sym+(n,R)/O(n) where O(n) acts
by simultaneous conjugation in every factor. It s homeomorphic to
(Sym+(n,R)6g+3k−7 × O(n)2g+k−1 × O(n) × ∆n/ ∼)/O(n) where O(n) acts
by simultaneous conjugation in Sym+(n,R)6g+3k−7 × O(n)2g+k−1 and by
left multiplication in O(n). Consider the following homeomorphism from
Sym+(n,R)6g+3k−7 ×O(n)2g+k−1 ×O(n)×∆n to itself given by the rule:

(s1, . . . , s6g+3k−7, u1, . . . , u2g+k−1, v, d) 7→ (v−1s1v, . . . , v
−1s6g+3k−7v, v

−1u1v, . . . , v
−1u2g+k−1v, v, d).

After this map, the components Sym+(n,R)6g+3k−7×O(n)2g+k−1 are invariant under
O(n) action. Therefore,

Sym+(n,R)6g+3k−7×O(n)2g+k−1×O(n)×∆n/O(n) ∼= Sym+(n,R)6g+3k−7×O(n)2g+k−1×∆n.

On Sym+(n,R)6g+3k−7×O(n)2g+k−1×∆n, the equivalence relation ∼ acts fibrewise by
the simultaneous conjugation of Stab(y) < O(n) for y ∈ ∆n. By the Proposition 1.4.4,
this quotient space is homeomorphic toMd

T (π1(S), Sp(2n,R)).

Remark 1.4.5. From the Theorem 1.4.3 we get:

dimMd
T (π1(S),Sp(2n,R)) = dim Sym+(n,R)6g+3k−6 ×O(n)2g+k−1/O(n) =

= (2g + k − 2)n(2n+ 1) = |χ(S)| dim(Sp(2n,R)).

Remark 1.4.6. Consider the subset

∆n
gen = {diag(d1, . . . , dn) | ∀i ∈ {1, . . . , n− 1}(di 6= di+1)} ⊂ ∆n

then for all D ∈ ∆n
gen it is Stab(D) = O(1)n. We can consider the subfibration

E0 := E|∆n
gen
→ ∆n

gen. Since Stab(D) = O(1)n for all D ∈ ∆n
gen, we have

E0 =
((

Sym+(n,R)6g+3k−7 ×O(n)2g+k−1
)
/O(1)n

)
×∆n

gen

where O(1)n ≤ O(n) acts by simultaneous conjugation. This is an orbifold and it is
an open dense subset ofMd

T (π1(S),Sp(2n,R)).
Remark 1.4.7. The definition of E0 =: E(e0) depends on the edge e0 along which we
were gluing in the last step in the proof of the Proposition 1.4.4. Actually, we can
choose any edge to do this last gluing. So for each edge e the constructed as above
subspace E(e) is homeomorphic to E0. Because the property to be an orbifold is a
local property, the finite union of all E(e) for all edges e is an orbifold. We denote
this subspace by E′ and call it generic part of Md

T (π1(S),Sp(2n,R)). It contains
all representation with at least one edge coordinate in ∆n

gen. This is an open dense
subset ofMd

T (π1(S), Sp(2n,R)).

Corollary 1.4.8. The space E′ for n = 2 contains all Zariski dense representations.

Proof. Let [ρ,D] ∈ Md
T (π1(S),Sp(2n,R)) \ E′ and x ∈ X+(S, T , n) such that

[rep+](x) = [ρ,D]. Then for every edge e, x(e) = (λ, λ) for some λ > 0. [ρ,D]
is a representation into some copy by conjugation of SL(2,R)⊗Z2 O(2) ≤ Sp(4,R),
therefore, it is not Zariski dense.
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1.4.2 Homotopy type of the space of maximal representations

Using the topological description of the space of decorated maximal representations
form the previous section, we can determine its homotopy type.

Theorem 1.4.9. The space of decorated maximal representations
Md(π1(S), Sp(2n,R)) admits as a deformation retract the space O(n)2g+k−1/O(n),
where g is the genus of S, k is the number of punctures and the quotient is taken by
the action of O(n) on O(n)2g+k−1 by simultaneous conjugation.

Proof. First, we consider the space Sym+(n,R). We consider the following retraction:

R : Sym+(n,R)× [0, 1]→ {Idn}

where
R(A, t) := UT diag(λ1(1− t) + t, . . . , λn(1− t) + t)U

such that A = U−1 diag(λ1, . . . , λn)U for U ∈ O(n). The matrix U is not uniquely
defined by A, but R(A, t) does not depend on the choice of U . Indeed, if we take
another U ′ ∈ O(n) such that A = (U ′)−1 diag(λ1, . . . , λn)U ′, then U(U ′)−1 commutes
with diag(λ1, . . . , λn). But then it commutes with diag(λ1(1− t)+ t, . . . , λn(1− t)+ t)
as well. Therefore, this retraction is well defined.
If we consider the action of O(n) by conjugation on Sym+(n,R), then the re-

traction R is equivariant with respect to this action. Therefore, using R in every
Sym+(n,R)-factor of Sym+(n,R)6g+3k−6 × O(n)2g+k−1/O(n), we can retract it to
O(n)2g+k−1/O(n).

As a corollary we also get

Corollary 1.4.10. The space of decorated maximal representations
Md(π1(S),PSp(2n,R)) is homotopically equivalent to PO(n)2g+k−1/PO(n),
where g is the genus of S, k is the number of punctures and the quotient is taken by
the action of PO(n) on PO(n)2g+k−1 by simultaneous conjugation.

Proof. For representations inMd
T (π1(S),PSp(2n,R)) all angle coordinates are in the

group PO(n). So repeating the argument in the proof of Theorem 1.4.9 gives the
result.

As a corollary we obtain the following statement on the number of connected
components that had been proven in [26].

Corollary 1.4.11. [26, Theorem 7.2.7]

• The space of decorated maximal representations Md(π1(S),Sp(2n,R)) has
22g+k−1 connected components.

• The space of decorated maximal representations Md(π1(S),PSp(2n,R)) has
22g+k−1 connected components if n is even. If n is odd, it is connected.
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We now turn to determine the number of connected components of the space of
maximal representationM(π1(S),Sp(2n,R)) without any additional decoration. We
prove the following theorem:

Theorem 1.4.12. The number of connected components of M(π1(S),Sp(2n,R))
agree with the number of connected components ofMd(π1(S), Sp(2n,R)). In particular
the space of maximal representations has 22g+k−1 connected components.

First, we need the following lemma:

Lemma 1.4.13. Let M ⊂ Sp(2n,R) be the set of all diagonalizable symplectic
matrices with pairwise different eigenvalues. Set Md := {(A,L) ∈M × Lag(2n,R) |
A.L = L}. Then the projection map p : Md →M is a 2n : 1-covering map.

Proof. Observe that since A ∈M has pairwise distinct real eigenvalues, it has exactly
2n invariant Lagrangians, so the map p is a 2n : 1-map.

Without lost of generality, consider A ∈ M a diagonal matrix and L some fixed
Lagrangian of A. Since any small variation of A can be written as B := T (A+ ∆)T−1

where T ∈ Sp(2n,R) close enough to Id and ∆ is a small diagonal matrix so that
A+ ∆ ∈M , we can take a small neighborhood U of A in M parameterized in this
way. Since, A+ ∆ has distinct eigenvalues, T is well defined up to right multiplication
with a matrix of the following form diag(±1, . . . ,±1). These matrices act trivially
on Lag(2n,R), therefore the invariant Lagrangian for B given by T.L is well defined.
For T small enough the rule B 7→ T.L is a continuous inverse map for p|U . So p is a
local homeomorphism.
The map p is a proper local homeomorphism, so it is a covering.

Remark 1.4.14. Let us make the following observations

• For every A ∈ M all eigenvalues of A are different from 1. Such elements
are Shilov hyperbolic, they have a unique attracting Lagrangian and a unique
repelling Lagrangian fix point.

• The set M is an open subset of Sp(2n,R) and Sp(2n,R) \ M is closed of
codimension 2.

For the following discussion, we denote by Hommax(π1(S), Sp(2n,R)) ⊂
Hom(π1(S),Sp(2n,R)) the space of maximal homomorphism and by
Homd

max(π1(S), Sp(2n,R)) ⊂ Homd(π1(S),Sp(2n,R)) the space of decorated
maximal homomorphisms, without taking conjugacy classes. Note, that the number
of connected components ofM(π1(S),Sp(2n,R)) is equal to the number of connected
components of Hommax(π1(S), Sp(2n,R)). This follows from the fact that the
group Sp(2n,R) is connected. The same holds for Md(π1(S), Sp(2n,R)) and
Homd

max(π1(S),Sp(2n,R)). We denote the natural projections:

Ψ: Hommax(π1(S), Sp(2n,R))→M(π1(S),Sp(2n,R)),

Ψd : Homd
max(π1(S), Sp(2n,R))→Md(π1(S), Sp(2n,R)).
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Corollary 1.4.15. Let X ⊂ Hommax(π1(S),Sp(2n,R)) be the subset containing
all maximal representation such that for every ρ ∈ X all peripheral elements
of ρ are Shilov hyperbolic. Let Xd be the preimage of X under the projection
p : Homd

max(π1(S), Sp(2n,R)) → Hommax(π1(S),Sp(2n,R)). Then the restriction
p|Xd : Xd → X is a finite-to-one covering.

Note that by Remark 1.4.14 X resp. Xd are open subsets in
Hommax(π1(S),Sp(2n,R)) resp. Homd

max(π1(S), Sp(2n,R))), and the complements
Hommax(π1(S),Sp(2n,R)) \ X and Homd

max(π1(S), Sp(2n,R)) \ Xd are closed of
codimension at least 2. In particular, X and Hommax(π1(S), Sp(2n,R)) have the
same number of connected components, and in every connected component of
Hommax(π1(S), Sp(2n,R)) there is a representation that is contained in X.

Proposition 1.4.16. The space of maximal homomorphisms
Hommax(π1(S),Sp(2n,R)) has the same number of connected components as
the space of decorated maximal homomorphisms. Homd

max(π1(S),Sp(2n,R)).

Proof. Let N be the number of connected components of Hommax(π1(S),Sp(2n,R))
and Nd the number of connected components of Homd

max(π1(S), Sp(2n,R)).
It is immediate that Nd ≥ N , thus we have to show that N ≥ Nd. For this

we assume that there are two decorated representations (ρ,D1) and (ρ,D2), which
project to the same (undecorated) representations ρ ∈ Hommax(π1(S),Sp(2n,R)).
We show that then (ρ,D1) and (ρ,D2) are in the same connected component of
Homd

max(π1(S), Sp(2n,R)). Without loss of generality we can assume that ρ ∈ X.
We consider the set of degenerate representations DdT (π1(S), Sp(2n,R)). Note that

all homomorphisms in

D(π1(S), Sp(2n,R)) := Ψ−1(D(π1(S),Sp(2n,R)))

admit only one decoration. So we can take some representation ρ ∈ X and
connect it by a path γ : [0, 1] → Hommax(π1(S),Sp(2n,R)) to a representation
ρ0 ∈ D(π1(S),Sp(2n,R)) so that γ([0, 1)) ⊂ X.
Let (ρ,D1), (ρ,D2) be two lifts of ρ in Md(π1(S),Sp(2n,R)). We also lift a

path γ twice starting from (ρ,D1) and from (ρ,D2). Because of compactness of
Lag(2n,R), both of these lifts finish at the same point namely at the unique lift of ρ0

in Dd(π1(S), Sp(2n,R)). The concatenation of these two lifted paths gives a path
between (ρ,D1) and (ρ,D2). This proves that Nd ≤ N .

This finishes the proof of the Theorem 1.4.12.

1.4.3 Topology of Md(π1(S), Sp(4,R))

Theorem 1.4.3 give a description of the homeomorphism type of the space of decorated
maximal representationsMd

T (π1(S), Sp(2n,R)) as a singular fibration. When n = 2
we can go further to explicitly determine the homeomorphism type of all connected
components ofMd

T (π1(S), Sp(4,R)). In this case the singular fibration is

(Sym+(2,R)N ×O(2)M ×∆2)/ ∼→ ∆2
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where N = 6g + 3k − 6, M = 2g + k − 1 and the equivalence relation ∼ is given
by fiberwise action of the group Stab(y) for y ∈ ∆2. Since n = 2, there are two
possibilities for the stabilizer , we can have Stab(y) = O(1) × O(1) < O(2) when
y = (d1, d2) with d1 6= d2, and Stab(y) = O(2) for y = (d, d). Since Stab(y) acts by
simultaneous conjugation on all factors, there is a kernel {± Id} ∈ O(1) × O(1) of
this action.
We identify Sym+(2,R) with R>0 × C using the following map:

R>0 × C → Sym+(2,R)
(q, r exp(2iφ)) 7→ R(φ) diag(q + r, q)R(−φ)

where R(φ) =

(
cosφ sinφ
− sinφ cosφ

)
. Notice, although R(φ) is defined only up to sign,

the map is well defined and is a homeomorphism.
The action of R(φ) ∈ SO(2), φ ∈ S1 is a rotation in C-factor by 2φ, for g =

diag{1,−1} it is the reflection around the x-axis. Since O(2) = Z2 n SO(2) where
Z2 = {Id,diag(1,−1)}, first we can quotient out the fiberwise action of Stab(y)∩SO(2)
and then the global action of Z2.
We now focus first on analyzing the connected component

C0 := (Sym+(2,R)N × SO(2)M )/O(2).

Theorem 1.4.17. The connected component C0 is homeomorphic to the product
RN+1
>0 × Q, where (Q = (S1)M × Q1)/Z2 where Z2 acts by the diagonal complex

conjugation on each factor. Q1 = (CN × R≥0)/ ∼1→ R≥0 is a singular fibrations,
whose total space is equal to CN × R>0 t CN/ SO(2) × {0}. In particular Q1 is a
manifold away from (0, . . . , 0) ∈ CN × R≥0, and (0, . . . , 0) is not an orbifold point.

We subdivide the proof of Theorem 1.4.17 into several Lemmata.
First note that we can write

C0 = Q0/Z2

Q0 := (Sym+(2,R)N × SO(2)M )/ SO(2)

where SO(2) acts by simultaneous conjugation, and then Z2 acts by simultaneous
conjugation by diag(1,−1).

Lemma 1.4.18. Q0 is homeomorphic to the product of RN>0 × (S1)M and Q1 :=
CN/SO(2). Q′1 := Q1 \ {(0, . . . , 0)} is a manifold diffeomorphic to R>0 × CPN−1.

Proof. The homeomorphism of Q0 with the product of RN+1
>0 ×(S1)M and the singular

fibration Q1 = CN/ SO(2) is given just by the identification above of Sym+(2,R)
with R>0 × C, SO(2) with U(1) = S1 ⊂ C.

Moreover Q′1 = CN \ {(0, . . . , 0)}/ SO(2) = R>0 × S2N−1/ SO(2) = R>0 × CPN−1

is a manifold.
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Lemma 1.4.19. The connected component C0 is homeomorphic to the product of
RN>0 and the quotient Q2 := ((S1)M × Q1)/Z2 where Z2 acts by the simultaneous
complex conjugation on each factor.

Let Q′2 := ((S1)M ×Q′1)/Z2 ⊂ Q2. Q′2 is a manifold everywhere except for points
of the following form: (s1, . . . , sM , [z1, . . . , zN ]), where all si ∈ {±1}, zi ∈ R.

Proof. We have (z1, . . . , zN ) ∼ (z1e
iφ, . . . , zNe

iφ) in Q2 for every φ ∈ R, it is

(z̄1, . . . , z̄N ) ∼ (z̄1e
−iφ, . . . , z̄Ne

−iφ) = (z1eiφ, . . . , zNeiφ),

the complex conjugation on Q1 is well-defined. This gives the homeomorphism given
in the statement of the lemma.

Since the action by simultaneous complex conjugation is free and discrete everywhere
on (S1)M ×Q′1 except for real points, the corresponding quotient is a manifold.

Lemma 1.4.20. Q′2 is an orbifold but not a manifold. The real points of Q′2 are
orbifold points. Small neighborhoods of these points are homeomorphic to products of
Euclidian balls of dimension N and Euclidian balls of dimension M +N − 1 modulo
the antipodal map.

Proof. Let p := (s1, . . . , sM , r, [x1, . . . , xN ]) ∈ (S1)M ×Q′1 = (S1)M ×CPN−1 ×R>0

be some real point. Since at least one xi 6= 0, choose an affine chart of CPN−1

associated to the index i that is homeomorphic to CN−1. Then

p ∈ (S1)M × CN−1 × R>0.

Note that C = R⊕ iR and since Z2 acts by complex conjugation on (S1)M ×CN−1×
R>0, we can write:

(S1)M × R>0 × CN−1/Z2
∼= ((S1)M × RN−1)/Z2 × RN−1 × R>0

where Z2 acts on R-factors by antipodal map. The fixed points by this Z2-action are
exactly the real points.

In a small neighborhood U± of ±1 ∈ S1, the map U± 3 ±eit 7→ t ∈ V = (−ε, ε) is
a homeomorphism. Z2-action by conjugation on U± induces the action by antipodal
map on V . So the small neighborhood of points (±1, . . . ,±1, 0, . . . , 0) looks like an
Euclidean ball of dimension M +N − 1 modulo the antipodal map.
Note that N +M > 3. The fact that Q′2 is not a manifold follows from

Proposition 1.4.21. Let X be a smooth manifold, G be a finite group acting on X
by diffeomorphisms. Let X ′ be the subset of X consisting of points with non-trivial
stabilizer in G. Assume, X ′ is discrete in X.

If dimX ≥ 3, then X/G is not a topological manifold, but (X \X ′)/G is a smooth
manifold.
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Proof of Proposition. We prove it by contradiction. Assume, X/G is a manifold.
Note, the quotient map q : X → X/G is open because G acts by diffeomorphism

on X. Moreover, q|X\X′ is a covering map. Therefore, (X \X ′)/G is a manifold
Let x ∈ X ′ and y := q(x). Since X/G assumed to be a topological manifold, we

can take an open neighborhood V of y which is homeomorphic to an Euclidian ball.
Then q−1(V ) is a union of open sets which are open neighborhoods of points of q−1(y).
We can always assume that it is a disjoint union of neighborhoods of points in q−1(y)
by taking V small enough.
We take a component U of q−1(V ) which is an open connected neighborhood of

x. We can take V ′ ⊂ q(U) open neighborhood of y ∈ X/G homeomorphic to an
Euclidian ball because q is open. Then U ′ := q|−1

U (V ′) is connected, open in X and
q(U ′) = V ′ = U ′/Gx, where Gx is the stabilizer of x in G.
The group Gx acts freely and properly discontinuously on U ′ \ {x}. Therefore,

G ≤ π1((U ′ \ {x})/Gx) = π1(V ′ \ {y}) 6= {1}, but V ′ \ {y} is a Euclidian ball without
one point of dimension at least 3, so it has a trivial fundamental group. This is a
contradiction to the assumption that X/G is a manifold.

Remark 1.4.22. The condition dimX ≥ 3 is essential. To see it, takeX = S1×S1 ⊆ C2

and G = Z2 = {1, a} and a(z1, z2) = (z̄1, z̄2). Then X/G is homeomorphic to S2, so
it is a manifold.

Proposition 1.4.23. The point 0 = (0, . . . , 0) ∈ Q1 = CN/ SO(2) is not an orbifold
singularity.

Proof. We use the following proposition (see [19, Exercise 3.3.33]):

Proposition 1.4.24. If M is a compact contractible n-manifold then ∂M is a
homology (n− 1)-sphere; that is Hi(∂M ;Z) ∼= Hi(Sn−1;Z) for all i.

As we have seen, Q1 = CN/SO(2) is a manifold everywhere except for 0. First
of all, we take the following contractible neighborhood of 0 ∈ Q1: U := B/ SO(2)
where B = {z ∈ CN | ‖z‖ ≤ ε} for some ε > 0. Everywhere except for 0 it is a
manifold with boundary ∂U = S2N−1/SO(2) ∼= CPN−1. ∂U is simply connected, so
if we assume 0 ∈ Q1 to be an orbifold point, then, by Proposition 1.4.24, ∂U , have
to be a finite quotient of homology sphere, but by generalized Poincaré conjecture,
∂U have to be a sphere since it is simply connected. This is a contradiction because
∂U ∼= CPN−1.

Now we consider any of the other connected components

Cq := (Sym+(2,R)N × SO(2)M−q × (J SO(2))q)/O(2)

where J = diag(1,−1), q 6= 0. We prove
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Theorem 1.4.25. The connected component Cq is homeomorphic to

RN>0 × RN × ((S1)M−1 × RN )/Z2.

((S1)M−1 × RN )/Z2 is a manifold everywhere except for the following points:
(±1, . . . ,±1, 0, . . . , 0). These points are orbifold points. Small neighborhoods of
them are homeomorphic to Euclidian balls modulo the antipodal map.

We can write
Cq = Qq/Z2

Qq := (Sym+(2,R)N × SO(2)M−q × (J SO(2))q)/ SO(2)

where SO(2) acts by simultaneous conjugation in every factor, and then Z2 acts by
simultaneous conjugation by diag(1,−1).
Then Theorem 1.4.25 is a direct consequence of the following

Lemma 1.4.26. Qq is homeomorphic to

RN>0 × (S1)M−1 × CN = RN>0 × RN × (S1)M−1 × RN .

Proof. As before, we identify Sym+(2,R) ∼= R>0 × C, SO(2) ∼= S1. We also identify
J SO(2) with SO(2) ∼= S1 by the map JU 7→ U and write:

Qq ∼= RN>0 × (S1)M−q × (CN × (S1)q)/SO(2)

where R(φ) ∈ SO(2), φ ∈ S1 acts by rotations by 2φ on S1-factors and C-factors
around the origin.
Since q 6= 0 we can consider the following map:

f : CN × (S1)q → CN × (S1)q,

f(z1, . . . , zN , s1, . . . , sq) := (z1s
−1
q , . . . , zNs

−1
q , s1s

−1
q , . . . , sq−1s

−1
q , sq).

This map is a homeomorphism, and the first N + q − 1 components are invariant
under SO(2)-action. So we can write:

Qq ∼= RN>0 × (S1)M−1 × CN × (S1/SO(2)) = RN>0 × (S1)M−1 × CN .

Using the identification C = R + iR, we obtain

Qq ∼= RN>0 × RN × (S1)M−1 × RN .

Now, we are ready to describe precisely the singular locus ofMd(π1(S),Sp(4,R))
in terms of representations. First, we consider the following embeddings of groups
into Sp(4,R):

SL(2,R)× SO(2) ↪→ Sp(4,R)((
a b
c d

)
, U

)
7→

(
aU bU
cU dU

)
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and the diagonal embedding of SL(2,R)× SL(2,R). These two embeddings induce
maps:

Md(π1(S), SL(2,R)× SO(2))→Md(π1(S),Sp(4,R))

Md(π1(S),SL(2,R)× SL(2,R))→Md(π1(S),Sp(4,R))

Notice, these maps are not embeddings.

Theorem 1.4.27. • The non-orbifold singular locus of the C0 ⊂
Md(π1(S), Sp(4,R)) agree with the image ofMd(π1(S),SL(2,R)× SO(2)) in
Md(π1(S),Sp(4,R)).

• The orbifold singular locus inMd(π1(S),Sp(4,R)) agree with the points of the
image ofMd(π1(S), SL(2,R)× SL(2,R)) inMd(π1(S), Sp(4,R)) that are not
in the image ofMd(π1(S), SL(2,R)× SO(2)).

Proof. Follows directly from the Theorems 1.4.17 and 1.4.25.

1.5 General X -coordinates
In this section we introduce general, not necessarily positive X -coordinates with
respect to a chosen ideal triangulation T of S. General X -coordinates consists of
triangle invariants, which are signatures of certain quadratic forms, associated to
every triangle of T , edge invariants and angle invariants.
For the edge invariants we had to simultaneously diagonalize pairs of positive

definite bilinear forms. Here we would have to simultaneously diagonalize pairs of
non-degenerate bilinear forms of varying signature. This is in general impossible.
We need to find some analog of this diagonalization process. To do this, we use the
following theorem (for the proof and details, see Appendix A.1.4):

Theorem 1.5.1. Let β3, β4 be two symmetric non-degenerate bilinear forms on some
vector space L. We consider β3, β4 as maps L→ L∗ and define the map φ := β−1

3 ◦β4.
Then there exists a basis e of L such that

[φ]e = X0(β3, β4) :=

J1 0 0
0 J2 0
0 0 K



[β3]e = X1(β3, β4) :=

I∗1 0 0
0 −I∗2 0
0 0 I2∗


[β4]e = X2(β3, β4) := X1(β3, β4)X0(β3, β4)

where for r = 1, 2

I∗r =


I∗1r 0 . . . 0 0
0 I∗2r . . . 0 0

. . .
0 0 . . . 0 I∗krr

 , Jr =


J1r 0 . . . 0 0
0 J2r . . . 0 0

. . .
0 0 . . . 0 Jkrr
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I2∗ =


I2∗

1 0 . . . 0 0
0 I2∗

2 . . . 0 0
. . .

0 0 . . . 0 I2∗
s

 , K =


K1 0 . . . 0 0
0 K2 . . . 0 0

. . .
0 0 . . . 0 Ks


where nir := dim(I∗ir) = dim(Jir), mj := dim(I2∗

j ) = dim(Kj) and

I∗ir =


0 0 . . . 0 1
0 0 . . . 1 0

. . .
1 0 . . . 0 0


nir×nir

I2∗
j =



0 0 0 0 . . . 1 0
0 0 0 0 . . . 0 −1

. . .
0 0 1 0 . . . 0 0
0 0 0 −1 . . . 0 0
1 0 0 0 . . . 0 0
0 −1 0 0 . . . 0 0


mj×mj

Jir are Jordan blocks with eigenvalue λir ∈ R, Kj are generalized Jordan blocks with
eigenvalue µj ∈ C \ R such that λir ≥ λi+1,r, µj ≥ µj+1, where for complex numbers
the following linear order is used: x+ iy > x′ + iy′ if x > x′ or x = x′ and y > y′.

Remark 1.5.2. The basis e is in general not unique but the matrices X0(β3, β4),
X1(β3, β4), X2(β3, β4) are well defined by β3, β4. We denote the edge invariant by

X(β3, β4) := (J1,J2,K)

The triple X(β3, β4) defines X0(β3, β4), X1(β3, β4), X2(β3, β4) uniquely.

Definition 1.5.3. The signature of the triple X(β3, β4) = (J1,J2,K) is the signature
of the bilinear form X0(β3, β4). We will write sgn(J1,J2,K). This is the triangle
invariant.

Definition 1.5.4. We denote by E(n) the set of all triples (J1,J2,K) where J1,J2,K
are of the form as in the Theorem 1.5.1 with

dimJ1 + dimJ2 + dimK = n

Definition 1.5.5. If the basis e of L is chosen so that [β3]e = X1(β3, β4), [β4]e =
X2(β3, β4), we will say that in the basis e the pair of forms (β3, β4) is in the standard
form.
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1.5.1 The angle of five Lagrangians

To define the angel invariant in general X -coordinates we need an invariant of 5
Lagrangians. In the Section 1.1 we already defined this invariant only in the case
when all triangles have maximal Maslov index. Now we do it in the general case.

For the 4-tuple (L1, L2, L3, L4) there exists a basis e of L1 such that two bilinear
forms β0 := [L1, L3, L2] and β′0 := [L1, L4, L2] are in the standard form, i.e. [β0]e =
X1(β0, β

′
0), [β′0]e = X2(β0, β

′
0).

For the 4-tuple (L3, L2, L1, L5) there exists a basis g of L3 such that two bilinear
forms β1 := [L3, L2, L1] and β′1 := [L3, L5, L1] are in the standard form, i.e. [β1]g =
X1(β1, β

′
1), [β′1]g = X2(β1, β

′
1). Let e′ be a basis of L1 such that ω(g, e′) = Id.

Notice, [β0]e′ = [β1]g = X1(β1, β
′
1) in the basis e′. Therefore, we can take matrices

of (p, q)-shape transformations Pβ0β′0 and Pβ1β′1 (for more details see Appendix A.1.6),
and define e0 := ePβ0β′0 and e1 := e′Pβ1β′1 . Then [β0]e0 = [β0]e1 = Ipq and there
exists U ∈ O(p, q) such that e0 = e1U , where (p, q) is a signature of β0. We will call
this matrix an inner angle in the pentagon of Lagrangians (L1, L4, L2, L3, L5) (see
Figure 1.5.1).

Figure 1.5.1:

Remark 1.5.6. U is well defined only if the bases e, e′ of L1 and g of L3 are chosen
such that

[β0]e = X1(β0, β
′
0) [β′0]e = X2(β0, β

′
0)

[β1]g = X1(β1, β
′
1) [β′1]g = X2(β1, β

′
1)

ω(g, e′) = Id .
(1.5.1)

We denote [L1, L5, L3, L2, L4]e,e′ := U . We denote by [L1, L5, L3, L2, L4] the set of
all possible [L1, L5, L3, L2, L4]e,e′ when e, e′ satisfy 1.5.1.

1.5.2 Definition of X -coordinates

Now we can define the general X -coordinates for a triangulated surface (S, T ).

Definition 1.5.7. Let S be a surface with an ideal triangulation T . Let Eor be
the set of oriented edges of T and W be the set of angles of T , F be the set of all
triangles of T .
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A system of X -coordinates of rank n on (S, T ) is a map

x : F t Eor tW → {(p, q) | p, q ∈ N ∪ {0}, p+ q = n} t E(n) t
⋃

p+q=n

O(p, q)

such that

• x(T ) ∈ {(p, q) | p, q ∈ N∪{0}, p+q = n}. We call x(T ) signature of the triangle
T

• x(~e) = (J1,J2,K) ∈ E(n) for each ~e ∈ Eor. x(~e −1) = σ(x(~e)), where σ is the
edge reorientation map:

σ : E(n) → E(n)
X(b1, b2) 7→ X(b∗2, b

∗
1)

where b∗1, b∗2 are dual bilinear forms. sgn(x(~e)) = x(r(~e)), i.e. the signature of
x(~e) agree with the signature of the triangle r(~e) which lies to the right form ~e;

• x(w) ∈ O(p, q) for each w ∈ W , where (p, q) is a signature of the triangle
defined as above to which this angle corresponds. x(w)−1 = x(w−1). For each
positive triple of positive angles (w1, w2, w3) it is

x(w3)x(w2)x(w1) = Id

We denote by X (S, T , n) the set of all X -coordinates of rank n on (S, T ).

Remark 1.5.8. Since we are going to associate triples (J1,J2,K) to oriented edges,
we will write sometimes x(~e) = X~e = (J1,J2,K) = X(β1, β2) for some pair of forms
(β1, β2). We will also write Xi

~e for i ∈ {0, 1, 2} for corresponding X
i(β1, β2) because

Xi(β1, β2) is completely determined by the triple (J1,J2,K) and the pair (β1, β2) is
not really important.

Positive X -coordinates are imbedded into the space of general X -coordinates. A
coordinate x ∈ X+(S, T , n) is sent to x′ ∈ X (S, T , n) defined by

• x′(T ) = (n, 0) for all T ∈ F ;

• x′(e) = (diag x(e),∅,∅) for all e ∈ E;

• x′(w) = x(w) for all w ∈W .

1.5.3 Construction of a decorated representation using X -coordinates

Let S be a surface with punctures and let T be an oriented ideal triangulation.
Given a decorated representation [ρ,D] ∈ RepdT (π1(S, b), Sp(2n,R)), we can lift the
decoration D to a map D̃ : P̃ → Lag(2n,R).

Definition 1.5.9. A system of X -coordinates x ∈ X (S, T , n) is aid to be admissible
for a representation [ρ,D] ∈ RepdT (π1(S, b), Sp(2n,R)) if
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• for each triangle T = (t1, t3, t2) of T̃ , the signature x(T ) agrees with the
signature of the bilinear form [D̃(t1), D̃(t3), D̃(t2)].

• for each oriented edge ~e ∈ Ẽ on the boundary of the triangles T = (t1, t3, t2) and
T ′ = (t2, t4, t1) of T̃ , the cross ratio [D̃(t1), D̃(t3), D̃(t2), D̃(t4)] is conjugated
to −X0([L1, L3, L2], [L1, L4, L2])−1;

• for each pentagon in T̃ as in Figure 1.5.2, the orthogonal matrix x(w) belongs
to the set [D̃(t1), D̃(t5), D̃(t3), D̃(t2), D̃(t4)].

Figure 1.5.2:

We now construct as in Section 1.3.2 a map

rep: X (S, T , n)→ Homd
T (π1(S, b),Sp(2n,R)),

such that, for every x ∈ X (S, T , n), rep(x) is a decorated representation and x is
admissible for the representation rep(x).
For this we let Γ be the graph on the surface introduced in Section 1.3.2, see

Fig. 1.5.3.
To every vertex of Γ we associate an edge coordinate by the rule: let the oriented

edge ~r of the triangulation is oriented upwards, then to the point lying to the right
from ~r we associate x(~r), to the point lying to the left from ~r we associate x(~r −1)

We assume that the base point b coincide with one of vertices of Γ. Now, every
element α ∈ π1(S, b) has a representative which is a closed simplicial path in the
graph Γ, so

α = αk ◦ · · · ◦ α1,

where every αi is a path along one edge of Γ.
We associate to every α the matrix

ρ(α) = Ak · · ·A1,

where Ai is defined as follows:
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Figure 1.5.3:

• If αi is going along an edge of Γ which crosses the oriented edge ~r of the
triangulation from the right to the left assuming that the edge ~r is oriented
upwards, we have

E :=

(
0 −T TΦ

T−1Φ−1 0

)
where Φ and T are matrices associated to x(~r) from the definition of the back
transformation (see Appendix A.1.5).

• If αi is going along an edge of Γ which crosses the oriented edge ~r of the
triangulation from the left to the right assuming that the edge ~r is oriented
upwards, we have

E := −
(

0 −T TΦ
T−1Φ−1 0

)
where Φ and T are matrices associated to x(~r −1) from the definition of the
back transformation (see Appendix A.1.5).

• If αi is along an edge of Γ that follows the angle w of the triangulation, consider
the matrices

Û(X,Y ) :=

(
P TY x(w)TP−TX 0

0 P−1
Y x(w)−1PX

)
(1.5.2)

Tr(X) =

(
− Id X1

−X1 0

)
Tl(X) = (Tr(X))−1,

where X is the coordinate on the starting vertex of αi, Y is the coordinate on
the ending vertex of αi, PX , PY are matrices of shape transformations (see
Appendix A.1.6) corresponding to X, resp Y . We have Ai = Û(X,Y )Tr(X)
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(resp. Ai = Û(X,Y )Tl(X)) if when going from αi−1 to αi we are turning to the
right (resp. to the left). Notice that, Û(X,Y )Tr(X) = ((Û−1(Y,X))Tr(Y ))−1.

After multiplication of all these matrices we get a matrix in Sp(2n,R) for each
curve α. So this process gives us a representation ρ ∈ Hom(π1(S, b),Sp(2n,R)).

This representation admits a natural decoration D. To see this, first, we note that
the procedure above works also for non-closed curves.
If b lies in the triangle near to the oriented edge ~r which is adjacent to some

puncture and the peripheral curve is just a circle c around this puncture. Then going
around c we always are turning either to the right or to the left. Therefore, either
Lest or Lfst is preserved by ρ(c) (Figure 1.5.4). Finally, for each simple peripheral
curve γ around some puncture p with start- and endpoint b, we can take a point b′

which lies in the triangle adjacent to p. Then we can decompose γ up to homotopy
into a path α from b to b′, circle c around p and the inverse path α−1 from b′ to
b. For α we get Mα. The matrix corresponding to c preserves some Lagrangian L.
Therefore, ρ(γ) preserves M−1

α .L, and we define D(γ) := M−1
α .L

Figure 1.5.4:

For each non-simple peripheral curve which is a power of some simple one, we define
a decoration of non-simple peripheral curve to be the decoration of the corresponding
simple curve. All other non-simple curves are of the form γ = β−1αnβ, where α is
simple closed curve, β is some closed curve. So we define D(γ) := ρ(β).D(α). By
construction, this decorated representation is a representative in a standard form of
its class. So we define rep(x) := (ρ,D).

1.5.4 The set of X -coordinates associated to a representation

So far we only constructed a decorated representation given a system of X -coordinates.
Now we describe how, given an ideal triangulation, we can associate a system of
X -coordinates to a decorated representation [(ρ,D)] so that [rep(x)] = [(ρ,D)]. The
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procedure described below is very similar to the case of maximal representations. But
in this case, one has to be a bit more careful because the cross ratio map is in general
not diagonalizable.
We take an ideal triangulation T of S and choose b0 ∈ S. Let (ρ,D) ∈

Homd
T (π1(S, b0), Sp(2n,R)) be a decorated representation.

We lift the oriented triangulation T of S to the oriented triangulation T̃ of the
universal covering S̃. We also fix a lift b ∈ S̃ of b0 ∈ S. Punctures are lifted to visual
boundary points of S̃ (after choice of some Riemannian metric of finite area). Using
the decoration D, each boundary point can be decorated by a Lagrangian in a unique
way. This decoration is π1(S, b0)-equivariant.

We consider the graph Γ associated to this triangulation as in Section 1.5.3, see
Figure 1.5.3. We can assume that Γ is invariant under the action of π1(S, b0) on S̃.
First, we associate a symplectic basis to each vertex of Γ, a pair (p, q) to each triangle
and an element from E(n) to each oriented edge of the lifted triangulation T . For
each vertex b of Γ there is the unique edge r close to which this vertex lies and unique
triangle T in which b lies. We take an orientation of the edge ~r such that the vertex
b lies to the right from ~r. We consider the triangle which is adjacent to T across the
edge r. Thus we have a quadrilateral decorated by Lagrangians (L1, L3, L2, L4). The
following symmetric non-degenerate bilinear forms on L1:

β3 := [L1, L3, L2],

β4 := −[L1, L4, L2]

are well-defined.
We put the pair (β3, β4) to the standard form, i.e. we choose a basis e = (e1, . . . , en)

of L1 such that
([β3]e, [β4]e) = (X1(β3, β4), X2(β3, β4))

Since ω identifies L2 with L∗1, we define a basis f of L2 to be the dual basis to e.
So we get in the notation of the previous section:

L1 = Span(e) = Le, L2 = Span(f) = Lf

L3 = Span(e + fX1(β3, β4)) =: Le,f (X
1(β3, β4))

L4 = Span(e− fX2(β3, β4)) =: Le,f (−X2(β3, β4))

ω(ei, fj) = δij

In this case, we will say that the four tuple (L1, L2, L3, L4) is in standard position
with respect to a symplectic basis (e, f).

We define the invariants x(T ) := sgn(β3) for the triangle T , x(~r) := X(β3, β4) for
the oriented edge ~r and associate also the symplectic basis B(b) := (e, f) to the vertex
b of Γ.
Because the oriented edge ~r defines the point b uniquely, sometimes we will say

that the basis B(b) is associated to the oriented edge ~r and write B(~r).
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To define the angle coordinate, we consider a pentagon decorated by Lagrangians
as on the Figure 1.5.5. To each oriented diagonal ~r0 and ~r1 of this pentagon, bases
B(~r0) =: (e0, f0) of (L1, L2) and B(~r1) =: (e1, f1) of (L3, L1) are associated. So we
can define the angle invariant x(w) to be x(w) := [L1, L5, L3, L2, L4]e0,f1 .

Figure 1.5.5:

Remark 1.5.10. 1. The choice of bases B is in general not unique. But it can be
always chosen in a ρ-equivariant way with respect to the action of Sp(2n,R) on
symplectic bases because the lifted decoration by Lagrangians is ρ-equivariant. We
will always assume that B is ρ-equivariant.

2. By construction, the map x is π1(S, b0)-invariant, therefore, x is well-defined for
the triangulation T of S.
3. By construction, x(~r −1) = X(β∗4 , β

∗
3) = σ(X(β3, β4)). So our definition of the

map x for edges is consistent with the definition of X -coordinates.
4. For each oriented edge ~r of triangulation there are two vertices b1, b2 of Γ

lying close to ~r. In general, there is a lot of possibilities to define B(b2) if B(b1)
is fixed. We need to fix one of them, which is consistent to the definition of the
map rep, namely with the matrix associated to the crossing of an edge. We do
the following: Assume ~r is oriented upwards, b1 lies to the right from ~r and b2 lies
to the left. Let B(b1) =: (e, f) then B(b2) := (−fΦT, eΦ−1T−T ) where Φ and T
are matrices associated to x(~r) from the definition of the back transformation (see
Appendix A.1.5).

5. Coordinate which we associate to an edge are in fact connected with the cross
ratio operator in the following way:

[L1, L3, L2, L4]e = [L−1
4 ]f ,e[L3]e,f = −X0(β3, β4)−1

6. This construction does not depend on the choice of a representative (ρ,D) in
the class [ρ,D]. The triple (J1,J2,K) for each edge is uniquely defined. In contrast,
matrices U for each angle are in general not uniquely defined by the representation
ρ. To define U , we have chosen a map B which, as we have seen, is in general not
unique.

Lemma 1.5.11. Let [ρ,D] ∈ RepdT (π1(S, b),Sp(2n,R)). Consider x ∈ X (S, T , n)
constructed from [ρ,D] as above. Then [rep](x) = [ρ,D].

59



Proof. Notice, the bases on vertices of Γ were chosen in compatible way with the
construction in the previous section, i.e. let b1, b2 be vertices of Γ connected by an
edge e. To e the matrix E is associated as in the previous section (going along an
angle or crossing an edge of triangulation). Then E maps the basis B(b1) to B(b2).

Therefore, by induction, for every loop α based in b, rep(α)(B(b)) = B([α]b), where
by [α]b we understand the action of [α] ∈ π1(S, b) on vertices of Γ ⊆ S̃. But the choice
of B is ρ-equivariant, i.e. rep(α)(B(b)) = B([α]b) = ρ(α)B(b). But the action of
Sp(2n,R) on symplectic bases is exact, therefore, rep(α) = ρ(α) for all [α] ∈ π1(S, b),
where ρ(α) is written as a matrix with with respect to the basis B(b).

Corollary 1.5.12. The map [rep] is surjective.

Definition 1.5.13. Let [ρ,D] ∈ RepdT (π1(S, b),Sp(2n,R)), let (ρ,D) be a represen-
tative of [ρ,D]. Assume, the point b lies in the triangle T0 near to the upwards
oriented edge ~e. Assume that peripheral curves αi (see Figure 1.5.6), i ∈ {1, 2, 3, 4}
are decorated by Lagrangians Li ∈ Lag(2n,R).

Figure 1.5.6:

We consider bilinear forms β3, β4 as above. Then there exists a symplectic basis
(e, f) of (R2n, ω) such that

L1 = Span(e) = Le, L2 = Span(f) = Lf

L3 = Span(e + fX1(β3, β4)) =: Le,f (X
1(β3, β4))

L4 = Span(e− fX2(β3, β4)) =: Le,f (−X2(β3, β4))

ω(ei, fj) = δij

The change-of-basis matrix from the standard basis (est, fst) to (e, f) let be T . Then
(ρ′, D′) := (T−1ρT, T−1D) ∈ [ρ,D] is called a representative in standard form of
[ρ,D]. It has the following property:

D′(α1) = Lest , D
′(α2) = Lfst ,
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D′(α3) = Lest,fst(X
1(β3, β4)),

D′(α4) = Lest,fst(−X2(β3, β4))

Corollary 1.5.14. The map rep constructed in the previous section gives us for each
x ∈ X (S, T , n) a representative in standard form.

Remark 1.5.15. Let (S, T ) be a surface with ideal triangulation. Assume b ∈ S lies
in the triangle T0 near to the oriented edge ~e. We take four peripheral curves αi,
i ∈ {1, 2, 3, 4} as on the Figure 1.5.6.
Let [ρ,D] ∈ RepdT (π1(S, b),Sp(2n,R)) and x ∈ X (S, T , n) is admissible for [ρ,D].

Then there exists (ρ,D) ∈ Homd
T (π1(S, b), Sp(2n,R)) a representative in standard

form such that:
D(α1) = Lest ; D(α2) = Lfst

D(α3) = Lest,fst(X
1
0 )

D(α4) = Lest,fst(−X2
0 )

where x(~r) = X0. Moreover, (ρ,D) have the same decoration as rep(x), and ρ and
rep(x) act in the same way on D(πper1 (S, b)).
Remark 1.5.16. Let x ∈ X (S, T , n) be admissible for [ρ1, D1] and for [ρ2, D2]. Then
there exist (ρ1, D1) ∈ [ρ1, D1] and (ρ2, D2) ∈ [ρ2, D2] representatives in a standard
form such that D1 = D2. In particular, the decoration of rep(x) coincides up to
Sp(2n,R)-action with decoration of each decorated representation for which x is
admissible.
Remark 1.5.17. If x ∈ X (S, T , n) is admissible X -coordinates for [ρ,D] ∈
RepdT (π1(S, b),Sp(2n,R)), then in general it is wrong that [rep(x)] = [ρ,D].
As we have seen, angle coordinates are not uniquely defined. Sometimes different

collections of angle coordinates define the same representation. Now we are going to
find out how the angles can be changed so that the representation stays the same.
We take two adjacent by an edge e triangles. The coordinate on the edge is Xe

(oriented as on fig. 1.5.7). The coordinate associated to the opposite orientation of e
we denote by X̃e. Signature of right triangle assume to be (p, q) = sgn(X1

e ) = sgn(X̃2
e ),

signature of left triangle assume to be (p′, q′) = sgn(X2
e ) = sgn(X̃1

e ). We also assume
that all angles are oriented counterclockwise with respect to the triangle.

Theorem 1.5.18. Let x ∈ X (S, T , n). Let us change angle coordinates along the
edge e in a following way:

U ′1 = WU1, V
′

1 = V1W
′−1, U ′2 = U2W

−1, V ′2 = W ′V2 (1.5.3)

where
W ∈ O(p, q) ∩O(P−TXe X

2
eP
−1
Xe

)

W ′ := D−1W TD

D := P−TXe ΦXeTXeP
−1
X̃e

This gives us another x′ ∈ X (S, T , n). Then [rep(x)] = [rep(x′)].
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Figure 1.5.7:

Proof. First, we need the following proposition:

Proposition 1.5.19.

W ′ ∈ O(p′, q′) ∩O(P−T
X̃e

X̃2
eP
−1
X̃e

)

Proof. First, we note that D−T Ip′q′D−1 = PXe(X
2
e )−1P TXe :

D−T Ip′q′ = PXeΦ
−1
Xe
T−TXe P

T
X̃e
Ip′q′ = PXeΦ

−1
Xe
T−TXe X̃

1
eP
−1
X̃e

=

= [(X2)−1ΦT = Φ−1T−T X̃1] = PXe(X
2
e )−1ΦXeTXeP

−1
X̃e

=

= PXe(X
2
e )−1P TXeD

Therefore,

W ′T Ip′q′W
′ = DTWD−T Ip′q′D

−1W TD = DTWPXe(X
2
e )−1P TXeW

TD =

= [W ∈ O(P−TXe X
2
eP
−1
Xe

)] = DTPXe(X
2
e )−1P TXeD = Ip′q′

So W ′ ∈ O(p′, q′).
Second, we note that D−TP−T

X̃e
X̃2
eP
−1
X̃e
D−1 = Ipq:

D−T (P−T
X̃e

X̃2
eP
−1
X̃e

) = PXeΦ
−1
Xe
T−TXe P

T
X̃e
P−T
X̃e

X̃2
eP
−1
X̃e

= PXeΦ
−1
Xe
T−TXe X̃

2
eP
−1
X̃e

=

= [X1ΦT = Φ−1T−T X̃2] = PXeX
1
eΦXeTXeP

−1
X̃e

= [P TXeIpqPXe = X1
e ] = IpqD

Therefore,

W ′T (P−T
X̃e

X̃2
eP
−1
X̃e

)W ′ = DTWD−T (P−T
X̃e

X̃2
eP
−1
X̃e

)D−1W TD =

= DTW T IpqWD = [W ∈ O(p, q)] = DT IpqD = P−T
X̃e

X̃2
eP
−1
X̃e
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So W ′ ∈ O(P−T
X̃e

X̃2
eP
−1
X̃e

).

Using the last proposition, it is easy to calculate that:

V̂1TrEXeÛ1 = V̂ ′1TrEXeÛ
′
1

Û2TrEXe V̂2 = Û ′2TrEXe V̂
′

2

V̂1TrEX̃eÛ
−1
2 = V̂ ′1TrEX̃eÛ

′
1

So holonomies of all curves are not changed.

Corollary 1.5.20. Let x, x′ ∈ X (S, T , n) such that rep(x) = rep(x′). Let w ∈W be
an angle which is adjacent to some oriented edge ~e. Then angle coordinates of x along
~e can be changed as above to coordinates x′′ ∈ X (S, T , n) such that x′(w) = x′′(w)
and x(w′) = x′′(w′) for all angles w′ which are not adjacent to ~e

Lemma 1.5.21. The only possible changes of angle coordinates so that the recon-
structed representation does not change are given by formulas 1.5.3.

Proof. (Sketch) We take the surface S of genus g and k punctures and fix the
triangulation and the base point as on the picture. For another choice of triangulation
the proof is similar.

We take x, x′ ∈ X (S, T , n) such that rep(x) = rep(x′). We assume that x, x′ define
two different collections of angles {Ui} and {U ′i}. Now we show that by correction of
angles {Ui} by formulas above we can get the collection {U ′i}.

Figure 1.5.8:

Using Corollary 1.5.20 we correct all upper angles (U5, U6, U1, U2, U11, . . . see
Figure 1.5.8) getting x′′ ∈ X (S, T , n) such that rep(x) = rep(x′) = rep(x′′). Note,
that the number of these corrected angles agree with the total number of (non-oriented
edges) since we correct each angle along exactly one edge. It makes automatically that
some other angles agree (U7, U8, . . . ) because product of angles in one triangle is always
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Id. To see that all other agree, it is enough to look at generators of π1(S, b) (α1, β1, . . .
on Figure 1.5.8). Since their holonomies agree for rep(x) = rep(x′) = rep(x′′), all
other angles (U9, U3, U4, U10, . . . ) agree automatically. So we get x = x′′

1.6 X -coordinates for representations into central
extensions

We introduced X -coordinates for decorated representations into Sp(2n,R) using in-
variants of Lagrangian subspaces. As we remarked before, the action of Sp(2n,R) on
Lag(2n,R) is not effective, but factors through PSp(2n,R). Therefore, the construc-
tion of X -coordinates works as well for decorated representations into PSp(2n,R).
The notions of decoration and transversality are well-defined because the action of
Sp(2n,R) on Lag(2n,R) is just the lift of the action of PSp(2n,R) on Lag(2n,R).
We only have to modify the angle invariants, as they now take values in PO(p, q).

We can then similarly define a map rep from X -coordinates to the space of transverse
decorated representations RepdT (π1(S, b),PSp(2n,R)).
Note that Sp(2n,R) is a central extension of PSp(2n,R) by the abelian group

Z2. In this section, we extend the construction of X -coordinates to representations
into arbitrary central extensions of PSp(2n,R). The most interesting cases are the
connected coverings of PSp(2n,R).
Let S be a surface with punctures as above, T be an ideal triangulation of

S. Each representation ρ ∈ Hom(π1(S), G) projects to some representation ρ′ ∈
Hom(π1(S),PSp(2n,R)). Assume ρ′ admits a decoration D which is transverse with
respect to T . If D is fixed, then (ρ′, D) ∈ Homd

T (π1(S),PSp(2n,R)).

Definition 1.6.1. The pair (ρ,D) constructed as above is called decorated repre-
sentation into the central extension G transverse with respect to T . The set of all
decorated representation into the central extension G transverse with respect to T is
denoted by Homd

T (π1(S), G).

Definition 1.6.2. We denote

RepdT (π1(S), G) := Homd
T (π1(S), G)/G

Definition 1.6.3. A representation ρ ∈ Hom(π1(S), G) is called maximal if it
projects to a maximal representation ρ′ ∈ Hommax(π1(S),PSp(2n,R)). The space of
all maximal representations into G is denoted by Hommax(π1(S), G). The space of
all maximal decorated representations into G is denoted by Homd

max(π1(S), G).

Definition 1.6.4. We denote

M(π1(S), G) := Hommax(π1(S), G)/G

Md(π1(S), G) := Homd
max(π1(S), G)/G
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Consider the embedding:

ψ : PO(p, q) ↪→ PSp(2,R)
U 7→ diag(U,U−T )

and the homomorphism corresponding to the central extension:

πG : G→ PSp(2n,R).

Then we define
G(p, q) := π−1

G (ψ(PO(p, q)).

Before we give the definition of X -coordinates for central extension, we recall that
E(n) is the set of all triples (J1,J2,K) where J1,J2,K are of the form as in the
Theorem 1.5.1 with

dimJ1 + dimJ2 + dimK = n.

Definition 1.6.5 (X -coordinates for central extension). Let S be a surface with an
ideal triangulation T . Let Eor be the set of oriented edges of T and W be the set of
angles of T , F be the set of triangles of T .

A system of X -coordinates of rank n for the central extension G with respect to T
is a map

x : F t Eor tW → {(p, q) | p, q ∈ N ∪ {0}, p+ q = n} t E(n) t
⋃

p+q=n

G(p, q)

such that

• the triangle invariant x(T ) takes values in {(p, q) | p, q ∈ N ∪ {0}, p+ q = n}.
We call x(T ) also signature of the triangle T

• the edge invariant x(~e) is given by x(~e) = (J1,J2,K) ∈ E(n) for each ~e ∈ Eor.
X (~e−1) = σ(X (~e)), where σ is the edge reorientation map:

σ : E(n) → E(n)
X(b1, b2) 7→ X(b∗2, b

∗
1)

where b∗1, b∗2 are dual bilinear forms to b1, b2. sgn(x(~e)) = x(r(~e)), i.e. the
signature of x(~e) agree with the signature of the triangle r(~e) which lies to the
right form ~e;

• the angle invariant x(w) takes values in G(p, q) for each w ∈ W , where (p, q)
is a signature of the triangle defined as above which this angle corresponds to.
U(w−1) = U(w)−1. For each positive triple of positive angles (w1, w2, w3) is
subject to the condition

U(w3)U(w2)U(w1) = Id .
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We denote by XG(S, T , n) the set of all X -coordinates of rank n for the central
extension G on (S, T ).

By the same procedure as for X -coordinates for Sp(2n,R), see Section 1.5.3, we
can construct a map repG from the space of X -coordinates to the space of decorated
homomorphism Homd

T (π1(S), G), which induces a surjective map

[repG] : XG(S, T , n)→ RepdT (π1(S), G).

Using the map [repG] restricted to the positive locus of XG(S, T , n), i.e. the subset
of XG(S, T , n) such that all triangle invariants are (n, 0), as in the Section 1.4, we can
study the homotopy type ofMd(π1(S), G). Namely, we can get the following result:

Theorem 1.6.6. The space of decorated maximal representationsMd(π1(S), G) is
homotopically equivalent to G(n, 0)2g+k−1/G(n, 0), where g is the genus of S, k
is the number of punctures and the quotient is taken by the action of G(n, 0) on
G(n, 0)2g+k−1 by simultaneous conjugation.

Theorem 1.6.7. The space of decorated maximal representation Md(π1(S), G) is
homeomorphic to

Sym+(n,R)6g+3k−6 ×G(n, 0)2g+k−1/G(n, 0)

where Sym+(n,R) is the space of all symmetric positive definite matrices and G(n, 0)
acts by simultaneous conjugation in every factor.
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2 Hermitian Lie groups and noncommutative
algebras

2.1 Symplectic group over algebras with anti-involution

2.1.1 Algebras with an anti-involution

Let A be a unital associative possibly noncommutative finite-dimensional semisimple
R-algebra.
Remark 2.1.1. The assumption that A is finite-dimensional over R implies that A
has a well-defined topology.

Definition 2.1.2. An R-linear map σ : A→ A is called an anti-involution if

• σ(ab) = σ(b)σ(a);

• σ2 = Id.

Now we fix a pair (A, σ).

Definition 2.1.3. An element a ∈ A is called σ-symmetric if σ(a) = a. We denote

Aσ := Asym := FixA(σ) = {a ∈ A | σ(a) = a}.

Remark 2.1.4. We will use the notation Asym when there is only one anti-involution
on A. If there are more then one anti-involutions defined on A, then we always use
the notation Aσ to emphasize which anti-involution we mean.

Proposition 2.1.5. Let A be a unital associative K-algebra, of finite dimension n
over K for some field K. Then A is isomorphic to a subalgebra of Mat(n,K).

Proof. For every x ∈ A, consider the linear map Lx : A→ A defined by

Lx(y) = xy .

Consider the map
A 3 x→ Lx ∈ Mat(n,K) .

This is an injective K-algebra homomorphism (there is no kernel because A is
unital).

Corollary 2.1.6. Let A be a unital associative K-algebra, which is finite-dimensional
over K. The non-invertible elements are all zero-divisors.
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Proof. Using the previous proposition, given x ∈ A, x is invertible if and only if Lx
is surjective. If Lx is not surjective, it has a kernel, hence x is a zero-divisor.

We denote by A× the subgroup of invertible elements of A. If V ⊂ A is a vector
subspace, we denote

V × = A× ∩ V ,

the set of invertible elements in V .

Corollary 2.1.7. Let A be a unital associative R-algebra, which is finite-dimensional
over R, and let V be a vector subspace of A that contains at least one invertible
element. Then V × is an open dense subset of V .

Proof. Using the previous proposition. First notice that x ∈ A is invertible in A if
and only if the linear map Lx is surjective, if and only if Lx is invertible in Mat(n,R).
Using this, since the invertible elements are open in Mat(n,R), they are open in V .

To see density, consider an invertible element u ∈ V . The subspace u−1 ·V contains
the unit 1. We now prove that density holds for u−1 · V , and we are done. If
x ∈ u−1 · V is not invertible, consider yε = x + ε · 1. We claim that there are only
finitely many values of ε such that yε is not invertible, hence we can approximate x
with invertible elements. To prove the claim, notice that the rank of Lyε as a matrix
over R is the same as its rank as a matrix over C. Put Lx in Jordan form, then we
can see that Lyε is still in Jordan form, and it is invertible for all values of ε different
from the eigenvalues of x.

Corollary 2.1.8. It follows that A× is open and dense in A and (Asym)× is open
and dense in Asym.

Consider the following map

θ : A → Asym

a 7→ σ(a)a

Definition 2.1.9. The subgroup

U(A, σ) = {a ∈ A× | θ(a) = 1}

of A× is called the unitary group of A.

Definition 2.1.10. A subset C ⊂ V of an R-vector space is a cone if it is stable
under multiplication by a strictly positive scalar. A cone is convex if it is stable by
sums of its elements.

Remark 2.1.11. If C is a convex cone, its closure C and its interior C̊ are still convex
cones. The set of the opposites of the elements of C, denoted by −C, is still a convex
cone.

Definition 2.1.12. A convex cone C is proper if

C ∩ −C = {0} .

68



Definition 2.1.13. Given a subset D ⊂ V , the convex cone generated by D, denoted
by C(D), is the smallest convex cone containing D, the set of all linear combinations
of elements of D with positive coefficients.

Definition 2.1.14. An algebra with an anti-involution (A, σ) is called Hermitian if:

1. The convex cone C(θ(Asym)) is proper;

2. Asym does not contain nilpotent elements, i.e. for every b ∈ Asym, b2 = 0 if and
only if b = 0.

Definition 2.1.15. If (A, σ) is Hermitian, we define

Asym+ := C(θ((Asym)×)),

and Asym≥0 as the closure of Asym+ . In this case, Asym+ and Asym≥0 are proper convex
cones in Asym.

Remark 2.1.16. We will see later in Corollaries 2.6.20, 2.6.24 and 2.6.42 together
with the Corollary 2.7.28 that Asym+ = θ(A×) and it is open subset of Asym and it is
contained in A×. Moreover, from the Corollary 2.6.44, it follows that for every a ∈ A,
we have σ(a)a = 0 if and only if a = 0.

Corollary 2.1.17. A subalgebra of a Hermitian algebra which is closed under σ is
also Hermitian.

Theorem 2.1.18. The group U(A, σ) is compact.

Proof. The Definition 2.1.14 implies that by Definition 2.6.11, (A, σ) is a weakly
Hermitian Lie algebra. We define the following map β : A×A→ R:

β(a1, a2) := tr

(
σ(a1)a2 + σ(a2)a1

2

)
,

where tr : Asym → R is the trace map defined in Definition 2.6.28. By the Proposi-
tion 2.6.29, this map is an inner product on Asym. It is easy to see, that it is bilinear
on A. To see that β is an inner product on A, we have only to check the positive
definiteness, i.e. β(a, a) = 0 if and only if a = 0.
For a ∈ A take its polar decomposition 2.6.40: a = ua0 where a0 ∈ Asym+ , u ∈

U(A, σ). Then β(a, a) = a2
0 = 0 if and only if a0 = 0 if and only if a = 0. Therefore,

β is an inner product on A. The group U(A, σ) acts on A by left multiplication
preserving β. Therefore, U(A, σ) ⊂ Isom(β), where Isom(β) is the group of linear
transformations of A preserving β which is compact and U(A, σ) is a closed subgroup
of it. So it is compact as well.

Remark 2.1.19. In the Corollary 2.6.43, we will see that for a Hermitian algebra
(A, σ), the group U(G, σ) is a maximal compact subgroup of A×.
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Classical examples

In this subsection, we recall classical algebras with anti-involutions and introduce
notation that we will use later.

1. For any field K such that R ⊆ K, A = Mat(n,K), σ(r) := rT is an algebra
with an anti-involution. Then Aσ = Sym(n,K) space of all symmetric matrices.
If K = R, (A, σ) is Hermitian with Aσ+ = Sym+(n,R) real symmetric positive
definite matrices.

2. A = Mat(n,C), σ̄(r) := r̄T is a Hermitian algebra with Aσ̄ = Herm(n,C) com-
plex Hermitian matrices and Aσ̄+ = Herm+(n,C) complex Hermitian positive
definite matrices.

3. A = Mat(n,H), σ1(r) := r̄T , is a Hermitian algebra with Aσ1 = Herm(n,H)
quaternionic Hermitian matrices and Aσ1+ = Herm+(n,H) quaternionic Hermi-
tian positive definite matrices.

4. There is another anti-involution on A = Mat(n,H), namely σ0(r) := σ(r1) +
σ̄(r2)j where r1, r2 ∈ Mat(n,C). This algebra is not Hermitian.

2.1.2 Sesquilinear forms on A-modules and their groups of symmetries

Let A be a unital associative finite dimensional R-algebra with an anti-involution σ.

Definition 2.1.20. A σ-sesquilinear form ω on a right A-module V is a map

ω : V × V → A

such that
ω(x+ y, z) = ω(x, z) + ω(y, z)

ω(x, y + z) = ω(x, y) + ω(x, z)

ω(x1r1, x2r2) = σ(r1)ω(x1, x2)r2

We denote by

Aut(ω) := {f ∈ Aut(V ) | ∀x, y ∈ V : ω(f(x), f(y)) = ω(x, y)}

the group of symmetries of ω. We also define the corresponding Lie algebra:

End(ω) := {f ∈ End(V ) | ∀x, y ∈ V : ω(f(x), y) + ω(x, f(y)) = 0}

with the usual Lie bracket [f, g] = fg − gf .

Let us take V = A2 (as the set of columns).

Definition 2.1.21.
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• A pair (x, y) for x, y ∈ A2 is called basis of A2 if for every z ∈ A2 there exist
a, b ∈ A2 such that z = xa+ yb.

• The element x ∈ A2 is called regular if there exists y ∈ A2 such that (x, y) is a
basis of A2.

• l ⊆ A2 is called a line if l = xA for a regular x ∈ A2. We denote the space of
lines of A2 by P(A2).

• Two regular elements x, y ∈ A2 are called linearly independent if (x, y) is a
basis of A2.

• Two lines l,m are called transverse if l = xA, m = yA for linearly independent
x, y ∈ A2.

• An element x ∈ A2 is called isotropic with respect to ω if ω(x, x) = 0. The set
of all isotropic regular elements of (A2, ω) is denoted by Is(ω).

• A line l is called isotropic if l = xA for an regular isotropic x ∈ A2. The set of
all isotropic lines of (A2, ω) is denoted by P(Is(ω)).

Definition 2.1.22.

• A form ω is called non-degenerate if for every regular x ∈ A2 there exists a
y ∈ A2 such that ω(x, y) ∈ A×.

• A form is called σ-symmetric if ω(x2, x1) = σ(ω(x1, x2)) for all x1, x2 ∈ A2.

• For A Hermitian, a σ-symmetric form is called σ-inner product if ω(x, x) ∈ Asym+

for all regular x ∈ A2.

• A form is called σ-skew-symmetric if ω(x2, x1) = −σ(ω(x1, x2)) for all x1, x2 ∈
A2.

Proposition 2.1.23. For every basis (x, y) of A2 and for every z ∈ A2 there exist
unique a, b ∈ A such that z = xa+ yb. Moreover, for every regular x ∈ A2, the map

A → xA
a 7→ xa

is an isomorphism of right A-modules.

Proof. Take a basis (x, y) of A2. Consider the following A-homomorphism of right
A-modules:

A2 → A2

(a, b) 7→ xa+ yb
.

This is also a surjective R-homomorphism of vector spaces of the same dimension.
Therefore, it is injective, i.e. (a, b) is uniquely defines by z. The restriction of this
homomorphism to A× {0} is an isomorphism A→ xA of right A-modules.
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Definition 2.1.24. We denote Sp2(A, σ) := Aut(ω), sp2(A, σ) := End(ω) for

ω(x, y) := σ(x)TΩy where Ω =

(
0 1
−1 0

)
.

Remark 2.1.25.

Sp2(A, σ) =

{(
a b
c d

)
| σ(a)c, σ(b)d ∈ Asym, σ(a)d− σ(c)b = 1

}
⊆ Mat×2 (A)

sp2(A, σ) =

{(
x z
y −σ(x)

)
| x ∈ A, y, z ∈ Asym

}
⊆ Mat2(A)

From now on, we assume ω(x, y) := σ(x)TΩy on A2.

Proposition 2.1.26. The form ω is non-degenerate.

Proof. Let x = (x1, x2)T ∈ A2 regular. We want to find y ∈ A2 such that ω(y, x) = 1.
Since x is regular, there exists x′ = (x′1, x

′
2)T ∈ A2 such that (x, x′) is a basis. That

means that the matrix X :=

(
x1 x′1
x2 x′2

)
is invertible, i.e. there exists the inverse

matrixX−1 =

(
a1 a2

a′1 a′2

)
. Therefore, a1x1+a2x2 = 1. We take y := (σ(a2),−σ(a1))T ,

then

ω(y, x) = (a2,−a1)

(
0 1
−1 0

)(
x1

x2

)
= (a1, a2)

(
x1

x2

)
= 1.

So ω is non-degenerate.

Proposition 2.1.27. An element x = (x1, x2)T ∈ A2 is isotropic if and only if
σ(x1)x2 ∈ Asym.

Proof. Direct computation.

Proposition 2.1.28. If x, y ∈ A2 are isotropic and ω(x, y) = 1, then (x, y) is a
basis.

Definition 2.1.29. A basis (x, y) of A2 is called symplectic if x, y are isotropic and
ω(x, y) = 1.

Proof. Let x, y ∈ A2 are isotropic and ω(x, y) = 1. Consider the map

A2 → A2

(a, b) 7→ xa+ yb.

To see that this map is an isomorphism, it is enough to check that it is injective.
Assume xa+ yb = 0 for some a, b ∈ A, then

0 = ω(x, xa+ yb) = ω(x, y)b = b,

0 = ω(y, xa+ yb) = −ω(x, y)a = −a.

So a = b = 0.
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Corollary 2.1.30.

Sp2(A, σ) =

{(
a b
c d

)
|
((

a
c

)
,

(
b
d

))
is a symplectic basis

}
Proposition 2.1.31. Let x ∈ A2 regular isotropic, y ∈ A2 and ω(x, y) ∈ A×. Then
(x, y) is a basis of A2. In particular, y is regular.

Proof. To see that (x, y) is a basis, it is enough to check that the map

A2 → A2

(a, b) 7→ xa+ yb

is injective. Assume xa+ yb = 0 for some a, b ∈ A, then

0 = ω(x, xa+ yb) = ω(x, y)b.

Since ω(x, y) ∈ A×, b = 0.
The element x ∈ A2 is regular, therefore, by Proposition 2.1.23, if xa = 0, then

a = 0. So, we obtain z = 0, i.e. the map above is an isomorphism.

Proposition 2.1.32. For every regular isotropic x ∈ A2, there exists an isotropic
y ∈ A2 such that (x, y) is a symplectic basis.

Proof. Since ω is non-degenerate, there exists y′ ∈ A2 such that ω(x, y′) ∈ A× and
(x, y′) is a basis. We take y′′ := y′ − x

2ω(y′, x)−1ω(y, y), then

ω(y, y) = ω(y′, y′)− 1

2
ω(y′, x)ω(y′, x)−1ω(y, y)−

−1

2
σ(ω(y′, x)−1ω(y, y))ω(x, y′) = 0.

Since ω(x, y′) = ω(x, y′′), if we take y := y′′ω(x, y′)−1, we obtain ω(x, y) = 1 and x, y
are isotropic, so (x, y) is a symplectic basis.

Corollary 2.1.33. The group Sp2(A, σ) acts transitively on regular isotropic elements
of (A2, ω).

Proof. If x = (x1, x2)T ∈ A2 is regular isotropic, then there exists y = (y1, y2) ∈ A2

regular isotropic such that (x, y) is a symplectic basis. Then

g :=

(
x1 y1

x2 y2

)
∈ Sp2(A, σ)

and g(1, 0)T = x.
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2.1.3 2x2-matrix algebra over a Hermitian algebra

In this section, we assume (A, σ) to be a Hermitian R-algebra. We consider the
following anti-involution on the algebra Mat2(A) of 2x2-matrices over A:

σT : Mat2(A) → Mat2(A)
M 7→ σ(M)T

.

We denote
Sym2(A, σ) := FixMat2(A)(σ

T );

Sym≥0
2 (A, σ) := {M ∈ Sym2(A, σ) | σ(x)TMx ∈ Asym≥0 for all x ∈ A2};

Sym+
2 (A, σ) := {M ∈ Sym2(A, σ) | σ(x)TMx ∈ Asym+ for all regular x ∈ A2};

U2(A, σ) := U(Mat×2 (A), σ) = {M ∈ Mat2(A) | σ(M)TM = Id2}.

Proposition 2.1.34. For a Hermitian algebra (A, σ), the algebra (Mat2(A), σT ) is
Hermitian.

Proof. 1. Show that Sym≥0
2 (A, σ) is a closed proper convex cone. By definition,

Sym≥0
2 (A, σ) is closed in Sym2(A, σ) because it is defined by a closed condition.

It is a cone because for every λ ≥ 0, if σ(x)TMx ∈ Asym≥0 for all x ∈ A2, then
σ(x)T (λM)x = λσ(x)TMx ∈ Asym≥0 because Asym≥0 is a cone. It is a convex cone
because for M1,M2 ∈ Sym+

2 (A, σ),

σ(x)T (M1 +M2)x = σ(x)TM1x+ σ(x)TM2x ∈ Asym≥0

for all x ∈ A2 because Asym≥0 is a convex cone. If M,−M ∈ Sym≥0
2 (A, σ), then for all

x ∈ A2, σ(x)TMx,−σ(x)TMx ∈ Asym≥0 . Since the cone Asym≥0 is proper, σ(x)TMx = 0

for all x ∈ A2. Let M :=

(
m11 m12

σ(m12) m22

)
where m11,m22 ∈ Asym, m12 ∈ A. Take

x = (1, 0)T , then m11 = 0. Take x = (0, 1)T , then m22 = 0. Take x = (1, 1)T then

σ(x)TMx = σ(m12) +m12 = 0.

i.e. m12 = −σ(m12). Take x = (1,m12), then the cone Sym≥0
2 (A, σ) is proper.

σ(x)TMx = 2m2
12 = −2σ(m12)m12 = 0

Because (A, σ) is Hermitian, m12 = 0. So we obtain M = 0.
2. Show that for every M ∈ Mat2(A), σ(M)TM ∈ Sym≥0

2 (A, σ). For every
x = (x1, x2) ∈ A2,

σ(x)Tx = σ(x1)x1 + σ(x2)x2 ∈ Asym≥0

because Asym≥0 is a convex cone. Therefore,

σ(x)Tσ(M)TMx = σ(Mx)T (Mx) ∈ Asym≥0 .
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Therefore, the convex cone C(θ(Mat2(A))) where θ(M) := σ(M)TM for M ∈
Mat2(A) is contained in the proper convex cone Sym≥0

2 (A, σ), i.e. it is proper
as well.
3. Show that for M ∈ Sym2(A, σ), M2 = 0 if and only if M = 0. Let M :=(
m11 m12

σ(m12) m22

)
where m11,m22 ∈ Asym, m12 ∈ A. Assume

0 = M2 =

(
m2

11 +m12σ(m12) m11m12 +m12m22

σ(m12)m11 +m22σ(m12) σ(m12)m12 +m2
22

)
.

Since the cone Asym≥0 is proper,

m2
11 +m12σ(m12) = 0

implies m11 = 0 and m12 = 0, and

σ(m12)m12 +m2
22 = 0

implies m22 = 0.

Corollary 2.1.35. U2(A, σ) is a maximal compact subgroup of Mat×2 (A)

Proof. Follows from the Remark 2.1.19.

Let A be a Hermitian algebra. We consider AC := A ⊗R C and extend σ in the
complex anti-linear way, i.e. we define σ̄(x+ iy) := σ(x)− σ(y)i. In this section, we
show that (AC, σ̄) is Hermitian.
We embed AC into Mat2(A) in the following way:

Υ: AC → Mat2(A)

x+ yi 7→
(
x y
−y x

)
.

(2.1.1)

This map is a injective homomorphism of R-algebras. Moreover, the anti-involution
σ̄ corresponds under this embedding to σT . By Corollary 2.1.17, we obtain:

Corollary 2.1.36. • The algebra (AC, σ̄) is Hermitian.

• The group U(AC, σ̄) = {z ∈ AC | σ̄(z)z = 1} is a maximal compact subgroup of
A×C .

Analogously, we can consider the quaternionification AH := A⊗R H of A (for more
details about quaternionic extensions of algebras see Section 2.4.1). Then AH can be
embedded into Mat2(AC) in the following way:

ΥH : AH → Mat2(AC)

x+ yj 7→
(
x y
−ȳ x̄

)
.

(2.1.2)
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This map is a injective homomorphism of C{i}-algebras. Moreover, the anti-involution
σ1 on AH defined as follows:

σ1(x+ yj) = σ̄(x) + σ(y)j

for x, y ∈ AC, corresponds under this embedding to σ̄T . By Corollary 2.1.17, we
obtain:

Corollary 2.1.37. • The algebra (AH, σ1) is Hermitian.

• The group U(AH, σ1) = {z ∈ AC | σ1(z)z = 1} is a maximal compact subgroup
of A×H.

2.1.4 Maximal compact subgroup of Sp2(A, σ)

In this section, we assume (A, σ) to be Hermitian algebra with an anti-involution.
Let (AC, σC) be the complexification of (A, σ), i.e. AC := A⊗R C, σC is the complex
linear extension of σ. We also denote by σ̄C the complex antilinear extension of σ,
i.e. for x, y ∈ A

σC(x+ yi) = σ(x)− σ(y)i.

We state two theorems that describe maximal compact subgroups of Sp2(A, σ)
and Sp2(AC, σC). The proofs of this theorems will be given in more general case in
Sections 2.7.4 and 2.7.5.

Theorem 2.1.38. The subgroup

KSp2(A, σ) := Sp2(A, σ) ∩U2(A, σ) =

=

{(
a b
−b a

)
∈ Mat2(A)

∣∣∣∣ σ(a)a+ σ(b)b = 1
σ(a)b− σ(b)a = 0

}
is a maximal compact subgroup of Sp2(A, σ).

Corollary 2.1.39. The embedding Υ from 2.1.1 maps isomorphically U(AC, σ̄) to
KSp2(A, σ).

Theorem 2.1.40. The subgroup

KSpc2(AC, σC) := Sp2(AC, σC) ∩U2(AC, σ̄C) =

=

{(
a b
−b̄ ā

)
∈ Mat2(AC)

∣∣∣∣ σ̄C(a)a+ σC(b)b̄ = 1
σ̄C(a)b− σC(b)ā = 0

}
is a maximal compact subgroup of Sp2(AC, σ̄C).

Corollary 2.1.41. The embedding ΥH from 2.1.2 maps isomorphically U(AH, σ1) to
KSpc2(AC, σC).
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2.1.5 Classical examples

Some classical Lie groups of tube type can be seen as Sp2(A, σ).

1. For any field K, A = Mat(n,K), σ(r) = rT , we get

Sp2(A, σ) = Sp(2n,K).

In the case K = R, (A, σ) is Hermitian.

KSp2(A, σ) = Υ(U(n)) ∼= U(n).

In the case K = C, (A, σ) is the complexification the Hermitian algebra
Mat(n,R).

KSpc2(A, σ) ∼= Sp(n).

2. For A = Mat(n,C), σ̄(r) = r̄T , Sp2(A, σ̄) is isomorphic to U(n, n). To see this,
we notice that the standard Hermitian form h of signature (n, n) on C2n is
given by h(x, y) := iω(xT, yT ) where T = diag(Idn,−i Idn)). In this case AC
is isomorphic to Mat(n,C)×Mat(n,C) (see Section A.2.1). Therefore.

KSp2(A, σ) ∼= U(n)×U(n).

3. For A = Mat(n,H), σ1(r) = r̄T = σ̄(r1) − σ(r2)j for r = r1 + r2j and
r1, r2 ∈ Mat(n,C). We get in this case Sp2(A, σ1) is isomorphic SO∗(4n) (or
some authors use terminology O(2n,H)) considered as the group of isometries
of the following quaternionic form β on H2n:

β(x, y) =
2n∑
i=1

x̄ijyi = x̄T (Id2n j)y.

To see this, we notice that

Id2n j = σ1(T )

(
0 Idn
− Idn 0

)
T

for

T =
1√
2

(
Idn − Idn j
− Idn j Idn

)
.

In this case AC is isomorphic to Mat(2n,C) (see Section A.2.2). Therefore.

KSp2(A, σ) ∼= U(2n).

4. For A = Mat(n,H), σ0(r) = σ(r1) + σ̄(r2)j for r = r1 + r2j and r1, r2 ∈
Mat(n,C). We get in this case Sp2(A, σ0) is isomorphic Sp(n, n) considered as
the group of isometries of the following quaternionic form ω on H2n:

β(x, y) =

2n∑
i=1

x̄iyi = x̄T
(
− Idn 0

0 Idn

)
y =
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= k

(
σ0(x)

(
Idn k 0

0 − Idn k

)
y

)
.

To see this, we notice that(
Idn k 0

0 − Idn k

)
= σ0(T )

(
0 Idn
− Idn 0

)
T

for

T =
1√
2

(
Idn Idn k

Idn k Idn

)
.

The algebra (A, σ0) is not Hermitian. The maximal compact subgroup of
Sp(n, n) is Sp(n)× Sp(n) (one can see it using the machinery developed in the
Section 2.3.2).

2.2 Invariants of isotropic lines

In this section, we assume (A, σ) to be an R- or C-algebra with an anti-involution.
We take the group Sp2(A, σ). It acts on the space of isotropic lines in (A2, ω):

P(Is(ω)) = {xA ⊂ A2 | ω(x, x) = 0, x regular}.

Similarly to the previous section, here we want to study this action.

2.2.1 Action of Sp2(A, σ) on isotropic lines

Proposition 2.2.1. Sp2(A, σ) acts transitively on P(Is(ω)).

StabSp2(A,σ)

((
1
0

)
A

)
:=

{(
x xy
0 σ(x)−1

)
| x ∈ A×, y ∈ Asym

}

StabSp2(A,σ)

((
0
1

)
A

)
:=

{(
x 0
zx σ(x)−1

)
| x ∈ A×, z ∈ Asym

}
Proof. Sp2(G, σ) acts transitively on the space of isotropic lines since it acts transi-
tively on Is(ω).

We prove only the statement for the first stabilizer. The second one can be proved
analogously.
Since (

x a
b t

)(
1
0

)
=

(
x
b

)
,

x ∈ A× and b = 0. Furthermore,

σ

((
x a
0 t

))T (
0 1
−1 0

)(
x a
0 t

)
=

(
0 σ(x)t

−σ(t)x −σ(t)a+ σ(a)t

)
=

(
0 1
−1 0

)
,

we obtain t = σ(x)−1, a = xy for y ∈ Asym.

78



2.2.2 Action of Sp2(A, σ) on pairs of isotropic lines

Proposition 2.2.2. Two elements u, v ∈ Is(ω) are linearly independent if and only
if, up to action of Sp2(A, σ), u = (1, 0)T , v = (a, b)T with b ∈ A×. Moreover, if
ω(u, v) = 1, then a ∈ Asym, b = 1.

Proof. Sp2(A, σ) acts transitively on Is(ω), therefore, up to Sp2(A, σ)-action, we
can assume u = (1, 0)T . Since u and v are linearly independent, b ∈ A×. If,
ω(u, v) = 1 = b, then v = (b, 1)T isotropic, i.e.

ω(v, v) = σ(b)− b = 0

So b ∈ Asym.

Corollary 2.2.3. If x, y ∈ Is(ω) linearly independent, then ω(x, y) ∈ A×.

Proposition 2.2.4. If (x, y) is a symplectic basis then there exists the unique
g ∈ Sp2(A, σ) such that g(1, 0)T = x, g(0, 1)T = y. In particular, Sp2(G, σ) acts
transitively on (G, σ)-symplectic bases.

Proof. We can assume, x = (1, 0)T , y = (a, 1)T and a ∈ Asym. Take g :=

(
1 a
0 1

)
,

then gx = x, gy = (0, 1)T .

Corollary 2.2.5. Let xA, yA be two transverse isotropic lines with x, y ∈ Is(ω).
Then there exist M ∈ Sp2(A, σ) and y′ ∈ Is(ω) such that y′A = yA and Mx = (1, 0)T ,
My′ = (0, 1)T . In particular, ω(x, y′) = 1.

Proposition 2.2.6. Sp2(A, σ) acts transitively on pairs of transverse isotropic lines.

StabSp2(A,σ)

((
1
0

)
A,

(
0
1

)
A

)
:=

{(
x 0
0 σ(x)−1

)
| x ∈ A

}
∼= A×.

Proof. By the Corollary 2.2.5, every pairs of transverse isotropic lines can be mapped
to ((1, 0)TA, (0, 1)TA) by an element of Sp2(A, σ). So Sp2(A, σ) acts transitively on
pairs of transverse isotropic lines.
By the Proposition 2.2.1,

StabSp2(A,σ)

((
1
0

)
A,

(
0
1

)
A

)
=

= StabSp2(A,σ)

((
1
0

)
A

)
∩ StabSp2(A,σ)

((
0
1

)
A

)
=

=

{(
x 0
0 σ(x)−1

)
| x ∈ A

}
.
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2.2.3 Action of Sp2(A, σ) on triples of isotropic lines

Let (x1A, x3A, x2A) be a triple of pairwise transverse isotropic lines where all xi ∈
Is(ω). Because of transversality of x1A and x2A, we can assume ω(x1, x2) = 1. Up to
action of Sp2(A, σ), we can assume x1 = (1, 0)T , x2 = (0, 1)T . We can also normalize
x3 so that ω(x1, x3) = 1. Then x3 = (b, 1)T , b = ω(x3, x2) ∈ (Asym)×.

Proposition 2.2.7. Orbits of the action of Sp2(A, σ) on triples of pairwise transverse
isotropic lines are in 1-1 correspondence with orbits of the following action of A× on
(Asym)×:

ψ : A× × (Asym)× 7→ (Asym)×

(a, b) 7→ abσ(a).

Proof. Let (l1, l3, l2) is a triple pairwise transverse of isotropic lines. As we have
seen, up to Sp2(A, σ)-action, we can assume li = xiA for x1 = (1, 0)T , x2 = (0, 1)T ,
x3 = (1, b)T with b ∈ (Asym)×. The stabilizer StabSp2(A,σ)((1, 0)TA, (0, 1)TA) ∼= A×

acts on x3 in the following way:

diag(a, σ(a)−1)x3 = (ab, σ(a)−1)T = (abσ(a), 1)Ta−1

i.e. diag(a, σ(a)−1)(b, 1)T = (abσ(a), 1)TA
So we see that in the orbit of (b, 1)TA are exactly all isotropic lines of the form

(b′, 1)TA where b′ is from the orbit of b under ψ.

Corollary 2.2.8. If A is the complexification of some Hermitian algebra (AR, σR)
and σ is the complex linear extension of σR, then Sp2(A, σ) acts transitively on the
set of all triples of pairwise transverse isotropic lines.

Proof. By the Theorem 2.7.33, the action ψC is transitive.

Definition 2.2.9. In the case (A, σ) to be Hermitian, the triple (l1, l3, l2) is called
positive if up to action of Sp2(A, σ), li = xi, x1 = (1, 0)T , x2 = (0, 1)T , x3 = (b, 1)T

with b ∈ Bsym
+ .

Proposition 2.2.10. In the case (A, σ) to be Hermitian, Sp2(A, σ) acts transitively
on positive triples of isotropic lines.

The stabilizer of the positive triple((
1
0

)
A,

(
1
1

)
A,

(
0
1

)
A

)
in Sp2(A, σ) coincides with the following subgroup:

Û :=

{(
u 0
0 u

)
| u ∈ U(A, σ)

}
∼= U(A, σ)

The stabilizer of every positive triple of isotropic lines is conjugated in Sp2(A, σ)
to Û .

Proof. See Proposition 2.8.17.
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2.2.4 Invariants of quadruples of isotropic lines

We consider the following subspace of A:

A0 := {bb′ | b, b′ ∈ (Asym)×}.

A× acts on A0 by conjugation because for b, b′ ∈ (Asym)×, a ∈ A×:

a(bb′)a−1 = (abσ(a))(σ(a)−1b′)a−1 ∈ A0.

Remark 2.2.11. The well-known fact from the linear algebra is that for matrix algebras
A over R, C or H, it is always A0 = A×.

Proposition 2.2.12. Orbits of the action of Sp2(A, σ) on quadruples of pairwise
transverse isotropic lines are in 1-1 correspondence with orbits of the following action
of A× on A0:

η : A× ×A0 7→ A0

(a, b) 7→ aba−1.

Proof. Let (l1, l3, l2, l4) be a quadruple pairwise transverse of isotropic lines. Then
up to action of Sp2(A, σ), we can assume l1 = (1, 0)TA, l2 = (0, 1)TA, l3 = (b, 1)TA,
l3 = (1, b′)TA with b, b′ ∈ (Asym)×. Consider the action of the stabilizer of (l1, l2):

diag(a, σ(a)−1)(b, 1)TA = (abσ(a), 1)A,

diag(a, σ(a)−1)(1, b′)TA = (1, σ(a)−1b′a−1)A.

We consider the map (l1, l3, l2, l4) 7→ bb′ ∈ A0. This map is well-defined, bijective
and the action of the stabilizer of (l1, l2) (that is isomorphic to A×) induces the action
of A× by conjugation on A0. So we obtain that this two actions are isomorphic.

Definition 2.2.13. The conjugacy class of A0 corresponding to the quadruple
(l1, l3, l2, l4) of pairwise transverse isotropic lines is called cross ratio.

2.2.5 Examples of matrix algebras

In this section, we construct explicit examples of spaces of isotropic lines for classical
matrix algebras. To avoid abusing of notation, we will use the following notation: for
complex numbers, we write C{I} to emphasize that the imaginary unit is denoted by
I. Similarly, for quaternions, we write H{I, J,K} to emphasize that the imaginary
units are denoted by I, J , K. The multiplication rule is then IJ = K.

Example 1. Let (A, σ) be (Mat(n,R), σ), (Mat(n,C), σ), (Mat(n,C), σ̄) or
(Mat(n,H), σ̄) where σ is the transposition, σ̄ the composition of transposition
and complex/quaternionic conjugation.

Every regular element of x ∈ A2 can be seen as a 2n× n-matrix of maximal rank.
Columns of this matrix are elements of R2n considered as a right R-module where
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R is R, C or H. If we take the R-span of this columns, we obtain n-dimensional
submodule of R2n denoted by SpanR(x). It is easy to see that the map:

L : P(A2) → Gr(n,R2n)
xA 7→ SpanR(x)

where Gr(n,R2n) is the space of all n-dimensional submodules of R2n is a bijection.
We consider the following form (bilinear or sesquilinear depending on σ) on R2n:

ω̃(u, v) := σ(u)

(
0 Idn
− Idn 0

)
v

for u, v ∈ R2n. Then x ∈ Is(ω) if and only if SpanR(x) is isotropic with respect to ω̃,
that means for all u, v ∈ SpanR(x), ω̃(u, v) = 0. So we obtain that L maps bijectively
isotropic lines of A2 to isotropic n-dimensional submodules of R2n. Such submodules
are called Lagrangian with respect to ω̃. The space of all Lagrangian with respect to
ω̃ submodules are denoted by Lag(R2n, ω̃).

Example 2. Let A = Mat(n,C{I})⊗C{i} with the anti-involution σ̄⊗Id. We use the
map χ form the Section A.2.1 to identify A with Mat(n,C{i})×Mat(n,C{i}) =: A′.
The induced by σ̄ ⊗ Id anti-involution

σ′ := χ ◦ (σ̄ ⊗ Id) ◦ χ−1

on Mat(n,C{i})×Mat(n,C{i}) acts in the following way:

(m1,m2) 7→ (mT
2 ,m

T
1 ).

The map χ can be extended componentwise to the map

χ′ : Mat2(A)→ Mat2(A′).

Proposition 2.2.14. Sp2(A, σ̄ ⊗ Id) is isomorphic to GL(2n,C).

Proof. First, we note that

Aσ̄⊗Id = Sym(n,C{i}) + Skew(n,C{i})I.

It is enough, to identify sp2(A, σ̄ ⊗ Id) and Mat2(AR) = Mat(2n,C) as Lie algebras.
First, we take the map χ′ restricted to sp2(A, σ̄ ⊗ Id):

χ′ : sp2(A, σ) → Mat(2n,C{i})×Mat(2n,C{i})(
a1 + a2I b1 + b2I
c1 + c2I −aT1 + aT2 I

)
7→

((
a1 + a2i b1 + b2i
c1 + c2i −aT1 + aT2 i

)
,

(
a1 − a2i b1 − b2i
c1 − c2i −aT1 − aT2 i

))
.

where a1, a2 ∈ Mat(n,C{i}), b1, c1 ∈ Sym(n,C{i}), b2, c2 ∈ Skew(n,C{i}). This
is an injective homomorphism of C{i}-Lie algebras as restriction of injective map.
Finally, we take a projection to the first component:

π1 : Mat(2n,C{i})×Mat(2n,C{i})→ Mat(2n,C{i}).

Easy computation shows that π1 ◦ χ′ is an isomorphism.
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The set (A′)2 can be identified with the space of pairs (x1, x2)T such that x1, x2 ∈
Mat(n,C{i}). We define the sesquilinear form:

ω((x1, x2)T , (y1, y2)T ) = σ′(x1, x2)

(
0 (Idn, Idn)

−(Idn, Idn) 0

)
(y2, y2)T =

= (σ(x2)

(
0 Idn
− Idn 0

)
y1, σ(x1)

(
0 Idn
− Idn 0

)
y2).

Therefore,

Is(ω) = {(l1, l2) | l = x1 Mat(n,C{i}), l2 = x2 Mat(n,C{i}), x1, x2 regular, ω(x1, x2) = 0}.

Since ω is non-degenerate, l2 is uniquely determined by l1. Therefore, we can identify:

Is(ω) ∼= {xMat(n,C{i}) | x regular}.

As in the previous example, we can identify lines in Mat(n,C{i})2 with Lagrangian
subspaces of (C2n, ω̃) where:

ω̃(u, v) = uT
(

0 Idn
− Idn 0

)
v.

So the space Is(ω) can be identified with

Is(ω) ∼= {(l1, l2) ∈ Gr(n,C2n)2 | ω̃(u, v) = 0 for all u ∈ l1, v ∈ l2}.

The form ω̃ is a non-degenerate. Therefore, for l ∈ Gr(n,C2n) there exists exactly
one ω̃-orthogonal complement l⊥ ∈ Gr(n,C2n) such that for all u ∈ l, v ∈ l⊥,
ω̃(u, v) = 0. So we can identify

Is(ω) ∼= Gr(n,C2n)

and GL(2n,C) acts on Gr(n,C2n) in the standard way.

Example 3. Let A = Mat(n,H{i, j, k})⊗C{I} with the anti-involution σ̄ ⊗ Id. We
use the map ψ form the Section A.2.2 to identify A with Mat(2n,C) =: A′. The
induced by σ̄ ⊗ Id anti-involution

σ′ := ψ ◦ (σ̄ ⊗ Id) ◦ ψ−1

on Mat(2n,C) acts in the following way:

m 7→ −
(

0 Id
− Id 0

)
mT

(
0 Id
− Id 0

)
.

We define the following σ′-sesquilinear form on (A′)2: for x, y ∈ (A′)2

ω(x, y) = σ′(x)T
(

0 Id2n

− Id2n 0

)
y.
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Proposition 2.2.15. Sp2(A, σ̄ ⊗ Id) is isomorphic to O(4n,C).

Proof. M ∈ Sp2(A′, σ′) ∼= Sp2(A, σ̄ ⊗ Id) if and only if

σ′(M)T
(

0 Id2n

− Id2n 0

)
M =

(
0 Id2n

− Id2n 0

)
,

i.e.

−


0 Idn
− Idn 0

0

0
0 Idn
− Idn 0

MT


0 Idn
− Idn 0

0

0
0 Idn
− Idn 0

 ·
·
(

0 Id2n

− Id2n 0

)
M =

(
0 Id2n

− Id2n 0

)
This is equivalent to:

MT

 0
0 Idn
− Idn 0

0 − Idn
Idn 0

0

M =

 0
0 Idn
− Idn 0

0 − Idn
Idn 0

0

 .

So the group Sp2(A, σ) is the group of symmetries of the symmetric bilinear form
form  0

0 Idn
− Idn 0

0 − Idn
Idn 0

0


on C4n. But all symmetric bilinear forms on C4n are conjugated. Therefore, Sp2(A, σ)
is isomorphic to O(4n,C).

Note that Is(ω) = Is(ω′) for

ω′(x, y) := xT

 0
0 Idn
− Idn 0

0 − Idn
Idn 0

0

 y.

As before, we can identify lines in (A′)2 with the space Gr(2n,C4n) of 2n-
dimensional subspaces of C4n using the map L (see Example 1). Under this map, the
space Is(ω) goes to the space Lag(C4n, ω̃) where

ω̃(u, v) = uT

 0
0 Idn
− Idn 0

0 − Idn
Idn 0

0

 v

for x, y ∈ C4n. The group O(ω̃) ∼= O(4n,C) acts on Lag(C4n, ω̃) in the standard way.
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2.3 Models for the symmetric space of Sp2(A, σ) for
Hermitian A

The goal of this Chapter is to construct different models of the symmetric space for
Sp2(A, σ) for a Hermitian algebra (A, σ).

2.3.1 Complex structures model

Definition 2.3.1. A complex structure on an right A-module V is an A-linear map
J : V → V such that J2 = − Id.

Let V = A2 and ω be the standard symplectic form in A2. For every complex
structure J on A2, we can define the following σ-sesquilinear form

hJ : A2 ×A2 → A
(x, y) 7→ ω(J(x), y)

We remind the definition of the σ-inner product:

Definition 2.3.2. A σ-sesquilinear form h on (A2, ω) is called σ-inner product if h
is σ-symmetric and for all regular v ∈ A2, h(v, v) ∈ Asym+ .

We consider the following space:

C :=
{
J complex structure on A2 | hJ is an σ-inner product

}
.

Proposition 2.3.3. Let J ∈ C and w ∈ Is(ω), then J(w) ∈ Is(ω).

Proof. For w ∈ Is(ω),

ω(J(w), J(w)) = hJ(w, J(w)) = σ(hJ(J(w), w)) = σ(ω(w,w)) = 0,

therefore, J(w) ∈ Is(ω).

Definition 2.3.4. The standard complex structure on A2 is the map

J0 : A2 → A2

(x, y) 7→ (y,−x)

Theorem 2.3.5. Sp2(A, σ) acts on C by conjugation. This action is transitive. The
stabilizer of the standard complex structure J0 is KSp2(A, σ).

In particular, C is a model of the symmetric space of Sp2(A, σ).

Definition 2.3.6. We call the space C the complex structure model of the symmetric
space of Sp2(A, σ).

This Theorem will be proved in more general case in the Section 2.9.1.
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2.3.2 Symmetric space of O(h) for an indefinite form h

Definition 2.3.7. The σ-sesquilinear σ-symmetric form h on A2 such that there
exist a basis (e1, e2) of A2 such that h(e1, e1) = −1, h(e2, e2) = 1, h(e1, e2) = 0 is
called indefinite.
The standard indefinite form hst is the σ-sesquilinear σ-symmetric form on A2

given by the matrix
(
−1 0
0 1

)
in the standard basis ((1, 0)T , (0, 1)T ) of A2.

We define the group of symmetries of h:

O(h) = {g ∈ Aut(A2) | h(gx, gy) = h(x, y) for all x, y ∈ A2}.

We define the following spaces:

XO(h) := {xA | h(x, x) ∈ Asym+ }.

X := XO(hst).

Remark 2.3.8. XO(h) is well defined because if xA = yA, i.e. there exists a ∈ A×
such that y = xa, then

h(y, y) = σ(a)h(x, x)a = σ(a)σ(p)pa = σ(pa)pa ∈ Asym+

where p ∈ A×, σ(p)p = h(x, x) ∈ Asym+ .
Remark 2.3.9. Since Aut(A2) acts transitively on bases of A2, all O(h) are isomorphic
for indefinite h. Therefore, all XO(h) are also isomorphic.

Proposition 2.3.10. O(hst) acts transitively on X with stabilizer of (0, 1)TA equal
to U(A, σ)× U(A, σ) diagonally embedded into O(hst).

Proof. Since hst((0, 1)T , (0, 1)T ) = 1 ∈ Asym+ , the line (0, 1)TA ∈ X . Let vA ∈ X for
some v ∈ A2. Since hst(v, v) ∈ Asym+ , there exists p ∈ A such that hst(v, v) = σ(p)p.
Let v′ := vp−1, then h(v′, v′) = 1 and v′A = vA.
Consider the following vector v′ := (x, σ(v2)−1σ(v1)x)T where v = (v1, v2)T ,

x = (1 + v1σ(v1))
1
2 . Then easy calculation shows that h(v′, v′) = −1 and h(v, v′) = 0.

So we can take the following matrix M := (v′, v) ∈ O(hst). Since M(0, 1)T = v, we
obtain M(0, 1)TA = vA, i.e. O(hst) acts transitively on X .
Now, compute the stabilizer of (0, 1)TA. Let

M :=

(
a b
c d

)
∈ O(hst)

stabilizes (0, 1)TA. Then M(0, 1)T = (b, d), i.e. b = 0. Moreover(
−1 0
0 1

)
=

(
σ(a) σ(c)

0 σ(d)

)(
−1 0
0 1

)(
a 0
c d

)
=

(
−σ(a) σ(c)

0 σ(d)

)(
a 0
c d

)
=

=

(
−σ(a)a+ σ(c)c σ(c)d

0 σ(d)d

)
.

Therefore, σ(d)d = 1, i.e. d is invertible. So we obtain c = 0 and σ(a)a = 1, i.e.
a, d ∈ U(A, σ).
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Proposition 2.3.11. The group U(A, σ)× U(A, σ) diagonally embedded into O(hst)
is a maximal compact subgroup of O(hst). In particular, X is a model of the symmetric
space of O(hst).

Proof. First, note that the Lie algebra of O(hst) is:

o(hst) =

{(
a b
σ(b) d

)
| σ(a) = −a ∈ A, σ(d) = −d ∈ A, b ∈ A

}
.

Assume, K is compact subgroup of O(hst) that contains U(A, σ)×U(A, σ) as a proper

subgroup. Then Lie(K) contains an element
(

a b
σ(b) d

)
with b 6= 0. Therefore,

x :=

(
0 b

σ(b) 0

)
=

(
a b
σ(b) d

)
−
(
a 0
0 d

)
∈ Lie(K)

and

tx =

(
0 tb

tσ(b) 0

)
∈ Lie(K)

for all t ∈ R. Take a polar decomposition of b = uy where u ∈ U(A, σ), y ∈ Asym.
We take the spectral decompositions of y: y =

∑k
i=1 λici where (ci) is a complete

system of orthogonal idempotents, λ1, . . . , λk ∈ R.
Further,

x2 =

(
bσ(b) 0

0 σ(b)b

)
.

Therefore,

bσ(b) = u
k∑
i=1

λ2
i ciu

−1, σ(b)b =
k∑
i=1

λ2
i ci

and

exp(tx) =

(
u
∑k

i=1 cosh(tλi)ciu
−1 u

∑k
i=1 sinh(tλi)ci∑k

i=1 sinh(tλi)ciu
−1

∑k
i=1 cosh(tλi)ci

)
∈ K.

For t goes to infinity, exp(xt) does not converge even up to subsequence unless all
λi = 0. But this means that b = 0, so we obtain K = U(A, σ) × U(A, σ). This
contradicts to our assumption that U(A, σ)×U(A, σ) is a proper subgroup of K.

Proposition 2.3.12. The following map

Φ: X → D̊(A, σ) := {c ∈ A | 1− σ(c)c ∈ Asym+ }
(a, b)TA 7→ ab−1

is a homeomorphism.
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Proof. Let xA ∈ X then x = (a, b)T with −σ(a)a + σ(b)b ∈ Asym+ , i.e. there exists
p ∈ A× such that

−σ(a)a+ σ(b)b = σ(p)p.

Therefore,
σ(b)b = σ(p)p+ σ(a)a ∈ Asym+ ,

i.e. b ∈ A×. So for c = ab−1, xA = (c, 1)TA. Moreover, for every line xA ∈ X , the
element c ∈ A such that xA = (c, 1)TA is well defined and 1− σ(c)c ∈ Asym+ .
For every c ∈ D̊(A, σ), the line (c, 1)TA ∈ X because

hst((c, 1)T , (c, 1)T ) = 1− σ(c)c ∈ Asym+ .

Therefore, Φ is a homeomorphism.

Corollary 2.3.13. O(hst) acts on D̊(A, σ) via

z 7→M.z = (az + b)(cz + d)−1, where M =

(
a b
c d

)
.

This transformation is called Möbius transformation.

Remark 2.3.14. Since (A, σ) is Hermitian, by Proposition 2.6.49 the domain D̊(A, σ)
is precompact.

2.3.3 Projective model

As usual, we denote by σC the C-linear extension of σ, i.e.

σC(x+ iy) = σ(x) + iσ(y)

for every x, y ∈ A and by σ̄C the C-antilinear extension of σ, i.e.

σ̄C(x+ iy) = σ(x)− iσ(y)

for every x, y ∈ A.
As we have seen in the Corollary 2.1.36, (AC, σ̄C) is Hermitian.
We extend ω in the following way:

ωC(x, y) := σ(x)T
(

0 1
−1 0

)
y.

The following σ̄-sesquilinear form is an indefinite form on A2
C:

h(x, y) := σ̄C(x)T
(

0 i
−i 0

)
y = iωC(x̄, y).

Indeed,

h(y, x) = σ̄C(y)T
(

0 i
−i 0

)
x = σ̄C

(
σ1(x)T

(
0 i
−i 0

)
y

)
= σ̄C(h(x, y)).
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Then in the basis e1 :=
(

1√
2
, i√

2

)T
, e2 :=

(
1√
2
,− i√

2

)T
, the form h is represented by

the matrix
(
−1 0
0 1

)
, i.e. h is a σ̄C-sesquilinear indefinite form on A2

C.

Note, Sp2(A, σ) acts on A2
C preserving ωC and h.

Proposition 2.3.15. Sp2(A, σ) acts transitively on the space

P := {vAC | v ∈ Is(ωC), h(v, v) ∈ (Aσ̄C)+} = Is(ωC) ∩ XO(h)

with the stabilizer of (i, 1)TAC equal to KSp2(A, σ).
In particular, P is a model of the symmetric space of Sp2(A, σ).

Definition 2.3.16. We call the space P the projective model of the symmetric space
of Sp2(A, σ).

This Theorem will be proved in more general case in the Section 2.3.3.

2.3.4 Precompact model

We consider the following Sp2(AC, σC)-transformation that maps h to the standard
indefinite form hst:

T :=
1√
2

(
1 i
i 1

)
,

i.e. σ̄(T )T [h]T = diag(−1, 1) = [hst]. Since T ∈ Sp2(AC, σC), it stabilizes the set
Is(ωC).

Theorem 2.3.17. The map

Φ: T−1P → D̊(AσCC , σ̄C) := {c ∈ AσCC | 1− c̄c ∈ (Aσ̄CC )+}
(a, b)TAC 7→ ab−1

is a homeomorphism. The set D̊(AσCC , σ̄C) ⊆ AσCC is precompact.

This Theorem will be proved in more general case in the Section 2.9.3.
Remark 2.3.18. The group T−1 Sp2(A, σ)T < Sp2(AC, σ̄C) acts on D̊(AσCC , σ̄C) by
Möbius transformations.

Definition 2.3.19. We call the space D̊(AσCC , σ̄C) the precompact model of the
symmetric space of Sp2(A, σ).

2.3.5 Compactification and Shilov boundary

We take the topological closure of D̊(AσCC , σ̄) in AσCC :

D(AσCC , σ̄) := {c ∈ AσCC | 1− c̄c ∈ (Aσ̄C)≥0}

The boundary of D(AσCC , σ̄) contains the following closed subspace:

Š(AσCC , σ̄) := {c ∈ AσCC | 1− c̄c = 0}.
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Definition 2.3.20. We call Š(AσCC , σ̄) Shilov boundary of the precompact model
D̊(AσCC , σ̄).

Note, that
Š(AσCC , σ̄) = U(AC, σ̄) ∩AσCC

and it is compact.
Remark 2.3.21. The map Φ−1 extends to the boundary of D(AσCC , σ̄) and remains
continuous and bijective. Since the boundary is compact, it is a homeomorphism.
Therefore, we can see the boundary also in the projective model. In particular, we
can see the Shilov boundary there.
The next Proposition describes the Shilov boundary in the projective model.

Proposition 2.3.22. The preimage of the Shilov boundary Š(AσCC , σ̄C) in P(Is(ωC))
under the map Φ ◦T−1 gives a compact subset of the boundary of the projective model.
It consists of all lines of the form xAC such that x ∈ Is(ω).

This Proposition will be proved later in the Section 2.9.4.

Corollary 2.3.23. The space P(Is(ω)) of isotropic lines of (A2, ω) embedded into
P(Is(ωC)) as:

xA 7→ xAC

is a Shilov boundary in the projective model. This is a closed (even compact) orbit of
the action of Sp2(A, σ) on the boundary of the projective model.

2.3.6 Upperhalf space model

We denote as before by AC the complexification of A, i.e. AC := A⊗R C. We extend
σ to AC complex linearly, i.e. σC(x+ yi) := σ(x) + σ(y)i.

Every element of z ∈ AσCC can be uniquely written as z = x+ yi where x, y ∈ Asym.
We denote by Re(z) := x, Im(z) := y. We also have a complex conjugation on AC
given by z̄ = x− yi.
Definition 2.3.24. The upperhalf space is

U := {z ∈ AσCC | Im(z) ∈ Asym+ }

Theorem 2.3.25. Sp2(A, σ) acts transitively on U via

z 7→M.z = (az + b)(cz + d)−1, where M =

(
a b
c d

)
.

This transformation is called Möbius transformation. The stabilizer of 1i is
KSp2(A, σ). In particular, U is a model of the symmetric space of Sp2(A, σ).
The map:

F : P → U

(x1, x2)TAC 7→ x1x
−1
2

defines a Sp2(A, σ)-equivariant homeomorphism between projective model and upper-
half space model.

This Proposition will be proved later in more general case in the Section 2.3.6.
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2.3.7 Connection between projective, precompact and upperhalf space
models

In this section, construct explicitly an Sp2(A, σ)-equivariant homeomorphism between
the projective model and the upperhalf space model of the symmetric space for
Sp2(A, σ).

As we have seen, the map:

F : P → U

(x1, x2)TAC 7→ x1x
−1
2

is a homeomorphism.
As we have seen in the Proposition 2.3.17, the map

Φ ◦ T−1 : P→ D̊(AσCC , σ̄C) := {c ∈ AσCC | 1− c̄c ∈ (Aσ̄CC )+}.

defines another homeomorphism. These maps F and Φ ◦ T−1 can be seen as different
coordinate charts for the projective model P of the symmetric space for Sp2(A, σ).

2.4 Models for the symmetric space of Sp2(A, σ) for
complexified A

The goal of this Chapter is to construct different models of the symmetric space for
Sp2(A, σ) where A = AR ⊗R C for some Hermitian algebra (AR, σR).

2.4.1 Quaternionic extensions of algebras

Let H be the quaternionic skew-field. Sometimes, to make a construction more
precise, we will write H{ξ, η, ζ} to emphasize what the imaginary unities of H are.
The multiplication rule is then ξη = −ηξ = ζ. Sometimes, we will also write C{κ}
for C to emphasize the imaginary unit κ.
If BR ⊗R C is the complexification of some real Lie algebra BR, then it can be

embedded into BR ⊗R H in many different ways. If we write B := BR ⊗R C{i},
BH := BR ⊗R H{i, J,K}, it means that B is embedded into BH by the map induced
by the identification B 3 i 7→ i ∈ BH.

Let B be a C-algebra, B0 ⊂ B be R-subalgebra of B, and there is a central element
I ∈ Z(B) such that I2 = −1 and B = B0 ⊕ B0I. Then we say that B0 be a real
locus of B with respect to the imaginary unit I. In this case, B is isomorphic to
B0 ⊗R C{I} as C{I}-algebras. We take the following H-algebra:

H[B,B0, I, J ] := B0 ⊗R H{I, J,K}.

The algebra B sits in H[B,B0, I, J ] as described above.

Definition 2.4.1. We call H[B,B0, I, J ] the quaternionification of B with respect
to the real locus B0 and the imaginary unit I.
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2.4.2 Quaternionic structures model

Let (AR, σR) be a Hermitian algebra with anti-involution σR. We consider the
complexification A := AR ⊗R C. We denote by σ the complex linear extension of
σR and by σ̄ the complex anti-linear extension of σR. As we have seen, (A, σ̄) is a
Hermitian algebra.

Definition 2.4.2. A quaternionic structure on an right A-module V is an additive
map J : V → V such that J2 = − Id and J(xa) = J(x)ā for all x ∈ V , a ∈ A.

Let V = A2 and ω be the standard symplectic form in A2. For every quaternionic
structure J on A2, we can define the form:

hJ : A2 ×A2 → A
(x, y) 7→ ω(J(x), y)

that is σ̄-sesquilinear. Indeed, for a1, a2 ∈ A

hJ(xa1, ya2) = ω(J(xa1), ya2) = ω(J(x)ā1, ya2) = σ̄(a1)hJ(x, y)a2.

We consider the following space:

C := {J quaternionic structure on A2 | hJ is a σ̄-inner product}.

Definition 2.4.3. The standard quaternionic structure on A2 is the map

J0 : A2 → A2

(x, y) 7→ (ȳ,−x̄)

Remark 2.4.4. hJ0 is the standard σ̄-inner product on A2.

Proposition 2.4.5. Let J be a quaternionic structure on A2. J ∈ C if and only if
there exists a regular isotropic w ∈ A2 such that (J(w), w) is a symplectic basis.

Proof. 1. Let J ∈ C and w ∈ A2 some regular isotropic element. Since hJ(w,w) ∈ Aσ̄+,
we can normalize w so that hJ(w,w) = 1. Then:

ω(J(w), J(w)) = hJ(w, J(w)) = σ̄(hJ(J(w), w)) = σ̄(ω(w,w)) = 0,

ω(J(w), w) = hJ(w,w) = 1.

Therefore, (J(w), w) is a σ-symplectic basis.
2. Let w ∈ A2 and (J(w), w) is a σ-symplectic basis. Then,

hJ(w,w) = ω(J(w), w) = 1

hJ(J(w), J(w)) = ω(J2(w), J(w)) = ω(J(w), w) = 1,

hJ(J(w), w) = ω(J2(w), w) = −ω(w,w) = 0.

Therefore, (w, J(w)) is an orthonormal basis for hJ , and in this basis, hJ is the
standard σ-inner product, so hJ is an σ̄-inner product.
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Corollary 2.4.6. For every J ∈ C, for every v ∈ Is(ω), J(v) ∈ Is(ω).

Theorem 2.4.7. Sp2(A, σ) acts on C in the following way:

(g, J) 7→ g−1 ◦ J ◦ g.

This action is transitive. The stabilizer of the standard quaternionic structure is
KSpc2(A, σ).
In particular, C is a model of the symmetric space of Sp2(A, σ).

Proof. 1. First, we prove that Sp2(A, σ) acts on C by conjugation. Let J ∈ C,
g ∈ Sp2(A, σ). Consider J ′ := g−1 ◦ J ◦ g. Then

(J ′)2 = g−1 ◦ J ◦ g ◦ g−1 ◦ J ◦ g = − Id .

So J ′ is a quaternionic structure on A2. For a regular x ∈ A2,

hJ ′(x, x) = ω(J ′(x), x) = ω(g−1Jg(x), x) = ω(Jg(x), g(x)) =

= hJ(g(x), g(x)) ∈ Aσ̄+.

Therefore, hJ ′ is an inner product on A2, i.e. J ′ ∈ C.
2. Second, we prove that the action is transitive. Let J ∈ C, take a symplectic

basis (J(w), w) from the Proposition 2.4.5. Since Sp2(A, σ) acts transitively on
symplectic bases, there exists g ∈ Sp2(A, σ) which maps the standard symplectic
basis to (J(w), w). That means, g maps the standard complex structure J0 to J . So
the action is transitive.
3. Finally, compute the stabilizer of J0. g ∈ StabSp2(A,σ)(J0) if and only if

g ∈ Sp2(A, σ) and g ∈ O(hJ0) = U2(AC, σ̄), i.e.

g ∈ Sp2(A, σ) ∩U2(AC, σ̄) = KSpc2(A, σ).

Remark 2.4.8. Since any quaternionic structure is a C-antilinear map, if we write the
action of Sp2(A, σ) in the matrix form, we need to add the complex conjugation: i.e.
let [J ] be the matrix for the quaternionic structure J , then

[g−1 ◦ J ◦ g] = g−1[J ]ḡ.

2.4.3 Projective model for Sp2(A, σ)

Now, we consider the following quaternionic extension of A:

AH := H[A,AR, i, j] = AR ⊗R H{i, j, k}.

This space can be embedded into Mat2(A) as a subalgebra in the following way:

AH ↪→ Mat2(A)

a1 + a2j 7→
(
a1 a2

−ā2 ā1

)
.
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The anti-involution σ̄T on Mat2(A) restricts to the following anti-involution on AH:

σ1(a1 + a2j) := σ̄(a1)− σ(a2)j,

where a1, a2 ∈ A. Because (A, σ̄) is Hermitian, by the Proposition 2.1.34,
(Mat2(A), σ̄T ) is Hermitian and, therefore, (AH, σ1) is Hermitian as well.

We denote:
Aσ1H := FixAH(σ1), (Aσ1H )+ := θH(A×H)

where
θH : AH → Aσ1H

a 7→ σ1(a)a.

We also consider the following anti-involution on AH:

σ0(a1 + a2j) := σ(a1) + σ̄(a2)j,

where a1, a2 ∈ A and extend ω in the following way:

ωH(x, y) := σ0(x)T
(

0 1
−1 0

)
y.

The following σ1-sesquilinear form is an indefinite form on A2
H:

h(x, y) := σ1(x)T
(

0 j
−j 0

)
y.

Indeed,

h(y, x) = σ1(y)T
(

0 j
−j 0

)
x = σ1

(
σ1(x)T

(
0 j
−j 0

)
y

)
= σ1(h(x, y)).

Then in the basis e1 :=
(

1√
2
, j√

2

)T
, e2 :=

(
1√
2
,− j√

2

)T
, the form h is represented by

the matrix
(
−1 0
0 1

)
, i.e. h is a σ1-sesquilinear indefinite form on A2

H.

Proposition 2.4.9. Sp2(A, σ) acts on A2
H preserving h. So we can see Sp2(A, σ) as

a subgroup of O(h).

Proof. Let x, y ∈ A2
H, M ∈ Sp2(A, σ), then

h(Mx,My) = σ1(Mx)T
(

0 j
−j 0

)
My = σ1(x)T σ̄(M)T j

(
0 1
−1 0

)
My =

= σ1(x)T jσ(M)T
(

0 1
−1 0

)
My = σ1(x)T

(
0 j
−j 0

)
y = h(x, y).

So M preserves h.
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Every quaternionic structure J on A2 can be extended additively to a quaternionic
structure JH on A2

H in the following linear way:

JH(x(a+ bj)) := J(x)(ā+ b̄j).

where x ∈ A2, a, b ∈ A.

Proposition 2.4.10. For every quaternionic structure J ∈ S ′, there exist regular
x, y ∈ A2

H such that JH(x) = xj, JH(y) = −yj. Elements x, y are uniquely defined up
to multiplication by elements of AH.

Proof. Since Sp2(A, σ) acts transitively on S ′, it is enough to prove the proposition
for the standard quaternionic structure J0.

Since
J0(a1 + a2j, b1 + b2j)

T = (b̄1 + b̄2j,−ā1 − ā2j)
T ,

we obtain

(b̄1 + b̄2j,−ā1 − ā2j)
T = (a1 + a2j, b1 + b2j)

T j = (−a2 + a1j,−b2 + b1j)
T

if and only if ā1 = b2, ā2 = −b1, i.e.

x = (a1 + a2j,−ā2 + ā1j)
T = (a1 + a2j, j(a1 + a2j))

T = (1, jT )a,

where a = a1 + a2j ∈ AH arbitrary element. Analogously, y = (j, 1)Ta where
a = a1 + a2j ∈ AH arbitrary element.

For a quaternionic structure J ∈ S ′, we denote by lJ the AH-line yAH such that
JC(y) = −yj.
We consider the spaces of isotropic elements and isotropic lines of (A2

H, ωH):

Is(ωH) := {x | x ∈ A2
H regular, ωH(x, x) = 0},

P(Is(ωH)) := {xA | x ∈ Is(ωH)}.

We also consider the symmetric space of O(h):

XO(h) := {xA | h(x, x) ∈ (Aσ1H )+}.

Proposition 2.4.11. The map

F : C → P := XO(h) ∩ P(Is(ωH))

J 7→ lJ

defines is a homeomorphism that is equivariant under the action of Sp2(A, σ).

Definition 2.4.12. We call the space

P := XO(h) ∩ P(Is(ωH))

the projective model of the symmetric space of Sp2(A, σ).
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Proof. 1. Show that lJ ∈ XO(h). Since Sp2(A, σ) acts transitively on C, it is enough
to check it the standard quaternionic structure J0:

h((j, 1)T , (j, 1)T ) = σ1(j, 1)

(
0 j
−j 0

)(
j
1

)
= (−j, 1)

(
j
1

)
= 2 ∈ (Aσ1H )+.

2. Show that lJ ∈ P(Is(ω)). It is enough to prove it for J0:

ω((j, 1)T , (j, 1)T ) = σ0(j, 1)

(
0 1
−1 0

)(
j
1

)
= (−1, j)

(
j
1

)
= 0.

3. Show that F is surjective. Let v = u + wj ∈ AH such that vAH ∈ P. Since
h(v, v) ∈ (Aσ1H )+, we can renormalize v so that h(v, v) = 2. Since v ∈ Is(ω),

0 = ωH(v, v) = ω(u, u) + jω(w,w)j + ω(u,w)j + jω(w, u) =

= ω(u, u)− ω(w,w) +
(
ω(u,w) + ω(w, u)

)
j

So we have:
ω(u, u) = ω(w,w)

ω(u,w) = −ω(w, u).

Moreover,

2 = h(v, v) = h(u+ wj, u+ wj) = h(u, u)− jh(w,w)j + h(u,w)j − jh(w, u).

Notice, for u,w ∈ A2, h(u,w) = ω(ū, w̄)j = jω(u,w). Therefore,

h(v, v) = ω(ū, ū)j + ω(w,w)j − ω(ū, w̄) + ω(w, u).

= 2ω(w, u) + 2ω(w,w)j

So we have:
ω(w, u) = 1

ω(u, u) = ω(w,w) = 0

It means that (w, u) is a symplectic basis of (A2, ω). We can define the following
quaternionic structure: J(u) = w, J(w) = −u. By the Proposition 2.4.5, J ∈ C.
Since

JH(v) = JH(u+ wj) = w − uj = −(u+ wj)j = −vj,
we obtain F (J) = vA, i.e. F is surjective.

4. The map F is injective because if lJ = lJ ′ = yA for J, J ′ ∈ S ′ and some
y = y1 + y2j ∈ A2

H. Then J(y1) = J ′(y1) = −y2, J(y2) = J ′(y2) = y1 and (y1, y2) is
a basis of A2, i.e. J = J ′.

5. Now, show the equivariance of F . Let M ∈ Sp2(A, σ), J ∈ C and u,w ∈ A2 such
that w := J(u), J(w) = −u. Then MJM−1(Mu) = Mw, MJM−1(Mw) = −Mu.
That means that for v = u+ wj,

F (MJM−1) = (Mv)AH = M(vAH) = MF (J),

i.e. F is equivariant with respect to the Sp2(A, σ)-action.
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Corollary 2.4.13. The map

π̃′′ : Sp2(A, σ)/KSpc2(A, σ) → P
M KSpc2(A, σ) 7→ M(j, 1)TAH

is an Sp2(A, σ)-equivariant homeomorphism.

2.4.4 Precompact model for Sp2(A, σ)

As we have seen in the Chapter 2.3.2 in the Proposition 2.3.12, the space X = XO(hst)

for the standard σ1-indefinite form on A2
H can be seen as a precompact domain

D̊(AH, σ̄) := {c ∈ AH | 1− σ1(c)c ∈ (Aσ1H )+} ⊆ AH.

To see the symmetric space for Sp2(A, σ) as a subset of this domain, we need an
AH-linear transformation that maps h to the standard indefinite form. We can take
the following matrix:

T :=
1√
2

(
1 j
j 1

)
.

Then σ1(T )T [h]T = diag(−1, 1) = [hst] and T−1P ⊆ X . Notice, T ∈ Sp2(AH, σ),
therefore it stabilizes the set of isotropic elements of (A2

H, ω).

Proposition 2.4.14. The image of T−1P under the homeomorphism Φ: X →
D̊(AH, σ1) is

D̊(Aσ0H , σ1) := D̊(AH, σ1) ∩Aσ0H = {c ∈ Aσ0H | 1− σ1(c)c ∈ (Aσ1H )+}.

Proof. To characterize the image of the symmetric space for Sp2(A, σ) inside
D̊(AH, σ1), we remind that (x1, x2)T ∈ Is(ω) if and only if σ0(x1)x2 ∈ Aσ0H . Therefore,
(c, 1)T is isotropic if and only if σ0(c) ∈ Aσ0H , i.e. c ∈ Aσ0H .

Φ(T−1S ′′) = {c ∈ Aσ0H | 1− σ1(c)c ∈ (Aσ1H )+} ⊆ Aσ0H .

Remark 2.4.15. The group T−1 Sp2(A, σ)T acts on D̊(Aσ0H , σ1) by Möbius transfor-
mations.

2.4.5 Compactification and Shilov boundary

Let (A, σ) be the complexification of a Hermitian algebra as before. The space

D̊(Aσ0H , σ1) = {c ∈ Aσ0H | 1− σ1(c)c ∈ (Aσ1H )+}

is precompact. Let us take the topological closure of D̊(Aσ0H , σ1) in Aσ0H :

D(Aσ0H , σ1) := {c ∈ Aσ0H | 1− σ1(c)c ∈ (Aσ1H )≥0}.

The boundary of D(Aσ0H , σ1) contains the following closed subspace:

Š(Aσ0H , σ1) := {c ∈ Aσ0H | 1− σ1(c)c = 0}.
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Definition 2.4.16. We call Š(Aσ0H , σ1) Shilov boundary of the precompact model
D̊(Aσ0H , σ1).

Note, that Š(Aσ0H , σ1) is compact as a closed subspace of a compact.

Remark 2.4.17. The map Φ−1 extends to the boundary of D(Aσ0H , σ1) and remains
continuous and bijective. Since the boundary is compact, it is a homeomorphism.
Therefore, we can see the boundary also in the projective model. In particular, we
can see the Shilov boundary there.

The next Proposition describes the Shilov boundary in the projective model.

Proposition 2.4.18. The preimage of the Shilov boundary Š(Aσ0H , σ1) in Is(ωH) the
map Φ◦T−1 gives a compact subset of the boundary of the projective model. It consists
of all lines of the form xAH such that x ∈ Is(ω).

Proof. Note that the line l ∈ Is(ωH) is of the form xAH for some x ∈ Is(ω) if and
only if η(l) = l where η : AH → AH the following involution

η(c1 + c2j) := c1 − c2j

for c1, c2 ∈ AC{i}. Notice, η is an involution on AH and

σ1(σ0(c1 + c2j)) = c̄1 − c̄2j = −jη(c1 + c2j)j.

Assume c ∈ Š(Aσ0H , σ1), i.e. σ1(c)−1 = c, σ0(c) = c. Then

(Φ ◦ T−1)η(T ◦ Φ−1(c)) = Φ

((
0 j
j 0

)(
η(c)

1

))
= Φ

((
j

jη(c)

))
=

= −jη(c)−1j = σ1(σ0(c))−1 = σ1(c)−1 = c

i.e. for l = (c, 1)TAH, η(l) = l.
If we take a line xAH for some x = (x1, x2)T ∈ Is(ω), then

c := (Φ ◦ T−1)(xA) = (x1 − jx2)(−jx1 + x2)−1.

Since x ∈ Is(ω) ⊂ Is(ωH), c ∈ Aσ0H . Further

σ1(c)c = σ1(σ0(c))c = (x̄1 + jx̄2)(jx̄1 + x̄2)−1(x1 − jx2)(−jx1 + x2)−1 =

= (x̄1 + jx̄2)(jx̄1 + x̄2)−1(jx̄1 + x̄2)(−j)(−jx1 + x2)−1 =

= (x̄1 + jx̄2)(−j)(−jx1 + x2)−1 = (−jx1 + x2)(−jx1 + x2)−1 = 1.

Therefore, (Φ ◦ T−1)(xA) ∈ Š(Aσ0H , σ1).
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2.4.6 Upperhalf space model for Sp2(A, σ)

Let AR be an Hermitian R-algebra with an anti-involution σR. We assume A :=
AR ⊗R C{I} to be the complexification of AR. We denote here the imaginary unit by
I because the algebra A sometimes is already a complex algebra where we just forget
about its complex structure, so it may contain i as an element. In order to be more
precise, we do not use the letter i in our construction.

We denote by σ the complex linear extension of σR. We denote by σ̄ the complex
antilinear extension of σR.

We denote by AH the quaternionification of AR, i.e. AH := AR ⊗R H{I, J,K}. By
our convention form the previous Section 2.4.1, we have A ⊂ AH.

We extend σ to AH quaternionic linearly, i.e.

σ0 := σ(x) + Jσ(y) = σ(x) + σ(ȳ)J = σ(x) + σ̄(y)J.

So Aσ0H = FixAH(σ0) = Aσ ⊕Aσ̄J is well defined.
Every element of z ∈ Aσ0H can be uniquely written as z = x + yJ where x ∈ Aσ,

y ∈ Aσ̄. We denote by Re(z) := x, Im(z) := y. We also have a quaternionic
conjugation on AH given by z̄ = x̄− Jȳ = x̄− yJ .

Definition 2.4.19. The upperhalf space is

U := {z ∈ Aσ0H | Im(z) ∈ Aσ̄+}

Proposition 2.4.20. The following map

F : P → U

(x1, x2)TAH 7→ x1x
−1
2

is a homeomorphism.

Proof. Let (x1, x2)TAH ∈ P. We take such representative (x1, x2)T that x2 ∈ A.
Then

0 = ωH((x1, x2)T , (x1, x2)T ) = σ0(x1)x2 − σ0(x2)x1,

i.e. σ0(x1)x2 = σ(x2)x1

h((x1, x2)T , (x1, x2)T ) = (σ1(x1), σ1(x2))

(
0 J
−J 0

)(
x1

x2

)
=

= σ1(x1)Jx2 − σ̄(x2)Jx1 = σ1(x1)Jx2 − Jσ(x2)x1 =

= σ1(x1)Jx2 − Jσ0(x1)x2 = J(−2 Im(σ0(x1))Jx2) = 2Im(σ0(x1))x2 ∈ (Aσ1H )+.

In particular, x2 ia invertible. If x1 = x11 + x12j then

Im(σ0(x1))x2 = σ(x12)x2 ∈ Aσ̄+.

Therefore, x1x
−1
2 ∈ AH is well-defined. Moreover,

σ0(x1x
−1
2 ) = σ(x−1

2 )σ0(x1) = σ(x−1
2 )σ(x2)x1x

−1
2 = x1x

−1
2 ,
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i.e. x1x
−1
2 ∈ Aσ0H . Furthermore,

Im(x1x
−1
2 ) = Im((x11 + x12J)x−1

2 ) = Im((x11x
−1
2 + x12x̄

−1
2 J) = x12x̄

−1
2 ∈ Aσ̄+

if and only if
σ(x2)x12x̄

−1
2 x̄2 = σ(x2)x12 ∈ Aσ̄+

if and only if
σ(x12)x2 ∈ Aσ̄+

So we obtain x1x
−1
2 ∈ S. It is easy to check that the map

F−1 : U → P
z 7→ (z, 1)TAH

is inverse to F . Since F and F−1 are continuous, F is a homeomorphism.

Corollary 2.4.21. Sp2(A, σ) acts on U via

z 7→M.z = (az + b)(cz + d)−1, where M =

(
a b
c d

)
∈ Sp2(A, σ).

This transformation is called Möbius transformation. With respect to this action
of Sp2(A, σ) on U and the natural action on P, the map F becomes an Sp2(A, σ)-
equivariant homeomorphism.

Proposition 2.4.22. The map

π : Sp2(A, σ) → U
M → M.1J

is continues, proper and surjective, i.e. Sp2(A, σ) acts transitively on S. The stabilizer
of 1J is KSpc2(A, σ).

In particular, S is a model for the symmetric space for Sp2(A, σ).

Proof. Let z = x+ yJ ∈ S then y = u2 for some u ∈ (Aσ̄)×. Then

π

((
1 x
0 1

)(
u 0
0 σ(u)−1

))
= π

((
u xσ(u)−1

0 σ(u)−1

))
= x+ uJσ(u) =

= x+ uσ̄(u)J = x+ yJ = z

An element M =

(
a b
c d

)
stabilizes 1J if and only if

1J = M.1J = (aJ + b)(cJ + d)−1 = (aJ + b)(−c̄+ d̄J)−1J.

So, a = d̄ and c = −b̄, i.e. M ∈ KSpc2(A, σ).

Corollary 2.4.23. The map π induces a homeomorphism

π̃ : Sp2(A, σ)/KSpc2(A, σ) → U
M KSpc2(A, σ) 7→ M.1J

A Möbius transformation z 7→ M ′.z corresponds under this homeomorphism to the
left multiplication M KSpc2(A, σ) 7→M ′M KSpc2(A, σ).
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2.4.7 Connection between projective, precompact and upperhalf space
models

Consider a Hermitian algebra (AR, σR) and its complexification A = AR ⊗R C.
As we have seen, the map:

F : P → U

(x1, x2)AH 7→ x1x
−1
2

is a homeomorphism.
As we have seen in the Proposition 2.4.14, the map

Φ ◦ T−1 : P→ D̊(Aσ0H , σ1) = {c ∈ Aσ0H | 1− σ1(c)c ∈ (Aσ1H )+}.

defines another homeomorphism. These maps F and Φ ◦ T−1 can be seen as different
coordinate charts for the projective model P of the symmetric space for Sp2(A, σ).

2.5 Classical examples

In this Chapter, we construct explicit examples of models of symmetric space for
classical Hermitian Lie groups of tube type. We will always denote by AR a real
Hermitian algebra, the complexified algebra will be denoted by A := AR ⊗R C. The
quaternionification of AR will be denoted by AH.

For the algebras Mat(n,R) and Mat(n,C), we denote by σ the transposition. For
Mat(n,C), we denote by σ̄ the composition of transposition and complex conjugation.
For Mat(n,H{i, j, k}), we denote by σ0 the anti-involution acting in the following
way:

σ0(a+ bj) := aT + b̄T j,

and by σ1 the anti-involution acting in the following way:

σ1(a+ bj) := āT − bT j

for a, b ∈ Mat(n,C{i}). In particular, we use the same notation in the case n = 1,
i.e. σ̄ is the complex conjugation on C.

To denote different models of the symmetric space for a group Γ that can be seen
as Sp2(A, σ) for some reel or complex A and anti-involution σ, we use the following
letters: U(Γ) for the upperhalf space model, P(Γ) for the projective model, B(Γ) for
the precompact model and C(Γ) for the complex/quaternionic structure model.

2.5.1 Upperhalf space model

In this section, we construct upperhalf space models for classical Hermitian Lie groups
of tube type.
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Example 4. Let AR := Mat(n,R) with the anti-involution σ, then

A = Mat(n,R)⊗R C = Mat(n,C),

Sp2(Mat(n,C), σ) = Sp(2n,C), Sp2(Mat(n,R), σ) = Sp(2n,R),

AH = Mat(n,H), Aσ = Sym(n,C), Aσ̄+ = Herm+(n,C).

So we have the following model for the symmetric space for Sp(2n,C):

U(Sp(2n,C)) = {M1 +M2J |M1 ∈ Sym(n,C), M2 ∈ Herm+(n)} ⊂

⊂ Mat(n,H).

The symmetric space for Sp(2n,R) is the real locus of this space:

U(Sp(2n,R)) = {M1 +M2J |M1 ∈ Sym(n,R), M2 ∈ Sym+(n,R)} ⊂

⊂ U(Sp(2n,C)).

Example 5. Consider the real algebra AR := Mat(n,C{i}) with the anti-involution
σ̄. Then

A = Mat(n,C{i})⊗R C{I},

Sp2(AR, σ̄) = U(n, n),

Sp2(A, σ̄ ⊗ Id) = GL(2n,C).

In the Section A.2.1, we studied the following C{i}-algebras isomorphism:

χ : Mat(n,C{I})⊗R C{i} → Mat(n,C{i})×Mat(n,C{i})
a+ bI 7→ (a+ bi, a− bi)

where a, b ∈ Mat(n,C{i}).
We have seen,

χ(AR) = χ(Mat(n,C{I})) = {(m, m̄) | m ∈ Mat(n,C{i})},

χ(Aσ̄⊗Id) = {(m,mT ) | m ∈ Mat(n,C{I})} ∼= Mat(n,C).

χ(Aσ̄⊗σ̄) = Herm(n,C{i})×Herm(n,C{i}),

χ(Aσ̄⊗σ̄+ ) = Herm+(n,C{i})×Herm+(n,C{i}).

So we have the following model for the symmetric space for GL(2n,C):

U(GL(2n,C)) =

{(
m11

mT
11

)
+

(
m12

m22

)
j

∣∣∣∣ m11 ∈ Mat(n,C{i}),
m12,m22 ∈ Herm+(n,C{i})

}
⊂

⊂ H[Mat(n,C{i})×Mat(n,C{i}), χ(Mat(n,C{I})), (i, i), j].
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Since AσR = AR ∩ Aσ̄⊗Id = AR ∩ Aσ̄⊗σ̄ = Herm(n), we obtain the symmetric space
for U(n, n) is:

U(U(n, n)) ∼=
{(

m1

m̄1

)
+

(
m2

m̄2

)
j

∣∣∣∣ m1 ∈ Herm(n,C{i}),
m2 ∈ Herm+(n,C{i})

}
⊂ U(GL(2n,C)).

To see U(U(n, n)) as a subset of Mat(n,C{i})×Mat(n,C{i}), we have to identify j
and (i, i) = χ(1⊗ i), so we get

U(U(n, n)) =

=
{

(m1 +m2i, m̄1 + m̄2i) | m1 ∈ Herm(n,C{i}),m2 ∈ Herm+(n,C{i})
}
⊂

⊂ Mat(n,C{i})×Mat(n,C{i}).

In a pair (m1 +m2i, m̄1 + m̄2i) for m1 ∈ Herm(n,C{i}),m2 ∈ Herm+(n,C{i}), the
second component is completely determined by the first one. It is easy to see, because
im2 is skew-Hermitian and m1 +m2i corresponds to the decomposition of an element
from Mat(n,C{i}) in Hermitian and skew-Hermitian part. Therefore, m1 and m2 are
well-defined by m1 +m2i. Therefore, we can identify

U(U(n, n)) ∼= {m1 +m2i | m1 ∈ Herm(n,C{i}),m2 ∈ Herm+(n,C{i})}.

Example 6. Consider the real algebra AR := Mat(n,H{i, j, k}) with the anti-
involution σ1, then

A = Mat(n,H{i, j, k})⊗R C{I},

Sp2(AR, σ1) = SO∗(4n),

Sp2(A, σ1 ⊗ Id) = O(4n,C).

In the Section A.2.2, we studied the following C{I}-C{i}-algebras isomorphism:

ψ : Mat(n,H{i, j, k})⊗R C{I} → Mat(2n,C{i})

(q1 + q2j) + (p1 + p2j)I 7→
(
q1 + p1i q2 + p2i
−q̄2 − p̄2i q̄1 + p̄1i

)
.

where q1, q2, p1, p2 ∈ Mat(n,C{i}).
We remind, ψ(Idn⊗I) = Id2n i and

ψ(AR) = ψ(Mat(n,H{i, j, k})) =

{(
q1 q2

−q̄2 q̄1

)
| q1, q2 ∈ Mat(n,C)

}
.

Under ψ, the anti-involution σ1 ⊗ Id on Mat(n,H{i, j, k}) ⊗R C{I} indices the
following anti-involution

σ′ := ψ ◦ (σ1 ⊗ Id) ◦ ψ−1

on Mat(2n,C{i}) = Mat2(Mat(n,C{i})):

σ′(m) = −
(

0 Idn
− Idn 0

)
mT

(
0 Idn
− Idn 0

)
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for m ∈ Mat(2n,C{i}). So we have:

ψ(Aσ1⊗Id) =

{
m ∈ Mat(2n,C{i}) | m = −

(
0 Idn
− Idn 0

)
mT

(
0 Idn
− Idn 0

)}
=

= sp(2n,C{i}).

The anti-involution σ1 ⊗ σ̄ on Mat(n,H{i, j, k})⊗R C{I} indices the following anti-
involution

σ̃ = ψ ◦ (σ1 ⊗ σ̄) ◦ ψ−1

on Mat(2n,C):
σ̃(m) = m̄T .

So, as expected, (Mat(2n,C{i}), σ̃) is a Hermitian algebra and

ψ(Aσ1⊗σ̄+ ) = Herm+(2n).

Since ψ(1⊗ I) = Id2n i, we have to do quaternionification with respect to Id i. So
the symmetric space is:

U(O(4n,C)) = {M1 +M2J |M1 ∈ sp(2n,C), M2 ∈ Herm+(2n)} ⊂

⊂ H[Mat(2n,C{i}), ψ(Mat(n,H{i, j, k})), Id2n i, J ].

Since AsymR = Aσ̄⊗Id ∩ Aσ̄⊗σ̄, the real locus of this space is the symmetric space of
SO∗(4n):

U(SO∗(4n)) ∼=

= {M1 +M2J |M1 ∈ sp(2n,C) ∩Herm(2n), M2 ∈ sp(2n,C) ∩Herm+(2n)} ⊂

⊂ U(O(4n,C)).

After identification J and Id2n i, we obtain it as a subset of Mat(2n,C{i}):

U(SO∗(4n)) =

= {M1 +M2i |M1 ∈ sp(2n,C) ∩Herm(2n), M2 ∈ sp(2n,C) ∩Herm+(2n)} ⊂

⊂ Mat(2n,C{i}).

2.5.2 Precompact model

In this section, we construct precompact models for classical Hermitian Lie groups of
tube type.
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Example 7. Consider the real algebra AR := Mat(n,R) with the anti-involution σ,
then

A = Mat(n,R)⊗R C = Mat(n,C)

Sp2(Mat(n,C), σ) = Sp(2n,C),

Sp2(Mat(n,R), σ) = Sp(2n,R),

AH = Mat(n,H),

σ0(M1 +M2j) = σ(M1) + σ̄(M2)j = MT
1 + M̄T

2 j.

σ1(M1 +M2j) = σ̄(M1)− σ(M2)j = M̄T
1 −MT

2 j.

where M1,M2 ∈ Mat(n,C). Then

Aσ0H = {M1 +M2j ∈ Mat(n,H) |M1 ∈ Sym(n,C), M2 ∈ Herm(n,C)}.

So we have the following precompact model for the symmetric space for Sp(2n,C):

B(Sp(2n,C)) =

= {M1 +M2j ∈ Aσ0H | Idn−(M̄1 − M̄2j)(M1 +M2j) ∈ Herm+(n,H)}

The symmetric space for Sp(2n,R) can be seen as the intersection of B(Sp(2n,C))
with Mat(n,C{j}):

B(Sp(2n,R)) =

= {M1 +M2j ∈ Sym(n,C{j}) | Idn−(M1 −M2j)(M1 +M2j) ∈ Herm+(n,C{j})} =

= {M ∈ Sym(n,C{j}) | Idn−M̄M ∈ Herm+(n,C{j})} ⊂ B(Sp(2n,C)).

Example 8. Consider the real algebra AR := Mat(n,C{I}) with the anti-involution
σ̄. Then

A = Mat(n,C{I})⊗R C{i} = Mat(n,C{I})⊕Mat(n,C{I})i,

Sp2(A, σ̄ ⊗ Id) = GL(2n,C),

Sp2(AR, σ̄) = U(n, n),

AH = Mat(n,C{I})⊗R H{i, j, k}.

We use the map ψ from the Section A.2.2 to identify AH with Mat(2n,C).
As we have seen, the anti-involution σ̄ ⊗ σ0 on Mat(n,C{I})⊗R H{i, j, k} induces

the following anti-involution

ψ ◦ (σ̄ ⊗ σ0) ◦ ψ−1

on Mat(2n,C): m 7→
(

0 Id
Id 0

)
m̄T

(
0 Id
Id 0

)
. Therefore,

ψ(Aσ̄⊗σ0H ) =

{
m ∈ Mat(2n,C{i}) | m =

(
0 Id
Id 0

)
m̄T

(
0 Id
Id 0

)}
.
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Similarly, the anti-involution σ̄⊗σ1 on Mat(n,C{I})⊗RH{i, j, k} induces the following
anti-involution

ψ ◦ (σ̄ ⊗ σ1) ◦ ψ−1

on Mat(2n,C): M 7→ M̄T and so ψ(Aσ̄⊗σ1H ) = Herm(2n,C). So we obtain the
following precompact model for the symmetric space of GL(2n,C):

B(GL(2n,C)) = {M ∈ ψ(Aσ̄⊗σ0H ) | Id2n−M̄TM ∈ Herm+(2n,C)}.

To see the precompact for U(n, n) as a subspace of B(GL(2n,C)), we have to intersect
of with ψ(Mat(n,C{I})⊗R C{j}). We remind from the Section A.3.2

ψ(Mat(n,C{I})⊗R C{j}) =

=

{
m ∈ Mat(2n,C{i}) | m = −

(
0 Id
− Id 0

)
m

(
0 Id
− Id 0

)}
.

Since

ψ(Mat(n,C{I})⊗R C{j}) ∩ ψ(Aσ̄⊗σ0H ) =

{(
a b
−b a

)
| a, b ∈ Herm(n,C)

}
,

we obtain:

B(U(n, n)) ∼=
{(

a b
−b a

)
|
(

Idn−a2 − b2 ba− ab
ab− ba Idn−a2 − b2

)
∈ Herm+(2n,C)

}
⊂

⊂ B(GL(2n,C)).

Under the map χ from the Section A.2.1, A can be identified with Mat(n,C) ×
Mat(n,C), so we obtain the following precompact model for U(n, n):

B(U(n, n)) =

= {(M,MT ) |M ∈ Mat(n,C), Idn−M̄TM ∈ Herm+(n,C), Idn−M̄MT ∈ Herm+(n,C)}.

The second component if the pair (M,MT ) is determined by the first one. Moreover,
if Idn−M̄TM ∈ Herm+(n,C) then Idn−M̄MT ∈ Herm+(n,C). Therefore, we can
identify:

B(U(n, n)) = {M ∈ Mat(n,C) | Idn−M̄TM ∈ Herm+(n,C)}.

Remark 2.5.1. The description for the precompact model of the symmetric space of
U(n, n) seen as Sp2(Mat(n,C), σ̄) agree with the description for the projective model
of the symmetric space of U(n, n) seen as O(hst) for hst the standard indefinite form
(see Section 2.3.2).
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Example 9. Consider the real algebra AR := Mat(n,H{I, J,K}). Then

A = Mat(n,H{I, J,K})⊗R C{i}

where i is a central element of A such that i2 = −1. Further,

AH = Mat(n,H{I, J,K})⊗R H{i, j, k}.

We use the map φ from the Section A.2.3 to identify AH with Mat(4n,R).
As we have seen, the anti-involution σ1 ⊗ σ0 corresponds under φ to the following

anti-involution on Mat(4n,R): M 7→ −ΞMTΞ where

Ξ :=


0 0 0 Idn
0 0 − Idn 0
0 Idn 0 0
− Idn 0 0 0

 .

The anti-involution σ1 ⊗ σ1 corresponds under φ to the transposition on Mat(4n,R).
So we obtain the following precompact model of the symmetric space of O(4n,C):

B(O(4n,C)) = {M ∈ φ(Aσ1⊗σ0H ) | 1−MTM ∈ Sym+(4n,R)}

where
φ(Aσ1⊗σ0H ) = {M ∈ Mat(4n,R) |M = −ΞMTΞ} ∼= sp(4n,R).

To see the precompact model B(SO∗(4n)) for the symmetric space of
SO∗(4n) as a subspace of B(O(4n,C)), we have to intersect B(O(4n,C)) with
φ(Mat(n,H{I, J,K})⊗R C{j}). We remind from the Section A.3.2:

φ(Mat(n,H{I, J,K})⊗RC{j}) = {m ∈ Mat(4n,R) |M = −φ(Idn⊗j)Mφ(Idn⊗j)} .

Therefore, we obtain:

B(SO∗(4n)) ∼= {M ∈ B(O(4n,C)) |M = −φ(Idn⊗j)Mφ(Idn⊗j)} .

Under the map ψ from the Section A.2.2, we can identify A with Mat(2n,C). The
anti-involution σ1 ⊗ Id corresponds to the following anti-involution on Mat(2n,C):

m 7→ −
(

0 Id
− Id 0

)
mT

(
0 Id
− Id 0

)
.

Therefore, ψ(Aσ1⊗Id) = sp(2n,C).
The anti-involution σ1 ⊗ σ̄ corresponds to the following anti-involution on

Mat(2n,C): M 7→ M̄T . Therefore, we obtain the precompact model for SO∗(4n):

B(SO∗(4n)) = {M ∈ sp(2n,C) | 1− M̄TM ∈ Herm+(2n,C)}.
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2.5.3 Projective model

In this section, we construct projective models for classical Hermitian Lie groups of
tube type. We will see that projective models can be seen in two equivalent ways: in
terms of matrix algebras and in terms of subspaces of some modules or vector spaces.
Projective models in terms of matrix algebras are denoted by P, projective models
in terms of modules/vector spaces are denoted by P′.
We will use the following notation: Let R be some division ring, V be a right

R-module of dimension 2n for some n ∈ N, b be a (bilinear or sesquilinear) form on
V . We denote by Gr(k, V ) the space of all k-dimensional R-submodules of V . We
denote by Lag(V, b) the space of all n-dimensional b-isotropic R-submodules of V , i.e.

Lag(V, b) := {l ∈ Gr(n, V ) | ∀v ∈ l, b(v, v) = 0}.

The elements of Lag(V, b) are called b-Lagrangians of V .

Example 10. Consider the real algebra AR := Mat(n,R), then

A = Mat(n,R)⊗R C = Mat(n,C),

Sp2(Mat(n,C), σ) = Sp(2n,C),

Sp2(Mat(n,R), σ) = Sp(2n,R),

AH = Mat(n,H),

σ0(M1 +M2j) = σ(M1) + σ̄(M2)j = MT
1 + M̄T

2 j,

σ1(M1 +M2j) = σ̄(M1)− σ(M2)j = M̄T
1 −MT

2 j.

where M1,M2 ∈ Mat(n,C). Further, for x, y ∈ A2

ω(x, y) = σ0(x)T
(

0 Idn
− Idn 0

)
y,

h(x, y) = σ1(x)T
(

0 Idn j
− Idn j 0

)
y.

We obtain the projective model for Sp(2n,C):

P(Sp(2n,C)) = {xAH | x ∈ A2
H, ω(x, x) = 0, h(x, x) ∈ Herm+(n,H)}.

The Shilov boundary corresponds in this model to the space:

Š(Sp(2n,C)) ∼= {xAH | x ∈ A2
H, ω(x, x) = h(x, x) = 0} ∼=

∼= {xA | x ∈ A2, ω(x, x) = 0}.

The projective model for Sp(2n,R) can be seen as:

P(Sp(2n,R)) = {xAC{j} | x ∈ A2
C{j}, ω(x, x) = 0, h(x, x) ∈ Herm+(n,C{j})}
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where C{j} ⊂ H and AC{j} = AR⊗R C{j} ∼= A. P(Sp(2n,R)) can be embedded into
P(Sp(2n,C)) using the following injective map: for x ∈ C{j}, xAC{j} 7→ xAH. The
Shilov boundary corresponds in this model to the space:

Š(Sp(2n,R)) ∼= {xAC{j} | x ∈ A2
R, ω(x, x) = h(x, x) = 0} ∼=

∼= {xAR | x ∈ A2
R, ω(x, x) = 0}.

We can also construct the projective model in terms of Lagrangians of H2n. Consider
H2n as a right module over H. We can identify a line xAH for a regular x ∈ A2

H with
a n-dimensional submodule of H2n in the following way:

L(xA) := SpanH(xe1, . . . , xen) ⊂ H2n

where ei is the i-th basis vector (considered as a column) of the standard basis of
Hn. In fact, the map L is well-defined (does not depend on the choice of a regular
x ∈ xA) and, moreover, it is a bijection.
We define two forms on H2n: for u, v ∈ H2n,

ω̃(u, v) := σ0(u)T
(

0 Idn
− Idn 0

)
v,

h̃(u, v) := σ1(u)T
(

0 j Idn
−j Idn 0

)
v.

If we take x ∈ Is(ω), then L(xA) ∈ Lag(H2n, ω̃). Using the map L, we obtain the
following projective model for Sp(2n,C) ∼= Sp2(A, σ):

P′(Sp(2n,C)) = {l ∈ Lag(H2n, ω̃) | ∀v ∈ l \ {0}, h̃(v, v) > 0}.

The Shilov boundary corresponds in this model to the space:

Š(Sp(2n,C)) ∼= {l ∈ Lag(H2n, ω̃) | ∀v ∈ l \ {0}, h̃(v, v) = 0} ∼= Lag(C2n, ω̃).

The projective model for the symmetric space of Sp(2n,R) ∼= Sp2(AR, σR) is:

P′(Sp(2n,R)) = {l ∈ Lag(C{j}2n, ω̃) | ∀v ∈ l \ {0}, h̃(v, v) > 0}.

It can be embedded to the projective model for Sp(2n,C) using the map:

Lag(C{j}2n, ω̃) → Lag(H2n, ω̃)
l 7→ SpanH(l)

.

The Shilov boundary corresponds in this model to the space:

Š(Sp(2n,R)) ∼= {l ∈ Lag(C{j}2n, ω̃) | ∀v ∈ l \ {0}, h̃(v, v) = 0} ∼= Lag(R2n, ω̃).
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Example 11. Consider the real algebra AR := Mat(n,C{I}) with the anti-involution
σ̄. Then

A = Mat(n,C{I})⊗R C{i},

AH = Mat(n,C{I})⊗R H{i, j, k}.

We use the map ψ from the Section A.2.2 to identify AH with Mat(2n,C) =: A′.
As we already have seen, under ψ, the anti-involution σ̄ ⊗ σ0 on Mat(n,C{I})⊗R

H{i, j, k} induces the following anti-involution

σ′ := ψ ◦ (σ̄ ⊗ σ0) ◦ ψ−1

on Mat(2n,C): M 7→
(

0 Idn
Idn 0

)
M̄T

(
0 Idn

Idn 0

)
. Therefore,

ψ(Aσ̄⊗σ0H ) =

{
M ∈ Mat(2n,C) |

(
0 Idn

Idn 0

)
M̄T

(
0 Idn

Idn 0

)}
.

Similarly, the anti-involution σ̄⊗σ1 on Mat(n,C{I})⊗RH{i, j, k} induces the following
anti-involution

σ′′ := ψ ◦ (σ̄ ⊗ σ1) ◦ ψ−1

on Mat(2n,C): M 7→ M̄T and so ψ(Aσ̄⊗σ1H ) = Herm(2n,C).
Further, for x, y ∈ (A′)2

ω(x, y) = σ′(x)T
(

0 Id2n

− Id2n 0

)
y =

=

(
0 Idn

Idn 0

)
x̄T


0 Idn

Idn 0
0

0
0 Idn

Idn 0




0 0 Idn 0
0 0 0 Idn
− Idn 0 0 0

0 − Idn 0 0

 y =

=

(
0 Idn

Idn 0

)
x̄T


0 0 0 Idn
0 0 Idn 0
0 − Idn 0 0
− Idn 0 0 0

 y

h(x, y) = σ′′(x)T
(

0 Id2n i
− Id2n i 0

)
y = x̄T

(
0 Id2n i

− Id2n i 0

)
y

Note, x ∈ Is(ω) if and only if x ∈ Is(ω′) where

ω′(x, y) = x̄T


0 0 0 Idn
0 0 Idn 0
0 − Idn 0 0
− Idn 0 0 0

 y
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We obtain the projective model for GL(2n,C):

P(GL(2n,C)) = {xA′ | x ∈ (A′)2, ω′(x, x) = 0, h(x, x) ∈ Herm+(2n,C)}.

The Shilov boundary corresponds in this model to the space:

Š(GL(2n,C)) ∼= {xA′ | x ∈ (A′)2, ω′(x, x) = h(x, x) = 0}.

The projective model for U(n, n) can be seen as a subspace of P(GL(2n,C)) in the
following way. As we have seen in the Section A.3.1,

ψ(AR ⊗R C{j}) =

{(
q p
−p q

)
| p, q ∈ Mat(n,C{i})

}
=

=

{
m ∈ Mat(2n,C{i}) | m = −

(
0 Idn
− Idn 0

)
m

(
0 Idn
− Idn 0

)}
.

Therefore, if we define

δ(x) := −


0 Idn
− Idn 0

0

0
0 Idn
− Idn 0

x

(
0 Idn
− Idn 0

)

for x ∈ (A′)2
H. We obtain

P(U(n, n)) ∼= {xA′ ∈ P(GL(2n,C)) | x ∈ (A′)2
H, δ(x) = x}

We can also see the projective model for U(n, n) in another way. We consider
the isomorphism χ from the Section A.2.1 identifying Mat(n,C{I}) ⊗R C{i} with
Mat(n,C{i})×Mat(n,C{i}) =: A′′. Then the induced by σ̄ ⊗ Id anti-involution

χ ◦ (σ̄ ⊗ Id) ◦ χ−1

on Mat(n,C{i})×Mat(n,C{i}) acts in the following way:

(m1,m2) 7→ (mT
2 ,m

T
1 ).

The induced by σ̄ ⊗ σ̄ involution

χ ◦ (σ̄ ⊗ σ̄) ◦ χ−1

on Mat(n,C{i})×Mat(n,C{i}) acts in the following way:

(m1,m2) 7→ (m̄T
1 , m̄

T
2 ).

Note,
(A′′)2 = Mat(n,C{i})2 ×Mat(n,C{i})2.
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We take x1, x2, y1, y2 ∈ Mat(n,C{i})2, then we can define

ω((x1, x2), (y1, y2)) :=

= χ ◦ (σ̄ ⊗ Id) ◦ χ−1(x1, x2)

(
0 (Idn, Idn)

−(Idn, Idn) 0

)
(y1, y2) =

=

(
xT2

(
0 Idn
− Idn 0

)
y1, x

T
1

(
0 Idn
− Idn 0

)
y2

)
,

h((x1, x2), (y1, y2)) :=

(
x̄T1

(
0 Idn i

− Idn i 0

)
y1, x̄

T
2

(
0 Idn i

− Idn i 0

)
y2

)
.

We obtain the projective model for U(n, n):

P(U(n, n)) =

{
(x1, x2)A′′

∣∣∣∣ x1, x2 ∈ Mat(n,C{i})2, ω̂(x1, x2) = 0,

ĥ(x1, x1), ĥ(x2, x2) ∈ Herm+(n,C)

}

where ω̂(x1, x2) := xT1

(
0 Idn
− Idn 0

)
y2, ĥ(x, y) := x̄T1

(
0 Idn i

− Idn i 0

)
y1. Since ω̂

is non-degenerate, the line x2 Mat(n,C{i} is uniquely defined by x1.
Let us check that for the pair (x1, x2) such that ω̂(x1, x2) = 0, ĥ(x1, x1) ∈

Herm+(n,C), we have always ĥ(x2, x2) ∈ Herm+(n,C). As we have seen in the
Section 2.3.7, we can always choose x1 = (m1, 1)T , x2 = (m2, 1)T . Then

ω̂(x1, x2) = mT
1 −m2 = 0,

ĥ(x1, x1) = i(m̄T
1 −m1) ∈ Herm+(n,C).

These two conditions imply

ĥ(x2, x2) = i(m̄T
2 −m2) = i(m̄1 −mT

1 ) = i(m̄T
1 −m1)T ∈ Herm+(n,C).

Therefore, we can write the following identification:

P(U(n, n)) ∼=
{
xMat(n,C{i}) | ĥ(x, x) ∈ Herm+(n,C)

}
.

The Shilov boundary corresponds in this model to the space:

Š(U(n, n)) ∼=
{
xMat(n,C{i}) | ĥ(x, x) = 0

}
.

To construct the projective model in terms of Lagrangians, similarly to the Exam-
ple 10, we can identify the space of A′-lines of (A′)2 with the space Gr(2n,C4n) of
2n-dimensional subspaces of C4n by the rule:

L(xA′) := SpanH(xe1, . . . , xe2n)

where ei is the i-th basis vector (considered as a column) of the standard basis of
C2n.
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We define two forms on C4n: for u, v ∈ C4n,

ω̃(u, v) := ūT


0 0 0 Idn
0 0 Idn 0
0 − Idn 0 0
− Idn 0 0 0

 v,

h̃(u, v) := ūT
(

0 i Id2n

−i Id2n 0

)
v.

The projective model for the symmetric space of GL(4n,C) ∼= Sp2(A, σ) can be seen
as the following space:

P′(GL(4n,C)) = {l ∈ Lag(C4n, ω̃) | ∀v ∈ l \ {0}, h̃(v, v) > 0}.

The Shilov boundary corresponds in this model to the space:

Š(GL(4n,C)) = {l ∈ Lag(C4n, ω̃) | ∀v ∈ l \ {0}, h̃(v, v) = 0}.

We can see the the projective model for the symmetric space of U(n, n) ∼=
Sp2(AR, σR) as a subspace of P(GL(4n,C)):

P′(U(n, n)) ∼= {l ∈ P(GL(4n,C)) | δ′(l) = l}

where
δ′ : C4n → C4n

v 7→


0 Idn
− Idn 0

0

0
0 Idn
− Idn 0

 v.

We can also see another projective model for the symmetric space of U(n, n) ∼=
Sp2(AR, σ̄) if we identify again A = Mat(n,C)⊗RC with Mat(n,C)×Mat(n,C) =: A′

by the map χ form the Section A.2.1. As before, we can identify every line xA′ ⊂ (A′)2

with pair of n-dimensional subspaces of C2n. We define two forms on C2n: for
u, v ∈ C2n

ω̃(u, v) := uT
(

0 Idn
− Idn 0

)
v,

h̃(u, v) := ūT
(

0 Idn i
− Idn i 0

)
v.

The pair (l1, l2) of n-dimensional subspaces of C2n is called ω-orthogonal if for all
v ∈ l1, u ∈ l2, ω̃(v, u) = 0. So we can see the projective model of the symmetric space
for U(n, n):

P′(U(n, n)) = {(l1, l2) ω̃-orthogonal pair | ∀u ∈ l1 ∪ l2 \ {0}, h̃(u, u) > 0}.
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Since ω is non-degenerate, the space l2 is completely determined by l1. And as we
have seen for P(U(n, n)), if for all u ∈ l1 \ {0}, h̃(u, u) > 0, then for all u ∈ l2 \ {0},
h̃(u, u) > 0. Therefore, we can identify

P′(U(n, n)) ∼= {l ∈ Gr(n,C2n) | ∀u ∈ l \ {0}, h̃(u, u) > 0}.

The Shilov boundary corresponds in this model to the space:

Š(U(n, n)) ∼= {l ∈ Gr(n,C2n) | ∀u ∈ l \ {0}, h̃(u, u) = 0}.

Remark 2.5.2. The description for the projective model of the symmetric space of
U(n, n) seen as Sp2(Mat(n,C), σ̄) agree with the description for the projective model
of the symmetric space of U(n, n) seen as O(hst) for hst the standard indefinite form
(see Section 2.3.2).

Example 12. Consider the real algebra AR := Mat(n,H{I, J,K}) with the anti-
involution σ1. Then

A = Mat(n,H{I, J,K})⊗R C{i},
AH = Mat(n,H{I, J,K})⊗R H{i, j, k}.

As we have seen in the Section A.2.3, the map φ defines an R-algebra isomorphism:

φ : AH → Mat(4n,R) =: A′.

Moreover, the anti-involution σ1 ⊗ σ0 corresponds under ψ to the following anti-
involution σ′0 on Mat(4n,R): σ′0(M) = −ΞMTΞ where

Ξ :=


0 0 0 Idn
0 0 − Idn 0
0 Idn 0 0
− Idn 0 0 0

 .

The anti-involution σ1 ⊗ σ1 corresponds under φ to the transposition on Mat(4n,R).
Further, for x, y ∈ (A′)2

ω(x, y) = σ′0(x)T
(

0 Id4n

− Id4n 0

)
y =

= −ΞxT
(

Ξ 0
0 Ξ

)
0 0 Id2n 0
0 0 0 Id2n

− Id2n 0 0 0
0 − Id2n 0 0

 y =

= −ΞxT



0 0 0 0 0 0 0 Idn
0 0 0 0 0 0 − Idn 0
0 0 0 0 0 Idn 0 0
0 0 0 0 − Idn 0 0 0
0 0 0 − Idn 0 0 0 0
0 0 Idn 0 0 0 0 0
0 − Idn 0 0 0 0 0 0

Idn 0 0 0 0 0 0 0


y
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h(x, y) = xT



0 0 0 0 0 0 Idn 0
0 0 0 0 0 0 0 Idn
0 0 0 0 − Idn 0 0 0
0 0 0 0 0 − Idn 0 0
0 0 − Idn 0 0 0 0 0
0 0 0 − Idn 0 0 0 0

Idn 0 0 0 0 0 0 0
0 Idn 0 0 0 0 0 0


y.

By definition of h, we use that

φ(Idn⊗j) =


0 0 Idn 0
0 0 0 Idn
− Idn 0 0 0

0 − Idn 0 0

 .

Note, x ∈ Is(ω) if and only if x ∈ Is(ω′) where

ω′(x, y) = xT



0 0 0 0 0 0 0 Idn
0 0 0 0 0 0 − Idn 0
0 0 0 0 0 Idn 0 0
0 0 0 0 − Idn 0 0 0
0 0 0 − Idn 0 0 0 0
0 0 Idn 0 0 0 0 0
0 − Idn 0 0 0 0 0 0

Idn 0 0 0 0 0 0 0


y.

So we obtain the projective model for the symmetric space of O(4n,C):

P(O(4n,C)) = {xA′ | x ∈ (A′)2, ω′(x, x) = 0, h(x, x) ∈ Sym+(4n,R)}.

We can see the Shilov boundary in this model as the space:

Š(O(4n,C)) ∼= {xA′ | x ∈ (A′)2, ω′(x, x) = h(x, x) = 0}.

The projective model for SO∗(4n) can be seen as a subspace of P(O(4n,C)) in the
following way. As we have seen in the Section A.3.2,

ψ(AR ⊗R C{j}) = {m ∈ Mat(4n,R) | m = −φ(1⊗ j)mφ(1⊗ j)} .

Therefore,

P(SO∗(4n)) ∼= {xA′ ∈ P(GL(2n,C)) | x = −φ(1⊗ j)xφ(1⊗ j)}.

To see another projective model for the symmetric space of SO∗(4n), we remind
that A = Mat(n,H)⊗R C is to Mat(2n,C) =: A′′ isomorphic under the map ψ from
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the Section A.2.2. The anti-involution σ1 ⊗ Id corresponds under this map to the
anti-involution σ′ on Mat(2n,C) given by:

σ′(m) = −
(

0 Idn
− Idn 0

)
mT

(
0 Idn
− Idn 0

)
.

The anti-involution σ1⊗ σ̄ corresponds under ψ to the complex conjugation composed
with transposition on Mat(2n,C).

We define for x, y ∈ (A′′)2,

ω(x, y) := xT


0 Idn
− Idn 0

0

0
0 Idn
− Idn 0

( 0 Id2n

− Id2n 0

)
y =

= xT


0 0 0 Idn
0 0 − Idn 0
0 − Idn 0 0

Idn 0 0 0

 y,

h̃(x, y) := x̄T
(

0 Id2n i
− Id2n i 0

)
y.

Then the projective model of the symmetric space for SO∗(4n) can be seen as:

P(SO∗(4n)) = {xA′′ | x ∈ (A′′)2, h̃(x, x) ∈ Herm+(2n,C)}.

We can see the Shilov boundary in this model as the space:

Š(SO∗(4n)) ∼= {xA′′ | x ∈ (A′′)2, h̃(x, x) = 0}.

Now we construct the projective model in terms of Lagrangians. As before, we
identify using the map L the space of A′-lines and the space Gr(4n,R8n) of 4n-
dimensional subspaces of R8n:

L(xA′) := SpanR(xe1, . . . , xe4n)

where ei is the i-th standard basis vector of R4n. We define two forms on R8n: for
u, v ∈ R8n,

ω̃(u, v) := uT



0 0 0 0 0 0 0 Idn
0 0 0 0 0 0 − Idn 0
0 0 0 0 0 Idn 0 0
0 0 0 0 − Idn 0 0 0
0 0 0 − Idn 0 0 0 0
0 0 Idn 0 0 0 0 0
0 − Idn 0 0 0 0 0 0

Idn 0 0 0 0 0 0 0


v,

116



h̃(u, v) := uT



0 0 0 0 0 0 Idn 0
0 0 0 0 0 0 0 Idn
0 0 0 0 − Idn 0 0 0
0 0 0 0 0 − Idn 0 0
0 0 − Idn 0 0 0 0 0
0 0 0 − Idn 0 0 0 0

Idn 0 0 0 0 0 0 0
0 Idn 0 0 0 0 0 0


v.

The space of ω̃-isotropic vectors of R8n is denoted by Is(ω̃). Then the projective
model of the symmetric space for O(4n,C) can be seen as:

P′(O(4n,C)) = {l ∈ Lag(R8n, ω̃) | ∀x ∈ l \ {0}, h̃(x, x) > 0}.

We can see the Shilov boundary in this model as the space:

Š(O(4n,C)) ∼= {l ∈ Lag(R8n, ω̃) | ∀x ∈ l \ {0}, h̃(x, x) = 0}.

The projective model for the symmetric space of SO∗(4n) can be seen as a subspace
of P(O(4n,C)):

P′(SO∗(4n)) = {l ∈ P(O(4n,C)) | δ(l) = l},

where
δ : R8n → R8n

v 7→
(
φ(Idn⊗j) 0

0 φ(Idn⊗j)

)
v.

To see another projective model for the symmetric space of SO∗(4n), we remind
that A = Mat(n,H)⊗R C is to Mat(2n,C) =: A′′ isomorphic under the map ψ from
the Section A.2.2. The anti-involution σ1 ⊗ Id corresponds under this map to the
anti-involution σ′ on Mat(2n,C) given by:

σ′(m) = −
(

0 Idn
− Idn 0

)
mT

(
0 Idn
− Idn 0

)
.

The anti-involution σ1⊗ σ̄ corresponds under ψ to the complex conjugation composed
with transposition on Mat(2n,C).

To construct the projective model in terms of Lagrangians, as before, we identify
using the map L the space of A′′-lines and the space Gr(2n,C4n) of 2n-dimensional
subspaces of C4n:

L(xA′′) := SpanR(xe1, . . . , xe2n)

where ei is the i-th standard basis vector of C2n. We define two forms on R8n: for
u, v ∈ R8n,

ω̃(u, v) := uT


0 Idn
− Idn 0

0

0
0 Idn
− Idn 0

( 0 Id2n

− Id2n 0

)
v =
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= uT


0 0 0 Idn
0 0 − Idn 0
0 − Idn 0 0

Idn 0 0 0

 v,

h̃(u, v) := ūT
(

0 Idn i
− Idn i 0

)
v.

Then the projective model of the symmetric space for SO∗(4n) can be seen as:

P′(SO∗(4n)) = {l ∈ Lag(C4n, ω̃) | ∀x ∈ l \ {0}, h̃(x, x) > 0}.

We can see the Shilov boundary in this model as the space:

Š(SO∗(4n)) ∼= {l ∈ Lag(C4n, ω̃) | ∀x ∈ l \ {0}, h̃(x, x) = 0}.

2.5.4 Quaternionic structure model

In this section, we construct quaternionic structure model models for classical Hermi-
tian Lie groups of tube type.

Example 13. Consider the real algebra AR := Mat(n,R), then

A = Mat(n,R)⊗R C = Mat(n,C)

Sp2(A, σ) = Sp(2n,C),

Sp2(AR, σ) = Sp(2n,R).

The quaternionic structure on A can be seen as a 2n× 2n-matrix J acting on A2 as
J(x) = Jx̄ for x ∈ A2. Since J(J(x)) = JJx̄ = −x, JJ̄ = − Idn.
The corresponding σ̄-sesquilinear form is then

hJ(x, y) = ω(J(x), y) = x̄TJT
(

0 Idn
− Idn 0

)
y.

So we obtain the quaternionic structure model for Sp(2n,C) :

C(Sp(2n,C)) :=

{
J ∈ Mat(2n,C) | JT

(
0 Idn
− Idn 0

)
∈ Herm+(n,C), JJ̄ = − Id

}
.

The space of complex structures on A2
R can be seen as a subspace of C(Sp(2n,C))

because every complex structure can be extended in the unique way to the quaternionic
structure on A2 in the following way: for a complex structure J we define:

JC(x+ yi) := J(x)− J(y)i

where x, y ∈ AR. So we obtain the inclusion of the complex structure model for
Sp(2n,R) into the quaternionic model for Sp(2n,C) as subspace of quaternionic
structure fixing A2

R ⊂ A2:

C(Sp(2n,R)) :=

{
J ∈ Mat(2n,R) | JT

(
0 Idn
− Idn 0

)
∈ Sym+(n,R), J2 = − Id2n

}
=

= {J ∈ C(Sp(2n,C)) | J ∈ Mat(2n,R)}
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Example 14. Consider the real algebra AR := Mat(n,C{I}). Then

A = Mat(n,C{I})⊗R C{i},

Sp2(A, σ̄ ⊗ Id) ∼= GL(2n,C),

Sp2(AR, σ̄) ∼= U(n, n).

We use the map χ from the Section A.2.1, to identify A with A′ := Mat(n,C{i})×
Mat(n,C{i}). The involution Id⊗σ̄ is mapped under χ to the involution

(m1,m2) 7→ (m̄2, m̄1).

on Mat(n,C{i})×Mat(n,C{i}).
If we take a quaternionic structure J on A2 then we define

J ′ := χ ◦ J ◦ χ−1.

If we see J ′ as a pair (J1, J2) of 2n×2n complex matrices then J1J̄2 = − Id2n because
for (m1,m2) ∈ (A′)2 ∼= Mat(n,C{i})2 ×Mat(n,C{i})2,

J ′(m1,m2) = (J1, J2)(m̄2, m̄1) = (J1m̄2, J2m̄1),

−(m1,m2) = (J ′)2(m1,m2) = (J1J2m̄1, J2J1m̄2).

The induced by σ̄ ⊗ Id anti-involution

χ ◦ (σ̄ ⊗ Id) ◦ χ−1

on Mat(n,C{i})×Mat(n,C{i}) acts in the following way:

(m1,m2) 7→ (mT
2 ,m

T
1 ).

We take the standard symplectic structure on (A′)2: for x1, x2, y1, y2 ∈ Mat(n,C{i})

ω((x1, x2), (y1, y2)) = χ ◦ (σ̄ ⊗ Id) ◦ χ−1(x1, x2)

(
0 (Idn, Idn)

−(Idn, Idn) 0

)
(y1, y2) =

=

(
xT2

(
0 Idn
− Idn 0

)
y1, x

T
2

(
0 Idn
− Idn 0

)
y1

)
.

For a quaternionic structure on (A′)2 seen as pair of matrices (J1, J2), we define

h(J1,J2)((x1, x2), (y1, y2)) :=

=

(
(J1x̄1)T

(
0 Idn
− Idn 0

)
y1, (J2x̄2)T

(
0 Idn
− Idn 0

)
y2

)
=

=

(
x̄T1 J

T
1

(
0 Idn
− Idn 0

)
y1, x̄

T
2 J

T
2

(
0 Idn
− Idn 0

)
y2

)
.
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The quaternionic structure model for GL(2n,C) is then:

C(GL(2n,C)) :=

(J1, J2)

∣∣∣∣∣∣
J1, J2 ∈ Mat(2n,C), J1J̄2 = − Id2n,

JT1

(
0 Idn
− Idn 0

)
, JT2

(
0 Idn
− Idn 0

)
∈ Herm+(2n,C)

 .

Since J1J̄2 = − Id2n, by given J1 such that JT1

(
0 Idn
− Idn 0

)
∈ Herm+(2n,C), we

can calculate J2 = −J̄−1
1 . Then

JT2

(
0 Idn
− Idn 0

)
= −J̄−T1

(
0 Idn
− Idn 0

)
=

((
0 Idn
− Idn 0

)
J̄T1

)−1

∈ Herm+(2n,C)

if and only if (
0 Idn
− Idn 0

)
J̄T1 ∈ Herm+(2n,C)

if and only if

J̄T1

(
0 Idn
− Idn 0

)
∈ Herm+(2n,C).

Therefore, we can identify

C(GL(2n,C)) ∼=
{
J ∈ Mat(2n,C) | JT

(
0 Idn
− Idn 0

)
∈ Herm+(2n,C)

}
.

In this presentation of the symmetric space, GL(2n,C) acts on it in the following
way:

(g, J) 7→ −g−1J

(
0 Idn
− Idn 0

)
ḡ−T

(
0 Idn
− Idn 0

)
for g ∈ GL(2n,C).
Since χ(AR) = {(m, m̄) | m ∈ Mat(n,C{i})}, the quaternionic structure model

for U(n, n) ∼= Sp2(AR, σ̄) can be seen as a subset of C(GL(2n,C)) stabilizing χ(AR).
(J1, J2) ∈ C(GL(2n,C)) stabilizes χ(AR)2 if and only if for all m ∈ Mat(n,C{i})2,

(J1, J2)(m, m̄) = (J1(m), J2(m̄)) = (m′, m̄′),

for some m′ ∈ Mat(n,C)2, i.e. J1 = J2. Therefore,

C(U(n, n)) ∼= {(J, J) ∈ C(GL(2n,C))}.

We can also see C(U(n, n)) directly as the space complex structures on A2
R:

C(U(n, n)) =

{
J ∈ Mat(2n,C) | J̄T

(
0 Idn
− Idn 0

)
∈ Herm+(2n,C), JJ̄ = − Id2n

}
.
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Example 15. Consider the real algebra AR := Mat(n,H{i, j, k}). Then A =
Mat(n,H{i, j, k})⊗R C{I} and

Sp2(A, σ1 ⊗ Id) ∼= O(4n,C),

Sp2(AR, σ1) ∼= SO∗(4n).

We use the map ψ from the Section A.2.2, to identify A with A′ := Mat(2n,C{i}).
The induced by Id⊗σ̄ involution

σ′ := ψ ◦ (Id⊗σ̄) ◦ ψ−1

on Mat(2n,C) acts in the following way:

m 7→ −Ωm̄Ω

where Ω =

(
0 Idn
− Idn 0

)
∈ Mat(2n,C). We also denote by Ω0 := diag(Ω,Ω) ∈

Mat(4n,C).
If we take a quaternionic structure J on A2 then we define

J ′ := ψ ◦ J ◦ ψ−1.

We can see J ′ as a complex 4n× 4n-matrix acting on (A′)2 in the following way: for
x ∈ (A′)2,

J ′(x) := J ′σ′(x) = −J ′Ω0x̄Ω0.

J ′ is a quaternionic structure, therefore,

−x = (J ′)2(x) = J ′Ω0J ′Ω0x̄Ω0Ω0 = −J ′Ω0J̄
′Ω0x.

So we obtain, J ′ is a quaternionic structure on A if and only if

J ′Ω0J̄
′Ω0 = Id4n .

The induced by σ1 ⊗ Id anti-involution

ψ ◦ (σ1 ⊗ Id) ◦ ψ−1

on Mat(2n,C) acts in the following way:

m 7→ −ΩmTΩ.

So we define the standard symplectic form ω on (A′)2 with respect to this anti-
involution: for x, y ∈ (A′)2,

ω(x, y) := −Ω0x
TΩ0

(
0 Id2n

− Id2n 0

)
y
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and for a quaternionic structure J ′, we define

hJ ′(x, y) := ω(J ′(x), y) = x̄TΩ0(J ′)TΩ0Ω0

(
0 Id2n

− Id2n 0

)
y =

= −x̄TΩ0(J ′)T
(

0 Id2n

− Id2n 0

)
y.

The quaternionic structure model for GL(2n,C) is then:

C(O(4n,C)) :=

J ′ ∈ Mat(4n,C)

∣∣∣∣∣∣
J ′Ω0J̄

′Ω0 = Id4n,

−Ω0(J ′)T
(

0 Id2n

− Id2n 0

)
∈ Herm+(4n,C)

 .

The model for the symmetric space of C(SO∗(4n)) can be seen as a subset of
C(O(4n,C)) whose elements commute with σ′ i.e. σ′(J ′(x)) = J ′(σ′(x)). There-
fore:

σ′(J ′(x)) = −ΩJ ′(x)Ω = ΩJ ′Ωx̄ΩΩ = −ΩJ̄ ′Ωx,

J ′(σ′(x)) = −J ′Ωσ′(x)Ω = J ′ΩΩx̄ΩΩ = −J ′x

and we obtain:

C(SO∗(4n)) ∼= {J ′ ∈ C(O(4n,C)) | J ′ = ΩJ̄ ′Ω}.

The space C(SO∗(4n)) can be also seen directly as complex structures J on A2
R

such that the form:
hJ(x, y) = σ1(x)Tσ1(J)TΩ0y

is positive definite. So we obtain:

C(SO∗(4n)) =

{
J ′ ∈ Mat(2n,H{i, j, k}

∣∣∣∣ σ1(J)TΩ0 ∈ Herm+(2n,H{i, j, k}),
J2 = − Id2n

}
.

2.6 Hermitian Lie algebras with anti-involution

2.6.1 Weakly Hermitian Lie algebras

Let (A, σ) be a finite dimensional semisimple R-algebra with an anti-involution. A
can be turned into a Lie algebra with the Lie bracket [x, y] = xy− yx. Let B ⊆ A be
a Lie subalgebra that is closed under σ. We define:

Bsym := FixB(σ) = B ∩Asym.

Remark 2.6.1. The theory developed in the Section 2.1 is the special case when
B = A.

Corollary 2.6.2. If B is a Lie subalgebra of A containing 1, then B× is open and
dense in B and (Bsym)× := B× ∩Asym is open and dense in Bsym := B ∩Asym.
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Proof. Follows from the Corollary 2.1.7.

Definition 2.6.3. A Lie subalgebra B is called of Jordan type, if:

1. for every x, y ∈ Bsym, xy ∈ B.

Remark 2.6.4. The condition (1) implies that for all b ∈ Bsym, b2 ∈ Bsym
≥0 .

Proposition 2.6.5. Let B be of Jordan type. Then for every x ∈ B and for every
b ∈ Bsym, σ(x)b+ bx ∈ Bsym.

Proof. Take xs := x+σ(x)
2 , xa := x−σ(x)

2 , then x = xs + xa, xs ∈ Bsym and σ(xa) =
−xa. Then we can write

σ(x)b+ bx = (xs − xa)b+ b(xs + xa) = (xsb+ bxs) + (bxa − xab).

Since B is of Jordan type, xsb, bxs ∈ B and so xsb+bxs ∈ Bsym. Further, bxa−xab =
[b, xa] ∈ B and σ(bxa − xab) = −xab + bxa, i.e. bxa − xab ∈ Bsym. So we obtain,
σ(x)b+ bx ∈ Bsym.

Definition 2.6.6. We denote

Banti := FixB(−σ).

Remark 2.6.7. The following properties hold:

[Banti, Banti] ⊆ Banti, [Banti, Bsym] ⊆ Bsym, [Bsym, Bsym] ⊆ Banti.

In particular, Banti is a sub Lie algebra of B.

Let B be of Jordan type, let G0 be the unique connected subgroup of A× such
that Lie(G0) = B. We assume G0 to be a Lie subgroup of A×. We denote:

U(G0, σ) = {u ∈ G0 | σ(u)u = 1}

Remark 2.6.8. Lie(U(G, σ)) = Banti.

Proposition 2.6.9. Let B be of Jordan type with 1 ∈ B. For every g ∈ G0 and for
every b ∈ Bsym, σ(g)bg ∈ Bsym.

Proof. We consider the following map:

F : U(G, σ)× exp(Bsym) → G
(u, b) 7→ ub

We notice, that since for all b ∈ Bsym, b2 ∈ Bsym, we have bn ∈ Bsym for all
n ∈ N. Moreover, Bsym is closed in A, therefore, exp(b)− 1 ∈ Bsym. Since exp is a
diffeomorphism in a small neighborhood of 0 ∈ Bsym, T1 exp(Bsym) = Bsym.

The differential of F at (1, 1) is a bijection. Indeed:

D(1,1)F (x, y) = x+ y ∈ B
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where x ∈ Banti = Lie(U(G, σ)), y ∈ Bsym. Therefore, in a small neighborhood V
of (1, 1) ∈ U(G, σ)× exp(Bsym), F is a homeomorphism. Moreover, G0 is generated
by F (V ), therefore, for every g ∈ G0, there exist r ≥ 0 and u1, . . . , ur ∈ U(G, σ),
b1, . . . , br ∈ exp(Bsym) such that g = u1b1 . . . urbr.
Since σ(u) = u−1 for u ∈ U(G, σ), σ(u)bu = u−1bu ∈ Bsym for all b ∈ Bsym.
Let b ∈ Bsym, b′ ∈ exp(Bsym), then b′ = 1 + b0 for b0 ∈ Bsym.

σ(b′)bb′ = b′bb′ = (1 + b0)b(b+ b0) = b+ b0b+ bb0 + b0bb0.

By Proposition 2.6.5, b0b+ bb0 = b̃ for b̃ ∈ Bsym. Therefore, b0bb0 = b0b̃− (b0)2b ∈ B
and, since b′bb′ ∈ Asym, we obtain b′bb′ ∈ Bsym.
Therefore, by induction, we obtain σ(g)bg ∈ Bsym for all g ∈ G0.

Remark 2.6.10. The group G0 acts on Bsym in the following way:

ψ : G0 → Aut(Bsym)
g 7→ [ψ(g) : b 7→ σ(g)bg].

Definition 2.6.11. A Lie subalgebra B of Jordan type is called weakly Hermitian,
if:

1. 1 ∈ B;

2. The convex cone C(θ(Bsym)) is proper;

3. Bsym does not contain nilpotent elements, i.e. for every b ∈ Bsym, b2 = 0 if
and only if b = 0.

Definition 2.6.12. If B is weakly Hermitian, we define

Bsym
+ := C(θ((Bsym)×)),

and Bsym
≥0 as the closure of Bsym

+ . In this case, Bsym
+ and Bsym

≥0 are proper convex
cones in Bsym.

We recall the definition of Jordan algebra and formally real Jordan algebra.

Definition 2.6.13. Let (V, ◦) be an possibly non-associative algebra over some field
K. (V, ◦) said to be a Jordan algebra if for all x, y ∈ V

1. x ◦ y = y ◦ x;

2. (x ◦ y) ◦ (x ◦ x) = x ◦ (y ◦ (x ◦ x)) (Jordan identity).

A Jordan algebra (V, ◦) is called formally real if for all x, y ∈ V , x2 +y2 = 0 implies
x, y = 0.

Proposition 2.6.14.
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• For B of Jordan type, the algebra (Bsym, ◦) is a Jordan algebra where

x ◦ y =
xy + yx

2
.

• For weakly Hermitian B, the Jordan algebra (Bsym, ◦) is formally real.

Proof. Since for all x, y ∈ Bsym, xy ∈ B, we get x ◦ y ∈ Bsym. Also x ◦ y = y ◦ x is
clear. The Jordan identity:

(x ◦ y) ◦ (x ◦ x) =
xy + yx

2
◦ x2 =

xyx2 + yx3 + x3y + x2yx

4
=

=
xyx2 + x3y + yx3 + x2yx

4
= x ◦ yx

2 + x2y

2
= x ◦ (y ◦ (x ◦ x)).

So (Bsym, ◦) is a Jordan algebra.
Assume now B to be weakly Hermitian. Let a1, a2 ∈ Bsym, then a2

i ∈ B
sym
≥0 . The

convex cone Bsym
≥0 is proper, so a2

1 + a2
2 vanishes if and only if a2

1 = a2
2 = 0. Therefore,

a1 = a2 = 0 by (3) in the Definition 2.6.11.

2.6.2 Classification of simple formally real Jordan algebras

In this section, we remind the well-known classification of simple formally real Jordan
algebras (for more details, see [10,17]).

Fact 2.6.15. Every simple formally real Jordan algebra is isomorphic to one of the
following Jordan algebras:

1. (Sym(n,R), ◦) where a ◦ b = ab+ba
2 for a, b ∈ Sym(n,R);

2. (Herm(n,C), ◦) where a ◦ b = ab+ba
2 for a, b ∈ Herm(n,C);

3. (Herm(n,H), ◦) where a ◦ b = ab+ba
2 for a, b ∈ Herm(n,H);

4. (Bsym(1, n), ◦) where a ◦ b = ab+ba
2 for a, b ∈ Bsym(1, n);

5. (Herm(3,O), ◦) where a ◦ b = ab+ba
2 for a, b ∈ Herm(3,O)

where Bsym(1, n) is the Jordan algebra defined in the Section 2.10, Herm(3,O) is the
space of 3× 3 Hermitian octonionic matrices.

Fact 2.6.16 ( [17, Corollary 2.8.5]). The Jordan algebra (Herm(3,O), ◦) is exceptional.
This means that there is no associative real algebra A that contains Herm(3,O) as a
Jordan subalgebra.
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2.6.3 Spectral theorem

In this section, we assume B to be weakly Hermitian. As we have seen, (Bsym, ◦) is
a formally real Jordan algebra.
We are going to state the first versions of the spectral theorem for formally real

Jordan algebras. But before we do it, first, we give some necessary definitions:

Definition 2.6.17. • An element c ∈ Bsym is called an idempotent if c2 = c.

• Two idempotents c, c′ ∈ Bsym are called orthogonal if c ◦ c′ = 0.

• A tuple (c1, . . . , ck) of pairwise orthogonal idempotents is called a complete
orthogonal system of idempotents if c1 + · · ·+ ck = 1.

Remark 2.6.18. Every idempotent c ∈ Bsym
≥0 .

Theorem 2.6.19 (Spectral theorem, first version [10, Theorem III.1.1]). For every
b ∈ Bsym, there exist a unique k ∈ N, unique real numbers λ1, . . . , λk ∈ R, all distinct,
and a unique complete system of orthogonal idempotents c1, . . . , ck ∈ Bsym such that

b =

k∑
i=1

λici.

Corollary 2.6.20. For b ∈ Bsym
≥0 , the numbers λ1, . . . , λk ≥ 0. For b ∈ Bsym

+ , the
numbers λ1, . . . , λk > 0. In particular,

Bsym
+ = θ((Bsym)×), Bsym

≥0 = θ(Bsym),

Corollary 2.6.21. The set of all invertible elements (Bsym)× of Bsym consists of
elements such that all λi 6= 0. If all λi 6= 0, then(

k∑
i=1

λici

)−1

=
k∑
i=1

λ−1
i ci.

Corollary 2.6.22. Bsym
+ is connected, open in Bsym, open and closed in (Bsym)×.

Bsym
≥0 is connected and closed in Bsym.

Corollary 2.6.23. For every (continuous/smooth) function f : R→ R, the (contin-
uous/smooth) map

f̂ : Bsym → Bsym

can be defined: if

b =

k∑
i=1

λici,

then

f̂(b) :=

k∑
i=1

f(λi)ci.
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This map is well defined because the spectral decomposition is unique. Analogously, for
any function f : R≥0 → R or f : R+ → R, f̂ : Bsym

≥0 → Bsym resp. f̂ : Bsym
+ → Bsym

can be defined.
In particular, for every b ∈ Bsym

≥0 , the element bt ∈ Bsym
≥0 for t > 0 is well-defined.

This definition is compatible with integer powers of element.

Corollary 2.6.24. Bsym
+ is homeomorphic to Bsym. In particular, Bsym

+ is open in
Bsym and contractible. {1} ⊂ Bsym

+ is a deformation retract of Bsym
+ .

Proof. Bsym is a R-vector space, so it is contractible. {0} ⊂ Bsym is a deformation
retract of Bsym. Take f(t) = log(t).

To state the second version of the spectral theorem, we need to give some additional
definitions:

Definition 2.6.25. • An idempotent 0 6= c ∈ Bsym is called primitive if it cannot
be written as a sum of two orthogonal non-zero idempotents.

• A complete orthogonal system of primitive idempotents (c1, . . . , ck) is called a
Jordan frame.

Theorem 2.6.26 (Spectral theorem, second version [10, Theorem III.1.2]). Suppose,
Bsym has rank n. For every b ∈ Bsym there exist a Jordan frame (e1, . . . , en) and
real numbers λ1, . . . , λn ∈ R such that

b =

n∑
i=1

λiei.

The numbers λ1, . . . , λn ∈ R (with their multiplicities) called eigenvalues of b are
uniquely determined by b. In particular, they do not depend (up to permutations) on
the Jordan frame e1, . . . , en ∈ Bsym.

Remark 2.6.27. The Jordan frame e1, . . . , en ∈ Bsym associated to the element
b ∈ Bsym as in the Theorem 2.6.26 is, in contrast to the complete system of orthogonal
idempotents from the Theorem 2.6.19, in general not unique.

Definition 2.6.28. Let b ∈ Bsym and λ1, . . . , λn are all its eigenvalues (with multi-
plicities). We define the trace and the determinant of b:

tr(b) :=
n∑
i=1

λi, det(b) :=
n∏
i=1

λi.

Proposition 2.6.29 ( [10, Proposition III.1.5]). The function

β : Bsym ×Bsym → R
(b1, b2) 7→ tr

(
b1b2+b2b1

2

)
is an (R-vector space) inner product on Bsym.
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2.6.4 Lie group corresponding to weakly Hermitian Lie algebra

As before, let (A, σ) be an R-algebra with an anti-involution. The space A× of
invertible elements of A is a Lie group and its Lie algebra is A with the Lie bracket
given by [x, y] = xy − yx. We take G0 < A× a connected Lie subgroup of A× closed
under σ. We denote B := Lie(G0) the Lie algebra of G0. Notice that G0 is uniquely
defined by B, and it is generated by exp(B). Since G0 is closed under σ, B is closed
under σ as well. We define

Gsym0 := G0 ∩Asym, Bsym := B ∩Asym.

Definition 2.6.30. A weakly Hermitian Lie subalgebra B is called Hermitian, if:

1. the group U(G0, σ) := {g ∈ G0 | σ(g)g = 1} is compact;

Proposition 2.6.31. If B is weakly Hermitian, then Bsym
+ ⊆ G0.

Proof. Let b ∈ Bsym
+ . Take its spectral decomposition: b =

∑k
i=1 λici where

λ1, . . . , λk > 0, (c1, . . . , ck) is a complete system of orthogonal idempotents. Then
log(b) =

∑k
i=1 log(λi)ci ∈ Bsym and exp(log(b)) = b ∈ G0 because the map exp

defined on R extended to Bsym and the exponential map exp: B → G restricted to
Bsym defined by the same power series and thus they agree.

Corollary 2.6.32. • For every b ∈ Bsym
+ and for every g ∈ G0, σ(g)bg ∈ Bsym

+ .
In particular, σ(g)g ∈ Bsym

+ .

• For every b ∈ Bsym
≥0 and for every g ∈ G0, σ(g)bg ∈ Bsym

≥0 .

Proof. It is clear that σ(g)bg ∈ (Bsym)× for g ∈ G0 and b ∈ Bsym
+ . Since G0 is

connected, σ(g)g is in the connected component of 1 ∈ (Bsym)× which is Bsym
+ .

The second one follows from the fact that Bsym
≥0 is a topological closure of Bsym

+ in
Bsym.

Let us restrict the action ψ from the Remark 2.6.10 to the subgroup U(G0, σ) < G0.
Then the action ψ|U(G0,σ) preserves Jordan frames.

Corollary 2.6.33. Assume, ψ|U(G0,σ) is transitive on Jordan frames of Bsym. Sup-
pose, Bsym has rank n. For every Jordan frame e1, . . . , en ∈ Bsym and for every
b ∈ Bsym there exist u ∈ U(G0, σ) such that

ψ(u)b =
n∑
i=1

λiei.

where λ1, . . . , λn ∈ R are all eigenvalues of b (with their multiplicities).

Remark 2.6.34. In general, for a fixed Jordan frame e1, . . . , en and b ∈ Bsym, the
element u ∈ U(G0, σ) is not unique.

Corollary 2.6.35. For b ∈ Bsym
≥0 , the numbers λ1, . . . , λn ≥ 0. For b ∈ Bsym

+ , the
numbers λ1, . . . , λn > 0.
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2.6.5 Disconnected extension of G0

Let B ⊆ A be semi Hermitian Lie subalgebra of A. As we have seen, the group G0

we considered before is supposed to be connected and Bsym
+ ⊆ G0. In this section,

we study the disconnected extension G of G0 generated by G0 and (Bsym)×.

Proposition 2.6.36. The group G0 is a normal subgroup of G.

Proof. It is enough to show that b−1gb ∈ G0 for all b ∈ Bsym, g ∈ G0. Since G0 is
generated by exp(B), it is enough to check it for all g = exp(b′) for b′ ∈ B. Notice
that in this case, b−1gb = exp(b−1b′b).

By Proposition 2.6.5, b′b+ bb′ = b̃ ∈ Bsym. Therefore, b−1b′b = b−1b̃− b′. Since B
is of Jordan type, b−1b̃ ∈ B. Therefore, b−1b′b ∈ B and exp(b−1b′b) ∈ G0.

From now on, we assume that U(G0, σ) acts transitively on Jordan frames of Bsym.

Theorem 2.6.37. The factor group G/G0 is finite. Moreover, G has finitely many
connected components and G0 is one of them containing 1. In every connected
component of G, there is an element of Bsym.

Proof. Let g ∈ G, then by Definition of G, there exist g0, g1, . . . , gr ∈ G0, b1, . . . , br ∈
(Bsym)× such that g = g0b1g1 . . . brgr. We take such presentation with minimal r.
We choose a Jordan frame (e1, . . . , en) of Bsym and take a spectral decomposition
according Corollary 2.6.33:

bi = u−1
i

n∑
j=1

εijλijejui = (u−1
i

n∑
j=1

εijejui)(u
−1

n∑
j=1

λijejui)

where all λij > 0, εij ∈ {1,−1}, ui ∈ U(G0, σ). We denote:

b′i :=
n∑
j=1

λijejui, si := sgn(bi) :=
n∑
j=1

εijej .

Notice, b′i ∈ B
sym
+ ⊆ G0, si ∈ (Bsym)×. So we obtain:

g = g0b1g1 . . . gr−1brgr = g0b1g1 . . . gr−2u
−1
r−1b

′
r−1sr−1ur−1gr−1u

−1
r b′rsrurgr.

We denote g′r := urgr, g′r−1 := ur−1gr−1u
−1
r b′r ∈ G0, g′r−2 := gr−2u

−1
r−1b

′
r−1 ∈ G0.

Then

g = g0b1g1 . . . g
′
r−2sr−1g

′
r−1srg

′
r = b1g1 . . . g

′
r−2sr−1srs

−1
r g′r−1srg

′
r.

Since G0 is a normal subgroup in G, g′′r − 1 := s−1
r g′r−1srgr ∈ G0. Moreover,

s′r−1 := sr−1sr =
∑n

j=1 εr−1,jεrjej ∈ Bsym. So we obtain:

g = g0b1g1 . . . g
′
r−2s

′
r−1g

′′
r−1.
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So we reduced the number r. Therefore, g can be written as

g = g0b1g1 = g0u
−1
1 b′1s1u1g1 = g′0s1g

′
1

where g′0 = g0u
−1
1 b′1, g′1 = u1g1. Further,

g = g′0s1g
′
1 = s1s

−1
1 g′0s1g

′
1 = s1g

′

where g′ := s−1
1 g′0s1g

′
1 ∈ G0 because G0 is a normal subgroup in G. Therefore,

gG0 = s1G0.Consider the group

S :=

{
n∑
i=1

εiei | εi ∈ {1,−1}

}
⊂ (Bsym)×.

This is a finite abelian subgroup of A× isomorphic to (Z/2Z)n. The map S 3 s 7→
sG0 ∈ G/G0 is a surjective group homomorphism. Therefore, G/G0 is finite. In
particular, dim(G) = dim(G0), so G0 is open in G. G0 is closed in A× as a Lie
subgroup. Therefore, G0 is also closed in G, i.e. G0 is a connected component of G.
Every connected component of G has form sG0 for s ∈ S, so G has finitely many
connected components, and, since d ∈ Bsym, in every connected component of G
there is an element from Bsym.

Corollary 2.6.38. If B is Hermitian, then U(G, σ) is compact.

Proposition 2.6.39. The group G acts on Bsym in the following way:

ψ : G×Bsym 7→ Bsym

(g, b) → σ(g)bg

preserving Bsym
+ and Bsym

≥0 .

Proof. First, we note that every element g ∈ G can be written as g = sg0 for g0 ∈ G0

and s ∈ S from the proof of the previous theorem.
Since the construction of G does not depend on the choice of the Jordan frame

(e1, . . . en) from the proof of the previous theorem, we assume this basis correspond to
the spectral decomposition of b, i.e. b =

∑n
i=1 λiei. Then g = sg0 for s =

∑n
i=1 εiei,

g0 ∈ G0.
Then σ(g)bg = σ(g0)(sbs)g0. But sbs =

∑n
i=1 ε

2
iλiei = b ∈ B. Therefore σ(g)bg =

σ(g0)bg0 ∈ Bsym because G acts on Bsym in this way.
From the same reason, if b ∈ Bsym

+ or b ∈ Bsym
≥0 , then σ(g)bg ∈ Bsym

+ resp.
σ(g)bg ∈ Bsym

≥0 .

2.6.6 Polar decomposition in G and maximal compact subgroup of G

Assume B ⊆ A to be weakly Hermitian Lie subalgebra. In this section, we assume G
to be either the connected group G0 or the the extension G from the previous section.
Notice that G acts on Bsym in the following way:

ψ : G×Bsym 7→ Bsym

(g, b) → σ(g)bg

130



preserving Bsym
+ .

Theorem 2.6.40 (Polar decomposition, first version). The map

pol : U(G, σ)×Bsym
+ → G

(u, b) 7→ ub

is a homeomorphism, i.e. for every g ∈ G there exist unique b ∈ Bsym
+ and u ∈ U(G, σ)

such that g = ub.

Proof. The map pol is well-defined because Bsym
+ ⊆ G. First, we prove the surjectivity.

Take g ∈ G, then σ(g)g = ψ(g)(1) ∈ Bsym
+ . Take b := (σ(g)g)

1
2 , then u :=

g(σ(g)g)−
1
2 ∈ U(G, σ). Indeed,

σ(u)u = (σ(g)g)−
1
2σ(g)g(σ(g)g)−

1
2 = 1.

Now, we prove the injectivity. Let g = ub = u′b′ where u, u′ ∈ U(G, σ), b, b′ ∈ Bsym
+ .

Then σ(g)g = (b′)2 = b2 ∈ Bsym
+ . We take the spectral decompositions of b and b′:

b =

k∑
i=1

λici, b
′ =

k′∑
i=1

λ′ic
′
i

where all k, k′ ∈ N, λi, λ′i > 0 and {ci}, {c′i} complete orthogonal systems of idempo-
tents of Bsym. Then

b2 =
k∑
i=1

λ2
i ci =

k′∑
i=1

(λ′i)
2c′i = (b′)2.

Because of the uniqueness of the spectral decomposition, k = k′ and, up to reordering,
all λ2

i = (λ′i)
2, ci = c′i. But all λi > 0, therefore, λi = λ′i, i.e. b = b′ and

u = gb−1 = g(b′)−1 = u′.
Finally, by definition, pol is continuous. Moreover,

pol−1(g) = (g(σ(g)g))−
1
2 , (σ(g)g))

1
2 )

is continuous as well. Therefore, pol is a homeomorphism.

Corollary 2.6.41. Similarly can be proved that the map

Bsym
+ × U(G, σ) → G

(b, u) 7→ bu

is a homeomorphism, i.e. for every g ∈ G there exist unique b ∈ Bsym
+ and u ∈ U(G, σ)

such that g = bu.

Corollary 2.6.42. For any g ∈ G, θ(g) = σ(g)g ∈ Bsym
+ .
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Corollary 2.6.43. The group U(G, σ) < G is a deformation retract of G. In
particular, if B is Hermitian, it is a maximal compact subgroup of G.

Corollary 2.6.44. The polar decomposition 2.6.40 as well as the Corollary 2.6.43
hold also for any Lie subgroup G ≤ A× such that Lie(G) = B. In particular, it holds
in the case B = A for a Hermitian algebra A.

Theorem 2.6.45 (Polar decomposition, second version). Let G be the extension of
G0 as in the previous section. The map

pol′ : U(G0, σ)× (Bsym)× → G
(u, b) 7→ ub

is surjective and continuous.

Proof. Let g ∈ G. We take its polar decomposition as in the Theorem 2.6.40:
g = ub0 for an u ∈ U(G, σ), b0 ∈ Bsym

+ . We take a Jordan frame (ei)
n
i=1 such that

b0 =
∑n

i=1 λiei and take a group

S :=

{
n∑
i=1

εiei | εi ∈ {1,−1}

}
⊂ (Bsym)× ∩ U(G, σ).

Then, as we have seen in the proof of the Theorem 2.6.37, every connected component
of G contains an element form S. Moreover, since U(G, σ) is a deformation retract
of G, and S ∈ U(G, σ), every connected component of U(G, σ) contains an element
of S. Therefore, there exists s ∈ S such that u = u0s for an u0 ∈ U(G0, σ). Then

g = ub0 = u0sb0 =: u0b

for b := sb0 =
∑n

i=1 εiλiei ∈ (Bsym)×.

Remark 2.6.46. The map pol′ is in general not injective. For example, if we take

B = A = Mat(2,R)

with σ to be the transposition, then

U(G0, σ) = SO(2,R), Bsym = Sym(2,R).

Then the matrix
Id = u1b1 = u2b2

for u1 = b1 = Id, u2 = b2 = − Id.
The reason for that is the fact that U(G0, σ) ∩ Bsym 6= {1}. If B = A, then

U(G0, σ) ∩ Bsym = {1}, if and only if A = R with σ = Id (follows from the
Theorem 2.7.26).

Consider the topological closure Ḡ of G in A.
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Proposition 2.6.47. Ḡ is a monoid.

Proof. Let g, g′ ∈ Ḡ ⊆ A, then gg′ ∈ A. We want to show that there exists {hi} ⊂ G
such that limhi = gg′. Since g, g′ ∈ Ḡ, there exist {gi}, {g′i} ⊂ G such that lim gi = g,
lim g′i = g′. Take hi = gig

′
i ∈ G, then

limhi = lim gig
′
i = lim gi lim g′i = gg′.

By taking closure in the polar decomposition, we get the following map:

pol : U(G, σ)×Bsym
≥0 → Ḡ

(u, b) 7→ ub.

This map is not a homeomorphism anymore, but it is surjective. If B is Hermitian, it
is also proper because U(G, σ) is compact. The map θ can be extended to the map

θ̄ : Ḡ → Bsym
≥0

g 7→ σ(g)g.

Proposition 2.6.48. If B is Hermitian, the map θ̄ : Ḡ→ Bsym
≥0 is proper.

Proof. Let K ⊂ Bsym
≥0 be a compact subset. Then

θ̄−1(K) = {ub
1
2
+ | u ∈ U(G, σ), b+ ∈ K} = pol(U(G, σ)×K).

Since U(G, σ)×K is compact in U(G, σ)×Bsym
≥0 and pol is continuous, θ̄−1(K) is

compact.

Proposition 2.6.49. If B is Hermitian, the set

D := D(Ḡ, σ) := {a ∈ Ḡ | 1− σ(a)a ∈ Bsym
≥0 } ⊆ Ḡ

is compact.

Proof. First, we need the following Lemma:

Lemma 2.6.50. Let C be a closed proper convex cone in some finite-dimensional
R-vector space V . Then for every c ∈ V , the set K := C ∩ (c− C) is compact.

Proof. AssumeK is not compact. We fix some norm ‖·‖ on V . There exists a sequence
(xn) such that ‖xn‖ → ∞. Since yn := xn

‖xn‖ ∈ S
1 and for finite-dimensional V , S1 is

compact, there exists a limit point y of (yn). Since C is a closed cone, yR+ ⊆ C∩(c−C)
and, therefore c − yR+ ⊆ C ∩ (c − C). Analogously, c + yR+ ⊆ C ∩ (c − C) and,
therefore −yR+ ⊆ C ∩ (c − C). That means, yR ∈ C ∩ (−C), so y = 0. This
contradicts to y ∈ S1. Therefore, K is compact.

By the Lemma 2.6.50, the set

K := {x ∈ Bsym
≥0 : 1− x ∈ Bsym

≥0 } = Bsym
≥0 ∩ (1−Bsym

≥0 )

is compact. Since θ̄−1(K) = D and θ̄ is proper, D is compact.
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Corollary 2.6.51. Let G be the extension of G0 from the previous section. The map

pol′ : U(G0, σ)×Bsym → Ḡ
(u, b) 7→ ub

is surjective and continuous. In particular, Ḡ is connected.

2.7 The symplectic group over G

2.7.1 The group Sp2(G, σ) (first definition)

Consider an R-algebra A with an anti-involution σ. Consider G ≤ A× a Lie subgroup
of A× which is closed under σ, we denote B := Lie(G) and assume (Bsym)× ⊆ G. By
G0, we denote the connected component of 1 in G. Then B = Lie(G0) = Lie(G) ≤ A.
If B is weakly Hermitian, we always take G to be the extension form the Section 2.6.5.
Consider

sp2(B, σ) =

{(
x z
y −σ(x)

)
| x ∈ B, y, z ∈ Bsym

}
⊆ sp2(A, σ)

In general, it is not a Lie algebra. We need to take some additional assumption:

Proposition 2.7.1. sp2(B, σ) is a Lie subalgebra of sp2(A, σ) if and only if B is of
Jordan type.

Proof. Matrixes

r(z) :=

(
0 z
0 0

)
, l(x) :=

(
0 0
y 0

)
and d(z) :=

(
x 0
0 −σ(x)

)
generate sp2(B, σ) as a vector space. sp2(B, σ) is a Lie subalgebra of sp2(A, σ) if and
only if all Lie bracket of these elements are in sp2(B, σ).
For y, z ∈ Bsym

[r(z), l(y)] =

(
zy 0
0 −yz

)
∈ sp2(B, σ)

so zy, yz ∈ B and we need the condition that B is of Jordan type.
For a ∈ B, z ∈ Bsym:

[d(x), r(z)] =

(
0 xz + zσ(x)
0 0

)
∈ sp2(B, σ)

so xz + zσ(x) ∈ Bsym. This holds for B of Jordan type by Proposition 2.6.5.
For a ∈ B, y ∈ Bsym:

[l(y), d(x)] =

(
0 0

σ(x)y + yx 0

)
∈ sp2(B, σ)

so σ(x)y + yx ∈ Bsym. This holds for B of Jordan type by Proposition 2.6.5.
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We consider the following matrices:

D(x) :=

(
x 0
0 σ(x)−1

)
, L(y) :=

(
1 0
y 1

)
, R(z) :=

(
1 z
0 1

)
where x ∈ G, y, z ∈ Bsym. These matrices, acting on A2, preserve the standard

symplectic form ω =

(
0 1
−1 0

)
. Therefore, the set {L(y)D(x)R(y) | y, z ∈ Bsym, x ∈

G} is contained in Sp2(A, σ).

Definition 2.7.2. We denote by Sp2(G, σ) the topological closure of {L(y)D(x)R(z) |
y, z ∈ Bsym, x ∈ G} in Sp2(A, σ).

Lemma 2.7.3. If B is weakly Hermitian, Sp2(G, σ) is connected.

Proof. We show that for every generic element g := L(y)D(x)R(z) such that y, z ∈
Bsym, x ∈ G there exists a path gt : [0, 1)→ Sp2(G, σ) such that g0 = g, limt→1 gt =(

0 1
−1 0

)
.

Using polar decomposition, x = ub for some u ∈ U(G0, σ), b ∈ (Bsym)×. Take
ut : [0, 1] → U(G0, σ) such that u0 = u, u = 1 for t ≥ 1

2 . It is possible because
U(G0, σ) is connected. Take bt : [0, 1) → (Bsym)× such that limt→1 bt = 0. Take
yt, zt : [0, 1) → Bsym such that z0 = z y0 = y and xt = −yt = b−1

t for t ≥ 1
2 . It is

possible since Bsym is connected. Define gt = L(yt)D(xt)R(zt). Then:

lim
t→1

gt = lim
t→1

(
utbt utbtzt
ytutbt ytutbtzt + σ(utbt)

−1

)
=

= lim
t→1

(
bt btb

−1
t

b−1
t bt b−1

t btb
−1
t + b−1

t

)
=

(
0 1
−1 0

)
.

Therefore,

Sp2(G, σ) = {L(y)D(x)R(z) | y, z ∈ Bsym, x ∈ G} ∪ {
(

0 1
−1 0

)
}

and {L(y)D(x)R(z) | y, z ∈ Bsym, x ∈ G} ∪ {
(

0 1
−1 0

)
} is connected. So Sp2(G, σ)

is connected.

Theorem 2.7.4. Let B be of Jordan type such that 1 ∈ B. Then the space Sp2(G, σ)
is a group.

Proof. First, we prove the two Lemmata:

Lemma 2.7.5. Let 1+y is not invertible for a y ∈ A. Then there exists a neighborhood
U of 0 ∈ R such that for every t ∈ U \ {0}, 1 + y(1 + t) is invertible.
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Proof. As we have seen in the Proposition 2.1.5, A can be embedded as a subalgebra
into Mat(r,R) for some r ∈ N. We identify B with a Lie subalgebra of Mat(r,R).
Since 1 + y is not invertible, −1 is an eigenvalue of y. Since y has only finitely many
eigenvalues, there exists a neighborhood U of 0 ∈ R such that for every t ∈ U \ {0},
1 + y(1 + t) is invertible.

We remind, Ḡ is the topological closure of G in A. It is a monoid.

Lemma 2.7.6. Let y, z ∈ Bsym then 1 + zy ∈ Ḡ. In particular, if 1 + zy is invertible,
then 1 + zy ∈ G.

Proof. First, assume z ∈ (Bsym)× ⊂ G. Then 1 + zy = (z + zyz)z−1 ∈ Ḡ because
z−1 ∈ G, z, zyz ∈ Bsym ⊆ Ḡ.
If z is not invertible, take a sequence of invertible (zi) such that lim zi = z. Then

all 1 + ziy ∈ Ḡ and lim(1 + ziy) = 1 + zy. Since Ḡ is closed, 1 + zy ∈ Ḡ.

Let a = limL(yi)D(xi)R(zi), b = limL(y′i)D(x′i)R(z′i) for some sequences
{yi}, {y′i}, {zi}, {z′i} ⊂ Bsym, {xi}, {x′i} ⊂ G. We want to show that there exist
sequences {y′′i }, {z′′i } ⊂ Bsym, {x′′i } ⊂ G such that ab = limL(y′′i )D(x′′i )R(z′′i ).
Since limits for a and b exist, we can write:

ab = limL(yi)D(xi)R(zi)L(y′i)D(x′i)R(z′i).

Consider the term

R(zi)L(y′i) =

(
1 zi
0 1

)(
1 0
y′i 1

)
=

(
1 + ziy

′
i zi

y′i 1

)
.

If 1 + ziy
′
i is invertible then by the Lemma 2.7.6, 1 + ziy

′
i ∈ G, then we can write

R(zi)L(y′i) = L(zi(1 + ziy
′
i)
−1)D(1 + ziy

′
i)R((1 + ziy

′
i)
−1y′i).

If 1 + ziy
′
i is not invertible in B then we take a sequence {ti} ⊂ R such that

lim ti = 0 and ti ∈ Ui where Ui is the neighborhood of 0 ∈ R form the Lemma 2.7.5
for the element 1 + ziy

′
i. Then b = limL(y′i(1 + ti))D(x′i)R(z′i) and 1 + ziy

′
i(1 + ti) is

invertible in B.
To conclude the proof, note the following permutation rules:

D(x)L(y) = L(σ(x)−1yx−1)D(x),

R(z)D(x) = D(x)R(x−1zσ(x)−1)

that always make possible to reorder matrices and

L(y)L(y′) = L(y + y′), R(x)R(x′) = R(z + z′), D(x)D(x′) = D(xx′)

for all x, x′ ∈ G, y, y′, z, z′ ∈ Bsym.
Now, we show that for a ∈ Sp2(G, σ), a−1 ∈ Sp2(G, σ). Indeed, Sp2(G, σ) ⊆

Sp2(A, σ) and Sp2(A, σ) is a group, therefore, a−1 exists in Sp2(A, σ). As before,
we take a sequence ai := L(yi)D(xi)R(zi) where xi ∈ G, yi, zi ∈ Bsym such that
lim ai = a. Then a−1

i = R(−zi)D(x−1
i )L(−yi) ∈ Sp2(G, σ). Therefore, lim a−1

i =
a−1 ∈ Sp2(G, σ).
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Definition 2.7.7. Matrices of the form L(y)D(x)R(z) for y, z ∈ Bsym, x ∈ G are
called generic.

Proposition 2.7.8. sp2(B, σ) is the Lie algebra of Sp2(G, σ).

Proof. The neighborhood of the identity in Sp2(G, σ) consists only of generic matrices.
Consider a smooth path p(t) := L(y(t))D(x(t))R(z(t)) such that y, z : (−1, 1)→ Bsym

are smooth and y(0) = z(0) = 0 and x : (−1, 1)→ G smooth and x(0) = 1. Then

p′(0) =

(
x′(0) z′(0)
y′(0) −σ(x′(0))

)
∈ sp2(B, σ)

Moreover, for every m :=

(
x z
y −σ(x)

)
∈ sp2(B, σ), y, x ∈ Bsym, x ∈ B the

path p(t) := L(yt)D(exp(xt))R(zt) ∈ Sp2(G, σ) and p′(0) = m. Therefore,
Lie(Sp2(G, σ)) = sp2(B, σ).

2.7.2 Another definition of Sp2(G, σ)

We denote by Sp′2(G, σ) the Lie subgroup of Sp2(A, σ) generated by matrices:

D(x) :=

(
x 0
0 σ(x)−1

)
, I :=

(
0 1
−1 0

)
, R(z) :=

(
1 z
0 1

)
where x ∈ G0, z ∈ Bsym. Since all generators of Sp′2(G, σ) are in Sp2(G, σ),
Sp′2(G, σ) ≤ Sp2(G, σ). In this subsection, we show that actually Sp′2(G, σ) =
Sp2(G, σ).

Lemma 2.7.9. Matrices L(z) :=

(
1 0
z 1

)
are in Sp′2(G, σ) for all z ∈ Bsym.

Proof.

L(z) :=

(
1 0
z 1

)
= −

(
0 1
−1 0

)(
1 z
0 1

)(
0 1
−1 0

)

Proposition 2.7.10. sp2(B, σ) is the Lie algebra of Sp′2(G, σ).

Proof. Let x0 ∈ B. Since Lie(G) = B, there exists a smooth path x(t) ∈ G0 such that

x(0) = 1 and x′(0) = x0. Take a smooth path g(t) =

(
x(t) 0

0 σ(x(t))−1

)
∈ Sp2(G, σ).

Then g′(0) =

(
x′(0) 0

0 −σ(x′(0))

)
∈ sp2(B, σ).

Let z0 ∈ Bsym. Since Bsym is a vector space, there exists a smooth path z(t) ∈ Bsym

such that z(0) = 0, z′(0) = z0. Consider the smooth path g(t) =

(
1 z(t)
0 1

)
∈
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Sp2(G, σ) where z(t) ∈ Bsym for all t and z(0) = 0. Then g′(0) =

(
0 z′(0)
0 0

)
. Since

z′(0) ∈ Bsym, g′(0) ∈ sp2(B, σ).
Since (

0 1
−1 0

)3(
1 z
0 1

)(
0 1
−1 0

)
=

(
1 0
−z 1

)
,

the similar argument as above shows that elements
(

0 0
z 0

)
for z ∈ Bsym are also

covered by derivations of paths in Sp2(G, σ).

Proposition 2.7.11. If B is weakly Hermitian, then Sp′2(G, σ) = Sp2(G, σ)

Proof. Let U be a small neighborhood of 0 ∈ Lie(Sp2(G, σ)) such that exp |U : U →
Sp2(G, σ) is a diffeomorphism and exp(U) consists only of regular elements. Then
exp(U) ⊆ Sp′2(G, σ).
Moreover, since Sp2(G, σ) is connected, exp(U) generates Sp2(G, σ). Therefore,

Sp2(G, σ) ≤ Sp′2(G, σ).

2.7.3 Center of Sp2(G, σ) and the group PSp2(G, σ)

Proposition 2.7.12. The center Z(Sp2(G, σ)) of Sp2(G, σ) is isomorphic to Z(G)∩
U(G, σ) where Z(G) is the center of G. More precisely,

Z(Sp2(G, σ)) = {diag(a, a) | a ∈ Z(G) ∩ U(G, σ)}.

Proof. Let M =

(
a b
c d

)
∈ Z(Sp2(G, σ)), then M commutes with

(
0 1
−1 0

)
. This

gives: d = a, c = −b. Also M commutes with
(

1 1
0 1

)
∈ Sp2(G, σ). This gives b = 0.

Since M = diag(a, a) ∈ Sp2(A, σ), σ(a)−1 = a. Moreover, M commutes with all
diag(g, σ(g)−1), i.e. a ∈ Z(G). Therefore,

Z(Sp2(G, σ)) < {diag(a, a) | a ∈ Z(G) ∩ U(G, σ)}.

It is also easy to see that matrices diag(a, a) for a ∈ Z(G)∩U(G, σ) commute with
all elements of Sp2(G, σ). therefore,

Z(Sp2(G, σ)) = {diag(a, a) | a ∈ Z(G) ∩ U(G, σ)}.

Corollary 2.7.13. For B Hermitian, Z(Sp2(G, σ)) is compact.

Definition 2.7.14. The quotient group

PSp2(G, σ) := Sp2(G, σ)/Z(Sp2(G, σ))

is called projective symplectic group.

138



2.7.4 Maximal compact subgroup of Sp2(G, σ)

In this section, we assume B to be Hermitian. We describe a maximal compact
subgroup of Sp2(G, σ).

Definition 2.7.15. We denote:

U2(A, σ) := {M ∈ Mat2(A) | σ(M)TM = Id};

KSp2(G, σ) := Sp2(G, σ) ∩U2(A, σ).

Lemma 2.7.16. For every M ∈ Sp2(G, σ), all components Mij ∈ Ḡ.

Proof. Since M = limM (i) such that M (i) are generic, i.e. M
(i)
11 ∈ G,

M11 ∈ Ḡ. For every M ∈ Sp2(G, σ),
(

0 1
−1 0

)
M ∈ Sp2(G, σ). Therefore,((

0 1
−1 0

)
M

)
11

= −M21 ∈ Ḡ. Similarly,
(
M

(
0 1
−1 0

))
11

= M12 ∈ Ḡ and((
0 1
−1 0

)
M

(
0 1
−1 0

))
11

= −M22 ∈ Ḡ.

Proposition 2.7.17. KSp2(G, σ) =

{(
a b
−b a

) ∣∣∣∣ σ(a)a+ σ(b)b = 1
σ(a)b− σ(b)a = 0

, a, b ∈ Ḡ
}
.

Proof. Take M :=

(
a b
c d

)
∈ KSp2(G, σ). On one hand, M ∈ Sp2(G, σ), therefore,

M−1 = −
(

0 1
−1 0

)
σ(M)T

(
0 1
−1 0

)
=

(
σ(d) −σ(b)
−σ(c) σ(a)

)
.

On the other hand, M ∈ U2(A, σ), therefore,

M−1 = σ(M)T =

(
σ(a) σ(c)
σ(b) σ(d)

)
.

So we obtain, a = d and b = −c.

Theorem 2.7.18. KSp2(G, σ) is a maximal compact subgroup of Sp2(G, σ).

Proof. By definition, KSp2(G, σ) is closed subgroup of Sp2(G, σ). Let M :=(
a b
−b a

)
∈ KSp2(G, σ). Then

σ(M)TM =

(
σ(a) −σ(b)
σ(b) σ(a)

)(
a b
−b a

)

=

(
σ(a)a+ σ(b)b ∗

∗ σ(b)b+ σ(a)a

)
=

(
1 0
0 1

)
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Since σ(a)a+ σ(b)b = 1, i.e.

a, b ∈ D = {x ∈ Ḡ | 1− σ(x)x ∈ Bsym
≥0 } ⊆ Ḡ

which is compact by 2.6.49, KSp2(G, σ) can be seen as a closed subset of the compact
D4, so it is compact.

Now, we show that KSp2(G, σ) is a maximal compact subgroup of Sp2(G, σ). Let
K be some compact subgroup containing KSp2(G, σ) as a proper subgroup. We
consider the following decomposition of sp2(G, σ):

sp2(G, σ) = ksp2(G, σ)⊕ Sym2(G, σ)

where

ksp2(G, σ) = Lie(KSp2(G, σ)) =

{(
a b
−b a

)
| σ(a) = −a ∈ B, b ∈ Bsym

}
,

Sym2(G, σ) =

{(
c d
d −c

)
| c, d ∈ Bsym

}
.

By our assumption, Lie(K) contains ksp2(G, σ) and has nontrivial intersection with

Sym2(G, σ). Take some
(
c d
d −c

)
∈ Lie(K) ∩ Sym2(G, σ), c, d ∈ Bsym. The matrix(

0 d
−d 0

)
∈ ksp2(G, σ) ⊂ Lie(K), therefore,

(
c 2d
0 −c

)
=

(
c d
d −c

)
+

(
0 d
−d 0

)
∈ Lie(K) \ ksp2(G, σ).

Using the exponential map of sp2(G, σ) restricted to Lie(K), we obtain that there exits

a matrix M :=

(
g gx
0 g−1

)
∈ K \ KSp2(G, σ) where g = exp(c) ∈ Gsym, x ∈ Bsym.

Consider the spectral decomposition of g =
∑k

i=1 λici for some λi > 0 and (ci)
k
i=1 a

complete orthogonal system of idempotents. Take a sequence {M r} ⊆ K. Then

M r
11 = gk =

k∑
i=1

λri ci,

M r
22 = g−k =

k∑
i=1

λ−ri ci.

Assume, there exists s ∈ {1, . . . , k} such that λs 6= ±1. Then either 0 < |λs| < 1 or
0 < |λ−1

s | < 1. Without lost of generality, assume 0 < |λs| < 1. Since K is compact,
{M r} ⊆ K have a convergent subsequence {M rj} ⊆ K:

limM
rj
11 = lim

k∑
i=1

λ
rj
i ci =

k∑
i=1

λ̂ici
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where λ̂i = limλ
rj
i . But λ̂s = limλ

rj
s = 0 for any subsequence {rj}. Therefore

limM
rj
11 is not invertible and do limM rj is not invertible as well. Therefore, all

λi = ±1 and g2 = 1. The element L :=

(
g 0
0 g−1

)
∈ KSp2(G, σ) ⊂ K. Then

ML =

(
1 x
0 1

)
∈ K. Take (ML)r =

(
1 rx
0 1

)
∈ K. This sequence does not have

any convergent subsequence unless x = 0. So we get M = L ∈ KSp2(G, σ). This
contradicts to the assumption M /∈ KSp2(G, σ) and we obtain that KSp2(G, σ) is a
maximal compact subgroup of Sp2(G, σ).

2.7.5 Maximal compact subgroup of Sp2(G, σ) for complex G

In this section, we assume A to be a C-algebra with a C-linear anti-involution σ,
B ⊆ A a C-Lie subalgebra, G ⊆ A× a Lie subgroup such that LieG = B, B and G
are closed under σ and (B, σ) to be of Jordan type. We denote by σ̄ the composition
of σ and the complex conjugation. To distinguish between symmetric elements with
respect to different anti-involutions σ and σ̄, we denote

Bσ := FixB(σ), Bσ̄ := FixB(σ̄),

Gσ := FixG(σ), Gσ̄ := FixG(σ̄).

We assume (Bσ)× ⊆ G, so the group Sp2(G, σ) is well-defined. Assume also (B, σ̄)
to be Hermitian, so we have the proper convex cone Bσ̄

≥0.

Definition 2.7.19. We denote:

KSpc2(G, σ) := Sp2(G, σ) ∩U2(A, σ̄).

Lemma 2.7.20. For every M ∈ Sp2(G, σ), all components Mij ∈ Ḡ.

Proof. The proof is identic to the Lemma 2.7.16.

Proposition 2.7.21. KSpc2(G, σ) =

{(
a b
−b̄ ā

) ∣∣∣∣ σ̄(a)a+ σ(b)b̄ = 1
σ̄(a)b− σ(b)ā = 0

, a, b ∈ Ḡ
}
.

Proof. Take M :=

(
a b
c d

)
∈ KSp2(G, σ). On one hand, M ∈ Sp2(G, σ), therefore,

M−1 = −
(

0 1
−1 0

)
σ(M)T

(
0 1
−1 0

)
=

(
σ(d) −σ(b)
−σ(c) σ(a)

)
.

On the other hand, M ∈ U2(A, σ̄), therefore,

M−1 = σ̄(M)T =

(
σ̄(a) σ̄(c)
σ̄(b) σ̄(d)

)
.

So we obtain, d = ā and c = −b̄.

141



Theorem 2.7.22. KSpc2(G, σ) is a maximal compact subgroup of Sp2(G, σ).

Proof. By definition, KSpc2(G, σ) is closed subgroup of Sp2(G, σ). Let M :=(
a b
−b̄ ā

)
∈ KSpc2(G, σ). Then

σ̄(M)TM =

(
σ̄(a) −σ(b)
σ̄(b) σ(a)

)(
a b
−b̄ ā

)

=

(
σ̄(a)a+ σ(b)b̄ ∗

∗ σ̄(b)b+ σ(a)ā

)
=

(
1 0
0 1

)
Since σ̄(a)a+ σ(b)b̄ = σ̄(a)a+ σ̄(b̄)b̄ = 1, i.e.

a, b̄ ∈ D = {x ∈ Ḡ | 1− σ̄(x)x ∈ Bσ̄
≥0} ⊆ Ḡ

which is compact by 2.6.49, KSpc2(G, σ) can be seen as a closed subset of the compact
D4, so it is compact.

Now, we show that KSpc2(G, σ) is a maximal compact subgroup of Sp2(G, σ). Let
K be some compact subgroup containing KSpc2(G, σ) as a proper subgroup. We
consider the following decomposition of sp2(G, σ):

sp2(G, σ) = kspc2(G, σ)⊕Herm2(G, σ̄)

where

kspc2(G, σ) = Lie(KSpc2(G, σ)) =

{(
a b
−b̄ ā

)
| σ̄(a) = −a ∈ B, b ∈ Bσ̄

}
,

Herm2(G, σ) =

{(
c d
d̄ −c̄

)
| c, d ∈ Bσ̄

}
.

By our assumption, Lie(K) contains kspc2(G, σ) and has nontrivial intersection with

Herm2(G, σ). Take some
(
c d
d̄ −c̄

)
∈ Lie(K) ∩Herm2(G, σ), c, d ∈ Bσ̄. The matrix(

0 d
−d̄ 0

)
∈ kspc2(G, σ) ⊂ Lie(K), therefore,

(
c 2d
0 −c̄

)
=

(
c d
d̄ −c̄

)
+

(
0 d
−d̄ 0

)
∈ Lie(K) \ kspc2(G, σ).

Using the exponential map of sp2(G, σ) restricted to Lie(K), we obtain that there

exits a matrix M :=

(
g gx
0 ḡ−1

)
∈ K \ KSpc2(G, σ) where g = exp(c) ∈ Gσ̄, x ∈ Bσ̄.

Consider the spectral decomposition of g =
∑k

i=1 λici for some λi > 0 and (ci)
k
i=1 a

complete orthogonal system of idempotents. Take a sequence {M r} ⊆ K. Then

M r
11 = gk =

k∑
i=1

λri ci,
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M r
22 = ḡ−k =

k∑
i=1

λ−ri ci.

Assume, there exists s ∈ {1, . . . , k} such that λs 6= ±1. Then either 0 < |λs| < 1 or
0 < |λ−1

s | < 1. Without lost of generality, assume 0 < |λs| < 1. Since K is compact,
{M r} ⊆ K have a convergent subsequence {M rj} ⊆ K:

limM
rj
11 = lim

k∑
i=1

λ
rj
i ci =

k∑
i=1

λ̂ici

where λ̂i = limλ
rj
i . But λ̂s = limλ

rj
s = 0 for any subsequence {rj}. Therefore

limM
rj
11 is not invertible and do limM rj is not invertible as well. Therefore, all

λi = ±1 and g2 = 1. The element L :=

(
g 0
0 g−1

)
∈ KSpc2(G, σ) ⊂ K. Then

ML =

(
1 x
0 1

)
∈ K. Take (ML)r =

(
1 rx
0 1

)
∈ K. This sequence does not have

any convergent subsequence unless x = 0. So we get M = L ∈ KSpc2(G, σ). This
contradicts to the assumption M /∈ KSpc2(G, σ) and we obtain that KSpc2(G, σ) is a
maximal compact subgroup of Sp2(G, σ).

2.7.6 More on the algebra AC

In this section, we study some additional properties of the complexified algebra AC
of some Hermitian algebra (A, σ) that are connected to the spectral theorem. As we
have seen, (AC, σ̄) is Hermitian as well. First, we study the group U(AC, σ̄). Later,
we find out how A×C acts on (AσC)×.

Theorem 2.7.23. Let Y be a finite dimensional C-algebra, V ⊆ Y be a C-vector
subspace. Then V × is connected.

Proof. If V × = ∅ then V × is connected.
Assume now that 1 ∈ V × 6= ∅. As we have seen in the Proposition 2.1.5, Y can

be embedded as a subalgebra into Mat(r,C) for some r ∈ N. We identify Y as a
subalgebra of Mat(r,C). Let a ∈ V × ⊆ GL(n,C). Since a has only finitely many
eigenvalues, and 0 is not one of them, there is a point z ∈ S1 ⊂ C such that the line
in C through the origin containing z does not intersect any of the eigenvalues of a.
Now, consider the path f(t) = at + z(1 − t) Id, t ∈ [0, 1]. It lies completely in V
because it is a C-vector space. This has determinant 0 if and only if z(t− 1) is an
eigenvalue of at, which happens if and only if z(1− t)/t is an eigenvalue of a (this
does not work when t = 0, but then it is clear that the determinant is non-zero). By
construction, it is not the case for any t ∈ [0, 1], so this defines a path form a to z Id.

Now, there is a path in C not passing through 0 from z to 1, and, since {z Id | z ∈
S1 ⊂ C} ⊂ V ×, this gives rise to a path in A×C from z Id to Id, and so concatenating
these two paths, we get a path from a to Id that lies in V ×, showing that V × is path
connected.
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Finally, if 1 /∈ V × but there exists v ∈ V ×, then V × is connected if and only
if (v−1V )× = v−1(V ×) is connected. Moreover, v−1V is also a C-vector space and
1 ∈ (v−1V )×. So (v−1V )× is connected and, therefore, V × is connected as well.

Corollary 2.7.24. The space A×C is path connected. In particular, U(AC, σ̄) is path
connected (as deformation retract of A×C ).

Later, we assume that AC can be embedded as a subalgebra into Mat(r,C) for
some r ∈ N .

Theorem 2.7.25 (Spectral theorem for U(AC, σ̄), first version). For every u ∈
U(AC, σ̄), there exist a unique r ∈ N, a unique complete system of orthogonal
idempotents c1, . . . , ck ∈ Aσ̄C and a unique sequence of elements θ1, . . . , θr ∈ R/(2πZ)
such that for all i 6= j, θi 6= θj

u =

r∑
j=1

eiθjcj .

Proof. Consider the Lie algebra of U(AC, σ̄):

Lie(U(AC, σ̄)) = {z ∈ AC | σ̄(z) = −z}.

Consider the following map:

ψ : Aσ̄C 7→ Lie(U(AC, σ̄))
a 7→ ia

.

This map is injective. Moreover, because

dimR(Aσ̄C) = dimRA = dimR(Lie(U(AC, σ̄))),

this map is an isomorphism of R-vector spaces. By the first version of the spectral
theorem, for every a ∈ Aσ̄C, there exists a unique complete system of orthogonal
idempotents c1, . . . , cr ∈ Aσ̄C of Aσ̄C and a unique sequence of elements θ1, . . . , θr ∈ R
such that for all i 6= j, θi 6= θj and

a =
r∑
j=1

θjcj .

Therefore,

exp(ia) =
r∑
j=1

eiθjcj ∈ U(AC, σ̄).

The exponential map is surjective for compact connected groups, so every element of
U(AC, σ̄) admit such presentation.

Assume, there are two such presentations with minimal number of idempotents for
an element u ∈ U(AC, σ̄):

u = exp(ia) = exp(ia′),
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a =
r∑
j=1

θjcj , a
′ =

r′∑
j=1

θ′jc
′
j

for some r, r′ ∈ N, (θj), (θ′j) in R, (cj), (c′j) complete systems of orthogonal idempo-
tents. Since the number of idempotents is minimal in both presentations, eiθj 6= eiθk

for all i 6= k and also eiθ
′
j 6= eiθ

′
k for all i 6= k.

We multiply u by ck from the left and by c′l from the right:

ckuc
′
l = eiθkckc

′
l = eiθ

′
lckc

′
l.

So either ckc′l = 0 or eiθk = eiθ
′
l , i.e.

{eiθk | k ∈ {1, . . . , r}} = {eiθ′l | l ∈ {1, . . . , r′}},

in particular r = r′. We can reorder indices so that eiθ′k = eiθk for all k ∈ {1, . . . r}.
Therefore:

cku = eiθkck = eiθ
′
kckc

′
k,

uc′k = eiθ
′
kc′k = eiθkckc

′
k.

We get ck = ckc
′
k = c′k for all k ∈ {1, . . . , r}, i.e. (cj) = (c′j). So we obtain that the

presentation is unique.

Theorem 2.7.26 (Spectral theorem for U(A, σ)). For every u ∈ U(A, σ), there
exist unique r, s ∈ N{0}, s ≤ 2, unique systems of idempotents c1, . . . , cr ∈ Aσ̄C
and c′1, . . . , c

′
s ∈ Aσ such that c1, . . . , cr, c̄1, . . . , c̄r, c

′
1, . . . , c

′
s is a complete orthogonal

system of idempotents of Aσ̄C and unique sequences of elements θ1, . . . , θr ∈ R/(2πZ)
and ε1, . . . εs ∈ {1,−1} such that for all i 6= j, θi 6= θj and εi 6= εj and

u =
r∑
j=1

(eiθjcj + e−iθj c̄j) +
s∑
j=1

εjc
′
j .

Proof. For an element u ∈ U(AC, σ̄), u ∈ U(A, σ) if and only if u = ū. We take the
spectral decomposition of u and ū:

u =

k∑
j=1

eiθjcj ,

ū =

k∑
j=1

e−iθj c̄j .

Notice, all c̄1, . . . , c̄k is a complete orthogonal system of idempotents of Aσ̄C because
c̄ic̄j = cicj . If u = ū, then, because of uniqueness of the spectral decomposition, for
every j ∈ {1, . . . , k} there exists j′ ∈ {1, . . . , k} such that eiθjcj = e−iθj′ c̄j′ . There
can be to cases:
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1. j = j′ then eiθj ∈ R i.e. eiθj ∈ {1,−1}.

2. j 6= j′ then cj′ = c̄j .

Because all eiθj are distinct, there can be at most one j such that eiθj = 1 and at
most one j with eiθj = −1. For such j, cj ∈ Aσ. So we obtain

u =
r∑
j=1

(eiθjcj + e−iθj c̄j) +
s∑
j=1

εjc
′
j .

for appropriate r, s ∈ N{0}, s ≤ 2.

Corollary 2.7.27. In every connected component of U(A, σ) there is an element
from (Aσ)×.

Proof. Take u ∈ U(A, σ) and its spectral decomposition:

u =

r∑
j=1

(eiθjcj + e−iθj c̄j) +
s∑
j=1

εjc
′
j .

Since the circle R/(2πZ) is connected, take for every j a path θj(t) connecting θj and
0 ∈ R/(2πZ). Then

u(t) =

r∑
j=1

(eiθj(t)cj + e−iθj(t)c̄j) +

s∑
j=1

εjc
′
j .

connects u and
∑r

j=1(cj + c̄j) +
∑s

j=1 εjc
′
j ∈ (Aσ)×.

Corollary 2.7.28. The group A× is generated by A×0 and (Aσ)× where A×0 is the
connected component of 1 ∈ A×.

Proof. As we have seen using the polar decomposition, U(G, σ) is a deformation
retract of A×. In every connected component of U(G, σ), there is an element of
(Aσ)×. Therefore, every connected component C ⊆ A can be written as C = bA×0
where A×0 is a connected component of 1 ∈ A×, b ∈ (Aσ)×. Therefore A× is contained
in the group generated by A×0 and Aσ. That the group generated by A×0 and Aσ is
contained in A× is clear.

Corollary 2.7.29 (Spectral theorem for U(AC, σ̄), second version). Suppose, Aσ̄C has
rank n. For every u ∈ U(AC, σ̄), there exist unique sequence θ1, . . . , θn ∈ R/(2πZ)
and a Jordan frame e1, . . . , en ∈ Aσ̄C such that

u =
n∑
j=1

eiθjej .

The elements θ1, . . . , θn ∈ R/(2πZ) (with their multiplicities) are uniquely determined
by u. In particular, they do not depend (up to permutations) on the Jordan frame
e1, . . . , en ∈ Bsym.
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Definition 2.7.30. The determinant map on U(AC, σ̄) is given by:

det(u) =
n∏
j=1

eiθj ∈ S1 ⊂ C

where u =
∑n

j=1 e
iθjej for some Jordan frame e1, . . . , en ∈ Aσ̄C.

Proposition 2.7.31. The fundamental group of U(AC, σ̄) is infinite.

Proof. The determinant map

det : U(AC, σ̄)→ S1

is continuous and surjective. It induces the homomorphism of fundamental groups:

(det)∗ : π1(U(AC, σ̄), 1)→ π1(S1, 1)

that is surjective because the curve u(t) = eite1 +
∑n

j=2 ej for t ∈ [0, 2π] for some
Jordan frame e1, . . . , en maps to the following generator of π1(S1, 1): eit, t ∈ [0, 2π].
So π1(U(AC, σ̄), 1) is infinite.

Corollary 2.7.32. The fundamental group of Sp2(A, σ) is infinite.

Theorem 2.7.33. The following action of A×C on (AσC)×

ψC : A×C × (AσC)× → (AσC)×

(a, b) 7→ σ(a)ba

is transitive.

Proof. Take b ∈ (AσC)×. We take a polar decomposition of b = ub′ where u ∈ U(A, σ̄),
b′ ∈ (Aσ̄C)×. We take the spectral decomposition of b′:

b′ =
k∑
i=1

λici

for a complete system of orthogonal idempotents {ci}ki=1 ⊂ Aσ̄C and all λi > 0.
The group U(AC, σ̄) acts transitively on Jordan frame of Aσ̄C. Therefore, if we

fix a Jordan frame {xi}ki=1 ⊂ Asym ⊂ Aσ̄C, there exists u′ ∈ U(AC, σ̄) such that
xi = σ̄(u′)ciu

′. Then

σ(u′)bu′ = σ(u′)uσ̄(u′)−1σ̄(u′)b′u′ = σ(u′)uσ̄(u′)−1
k∑
i=1

λixi =: u′′b′′

where u′′ = σ(u′)uσ̄(u′)−1, b′′ =
∑k

i=1 λixi.
Since σ(u′)bu′ = u′′b′′ ∈ Aσ, u′′b′′ = σ(u′′b′′) = b′′σ(u′′) = b′′(ū′′)−1. Therefore,

b′′ = u′′b′′ū′′. By induction, we obtain b′′ = (u′′)nb′′(ū′′)n for all n ∈ Z, or equivalently

147



(u′′)nb′′ = b′′(ū′′)−n. Since it holds for every n ∈ Z, the following holds: f(u′′)b′′ =
b′′f((ū′′)−1) for every holomorphic function in small enough neighborhood of u′′.
Since u′′ ∈ U(AC, σ̄), u′′ 6= 0. By the Theorem 2.7.25, there exists w ∈ U(AC, σ̄) such
that (u′′) = w2. So we can take as f the branch of square root such that f(u′′) = w.
Then we obtain wb′′ = b′′(w̄)−1. Therefore,

u′′b′′ = wb′′w̄−1 = (wb
1
2 )b

1
2 w̄−1 = σ(b

1
2 w̄−1)b

1
2 w̄−1.

Therefore, σ(u′)bu′ = u′′b′′ is in the orbit of 1 under the action ψC and also b is in
this orbit because b = σ((u′)−1)u′′b′′(u′)−1.

2.8 Invariants of G-isotropic lines

2.8.1 G-isotropic lines

In this section, we assume B to be weakly Hermitian. We consider IsG(ω) =
Sp2(G, σ)(1, 0)T the orbit of (1, 0)T ∈ A2 under the action of Sp2(G, σ). Note, if
x ∈ IsG(ω), then xc ∈ IsG(ω) for all c ∈ G.

Remark 2.8.1. The element (0, 1)T is in IsG(ω) since −I(1, 0)T = (0, 1) where I =(
0 1
−1 0

)
.

Remark 2.8.2. The space IsG(ω) is closed in the space Is(ω) of all isotropic elements
of A2. It follows from the fact that Sp2(G, σ) is closed in Sp2(A, σ) and Sp2(A, σ)
acts transitively on Is(ω).

Definition 2.8.3. A line l ⊂ A2 is called G-isotropic if l = yA for some y ∈ IsG(ω).

Proposition 2.8.4. Let x = (x1, x2)T ∈ Ḡ2 be a regular element, then

σ(x1)x1 + σ(x2)x2 ∈ Bsym
+ .

In particular, this holds for all elements of IsG(ω).

Proof. First, we prove the following Lemma:

Lemma 2.8.5. Let b ∈ Bsym is not invertible, then there exists b′ ∈ Bsym
≥0 \ {0} such

that bb′ = 0

Proof. Assume b to be not invertible and consider its spectral decomposition b =∑k
i=1 λici for some (ci) complete system of orthogonal idempotents. Since b is not

invertible, there exist j ∈ {1, . . . , k} such that λj = 0. Take b′ = cj ∈ Bsym
≥0 .

Since for every g ∈ Ḡ, σ(g)g ∈ Bsym
≥0 , b := σ(x1)x1 + σ(x2)x2 ∈ Bsym

≥0 . Assume, b
is not invertible for some regular x ∈ Ḡ2. Take b′ as in Lemma, then

0 = b′bb′ = σ(x1b
′)x1b

′ + σ(x2b
′)x2b

′
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and σ(x1b
′)x1b

′, σ(x2b
′)x2b

′ ∈ Bsym
≥0 . Since Bsym

≥0 is a proper convex cone, σ(x1b)x1b =

σ(x2b)x2b = 0. Since x1b, x2b ∈ Ḡ, take its polar decomposition: x1b = u1y1, x2b =
u2y2 where y1, y2 ∈ Bsym, u1, u2 ∈ U(G, σ). Then σ(x1b)x1b = y2

1, σ(x2b)x2b = y2
2.

Since Bsym does not contain nilpotents, y1 = y2 = 0. Therefore, x1b = x2b = 0, i.e.
x = (x1, x2)T is not regular. This contradicts to our assumption that x is regular.

2.8.2 Action of Sp2(G, σ) on G-isotropic lines

Proposition 2.8.6. Sp2(G, σ) acts transitively on the space of G-isotropic lines.

StabSp2(G,σ)(1, 0)TA :=

{(
x xy
0 σ(x)−1

)
| x ∈ G, y ∈ Bsym

}

StabSp2(G,σ)(0, 1)TA :=

{(
x 0
zx σ(x)−1

)
| x ∈ G, z ∈ Bsym

}
Proof. Sp2(G, σ) acts transitively on the space of G-isotropic lines since it acts
transitively on IsG(ω).

We prove only the statement for the first stabilizer. The second one can be proved
analogously.
Since (

x y
z t

)(
1
0

)
=

(
x
z

)
,

x ∈ A× and z = 0. Therefore, the matrix is generic. So it has the form D(x)R(y).

2.8.3 Action of Sp2(G, σ) on pairs of G-isotropic lines

Proposition 2.8.7. Two elements u, v ∈ IsG(ω) are linearly independent if and only
if, up to action of Sp2(G, σ), u = (1, 0)T , v = (a, b)T with b ∈ G. Moreover, if
ω(u, v) = 1, then a ∈ Bsym, b = 1.

Proof. Sp2(G, σ) acts transitively on IsG(ω), therefore, up to Sp2(G, σ)-action, we
can assume u = (1, 0)T .
Since u and v are linearly independent, b ∈ A× and v = g(1, 0)T for some g ∈

Sp2(G, σ). If g = L(y)D(x)R(z) for some x ∈ G, y, z ∈ Bsym, then v = (x, yx)T =
(1, y)Tx. Therefore, y ∈ (Bsym)× ⊆ G and so b = yx ∈ G.

If g is not generic, take a sequence {gn} of generic elements such that gn → g.
Then G 3 ynxn → b ∈ A×. Since G is closed in A× and xn, yn ∈ G, b ∈ G.

Let now ω(u, v) = 1, then 1 = ω(u, v) = yx. So if g generic, then a = x = y−1 ∈
Bsym. If g is not generic, then a = lim(xn) = lim(y−1

n ). But all y−1
n ∈ Bsym and

Bsym is closed in A, so a ∈ Bsym.

Corollary 2.8.8. If x, y ∈ IsG(ω) linearly independent, then ω(x, y) ∈ G.

Definition 2.8.9. A symplectic basis (x, y) of (A2, ω) is called (G, σ)-symplectic if
x, y ∈ IsG(ω).
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Proposition 2.8.10. If (x, y) is a (G, σ)-symplectic basis then there exists the unique
g ∈ Sp2(G, σ) such that g(1, 0)T = x, g(0, 1)T = y. In particular, Sp2(G, σ) acts
transitively on (G, σ)-symplectic bases.

Proof. We can assume, x = (1, 0)T , y = (a, 1)T and a ∈ Bsym. Take g := R(−a),
then R(−a)x = x, R(−a)y = (0, 1)T .

Corollary 2.8.11. Let xA, yA be two transverse isotropic lines with x, y ∈ IsG(ω).
Then there exist M ∈ Sp2(G, σ) and y′ ∈ IsG(ω) such that y′A = yA and Mx =
(1, 0)T , My′ = (0, 1)T . In particular, ω(x, y′) = 1.

Proposition 2.8.12. Sp2(G, σ) acts transitively on pairs of transverse G-isotropic
lines.

StabSp2(G,σ)((1, 0)TA, (0, 1)TA) :=

{(
x 0
0 σ(x)−1

)
| x ∈ G

}
∼= G.

Proof. By the Corollary 2.8.11, every pairs of transverse G-isotropic lines can be
mapped to ((1, 0)TA, (0, 1)TA) by an element of Sp2(G, σ). So Sp2(G, σ) acts transi-
tively on pairs of transverse G-isotropic lines.
By the Proposition 2.8.6, for every M ∈ StabSp2(G,σ)((1, 0)TA, (0, 1)TA), M =

D(x)R(y) for x ∈ G, y ∈ Bsym. Moreover, D(x)R(y)(0, 1)T = (xy, σ(x)−1). There-
fore, y = 0.

2.8.4 Action of Sp2(G, σ) on positive triples of G-isotropic lines

Let (x1A, x3A, x2A) be a triple of pairwise transverse G-isotropic lines where all
xi ∈ IsG(ω). Because of transversality of x1A and x2A, we can assume ω(x1, x2) = 1.
Up to action of Sp2(G, σ), we can assume x1 = (1, 0)T , x2 = (0, 1)T . We can also
normalize x3 so that ω(x3, x2) = 1. Then x3 = (1, b)T , b = ω(x1, x3) ∈ (Bsym)×.

Definition 2.8.13. A triple of pairwise transverse G-isotropic lines (x1A, x3A, x2A)
is called positive if ω(x1, x2) = ω(x3, x2) = 1 and ω(x1, x3) ∈ Bsym

+ .

Proposition 2.8.14. The definition of positivity of a triple of G-isotropic lines does
not depend on the choice of x1, x2, x3.

Proof. Let yi ∈ IsG(ω) such that yiA = xiA for all i ∈ {1, 2, 3}. Then yi = xigi
for some gi ∈ G. Since 1 = ω(y1, y2) = σ(g1)ω(x1, x2)g2 = σ(g1)g2, g2 = σ(g1)−1.
Similarly g2 = σ(g3)−1. Therefore, g1 = g3.

ω(y1, y3) = σ(g1)ω(x1, x3)g1 = σ(g1)bg1 ∈ Bsym
+

if and only if b ∈ Bsym
+ .

Remark 2.8.15. For every transverse triple (x1A, x3A, x2A), up to action of Sp2(G, σ),
we can write x1 = (1, 0)T , x2 = (0, 1)T and:

x3A =

(
1 0
b 1

)(
1
0

)
A =

(
1
b

)
A
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for b ∈ Bsym. The triple is positive if and only if b ∈ Bsym
+ . Matrices of the form(

1 0
b 1

)
for b ∈ Bsym

+ form a subsemigroup of Sp2(G, σ) which we denote by U>0.

Lemma 2.8.16. For every positive triple (l1, l3, l2) of isotropic lines, elements
y1, y2, y3 ∈ IsG(ω) can be chosen so that

• li = yiA for i ∈ {1, 2, 3};

• ω(y1, y2) = 1;

• y3 = y1 + y2.

Proof. Let li = xiA for some regular xi ∈ IsG(ω). By transversality, (x1, x2) form a
basis. As above, we can assume ω(x1, x2) = 1, x3 = x1 + x2a for a ∈ Bsym

+ . Take
c := a

1
2 ∈ Bsym

+ ⊆ G. Consider a new basis y1 = x1c
−1, y2 = x2σ(c). Then,

ω(y1, y2) = ω(x1c
−1, x2σ(c)) = σ(c)−11σ(c) = 1.

Moreover, x3 = y1c+ y2σ(c)−1σ(c)c = y1c+ y2c. If we take y3 := x3c
−1 = y1 + y2,

we get y3A = x3A.

Proposition 2.8.17. Sp2(G, σ) acts transitively on the space of positive triples of
pairwise transverse isotropic lines.
The stabilizer of the positive triple((

1
0

)
A,

(
1
1

)
A,

(
0
1

)
A

)
in Sp2(G, σ) coincides with the following subgroup:

Û =

{(
u 0
0 u

)
| u ∈ U(G, σ)

}
∼= U(G, σ)

The stabilizer of every positive triple of isotropic lines is conjugated in Sp2(G, σ)
to Û .

Proof. Let (l1, l3, l2) be a positive triple. By the Lemma 2.8.16, there exist yi ∈ li, i ∈
{1, 2, 3} such that li = yiA, ω(y1, y2) = 1 and y3 = y1 +y2. By the Proposition 2.8.10,
there exists M ∈ Sp2(G, σ) such that My1 = (1, 0)T , My2 = (0, 1)T . Therefore,
Ml1 = (1, 0)TA, Ml2 = (0, 1)TA, Ml3 = (1, 1)TA i.e. every positive triple can be
mapped to the standard positive triple ((1, 0)TA, (1, 1)TA, (0, 1)TA).

By the Proposition 2.8.12, for every M that stabilizes
((

1
0

)
A,

(
1
1

)
A,

(
0
1

)
A

)
,

M = D(x) for x ∈ G. Moreover, M(1, 1)T = (x, σ(x)−1). Therefore, x = σ(x)−1, i.e.
x ∈ U(G, σ).

Proposition 2.8.18. Positivity of triple is an invariant under cyclic permutations,
i.e. if (l1, l3, l2) is positive, then (l2, l1, l3) is positive as well.
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Proof. The triple (l1, l3, l2) is positive if and only if there exist x1, x2, x3 ∈ IsG(ω)
such that li = xiA, i ∈ {1, 2, 3} and ω(x1, x2) = ω(x3, x2) = 1, ω(x1, x3) = b ∈ Bsym

+ .
The triple (l2, l1, l3) is positive if and only if there exist y1, y2, y3 ∈ IsG(ω) such

that li = yiA, i ∈ {1, 2, 3} and ω(y2, y3) = ω(y1, y3) = 1, ω(y2, y1) ∈ Bsym
+ .

Take y1 = x1b
−1, y2 = −x2, y3 = x3, then ω(y2, y3) = ω(−x2, x3) = 1, ω(y1, y3) =

ω(x1b
−1, x3) = 1, ω(y2, y1) = ω(−x2, x1b

−1) = b−1 ∈ Bsym
+ .

2.8.5 Invariant of a positive quadruple of G-isotropic lines

For this an next section, we fix some Jordan frame (ei)
n
i=1 of Bsym.

Definition 2.8.19. A quadruple (l1, l3, l2, l4) of pairwise transverse G-isotropic lines
is called positive if the triples (l1, l3, l2), (l2, l4, l1) are positive.

Proposition 2.8.20. Let (l1, l3, l2, l4) be a positive quadruple of G-isotropic lines.
Then there exist y1, . . . , y4 ∈ IsG(ω) such that li = yiA, y3 = y1 + y2, y4 = y1 − y2a,
a ∈ Bsym

+ .
For any such choice of (y1, y2, y3, y4), there exists a Jordan frame (e′i)

n
i=1 of Bsym,

where n = rk(Bsym) and a unique tuple (λ1, . . . , λn) with λ1 ≥ · · · ≥ λn > 0 such
that where a =

∑n
i=1 λie

′
i.

Up to action of Sp2(B, σ) on G-isotropic lines, we can assume that all e′i = ei.

Proof. Follows directly from the spectral theorem and Proposition 2.8.17.

Remark 2.8.21. • The tuple (λ1, . . . , λn) with λ1 ≥ · · · ≥ λn > 0 does not depend
on the choice of (y1, y2, y3, y4). It is an invariant of quadruple of G-isotropic
lines under the action of Sp2(G, σ). We denote

[l1, l3, l2, l4] := (λ1, . . . , λn).

• Although the tuple (λ1, . . . , λn) is unique, the Jordan frame (e′i)
n
i=1 is in general

not unique.

Proposition 2.8.22. Positivity of quadruple is an invariant under cyclic permuta-
tions, i.e. if (l1, l3, l2, l4) is positive, then (l3, l2, l4, l1) is positive as well. Moreover,
if [l1, l3, l2, l4] = (λ1, . . . , λn), then

[l3, l2, l4, l1] = (λ−1
n , . . . , λ−1

1 ).

Proof. Let (l1, l3, l2, l4) be a positive quadruple of isotropic lines. Then up to action
of Sp2(G, σ), there exist y1, . . . , y4 ∈ IsG(ω) such that li = yiA, y3 = y1 + y2,
y4 = y1 − y2a, a =

∑n
i=1 λiei with λ1 ≥ · · · ≥ λn > 0.

The triple (l3, l2, l4) is positive. Indeed, since a+ 1 ∈ Bsym
+ , it is invertible. So we

can take
x3 := y3(a+ 1)−

1
2 ∈ l3,

x4 := −y4(a+ 1)−
1
2 ∈ l4,
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x2 := y2(a+ 1)
1
2 ∈ l2.

Therefore,

ω(x3, x4) = ω((y1 + y2)(a+ 1)−
1
2 ,−(y1 − y2a)(a+ 1)−

1
2 ) =

= −(a+ 1)−
1
2 (−a− 1)(a+ 1)−

1
2 = 1,

ω(x2, x4) = ω(y2(a+ 1)
1
2 ,−(y1 − y2a)(a+ 1)−

1
2 ) = 1,

ω(x3, x2) = ω((y1 + y2)(a+ 1)−
1
2 , y2(a+ 1)

1
2 ) = 1 ∈ Bsym

+ .

Analogously, the triple (l4, l1, l3) is positive as well. So we get that the quadruple
(l3, l2, l4, l1) is positive.

Take x1 := y1(a+ 1)
1
2 ∈ l1. Then easy calculation shows that

x2 = x3 + x4, x1 = x3 − x4a
−1

where a−1 =
∑n

i=1 λ
−1
i ei. Therefore, [l3, l2, l4, l1] = (λ−1

n , . . . , λ−1
1 ).

2.8.6 Invariant of a positive 5-tuple of G-isotropic lines: angles

Definition 2.8.23. A 5-tuple (l1, l5, l3, l2, l4) of pairwise transverse G-isotropic lines
is called positive if the triples (l1, l3, l2), (l2, l4, l1) and (l1, l5, l3) are positive.

Let (l1, l5, l3, l2, l4) be positive 5-tuple of isotropic lines, which we will think as the
vertices of a pentagon, as in Figure 2.8.1.

Figure 2.8.1:

Using Proposition 2.8.20, up to action of Sp2(G, σ), we can find y1, . . . , y4 ∈ IsG(ω)
such that li = yiA, i ∈ {1, 2, 3, 4} and y3 = y1 + y2, y4 = y1 − y2a, and there exists a
unique tuple (λ1, . . . , λn) with λ1 ≥ · · · ≥ λk > 0 such that where a =

∑n
i=1 λiei.

Since the triples (l3, l2, l1) and (l1, l5, l3) are positive and y2 = y3−y1 = (y1+y2)−y1,
by Proposition 2.8.20, there exists an element y5 ∈ IsG(ω) such that l5 = y5A and
y5 = y3 + y1a

′, a′ ∈ Bsym
+ . By the second version of the spectral theorem, there exists
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an element u ∈ U(G, σ) and a unique tuple (µ1, . . . , µn) with µ1 ≥ · · · ≥ µk > 0 such
that where a′ = σ(u)

∑n
i=1 µieiu.

We will call this element u ∈ U(G, σ) an inner angle in the pentagon of isotropic
lines (L1, L4, L2, L3, L5) (see Figure 2.8.1).

Remark 2.8.24. The element u is not uniquely defined. In general, u is only well
defined as an element of the double coset space Stab(a) \ U(G, σ)/ Stab(a′), where

Stab(a) := {v ∈ U(G, σ) | σ(v)av = a},

Stab(a′) := {v ∈ U(G, σ) | σ(v)a′v = a′}.

This double coset is an invariant of 5-tuple of G-isotropic lines under the action of
Sp2(G, σ). It depends on the choice of the Jordan frame (ei)

n
i=1.

2.9 Models for the symmetric space of Sp2(G, σ) for real G

The goal of this Chapter is to construct different models of the symmetric space for
Sp2(G, σ) for LieG = B where B ⊆ A is a Hermitian Lie subalgebra.

2.9.1 Complex structures model

In this section, we assume (A, σ) to be an R-algebra with an involution, B ⊆ A be
a Hermitian Lie subalgebra, G ⊆ A× a Lie group such that LieG = B as in the
Section 2.6.5, so the group Sp2(G, σ) is well-defined.

Definition 2.9.1. A complex structure on an right A-module V is an A-linear map
J : V → V such that J2 = − Id.

Let V = A2 and ω be the standard symplectic form in A2. For every complex
structure J on A2, we can define the following σ-sesquilinear form

hJ : A2 ×A2 → A
(x, y) 7→ ω(J(x), y)

Definition 2.9.2. A σ-sesquilinear form h on (A2, ω) is called (G, σ)-inner product
if h is σ-symmetric and for all v ∈ IsG(ω), h(v, v) ∈ Bsym

+ .

We consider the following space:

C :=

{
J complex structure on A2

∣∣∣∣ J(IsG(ω)) = IsG(ω),
hJ is a (G, σ)-inner product

}
.

Definition 2.9.3. The standard complex structure on A2 is the map

J0 : A2 → A2

(x, y) 7→ (y,−x)
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Remark 2.9.4. hJ0 is the standard (G, σ)-inner product on A2, i.e. [hJ0 ] = diag(1, 1).
By the Proposition 2.8.4, J0 ∈ C.

Remark 2.9.5. If G = A× and A is a Hermitian algebra, then every (A×, σ)-inner
product on (A2, ω) is a σ-inner product on A2.

Proposition 2.9.6. Let J be a complex structure on A2. J ∈ C if and only if there
exists w ∈ IsG(ω) such that (J(w), w) is a (G, σ)-symplectic basis.

Proof. 1. Let J ∈ C and w′ ∈ IsG(ω). Since hJ(w′, w′) = b ∈ Bsym
+ , we can take

w := w′b−
1
2 , then hJ(w,w) = 1. Then:

ω(J(w), J(w)) = hJ(w, J(w)) = σ(hJ(J(w), w)) = σ(ω(w,w)) = 0,

ω(J(w), w) = hJ(w,w) = 1.

Therefore, (J(w), w) is a (G, σ)-symplectic basis.
2. Let w ∈ A2 such that (J(w), w) is a (G, σ)-symplectic basis. Then,

hJ(w,w) = ω(J(w), w) = 1

hJ(J(w), J(w)) = ω(J2(w), J(w)) = −ω(w, J(w)) = 1,

hJ(J(w), w) = ω(J2(w), w) = −ω(w,w) = 0.

Therefore, (J(w), w) is an orthonormal basis for hJ and in this basis hJ is the standard
σ-inner product, so hJ is an σ-inner product.

Theorem 2.9.7. Sp2(G, σ) acts on C by conjugation. This action is transitive. The
stabilizer of the standard complex structure is KSp2(G, σ).

In particular, C is a model of the symmetric space of Sp2(G, σ).

Proof. 1. First, we prove that Sp2(G, σ) acts on C by conjugation. Let J ∈ S ′,
g ∈ Sp2(A, σ). Consider J ′ := g−1Jg. (J ′)2 = g−1J2g = − Id so J ′ is a complex
structure on A2. For x ∈ IsG(ω), g(x) ∈ IsG(ω) and we obtain

hJ ′(x, x) = ω(J ′(x), x) = ω(g−1Jg(x), x) =

= ω(Jg(x), g(x)) = hJ(g(x), g(x)) ∈ Bsym
+ .

Moreover, J ′ preserves IsG(ω), therefore, hJ ′ is a (G, σ)-inner product on A2, i.e.
J ′ ∈ C.
2. Second, we prove that this action is transitive. Let J ∈ C, take a (G, σ)-

symplectic basis (J(w), w) from the Proposition 2.9.6. Since by Proposition 2.8.10,
Sp2(G, σ) acts transitively on (G, σ)-symplectic bases, there exists g ∈ Sp2(G, σ)
which maps the standard symplectic basis to (J(w), w). That means, g maps the
standard complex structure J0 to J . So the action is transitive.
3. Finally, compute the stabilizer of J0. g ∈ StabSp2(G,σ)(J0) if and only if

g ∈ Sp2(G, σ) and g ∈ O(hJ0) = U2(A, σ), i.e.

g ∈ Sp2(G, σ) ∩U2(A, σ) = KSp2(G, σ).
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2.9.2 Projective model

In this section, we assume B ⊆ A to be a Hermitian Lie subalgebra of A. Let
BC := B⊗RC ⊆ A⊗RC = AC be the complexification of B and GC the Lie subgroup
of A× as in the Section 2.6.5.
As usual, we denote by σ the C-linear extension of σ, i.e.

σ(x+ iy) = σ(x) + iσ(y)

for every x, y ∈ B and by σ̄ the C-antilinear extension of σ, i.e.

σ̄(x+ iy) = σ(x)− iσ(y)

for every x, y ∈ B.
In this section, we do not assume (BC, σ̄) to be Hermitian.
We extend ω in the complex linear way to ωC on A2

C. We also extend every complex
structure on A2 to a complex structure on A2

C in the complex linear way. We denote
the extension of J by JC.

Proposition 2.9.8. For every complex structure J ∈ S ′, there exist regular isotropic
x, y ∈ A2

C such that JC(x) = ix, JC(y) = −iy. Lines xAC, yAC are uniquely defined.

Proof. Since Sp2(G, σ) acts transitively on S ′, it is enough to prove the proposition
for the standard complex structure J0.

Since J0(a, b)T = (b,−a)T , (b,−a)T = i(a, b)T if and only if b = ai, i.e. x = (1, i)Ta
for a ∈ AC, i.e. xAC is uniquely defined. Analogously, y = (i, 1)Ta for a ∈ AC, i.e.
yAC is uniquely defined. Moreover, ωC(x, x) = ωC(y, y) = 0, so x, y ∈ IsGC(ωC)

Remark 2.9.9. For every (G, σ)-symplectic basis (w, u) of (A2, ω), elements u+wi,w+
iu are isotropic.

For a complex structure J ∈ C, we denote by lJ the line yAC such that JC(y) = −yi.

Proposition 2.9.10. The map

F : C → P := {(u+ wi)AC | (w, u) is a (G, σ)-symplectic basis of A2}
J 7→ lJ

defines is a homeomorphism that is equivariant under the action of Sp2(G, σ).

Definition 2.9.11. We call the space P the projective model of the symmetric space
of Sp2(G, σ).

Proof. 1. Show that lJ ∈ P. It is again enough to prove for the standard complex
structure J0. We take v := (i, 1)T = (0, 1)T+(1, 0)T i, then lJ0 = vAC, ((1, 0)T , (0, 1)T )
is a (G, σ)-symplectic basis.

2. Show that F is surjective. Let v = u+ wi, (w, u) is a (G, σ)-symplectic basis of
(A2, ω). We can define the following complex structure: J(u) = w, J(w) = −u. By
Proposition 2.9.6, J ∈ C. Since

JC(v) = JC(u+ iw) = w − iu = −i(u+ iw) = −iv,
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we obtain F (J) = vAC, i.e. F is surjective.
3. The map F is injective because if lJ = lJ ′ = yAC for J, J ′ ∈ C and y = y1 +y2i ∈

A2
C. Then J(y1) = J ′(y1) = −y2, J(y2) = J ′(y2) = y1 and (y1, y2) is a basis of A2,

i.e. J = J ′.
4. Now, show the equivariance of F . Let M ∈ Sp2(G, σ), J ∈ C and (w, u) be

a (G, σ)-symplectic basis of (A2, ω) such that w := J(u), J(w) = −u. Then for
v = u+ wi, JC(v) = −iv.

Moreover, MJM−1(Mu) = Mw, MJM−1(Mw) = −Mu where (Mw,Mu) is also
a (G, σ)-symplectic basis of (A2, ω). Then (MJM−1)C(Mv) = −iMv and

F (MJM−1) = (Mv)AC = M(vAC) = MF (J),

i.e. F is equivariant with respect to the Sp2(G, σ)-action.

Corollary 2.9.12. The map

π̃′′ : Sp2(G, σ)/KSp2(G, σ) → P
M KSp2(G, σ) 7→ M(i, 1)TAC

is an Sp2(G, σ)-equivariant homeomorphism.

Consider the following σ̄-sesquilinear form on A2
C:

h(x, y) := iωC(x̄, y).

It is indefinite. Indeed, it is σ-symmetric:

h(y, x) = iωC(ȳ, x) = σ̄((−i)(−ωC(x̄, y))) = σ̄(h(x, y)),

and in the basis e1 :=
(

1√
2
, i√

2

)T
, e2 :=

(
1√
2
,− i√

2

)T
, h is represented by the matrix(

−1 0
0 1

)
.

Lemma 2.9.13. Assume (BC, σ) to be of Jordan type and (Bσ
C)× ⊆ GC, so the group

Sp2(GC, σ) is well defined. For v := u+ wi ∈ A2
C such that (w, u) is a basis of A2,

the basis (w, u) is (G, σ)-symplectic if and only if h(v, v) = 2 ∈ Aσ̄+ and v ∈ IsGC(ωC).

Proof. Direct computation.

Remark 2.9.14. Sp2(G, σ) acts on A2
C preserving ωC and, therefore, preserving h from

the Section 2.3.2. So we can see Sp2(G, σ) as a subgroup of O(h).
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2.9.3 Precompact model

In this section, we assume (BC, σ̄) to be Hermitian. We want to see the symmetric
space of Sp2(G, σ) as a subset of some compact domain. We consider the following
Sp2(GC, σ)-transformation that maps h to the standard indefinite form:

T :=
1√
2

(
1 i
i 1

)
,

i.e. σ̄(T )T [h]T = diag(−1, 1) = [hst]. Since T ∈ Sp2(GC, σ), it stabilizes the set
IsGC(ωC).

Proposition 2.9.15. The map

Φ: T−1P → D̊(Bσ
C, σ̄) := {c ∈ Bσ

C | 1− c̄c ∈ (Bσ̄
C)+}

(a, b)TAC 7→ ab−1

is a homeomorphism. The set D̊(Bσ
C, σ̄) ⊆ Bσ

C is precompact.

Proof. First, we prove the following Lemma:

Lemma 2.9.16. Let (c, 1)T ∈ A2
C. (c, 1)T ∈ IsGC(ωC) if and only if c ∈ Bσ

C.

Proof. Let (c, 1)T ∈ IsG(ω), then ((1, 0)T , (c, 1)T ) is a (GC, σ)-symplectic basis. There-

fore, the matrix
(

1 c
0 1

)
∈ Sp2(GC, σ) and so c ∈ Bσ

C.

Let (c, 1)T ∈ A2
C and c ∈ Bσ

C. Consider M :=

(
1 c
0 1

)
∈ Sp2(GC, σ), then

M(0, 1)T = (c, 1)T ∈ IsGC(ωC).

Let v = (v1, v2)T ∈ IsGC(ωC) such that vAC ∈ P and v = u+ wi where (w, u) is a
(G, σ)-symplectic basis of (A2, ω). Then by the Lemma 2.9.13:

2 = h(v, v) = hst(T
−1v, T−1v) = −σ̄(x1)x1 + σ̄(x2)x2 ∈ Bσ̄

+

where T−1v =: (x1, x2)T . Therefore, σ̄(x2)x2 = σ̄(x1)x1 + 2 ∈ Bσ̄
+ because Bσ̄

+ is
a proper convex cone. This means that x2 is invertible, i.e. x2 ∈ G, (c, 1)T :=
(x1x

−1
2 , 1)T ∈ IsGC(ωC) and (c, 1)TAC = (T−1v)AC.

By Lemma, (c, 1)T ∈ IsGC(ωC) if and only if c ∈ Bσ
C, and h((c, 1)T , (c, 1)T ) =

1− c̄c ∈ Bσ̄
+. Therefore, Φ(T−1v) ∈ D̊(Bσ

C, σ̄).
The map Φ is infective because T is injective and, if x1x

−1
2 = Φ(x1, x2)T =

Φ(y1, y2)T = y1y
−1
2 , then (y1, y2)T = (x1, x2)Tx−1

2 y2, i.e. (x1, x2)TAC = (y1, y2)TAC.
The map Φ is surjective because for every c ∈ D̊(Bσ

C, σ̄), (c, 1)TAC = (T−1v)AC

for v := T (c, 1)T
√

2(1 − c̄c)−
1
2 . Then v ∈ IsGC(ωC) and h(v, v) = 2. Therefore, by

Lemma 2.9.13, v = u+ wi for (w, u) a (G, σ)-symplectic basis of (A2, ω). Therefore,
vAC ∈ T−1P.
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The set D̊(Bσ
C, σ̄) is precompact because it is a subset of the following domain:

D(ḠC, σ̄) := {a ∈ ḠC | 1− σ̄(a)a ∈ (Bσ̄
C)≥0}

that is compact by Proposition 2.6.49.

Remark 2.9.17. Assume that (BC, σ̄) is not Hermitian but (BC, σ) is semi-Hermitian.
Then we can define D̊(Bσ

C, σ̄) in the following way:

D̊(Bσ
C, σ̄) := {b ∈ Bσ

C | 1− b̄b ∈ θC((Bσ
C)×))}

where θC(b) = b̄b for b ∈ Bσ
C. If we assume additionally that θC(Bσ

C)) ⊆ Bσ̄
C and

D̊(Bσ
C, σ̄) is precompact, then the Proposition holds also in this case. We will also

denote in this case
(Bσ̄

C)+ := θC((Bσ
C)×),

(Bσ̄
C)≥0 := θC(Bσ

C).

Remark 2.9.18. The group T−1 Sp2(G, σ)T < Sp2(GC, σ) acts on D̊(Bσ
C, σ̄) by Möbius

transformations.

2.9.4 Compactification and Shilov boundary

Let (B, σ) be a Hermitian Lie subalgebra of A such that

D̊(Bσ
C, σ̄) := {c ∈ Bσ

C | 1− c̄c ∈ (Bσ̄
C)+}

is precompact. As we have seen, it holds always if (BC, σ̄) is Hermitian. It is also
true for some other cases described in the Remark 2.9.17. Let us take the topological
closure of D̊(Bσ

C, σ̄) in Bσ:

D(Bσ
C, σ̄) := {c ∈ Bσ

C | 1− c̄c ∈ (Bσ̄
C)≥0}

The boundary of D(Bσ
C, σ̄) contains the following closed subspace:

Š(Bσ
C, σ̄) := {c ∈ Bσ

C | 1− c̄c = 0}.

Definition 2.9.19. We call Š(Bσ
C, σ̄) Shilov boundary of the precompact model

D̊(Bσ
C, σ̄).

Note, that
Š(Bσ

C, σ̄) = U(GC, σ̄) ∩Bσ
C

and it is compact.

Remark 2.9.20. The map Φ−1 extends to the boundary of D(Bσ
C, σ̄) and remains

continuous and bijective. Since the boundary is compact, it is a homeomorphism.
Therefore, we can see the boundary also in the projective model. In particular, we
can see the Shilov boundary there.
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The next Proposition describes the Shilov boundary in the projective model.

Proposition 2.9.21. The preimage of the Shilov boundary Š(Bσ
C, σ̄) in IsGC(ω) under

the map Φ ◦ T−1 gives a compact subset of the boundary of the projective model. It
consists of all lines of the form xAC such that x ∈ IsG(ω).

Proof. Note that the line l ∈ IsGC(ω) is of the form xAC for some x ∈ IsG(ω) if and
only if l̄ = l.
Assume c ∈ Š(Bσ

C, σ̄), i.e. c̄−1 = c. Then

(Φ ◦ T−1)T ◦ Φ−1(c) = Φ

((
0 i
i 0

)(
c̄
1

))
= Φ

((
1
c̄i

))
= c̄−1 = c

i.e. for l = (c, 1)TAC, l̄ = l.
If we take a line xAC for some x = (x1, x2)T ∈ IsG(ω), then

c := (Φ ◦ T−1)(xAC) = (x1 − ix2)(−ix1 + x2)−1.

Since x ∈ IsG(ω), c ∈ Bσ
C

c̄c = (x1 + ix2)(ix1 + x2)−1(x1 − ix2)(−ix1 + x2)−1 =

= i(x1 + ix2)(x1 − ix2)−1(x1 − ix2)(−ix1 + x2)−1 =

= i(x1 + ix2)(−ix1 + x2)−1 = (x1 + ix2)(x1 + ix2)−1 = 1.

Therefore, (Φ ◦ T−1)(xA) ∈ Š(Bσ
C, σ̄).

Corollary 2.9.22. The space of G-isotropic lines of (A2, ω) embedded into P(IsGC(ω))
as:

xA 7→ xAC

is a Shilov boundary in the projective model. This is a closed (even compact) orbit of
the action of Sp2(G, σ) on the boundary of the projective model.

2.9.5 Upperhalf space model

Let A be an R-algebra, G ⊆ A× be a Lie subgroup, B := Lie(G) ⊆ A be a Hermitian
Lie subalgebra of A.
We denote by BC the complexification of B, i.e. BC := B ⊗R C. To be consistent

with the next Chapter, we denote by j the imaginary unit in C. We extend σ to BC
complex linearly, i.e. σ(x+ yj) = σ(x) + σ(y)j. So Bσ

C = FixBC(σ) = Bsym ⊕Bsymj
is well defined.

Every element of z ∈ Bσ
C can be uniquely written as z = x+ yj where x, y ∈ Bsym.

We denote by Re(z) := x, Im(z) := y. We also have a complex conjugation on BC
given by z̄ = x− yj.

Definition 2.9.23. The B-upperhalf space is

U := {z ∈ Bσ
C | Im(z) ∈ Bsym

+ }
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Note, for Hermitian tube type A, S(A, σ) is open in Bsym
C

Proposition 2.9.24. Sp2(G, σ) acts on U via

z 7→M.z = (az + b)(cz + d)−1, where M =

(
a b
c d

)
.

This transformation is called Möbius transformation. The kernel of this action is
Z(Sp2(G, σ)).

Proof. Since Sp2(G, σ) is generated by by matrices(
a 0
0 σ(a)−1

)
,

(
0 1
−1 0

)
,

(
1 b
0 1

)
where a ∈ G, b ∈ Bsym, we proof M.z ∈ S on these generators.

If M :=

(
1 b
0 1

)
with b ∈ Bsym, then M.z = z + b ∈ Bσ

C and Im(M.z) = Im(z) ∈

Bsym
+ .

If M :=

(
0 1
−1 0

)
, then M.z = −z−1 ∈ Bσ

C. If z = x+ yj, then

z−1 = y−1x(y + xy−1x)−1 − (y + xy−1x)−1j,

i.e. Im(M.z) = (y + xy−1x)−1. For y ∈ Bsym
+ , also y−1 ∈ Bsym

+ .
Let y−1 = σ(p)p for some p ∈ B×, then

y + xy−1x = y + σ(px)px ∈ Bsym
+ .

Therefore, Im(M.z) = (y + xy−1x)−1 ∈ Bsym
+ .

If M :=

(
a 0
0 σ(a)−1

)
for a ∈ G, then M.z = azσ(a) ∈ Bσ

C because Bsym is closed

by action of G. Im(M.z) = a Im(z)σ(a) ∈ Bsym
+ because Bsym

+ is closed by action of
G.

An direct calculation on matrices shows that this is an action and that the kernel
of this action is exactly Z(Sp2(G, σ)).

Proposition 2.9.25. The map

π : Sp2(G, σ) → U
M → M.1j

is continues, proper and surjective, i.e. Sp2(G, σ) acts transitively on U. The stabilizer
of 1j is KSp2(G, σ).

Proof. Let z = x+ yj ∈ U then y = u2 for some u ∈ (Bsym)×. Then

π

((
1 x
0 1

)(
u 0
0 u−1

))
= π

((
u xu−1

0 u−1

))
= x+ yj = z
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M =

(
a b
c d

)
stabilizes 1j if and only if

1j = M.1j = (aj + b)(cj + d)−1 = (aj + b)(−c+ dj)−1j.

So, a = d and c = −b, i.e. M ∈ KSp2(G, σ).

Corollary 2.9.26. The map π induces a homeomorphism

π̃ : Sp2(G, σ)/KSp2(G, σ) → U
M KSp2(G, σ) 7→ M.1j

A Möbius transformation z 7→ M ′.z corresponds under this homeomorphism to the
left multiplication M KSp2(G, σ) 7→M ′M KSp2(G, σ).

2.10 Spin group as Sp2(G, σ)

2.10.1 spin(2, n) as sp2(B, σ)

Let V be a real vector space of dimension m+ n > 0 with the standard symmetric
bilinear form b of signature (m,n). We denote by Cl(b) the Clifford algebra generated
by (V, b). We remind, Cl(b) is a unital algebra generated by all elements of V and the
following relation v2 = b(v, v) for v ∈ V . From this relation follows that for v, w ∈ V ,
vw + wv = 2b(v, w).
The Clifford algebra Cl(b) contains a subalgebra Cleven(b) that is generated by

elements {vw | v, w ∈ V }. It is called even Clifford algebra.
Fixing an orthonormal basis (f1, . . . , fm, e1, . . . , en), i.e. b(ei, ej) = δij , b(fi, fj) =
−δij , b(fi, ej) = 0, we identify (V, b) with Rm,n. The Clifford algebra corresponding
to Rm,n is denoted by Cl(m,n).

We define the anti-involution σ on Cl(b) by the following rules: on V , it is defined
as σ(ei) = ei, σ(fi) = −fi and then extend it to Cl(b). We consider the following Lie
subalgebra:

B(m,n) = SpanR(1, eiej , fkei, fkfl | i, j ∈ {1, . . . , n}, k, l ∈ {1, . . . ,m}, i < j, k < l)

with the Lie bracket [x, y] := xy − yx. Notice that B(m,n) is closed under σ, and

Bsym(m,n) = Fix(σ|B(m,n)) = SpanR(1, fkei | i ∈ {1, . . . , n}, k ∈ {1, . . . ,m}).

Proposition 2.10.1. Bsym(m,n) is of Jordan type if and only if m ≤ 1 or n ≤ 1.
In particular, sp2(B(m,n), σ) is a Lie algebra if and only if m ≤ 1 or n ≤ 1.

Proof. Assume m > 1 and n > 1 then f1e1f2e2 /∈ B.
If m = 0, then Bsym = {1} is of Jordan type.
If m = 1, then f1eif1ej = −f2

1 eiej = eiej ∈ B, so sp2(B(1, n), σ) so B is of Jordan
type.
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Definition 2.10.2. For an element e ∈ SpanR(e1, . . . , en), we denote:

‖e‖ :=
√
b(e, e) ≥ 0.

This is a norm on SpanR(e1, . . . , en).

Proposition 2.10.3. For every x ∈ Bsym(1, n) there exist a0 ∈ R, r ≥ 0 and
e ∈ SpanR(e1, . . . , en) with ‖e‖ = 1 such that x = a0 + rf1e.

Proof. Let x ∈ Bsym(1, n), then x = a0 +
∑n

i=1 aif1ei. Take

v :=
n∑
i=1

aiei, r :=
√
b(v, v), e :=

v

r
.

Then x = a0 + rf1e.

Proposition 2.10.4.

Bsym
≥0 (1, n) = {t+ uf1e | t ≥ 0, 0 ≤ u ≤ t, e ∈ SpanR(e1, . . . , en), ‖e‖ = 1} .

is a closed proper convex cone.

Proof. Let x := a0+rf1e ∈ Bsym(1, n) where a0 ∈ R, r ≥ 0 and e ∈ SpanR(e1, . . . , en)
with ‖e‖ = 1. Then x2 = a2

0 + r2 + 2a0rf1e. Denote t := a2
0 + r2 ≥ 0. Then

u := 2a0r = 2 sgn(a0)
√
t− r2r. For fixed t ≥ 0, u = u(r) takes all values between −t

and t. So we get

Bsym
≥0 (1, n) = {t+ uf1e | t ≥ 0, |u| ≤ t, e ∈ SpanR(e1, . . . , en), ‖e‖ = 1} .

This is a closed cone. It is also proper because for

x ∈ Bsym
≥0 (1, n) ∩ (−Bsym

≥0 (1, n)),

t = 0 and so u = 0. This cone is also convex. Indeed, take x = t+uf1e, x′ = t′+u′f1e
′.

Then
x+ x′ = (t+ t′) + f1(ue+ u′e′) = (t+ t′) + ṽf1ẽ

where v = ‖ue+ u′e′‖, ẽ = ue+u′e′

v . Using the triangle inequality we get:

v = ‖vẽ‖ = ‖ue+ u′e′‖ ≤ ‖ue‖+ ‖u′e′‖ = |u|+ |u′| < t+ t′.

Therefore, x+ x′ ∈ Bsym
≥0 (1, n).

Corollary 2.10.5. B(1, n) is weakly Hermitian.

Proof. In the Proposition 2.10.1, we have seen that B(1, n) is of Jordan type. By the
Proposition 2.10.4, Bsym

≥0 (1, n) is a proper convex cone and 1 ∈ Bsym
+ (1, n). Finally,

show for b ∈ Bsym, b = 0 if and only if b2 = 0. Let b = a0 + a1fe ∈ Bsym with
b(e, e) = 1. Then b2 = a2

0 + a2
1 + 2a0a1fe = 0, therefore a0 = a1 = 0, i.e. b = 0
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We are going to identify sp2(B(1, n), σ) with spin(2, n+ 1). We recall the definition
of spin(m,n):

spin(m,n) = SpanR(eiej , fkei, fkfl | i, j ∈ {1, . . . , n}, k, l ∈ {1, . . . ,m})

where ei, fj as above.

Theorem 2.10.6. The following map is an isomorphism of Lie algebras:

ϕ : sp2(B(1, n), σ) → spin(2, n+ 1)
diag(eiej , eiej) 7→ eiej

diag(f1ei,−f1ei) 7→ f1ei
diag(1,−1) 7→ f2en+1

S(f1ei) 7→ f2ei
A(f1ei) 7→ eien+1

S(1) 7→ −f1en+1

A(1) 7→ f1f2

where S(x) =

(
0 x
x 0

)
, A(x) =

(
0 −x
x 0

)
.

Proof. Direct computation of Lie brackets.

2.10.2 Clifford group and its Lie algebra

In this section, we describe a Lie group which Lie algebra is B(1, n).
The group of all invertible elements Cl(m,n)× of Cl(m,n) acts on Cl(m,n) in the

following way
τ : Cl(m,n)× × Cl(m,n) → Cl(m,n)

(x, y) 7→ α(x)yx−1

where α is the standard involution on Cl(m,n) induced by the automorphism v 7→ −v
on Rm,n.

Definition 2.10.7. The (even) Clifford group is the group of all invertible elements
of Cleven(m,n) that stabilize V = Rm,n under the action τ , i.e.

ClGr(m,n) := {x ∈ Cl×even(m,n) | ∀v ∈ V : τ(x)v ∈ V }.

We denote by ClGr0(m,n) the connected component of 1 in ClGr(m,n). We call
it also Clifford group.

Remark 2.10.8. The Lie algebra of ClGr(m,n) can be described as follows:

clgr(m,n) = {x ∈ Cl(m,n) | ∀v ∈ V : α(x)v − vx ∈ V }.

We recall the following well known properties of the Clifford group (for more details
see [27]):
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Fact 2.10.9. The Clifford groups fit to the following exact sequence:

1→ R× ⊂−→ ClGr(m,n)
τ−→ SO(m,n)→ 1.

1→ R+
⊂−→ ClGr0(m,n)

τ−→ SO0(m,n)→ 1.

In particular,

dimR ClGr(m,n) = dimRR + dimR SO(m,n) = 1 +
(m+ n)(m+ n− 1)

2
.

Fact 2.10.10. The following map is well defined:

N : ClGr(m,n) → R×
x 7→ xtx

where (·)t is the standard anti-involution on Cl(m,n) induced by the trivial automor-
phism on Rm,n.

We remind the definition of the spin group:

Definition 2.10.11. The spin group is the following subgroup of the Clifford group:

Spin(m,n) = {x ∈ ClGr(m,n) | N(x) = 1},

Spin0(m,n) = {x ∈ ClGr0(m,n) | N(x) = 1}.

Remark 2.10.12. If m > 0 and n > 0 then Spin(m,n) has two connected components.
If m = 0 or n = 0, then Spin(m,n) is connected, i.e. Spin(m,n) = Spin0(m,n).

Corollary 2.10.13. • For x ∈ ClGr0(m,n), N(x) > 0;

• The map
x 7→ x√

N(x)

maps ClGr0(m,n) surjectively to Spin0(m,n);

• The map
x 7→ x√

|N(x)|
maps ClGr(m,n) surjectively to Spin(m,n);

Proposition 2.10.14. U(ClGr0(m,n), σ) = Spin(m)× Spin(n).

Proof. Both groups are connected. So it is enough to show that their Lie algebras
agree.

Lie(U(ClGr0(m,n), σ)) = {x ∈ B | σ(x) + x = 0} =

= SpanR(fifj , ekel | i, j ∈ {1, . . . ,m}, k, l ∈ {1, . . . , n}) =

= spin(m)⊕ spin(n).
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Lemma 2.10.15. clgr(m,n) = B(m,n).

Proof. Easy calculation on the basis (fi, ej)
m,n
i,j=1 shows B(m,n) ⊆ clgr(m,n). More-

over,

dimRB(m,n) = 1 +
m2 −m

2
+
n2 − n

2
+mn = 1 +

m2 −m+ n2 − n+ 2mn

2
=

= 1 +
(m+ n)2 − (m+ n)

2
= dimR clgr(m,n).

So we have, B(m,n) = clgr(m,n)

Proposition 2.10.16. B(1, n) is Hermitian.

Proof. In Corollary 2.10.5, we have seen that B(1, n) is weakly Hermitian. By
Proposition 2.10.14, U(ClGr(1, n), σ) is compact.

2.10.3 Spectral decomposition in Bsym(1, n)

To be able to use the Corollary 2.6.33 for Bsym(1, n), we have to prove that
U(ClGr0(1, n), σ) on Jordan frames of Bsym(1, n). In this section, we find out
what all Jordan frames in Bsym(1, n) look like and show that U(ClGr0(1, n), σ) acts
transitively on them.

Proposition 2.10.17. Every nontrivial idempotent c ∈ Bsym(1, n) is of the following
form: c = 1+e

2 for some e ∈ SpanR(e1, . . . , en), b(e, e) = 1

Proof. Let c = x+ yf1e be an idempotent, b(e, e) = 1. Then

c2 = (x2 + y2) + 2xyf1e = x+ yf1e = c.

So 2xy = y. If y = 0, then c = 1 is trivial idempotent. If y 6= 0, then x = 1
2 , y = 1

2
because by 2.10.3, y > 0.

Theorem 2.10.18. Every Jordan frame is Bsym(1, n) of the following form: (c1, c2)
where c1 = 1+e

2 , c2 = 1−e
2 for some e ∈ SpanR(e1, . . . , en), b(e, e) = 1.

Proof. Let c1 = 1+f1e1
2 , c2 = 1+f1e2

2 be two orthogonal idempotents, b(e1, e1) =
b(e2, e2) = 1. Then:

0 = c1 ◦ c2 =
1 + f1e1

2
◦ 1 + f1e2

2
=

(1 + f1e1)(1 + f1e2) + (1 + f1e2)(1 + f1e1))

8
=

=
1 + f1e1 + f1e2 + f1e1f1e2 + 1 + f1e1 + f1e2 + f1e2f1e1

8
=

=
1 + b(e1, e2) + 2f1(e1 + e2)

8
.

Therefore, e1 = −e2.
So we have that every complete system of idempotents has at most two elements.

In particular, all Jordan frames are of the form (c1, c2) where c1 = 1+e
2 , c2 = 1−e

2 .
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Theorem 2.10.19. U(ClGr0(1, n), σ) acts transitively on Jordan frame.

Proof. Let
(
c1 = 1+f1e

2 , c2 = 1−f1e
2

)
and

(
c′1 = 1+f1e′

2 , c′2 = 1−f1e′
2

)
be two Jordan

frame. Since b(e, e) = b(e′, e′) = 1, there exists an orthogonal transformation u ∈
SO(n) such that u(e) = e′. Take some preimage v of u in Spin(n) = U(ClGr0(1, n), σ).
Then

σ(v)c1v = v−1civ =
1 + (v−1fv)(v−1ev)

2
=

1 + u(f)u(e)

2
=

1 + fe′

2
= c′1.

Similarly, σ(v)c2v = c2.

2.10.4 The group Spin0(2, n+ 1) as Sp2(ClGr(1, n), σ)

In this section, we want to identify the groups Spin0(2, n+ 1) and Sp2(ClGr(1, n), σ).
First, note that a generic matrix in Sp2(ClGr(1, n), σ) has the following shape:(

1 0
y 1

)(
λ 0
0 λ−1

)(
x 0
0 σ(x)−1

)(
1 z
0 1

)
where x ∈ Spin(1, n), λ > 0, y, z ∈ Bsym(1, n).

The embedding:

R1,n = Span(f1, e1, . . . , en) ⊂ R2,n+1 = Span(f1, f2, e1, . . . , en+1)

induces the embedding of spin groups ι : Spin(1, n) ↪→ Spin(2, n+ 1). Moreover, we
can embed the entire Spin(1, n) into Spin0(2, n+ 1) the following way: we define the
map ι0

• if x ∈ Spin0(1, n), then ι0(x) := ι(x);

• if x ∈ Spin(1, n) \ Spin0(1, n), then ι0(x) = xf2en+1.

The map ι0 is a group homomorphism.

Theorem 2.10.20. The following map is an isomorphism of Lie groups:

Φ: Sp2(ClGr(1, n), σ) → Spin0(2, n+ 1)
diag(y, σ(y)−1) 7→ ι0(y)

diag(λ, λ−1) 7→ λ+λ−1

2 + f2en+1
λ−λ−1

2

R(f1ei) 7→ 1 + f2+en+1

2 ei
L(f1ei) 7→ 1 + f2−en+1

2 ei
R(1) 7→ 1− f2+en+1

2 f1

L(1) 7→ 1− f2−en+1

2 f1

where y ∈ Spin(1, n), λ > 0, R(x) =

(
1 x
0 1

)
, L(x) =

(
1 0
x 1

)
. The map ϕ is the

differential of Φ at Id.
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Proof. The map Φ is well defined and it is a homeomorphism of groups. This can
be seen on generators. Moreover, on generators one can also see that the map ϕ is
the differential of Φ at Id. This implies that Φ is a local diffeomorphism. Since both
groups are connected, the map Φ is surjective.

To see, that the map Φ is injective, first we can note that there is only one generic
element that is mapped to 1 ∈ Spin0(2, n+ 1), namely Id ∈ Sp2(ClGr(1, n), σ). Then
we can take a sequence of generic elements, map it by Φ to Spin0(2, n+ 1) and see
that this sequence converges to Id ∈ Sp2(ClGr(1, n), σ) if and only if the sequence of
images converges to 1 ∈ Spin0(2, n+ 1).

2.10.5 Models of symmetric space of Spin0(2, n+ 1)

In this section, we construct different models of the symmetric space of Spin0(2, n+
1) ∼= Sp2(ClGr(1, n), σ).

Example 16 (Upperhalf space model). We remind:

B(1, n) = SpanR(1, eiej , f1ek | i, j, k ∈ {1, . . . n})

Bsym(1, n) = SpanR(1, f1ek | k ∈ {1, . . . n})

Bsym
+ (1, n) = {t+ uf1e | t > 0, u ∈ [0, t), e ∈ SpanR(e1, . . . , en), ‖e‖ = 1} .

So
U(Spin0(2, n+ 1)) = {x+ yi | x ∈ Bsym(1, n), y ∈ Bsym

+ (1, n)}.

Non-Example 1. Let us try to do the complexification for the previous example.
Consider the real Lie algebra BR = B(1, n) = clgr(1, n) and corresponding real Lie
group GR = ClGr(1, n). The anti-involution σ acts in the following way on generators
σ(f) = −f , σ(ei) = ei and extends then to Cl(1, n).
Now, consider complexified algebra:

BC = B(1, n)⊗R C = SpanC(1, elej , f1ek | j, k, l ∈ {1, . . . n})

Bσ
C = SpanC(1, f1ek | k ∈ {1, . . . n}).

Therefore,

sp2(BC, σ) = sp2(B, σ)⊗R C = spin(2, n,C) ∼= spin(n+ 2,C).

We get the same on the level of Lie groups, i.e. Sp2(GC, σ) ∼= Spin(n+ 2,C), where
GC = ClGr(1, n,C) ∼= ClGr(n+ 1,C).
But

Bσ̄
C = SpanR(1, f1ek, ielej | j, k, l ∈ {1, . . . n}),

i.e. (BC, σ̄) is not of Jordan type because

(f1ek)(ielej) = if1ekelej /∈ BC

if k 6= l 6= j. So our construction does not work in this case because the complexified
Lie algebra BC together with complex antilinear extension σ̄ of σ is not Hermitian.
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Example 17 (Precompact model). We take the complexification

BC := BC(1, n) = SpanC{1, f1ei, eiej | i, j ∈ {1, . . . , n}}

with complex linear extension of σ denoted also by σ and the complex antilinear
extension of σ denoted by σ̄. Then

Bσ
C = SpanC{1, f1ei | i ∈ {1, . . . , n}}.

To construct the precompact model of the symmetric space for Spin0(2, n+ 1), we
use the Remark 2.9.17. We consider the set:

D̊(Bσ
C, σ̄) = {b ∈ Bσ

C | 1− b̄b ∈ θC(Bσ
C)×} =

= {x+ yf1e | 1− (x̄+ ȳf1e)(x+ yf1e) ∈ θC(Bσ
C)×, ‖e‖ = 1} =

= {x+ yf1e | 1− (x̄x+ ȳy)− (x̄y + ȳx)f1e ∈ θC(Bσ
C)×, ‖e‖ = 1}.

Let us find out what the set θC(Bσ
C) is. Let r1 exp(iφ1) + r1 exp(iφ1)f1e ∈ Bσ

C,
r1, r2 ≥ 0, φ1, φ2 ∈ R, ‖e‖ = 1 then

θC(r1 exp(iφ1) + r1 exp(iφ1)f1e) = (r2
1 + r2

2) + 2r1r2 cos(φ2 − φ1)f1e.

We denote r2
1 + r2

2 =: r. then

θC(r1 exp(iφ1) + r2 exp(iφ2)f1e) = r + 2r1

√
r − r2

1 cos(φ2 − φ1)f1e

For fixed r ≥ 0, the expression 2r1

√
r − r2

1 cos(φ2 − φ1) can take every value in the
interval [−r, r], i.e.

θC(Bσ
C) = {r + pf1e | r ≥ 0, p ∈ [−r, r], ‖e‖ = 1} = Bsym

≥0 .

Analogously,
θC(Bσ

C)× = Bsym
+ .

Therefore,

D̊(Bσ
C, σ̄) = {x+ yf1e ∈ Bσ

C | 1− (x̄x+ ȳy)− (x̄y + ȳx)f1e ∈ Bsym
+ , ‖e‖ = 1}

is the precompact model of the symmetric space for Spin0(2, n+ 1).

Example 18 (Projective model). We take the upperhalf space model:

U(Spin0(2, n+ 1)) ∼= {x+ yi | x ∈ Bsym(1, n), y ∈ Bsym
+ (1, n)}.

We know that the map z 7→ (z, 1)TAC is a homeomorphism between the upperhalf
space models and projective model. So we obtain:

P(Spin0(2, n)) = {(x+ yi, 1)TAC | x ∈ Bsym(1, n), y ∈ Bsym
+ (1, n)} =
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=

{(
(x1 + y1i) + f1(ex2 + e′y2)i

1

)
AC

∣∣∣∣ x1 ∈ R, y1 ∈ R+, x2 ∈ R≥0,
y2 ∈ [0, x2), ‖e‖ = ‖e′‖ = 1

}
.

We can also construct the projective model for Spin0(2, n + 1) in terms of lines
in Cn+3. First, we note that the stabilizer of the line (i, 1)TAC ⊂ A2

C corresponds
under the (complexified) map Φ from the Theorem 2.10.20 to the stabilizer of the
line (f2 + f1i)C ⊂ Cn+3 where Spin0(2, n+ 1) acts on Cn+3 by (complexified) τ . So
we can take the following injective map:

F : P(Spin0(2, n+ 1)) → {l ∈ CPn+2 | l = vC, v ∈ Cn+3, bC(v, v) = 0}
g(i, 1)TAC 7→ τ(Φ(g))(f2 + f1i)C = Φ(g)(f2 + f1i)Φ(g)−1C

where g ∈ Sp2(G, σ), bC the complex bilinear extension of b.
Since Spin0(2, n+ 1) acts on Rn+3 preserving b, it acts on Cn+3 preserving bC and

the sesquilinear extension b̃ of b, i.e.

b̃(v1 + v2i, w1 + w2i) := b(v1, w1) + b(v2, w2) + (b(v1, w2)− b(v2, w1))i

for v, w ∈ Rn+3. Note, the form b̃ on Cn+3 has signature (2, n + 1). Therefore, F
maps injectively P(Spin0(2, n+ 1)) to

P′(Spin0(2, n+ 1)) :=
{
l ∈ CPn+2 | l = vC, v ∈ Cn+3, bC(v, v) = 0, b̃(v, v) < 0

}
.

Let v = v1 + v2i ∈ Cn+3 such that bC(v, v) = 0, b̃(v, v) = −2. Then b(v1, v1) =
b(v2, v2) = −1, b(v1, v2) = 0. There exists an SO(2, n+ 1)-transformation that maps
(f2, f1) to (v1, v2). Therefore, Spin0(2, n+ 1) acts transitively on P′(Spin0(2, n+ 1)),
so it is a model of the symmetric space of Spin0(2, n+ 1).

Example 19 (Complex structure model). We consider the complex structure model
for the symmetric space of Sp2(G, σ) ∼= Spin0(2, n+ 1):

C(Sp2(G, σ)) :=

{
J complex structure on A2

∣∣∣∣ J(IsG(ω)) = IsG(ω),
hJ is a (G, σ)-inner product

}
where hJ(x, y) = ω(J(x), y).

Notice that C(Spin0(2, n+ 1)) ⊆ Sp2(G, σ) because the standard complex structure
J0 ∈ Sp2(G, σ) and Sp2(G, σ) acts on C(Spin0(2, n+ 1)) transitively by conjugation.

If we take the standard complex structure J0 = −
(

0 1
−1 0

)
, then Φ(J0) = f1f2

where Φ is the isomorphism between Spin0(2, n + 1) and Sp2(G, σ) from the The-
orem 2.10.20. For every v ∈ Rn+3 there exist unique e ∈ SpanR(e1, . . . , en),
f ∈ SpanR(f1, f2) such that v = e+ f . Then

Φ(J0)vΦ(J0)−1 = e− f.

For another complex structure J , there exists g ∈ Sp2(G, σ) such that J = g−1J0g.
Let v = Φ(g)−1(e+ f)Φ(g), e, f as above,

Φ(J)vΦ(J)−1 = Φ(g)−1Φ(J0)(e+ f)Φ(J0)−1Φ(g) = Φ(g)−1(e− f)Φ(g).
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Since Spin0(2, n+1) acts preserving b on (Rn+3, b), the restriction of b to the subspace
Φ(g)−1 SpanR(e1, . . . , en+1)Φ(g) is positive definite and the restriction of b to the
subspace Φ(g)−1 SpanR(f1, f2)Φ(g) is negative definite.

Consider the following space:

D := {(V+, V−) | Rn+3 = V+⊕V−, b|V+ is positive definite, b|V− is negative definite}.

We have a map F : Sp2(G, σ)→ D,

F (g) := (Φ(g)−1 SpanR(e1, . . . , en+1)Φ(g),Φ(g)−1 SpanR(f1, f2)Φ(g)).

Notice,

F−1(SpanR(e1, . . . , en),SpanR(f1, f2)) = Spin(2)× Spin(n+ 1).

Therefore, D is isomorphic to Spin0(2, n+ 1)/(Spin(2)× Spin(n+ 1)), i.e. D is the
model of the symmetric space of Spin0(2, n+ 1). This is an analogous of the complex
structures model for Spin0(2, n+ 1) because, as we have seen, the complex structures
model C(Sp2(G, σ)) can be mapped to D by taking a complex structure, mapping
it by Φ to Spin0(2, n + 1) and the considering the decomposition of Rn+3 in its
1-eigenspace and (−1)-eigenspace. As we have seen, b restricted to the 1-eigenspace
is positive definite, b restricted to the (−1)-eigenspace is negative definite.

2.11 Maximal representations into Sp2(G, σ)

In the Section 1.2.4, we introduced the space of maximal representations of the
fundamental group of a punctured surface into Sp(2n,R). The notion of maximality
can be generalized for every Hermitian Lie group, in particular, for groups that can
be seen as Sp2(G, σ) where G is the Lie subgroup contained in some algebra with
anti-involution (A, σ) such that LieG = B and (B, σ) is a Hermitian Lie subalgebra
of A.

In this Chapter, we generalize X -coordinates we introduced for decorated maximal
representations into Sp(2n,R) for decorated maximal representations into Sp2(G, σ)
and describe some topological properties of the space of decorated maximal represen-
tations into Sp2(G, σ) using them as we have done it for the group Sp(2n,R).

2.11.1 Decorated representations

Definition 2.11.1. A representation ρ ∈ Hom(π1(S),Sp2(G, σ)) will be called pe-
ripherally parabolic if for every g ∈ πper1 (S), the matrix ρ(g) leaves invariant some
isotropic line form P(IsG(ω)).

We will denote by HomP (π1(S), Sp2(G, σ)) the subset of Hom(π1(S),Sp2(G, σ))
consisting of peripherally parabolic representations.
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Definition 2.11.2. The quotient space

RepP (π1(S), Sp2(G, σ)) := HomP (π1(S),Sp2(G, σ))/Sp2(G, σ)

is called the moduli space of peripherally parabolic representations.

For a peripherally parabolic representation there might be many ways to choose
the invariant isotropic line. A decoration is a special way to make this choice.

Definition 2.11.3. A decoration of ρ is a map

D : πper1 (S)→ IsG(ω)

satisfying the following properties:

(a) D(g) is invariant under ρ(g) for all g ∈ πper1 (S).

(b) If g1, g2 ∈ πper1 (S), h ∈ π1(S) such that hg1h
−1 = g2, then

ρ(h)(D(g1)) = D(g2).

(c) For every k ∈ Z \ {0} and for every g ∈ πper1 (S),

D(g) = D(gk).

A decorated representation is a pair (ρ,D), where ρ is a representation and D a
decoration of ρ.

Remark 2.11.4. By properties a), b), c) of decorations, for every puncture, one has
to choose a Lagrangian for only one peripheral element going around the puncture.
Then the Lagrangians associated to the other peripheral elements going around the
same puncture are determined.

We denote by Homd(π1(S), Sp2(G, σ)) the set of all decorated representations. The
action of Sp2(G, σ) on Hom(π1(S),Sp2(G, σ)) and on IsG(ω) induces an action on
Homd(π1(S),Sp2(G, σ)). We will study the quotient:

Definition 2.11.5. The quotient space

Repd(π1(S), Sp2(G, σ)) := Homd(π1(S),Sp2(G, σ))/ Sp2(G, σ)

is called the moduli space of decorated representations. We denote by [ρ,D] the class
of (ρ,D) in the moduli space of decorated representation.

Remark 2.11.6. We have natural surjective maps

Homd(π1(S),Sp2(G, σ)) → HomP (π1(S),Sp2(G, σ))
(ρ,D) 7→ ρ

.

Repd(π1(S),Sp2(G, σ)) → RepP (π1(S), Sp2(G, σ))
[ρ,D] 7→ [ρ]

.

These maps are generically finite-to-one maps.
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2.11.2 Transverse representations

We now fix an ideal triangulation T of S.

Definition 2.11.7. We say that (ρ,D) ∈ Homd(π1(S, b),Sp2(G, σ) is transverse
with respect to T if the following condition holds: for every edge e of T connecting
punctures pi and pj , for every point b′ ∈ Int(e) and for every curve γ connecting b
and b′, we require that the isotropic lines D(γ ∗ αi ∗ γ−1) and D(γ ∗ αj ∗ γ−1) are
transverse, where the curves αi and αj are as in Figure 2.11.1.

Figure 2.11.1:

We denote by Homd
T (π1(S, b), Sp2(G, σ)) the set of all decorated representations

which are transverse with respect to the triangulation T .

Remark 2.11.8. The transversality property required in the previous definition does
not depend on the choice of the path γ and the base point b. Moreover, this property
is invariant under the action of Sp2(G, σ), hence we can define the quotient:

RepdT (π1(S),Sp2(G, σ)) := Homd
T (π1(S, b),Sp2(G, σ))/Sp2(G, σ)

Remark 2.11.9. For each T , the space RepdT (π1(S), Sp2(G, σ)) is an open dense
subspace of Repd(π1(S), Sp2(G, σ)).

Let T be a triangle of T with boundary ∂T . Using the orientation of S, we can
orient ∂T so that T is to the left from ∂T . This gives us a cyclic order on the vertices
{p1, p2, p3} of T . We assume that (p1, p2, p3) are in positive cyclic order.

Definition 2.11.10. Let [ρ,D] ∈ RepdT (π1(S), Sp(2n,R)), and consider elements
g1, g2, g3 ∈ πper1 (S, b) that go around p1, p2, p3 that are vertices of an oriented triangle
T (see Figure 2.11.2). We can consider triple of isotropic lines (D(g1), D(g2), D(g3)).
We say that this triangle if positive with respect to the decoration D if the triple
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(D(g1), D(g2), D(g3)) is positive. Since the positivity is Sp(2n,R)-invariant, it is a
well defined invariant of [ρ,D] if the triangle is positive with respect to D.

Figure 2.11.2:

2.11.3 Toledo number and maximal representations

We remind that the key invariant in the definition of maximality for representations
[ρ] ∈ Rep(π1(S), Sp2(G, σ)) similarly to the case of Sp(2n,R) is the Toledo number,
here denoted by Tρ, which was defined in [7] using bounded cohomology. It is a real
number which satisfies the Milnor–Wood inequality:

−n|χ(S)| ≤ Tρ ≤ n|χ(S)|

where n is the rank of the Jordan algebra Bsym.
Moreover, for all representations [ρ] ∈ RepP (π1(S), Sp2(G, σ)), this invariant takes

only integer values.

Definition 2.11.11. A representation [ρ] ∈ Rep(π1(S), Sp2(G, σ)) is called maximal
if Tρ = n|χ(S)|.

We denote byM(π1(S), Sp2(G, σ)) the subspace of Rep(π1(S), Sp2(G, σ)) consist-
ing of all maximal representations. Similarly, we denote byMd(π1(S), Sp2(G, σ)) the
subspace of Repd(π1(S),Sp2(G, σ)) of all decorated maximal representations, and by
Md
T (π1(S),Sp2(G, σ)) the subspace of all decorated maximal representations which

are transverse with respect to a chosen triangulation T . The following facts are
proven in [7].

Proposition 2.11.12. [7]

(a) M(π1(S),Sp2(G, σ)) ⊂ RepP (π1(S),Sp2(G, σ)). In particular, the natural pro-
jection map

Md(π1(S), Sp2(G, σ)) → M(π1(S),Sp2(G, σ)).

174



is surjective.

(b) Maximal representations are transverse with respect to any ideal triangulation T :

Md
T (π1(S),Sp2(G, σ)) =Md(π1(S),Sp2(G, σ)).

(c) All maximal representations are reductive, hence the spacesM(π1(S), Sp2(G, σ))
andMd(π1(S),Sp2(G, σ)) are Hausdorff.

As for the representations into Sp(2n,R), we have the following Proposition:

Proposition 2.11.13. Let T be an ideal triangulation of S and (ρ,D) ∈
Homd

T (π1(S),Sp2(G, σ)). (ρ,D) is maximal if and only if all positive oriented trian-
gles of T are positive with respect to the decoration D.

The proof of this Proposition goes analogously to the proof of the Proposition 1.2.20.

2.11.4 Positive X -coordinates

Let S be a surface with an oriented ideal triangulation T . We use the notation
introduced in Section 1.3.1.

Definition 2.11.14 (Positive X -coordinates). A system of positive X -coordinates of
type (G, σ) on (S, T ) is a map

x : E tW+ → Rn>0 t U(G, σ)

such that

• the edge invariant x(e) for an edge e ∈ E is an n-tuple of positive real numbers
x(e) = (λ1, . . . , λn) ∈ Rn>0 with λi ≥ λi+1 where n is the rank of G ;

• the angle invariant x(w) for a positive angle w ∈ W+ is an element x(w) ∈
U(G, σ). The angle coordinates are subject to the following relation: for each
positive triple of positive angles (w1, w2, w3) we require

x(w3)x(w2)x(w1) = 1.

We denote by X+(S, T , G, σ) the set of all positive systems of X -coordinates of
type (G, σ) on (S, T ).

Remark 2.11.15. As we have seen in the Chapter 1, the edge invariants and angle
invariants are related to the invariants of quadruple of Lagrangians and 5-tuple of
Lagrangians. In this more general situation, the edge and angle invariants are related
in the same way to the invariants of quadruple and 5-tuple of G-isotropic lines,
discussed in Sections 2.8.5 and 2.8.6.
As a convenient notation, if x ∈ X+(S, T , G, σ) is a system of X -coordinates and

w ∈W− is a negative angle, we will write x(w) = x(w−1)−1.
Analogously to the case of Sp(2n,R), the map

[rep+] : X+(S, T , G, σ)→Md
T (π1(S), Sp2(G, σ))

can be defined, and it is continuous, surjective and proper.
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2.11.5 Topology of the space of maximal representations

Using positive X -coordinates, we can understand the topology of the space of (dec-
orated) maximal representation. In this section, we state the results we obtain for
maximal representations into Sp2(G, σ) and the consider examples for classical groups.
All proofs go completely analogously to the case of Sp(2n,R).

Theorem 2.11.16. The space of decorated maximal representations
Md(π1(S),Sp2(G, σ)) is homotopically equivalent to U(G, σ)2g+k−1/U(G, σ),
where g is the genus of S, k is the number of punctures and the quotient is taken by
the action of U(G, σ) on U(G, σ)2g+k−1 by simultaneous conjugation.

Theorem 2.11.17. The space of decorated maximal representation
Md(π1(S), Sp2(G, σ)) is homeomorphic to

(Bsym
+ )6g+3k−6 × U(G, σ)2g+k−1/U(G, σ)

where U(G, σ) acts by simultaneous conjugation in every factor.

Now, we implement the Theorem 2.11.16 for classical Lie groups of tube type that
we can see as Sp2(A, σ) or Sp2(G, σ).

Example 20. Let A = Mat(n,C) and σ̄ be the transposition composed with the
complex conjugation. This is a Hermitian algebra,

Bsym
+ = Herm+(n,C), U(G, σ̄) = U(n).

We take G = A×, then, as we have seen, Sp2(G, σ̄) ∼= U(n, n). So we obtain:
Md(π1(S),U(n, n)) is homeomorphic to

(Herm+(n,C))6g+3k−6 ×U(n)2g+k−1/U(n),

ant it is homotopically equivalent to

U(n)2g+k−1/U(n).

Example 21. Let A = Mat(n,H) and σ1 be the transposition composed with the
quaternionic conjugation. This is a Hermitian algebra,

Bsym
+ = Herm+(n,H), U(G, σ1) = Sp(n).

We take G = A×, then, as we have seen, Sp2(G, σ1) ∼= SO∗(4n). So we obtain:
Md(π1(S), SO∗(4n)) is homeomorphic to

(Herm+(n,H))6g+3k−6 × Sp(n)2g+k−1/ Sp(n),

ant it is homotopically equivalent to

Sp(n)2g+k−1/ Sp(n).
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Example 22. Let A = Cl(1, n) and σ be the anti-involution as in the Chapter 2.10.
Then we take G = ClGr(1, n). We remind:

B(1, n) = Lie(ClGr(1, n)) = SpanR(1, eiej , f1ek | i, j, k ∈ {1, . . . n})

Bsym(1, n) = SpanR(1, f1ek | k ∈ {1, . . . n})

Bsym
+ (1, n) = {t+ uf1e | t > 0, u ∈ [0, t), e ∈ SpanR(e1, . . . , en), ‖e‖ = 1} .

where (f1, e1, . . . , en) is the standard orthonormal basis of Rn+1 with the standard
bilinear form of signature (1, n).
Then, as we have seen, Sp2(G, σ) ∼= Spin0(2, n + 1). So we obtain:
Md(π1(S),Spin0(2, n+ 1)) is homeomorphic to

(Bsym
+ (1, n))6g+3k−6 × Spin(n)2g+k−1/ Spin(n),

ant it is homotopically equivalent to

Spin(n)2g+k−1/Spin(n).
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A Appendix

A.1 Spectral theorem with signature

The well known spectral theorem from the linear algebra says that for two bilinear
forms b1, b2 on a real vector space V such that b1 is positive definite, there exists
a basis e such that [b1]e = Idn, [b2]e = diag(λ1, . . . , λn) where n = dimV and
λ1 ≥ · · · ≥ λn. Therefore, the tuple (λ1, . . . , λn) defines the pair (b1, b2) up to change
of basis of V . We can define the standard form of the pair of bilinear forms (b1, b2) to
be the pair of matrices (Idn, diag(λ1, . . . , λn)) and say that the basis e puts (b1, b2) to
the standard form. We use this standard form to define edge invariants for maximal
representations in the Section 1.3.
In this section, we define the standard form for a pair of bilinear forms (b1, b2)

assuming only nondegeneracy of b1. This standard form will be used to define edge
invariants for general representations in the Section 1.5.2.

A.1.1 Bilinear forms and symmetric linear maps

Let V be n-dimensional vector space over some field K, b1, b2 be symmetric bilinear
forms on V and b1 be not degenerate. We denote by b]i : V → V ∗ the linear map
corresponding to bi, i.e. bi(x, y) = b]i(y)(x) for x, y ∈ V . Then we can consider the
linear isomorphism f : V → V such that f := (b]1)−1 ◦ b]2.

Lemma A.1.1. The map f is symmetric with respect to the form b1 and for all
x, y ∈ V

b2(x, y) = b1(x, fy)

Proof.
b1(x, fy) = b]1((b]1)−1(b]2(y)))(x) = b]2(y)(x) = b2(x, y)

b1(fx, y) = b1(y, fx) = b2(y, x) = b2(x, y) = b1(x, fy)

A.1.2 Jordan blocks

In this section, we define a standard form for a pair of bilinear forms (b1, b2) if the
map f := (b]1)−1 ◦ b]2 is a Jordan block in some basis, i.e. there exists a basis e of V
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such that

[f ]e = Jn(l) =



l 1 0 . . . 0 0
0 l 1 . . . 0 0
0 0 l . . . 0 0

. . .
0 0 0 . . . l 1
0 0 0 . . . 0 l


for some l ∈ K. We also find out how unique the basis e is. Instead of Jn(l),
sometimes for simplicity, we will just write J .

Lemma A.1.2 (Jordan block over R). Let [f ]e = Jn(l) in some basis e of V . Then
there exists another basis e′ of V such that [f ]e′ = Jn(l) and either [b1]e′ = εCn where
ε ∈ {1,−1},

Cn =


0 0 . . . 0 1
0 0 . . . 1 0

. . .
1 0 . . . 0 0


Proof (Only idea). Let e = (e1, . . . , en). Consider ∂ := f − l Id, then ∂(ei) = ei−1

and ∂(e1) = 0. Since f is symmetric with respect to b1, ∂ is it as well. We get

b(ei, ej) = b(∂n−ien, ∂
n−jen) = b(en, ∂

2n−(i+j)en).

Since ∂s = 0 for s > n− 1, b(ei, ej) = 0 for i+ j < n+ 1. Moreover, if i+ j ≥ n+ 1,
b(ei, ej) = b(ek, el) for i+ j = k + l, k, l > 0, i.e.

[b1]e =


0 0 . . . 0 a1

0 0 . . . a1 a2

. . .
0 a1 . . . an−2 an−1

a1 a2 . . . an−1 an


We rescale the basis e such that a1 = sgn(a1). Then we take a basis e′ :=

(Id +b1∂ + · · ·+ bn−1∂
n−1)e. Note that [f ]e′ = [f ]e for every bi. Coefficients bi can

be successively chosen so that all ai = 0 for i > 1.

Corollary A.1.3 (Jordan block over algebraically closed field). Over algebraically
closed fields the basis e′ in the previous lemma can be always chosen (by possible
rescaling by i) so that

[b1]e′ =


0 0 . . . 0 1
0 0 . . . 1 0

. . .
1 0 . . . 0 0
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Lemma A.1.4 (Over R or algebraically closed field). The basis which was found in
the previous lemma (in this lemma denoted by e) is unique up to multiplication of all
vectors with ±1.

Proof. Let u = (ui) be another basis with necessary property.
Step 1. By induction, we will show that

uk =
k∑
i=1

ck−i+1ei

1. f(u1) = λu1, u1 is an eigenvector of f . But all eigenvectors of f are ce1, c ∈ R.
Therefore, u1 = c1e1 for some c1 6= 0.

2. We assume that us =
∑s

i=1 cs−i+1ei for all s < k. f(uk) = auk +uk−1, therefore
g(uk) = f(uk)− auk ∈ Ruk−1 ≤ 〈e1, . . . , ek−1〉. If we assume

uk =
n∑
i=1

ckiei,

then

g(uk) =

n∑
i=2

ckiei−1 ∈ 〈e1, . . . , ek−1〉 .

Therefore cki = 0 for all i > k. Moreover

g(uk) = uk−1 =

k−1∑
j=1

ck−1−j+1ej = [above] =

k∑
i=2

ckiei−1

Therefore, cki = ck−i+1, and so we have

uk =
k∑
i=1

ck−i+1ei

Step 2. Now we show that c1 = ±1 and ci = 0 for i > 1. To do that we use the
form b1. By assumption

b1(ui, uj) = b1(ei, ej) = δi+j,n+1

b1(uk, ul) =

k∑
i=1

l∑
j=1

ck−i+1cl−j+1b(ei, ej) =

k∑
i=1

ck−i+1cl−n−1+i+1

We assume here ci = 0 for i ≤ 0. If we take l = n, then we get

b1(uk, un) =

k∑
i=1

ck−i+1ci
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For k = 1:
1 = b1(u1, un) = c1c1

Therefore, c1 = ±1. Further, we take k = 2,

0 = b1(u2, un) = c2c1 + c1c2

Therefore, c2 = 0. And so on by induction, we assume ci = 0 for all 1 < i < k for
some k, then

0 = b1(uk, un) = ckc1 + ck−1c2 + · · ·+ c1ck

Therefore ck = 0 for all k 6= 1.

Definition A.1.5. Let B be a symmetric n×n matrix over some field K. We denote
by

O(B) := {X ∈ Matn(K) | XTBX = B}.

the orthogonal group of B considered as a bilinear form on the vector space Kn.

Corollary A.1.6. For every l ∈ R

O(Cn) ∩O(CnJn(l)) = {± Idn}

Remark A.1.7. If f is a Jordan block, then we have shown that there exists a basis e
such that [b1]e = εCn, [b2]e = εCnJn for ε ∈ {1,−1}. We take this as the standard
form for the pair of bilinear forms (b1, b2). The basis e is uniquely defined up to sign.

Dual bilinear forms

Let b1, b2 be two bilinear forms in some n-dimensional R-vector space V such that
[b1]e = εC = εCn, [b2]e = εCJ in some basis e, where J is a Jordan block with
eigenvalue l 6= 0, w = ±1.
In order to construct a representation by given coordinates in Section 1.5.3, we

will need another basis v of V such that

[b∗1]v∗ = sgn(l)[b2]e

[b∗2]v∗ = sgn(l)[b1]e

where v∗ is the dual basis for v, b∗i are the bilinear forms on the dual space V ∗

corresponding to bi, i.e. (b∗i )
] = (b]i)

−1. We denote by Φ the change-of-basis matrix
from e to v.
Since C = C−1, we get the following conditions for Φ:

sgn(l)ΦCΦT = CJ

sgn(l)Φ(CJ)−1ΦT = C

Lemma A.1.8. Φ = ±ΦT
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Proof. We assume l > 0. The case l < 0 is similar.

ΦCΦT = CJ

Φ(CJ)−1ΦT = C

are equivalent to
ΦCΦT = CJ

ΦTCΦ = CJ

Therefore,
ΦΦ−TCΦ−1ΦT = C

ΦΦ−T (CJ)Φ−1ΦT = CJ

So Φ−1ΦT ∈ O(C) ∩O(CJ) = {± Id} (A.1.6) and we have Φ = ±ΦT .

Lemma A.1.9. If there exists Φ ∈ Sym(n,K) such that

sgn(lw)ΦCΦ = CJ

then this Φ is unique up to sign.

Proof. We assume l > 0. The case l < 0 is similar. Assume, there are two Φ,Ψ ∈
Sym(n,K) such that

ΦCΦ = ΨCΨ = CJ

Then we have
ΨΦ−1CΦ−1Ψ = C

ΨΦ−1(CJ)Φ−1Ψ = CJ

So Φ−1Ψ ∈ O(C) ∩O(CJ) = {± Id} and we have Φ = ±Ψ.

Lemma A.1.10. There exists Φ ∈ Sym(n,K) such that

sgn(lw)ΦCΦ = CJ

Φ = ±



0 0 . . . 0
√
|l|

0 0 . . .
√
|l| x1

0 0 . . . x1 x2

. . .

0
√
|l| . . . xn−2 xn−1√

|l| x1 . . . xn−1 xn


where xi are some rational functions in

√
|l|.

Proof. Put this matrix in the equation ΦCΦ = CJ and calculate successively all
coefficients.

Remark A.1.11. Φ is uniquely defined up to sign. To make the choice of Φ unique,
we take plus sign in case l > 0. Otherwise, we take minus sign. At this point, it does
not really matter how we choose the sign. It will be important later when we will
consider degenerate representations.
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A.1.3 Classification of symmetric maps

Over algebraically closed fields

In this section we want to show that over algebraically closed field K for every
symmetric (with respect to some non-degenerate form b) linear map f there is an
orthogonal basis e such that

[f ]e =


J1 0 . . . 0 0
0 J2 . . . 0 0

. . .
0 0 . . . 0 Jk

 ,

where Jk is a nk × nk Jordan block corresponding to the eigenvalue λk and

[b]e =


I∗1 0 . . . 0 0
0 I∗2 . . . 0 0

. . .
0 0 . . . 0 I∗k

 ,

where

I∗s =


0 0 . . . 0 1
0 0 . . . 1 0

. . .
1 0 . . . 0 0


ns×ns

.

By the theorem of Jordan we already know that there exists a basis e such that
[f ]e has a necessary form. We want to show that we can correct this basis to another
basis e′ such that [b]e′ is of the form as above and [f ]e = [f ]e′ .

Lemma A.1.12. Blocks with different eigenvalues are orthogonal.

Proof. Let v1, . . . , vl is a Jordan basis of a block with eigenvalue λ, i.e. f(vi) =
λvi + vi−1, f(v1) = λv1. Let w1, . . . , wm is a Jordan basis of a block with eigenvalue
µ, i.e. f(wi) = µwi + wi−1, f(v1) = µw1 and µ 6= λ.

1. First, prove that b(v1, w1) = 0:

λb(v1, w1) = b(f(v1), w1) = b(v1, f(w1)) = µb(v1, w1).

Since µ 6= λ, b(v1, w1) = 0.
2. Second, prove that b(v1, wi) = 0 for every i ∈ {2, . . . ,m} by induction assuming

b(v1, wr) = 0 for all 1 ≤ r < i:

λb(v1, wi) = b(f(v1), wi) = b(v1, f(wi)) = b(v1, µwi + wi−1) = µb(v1, wi).

Since µ 6= λ, b(v1, wi) = 0 for every i ∈ {1, . . . ,m}.
3. Finally, prove that b(vi, wj) = 0 for every i ∈ {2, . . . , n}, j ∈ {1, . . . , n} by

induction assuming b(vs, wr) = 0 for 1 ≤ s < i and r ∈ {1, . . . ,m}, and b(vi, wr) = 0
for all 1 ≤ r < j:

λb(vi, wj) = b(f(vi)− vi−1, wj) = b(f(vi), wj) = b(v1, f(wi)) =
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= b(v1, µwi + wi−1) = µb(v1, wi).

Since µ 6= λ, b(vi, wj) = 0 for every i ∈ {1, . . . , l}, j ∈ {1, . . . ,m}.

As we also have seen, if we restrict the form b to each Jordan block, then, if
this form is not degenerate, then the basis of this block can be chosen so that this
restriction of b has a form:

I∗ =


0 0 . . . 0 1
0 0 . . . 1 0

. . .
1 0 . . . 0 0

 .

We call such blocks “non-degenerate”.
Therefore, we have to prove two things:
1. If the restriction of b to some block is degenerate, then there exists another

block with the same eigenvalue. Using this block we will correct the “degenerate”
block to “non-degenerate” block.
2. We can orthogonalize non-degenerate blocks with the same eigenvalue.

Lemma A.1.13. Let Js be a block, m := ns = dim(Js), λ is its eigenvalue. v =
(v1, . . . , vm) is corresponding subbasis of e for this block, V = Span(v). Let Jp be a
block with the same eigenvalue λ, l := np = dim(Jp), w = (w1, . . . , wl) corresponding
subbasis of e, W = Span(w).

If m > l, then

Bv,w := (b(vi, wj)) =



0 0 . . . 0 0
0 0 . . . 0 0

. . .
0 0 . . . 0 c1

0 0 . . . c1 c2

. . .
c1 c2 . . . cn−1 cn


.

If m < l, then

Bv,w := (b(vi, wj)) =


0 0 . . . 0 0 . . . 0 c1

0 0 . . . 0 0 . . . c1 c2

. . . . . .
0 0 . . . c1 c2 . . . cm−1 cm

 .

Proof. We proof the first case. The second is analogous. We use

b(f(vi), wj) = b(vi, f(wj)) = λb(vi, wj) + b(vi, wj−1)

b(f(vi), wj) = λb(vi, wj) + b(vi−1, wj)

We get b(vi, wj−1) = b(vi−1, wj) for all i ∈ {1, . . . ,m}, j ∈ {1, . . . , l} and b(vj , w1) = 0
for all j ∈ {1, . . . ,m}. So we get (b(vi, wj)) as above inductively.
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Lemma A.1.14. Let Js be a block, m := ns, λ is its eigenvalue. v = (v1, . . . , vm) is
corresponding subbasis of e for this block, V = Span(v). Let Jp be a block with the same
eigenvalue λ, l := np, w = (w1, . . . , wl) corresponding subbasis of e, W = Span(w).

Then u = v+wT is a basis of Jordan block with the same eigenvalue λ if and only
if T has the following form: for m ≤ l

T =



c1 c2 . . . cm−1 cm
0 c1 . . . cm−2 cm−1

. . .
0 0 . . . c1 c2

0 0 . . . 0 c1

0 0 . . . 0 0
. . .

0 0 . . . 0 0


for m ≥ l

T =


0 . . . 0 c1 c2 . . . cl−1 cl
0 . . . 0 0 c1 . . . cl−2 cl−1

. . .
0 . . . 0 0 0 . . . c1 c2

0 . . . 0 0 0 . . . 0 c1


Matrices of this form we will call diagonal upper triangular.

Proof. For every basis u = (u1, . . . , us) we denote by ∂u := (0, u1, . . . , us−1). Then
for each basis of Jordan block we have f(u) = λu + ∂u. The map ∂ in basis u is
given by matrix

P := [∂]u =


0 1 . . . 0 0
0 0 . . . 0 0

. . .
0 0 . . . 0 1
0 0 . . . 0 0


Now we want f(u) = λu + ∂u for u = v + wT . That means

f(v+wT ) = f(v)+f(w)T = λv+∂v+(λw+∂w)T = λ(v+wT )+∂v+(∂w)T =

= λu + ∂u + (∂w)T − ∂(wT ).

That means, u is Jordan basis if and only if PT = TP .
If T = (tij) then PT = (ti−1,j), TP = (ti,j+1) (to make this notation completely

correct, we assume here tij = 0 for i > l or j > m or for i, j < 1). That means,
ti−1,j = ti,j+1 and t1j = 0 for j > 1, tim = 0 for i < m. Therefore, T has a necessary
form.

Lemma A.1.15. Let Js be a block, m := ns, λ is its eigenvalue. v = (v1, . . . , vm) is
corresponding subbasis of e for this block, V = Span(v). Let bV be degenerate. Then
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there exists another block Jp with the same eigenvalue λ, l := np, w = (w1, . . . , wl)
corresponding subbasis of e, W = Span(w) and bV⊕W is not degenerate.

Moreover, there exists another basis u = (u1, . . . , um) such that U = Span(u) is
invariant by f , U ⊕W = V ⊕W , [f |U ]u = Js and bU is not degenerate.

Proof. Without lost of generality, assume λ = 0. Otherwise, consider f −λ Id instead
of f .
Since

b(f(vi), vj) = b(vi, f(vj)) = λb(vi, vj) + b(vi, vj−1)

b(f(vi), vj) = λb(vi, vj) + b(vi−1, vj),

we get b(vi, vj−1) = b(vi−1, vj) for all i, j = 1, . . . ,m and b(v1, vj) = 0 for all
j = 1, . . . ,m− 1. Therefore,

Bv := [b|V ]v =


0 0 . . . 0 a1

0 0 . . . a1 a2

. . .
0 a1 . . . an−2 an−1

a1 a2 . . . an−1 an


This matrix is degenerate, that means that a1 = 0 and v1 is orthogonal to the whole

block. v1 is also orthogonal to all blocks with eigenvalues different form λ. But the
form b is not degenerate. Therefore, there exists another block Jp with the eigenvalue
λ and basis w = (w1, . . . , wl) such that b|Span(v,w) is nondegenerate. Therefore,
b(v1, wl) 6= 0 and b(v1, wr) = 0 for all r < l since b(v1, wr) = b(v1, f

l−r(wl)) =
b(f l−r(v1), wl) = b(0, wl) = 0.
Let x := w1 − b(w1,wl)

b(v1,wl)
v1 6= 0. Then b(x, vi) = b(x,wj) = 0 for all i < m, j < l.

Moreover, b(x,wl) = b(w1, wl) − b(w1,wl)
b(v1,wl)

b(v1, wl) = 0. Since b is nondegenerate,
b(x, vm) 6= 0:

0 6= b(x, vm) = b(w1, vm)− b(w1, wl)

b(v1, wl)
b(v1, vm) = b(w1, vm) = b(f l−1wl, vm) =

= b(wl, f
l−1vm) = b(wl, vm−l+1)

i.e. m ≥ l.
We take u := (v1, . . . , vm) + (0, . . . , 0, v1, . . . , wl), it has all necessary properties.

Using the last lemma we can always assume that the basis is chosen so that all
Jordan blocks are non degenerate with respect to b. Now we want to correct this
basis so that different blocks are orthogonal.

Lemma A.1.16. Let Js is a non degenerate with respect to b Jordan block, m := ns,
λ is its eigenvalue. v = (v1, . . . , vm) is corresponding subbasis of e for this block,
V = Span(v).
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Let Jp be another block with the same eigenvalue λ, l := np, w = (w1, . . . , wl)
corresponding subbasis of e, W = Span(w). We assume m ≥ l.

Then there exists a diagonal upper triangular matrix T such that u = w + vT is a
basis of Jordan block which is orthogonal to Js and V ⊕W = U ⊕W

Proof. That u = w + vT is a basis of Jordan block, we already know by the lemma
A.1.14. We want orthogonality. That means

0 = b(v,w + vT ) = b(v,w) + b(v,vT ) = Bv,w +BvT

Because Bv is not degenerate, we have

T = Bv,wB
−1
v

This is a product of two diagonal upper triangular matrices, which is diagonal upper
triangular. The new block is not degenerate because, otherwise, the form would be
degenerate on V ⊕ U , but this is not the case.

Corollary A.1.17. If we have many blocks with the same eigenvalue, then we do the
process as in previous lemma successively as in Gram–Schmidt orthogonalization.

Case K = R with real eigenvalues

Because R is not algebraically closed, we have to take care by the process which we
did in the case K algebraic closed.
First, assume that all eigenvalues of f are real, otherwise the theorem of Jordan

does not guarantee us that the Jordan basis exists.

Theorem A.1.18. For every symmetric with respect to some non-degenerate form b
linear map f with real eigenvalues there is an orthogonal basis e such that

[f ]e =


J1 0 . . . 0 0
0 J2 . . . 0 0

. . .
0 0 . . . 0 Jk


where Jk is a nk × nk Jordan block corresponding to the eigenvalue λk and

[b]e =


σ1I
∗
1 0 . . . 0 0

0 σ2I
∗
2 . . . 0 0

. . .
0 0 . . . 0 σkI

∗
k


where σi = ±1 and

I∗s =


0 0 . . . 0 1
0 0 . . . 1 0

. . .
1 0 . . . 0 0


ns×ns
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Moreover,

sgn(I∗s ) =

{
0 , for ns even
1 , for ns odd

and, therefore,

sgn(b) =

k∑
i=1

σi sgn(I∗i ) =
∑

{i|ni is odd}

σi

Proof. In this case, we only have to prove that in each Jordan block the basis can be
chosen so that the restriction of b on this block is represented by a matrix ±I∗.
To do this, first, we consider a complexification of f and find a complex basis

(vi)
n
i=1 for a fixed chosen Jordan block n× n as in the previous section. That means

f(vi) = λvi + vi+1

b(vi, vj) = δi+j,n+1.

If we conjugate these equalities, we get (since λ ∈ R):

f(v̄i) = λv̄i + v̄i+1

b(v̄i, v̄j) = δi+j,n+1.

Case 1. (vi) and (v̄i) define bases of different complex Jordan blocks. Therefore vi
and v̄i are not collinear and there exist unique collections of non-zero vectors (ui),
(wi) such that

vi =
ui + iwi√

2
.

Therefore, (ui) and (wi) define real bases of two different Jordan blocks. We
can correct these bases so that they are orthogonal and the restriction of b on
corresponding subspaces is represented by a matrix ±I∗ [see lemma A.1.2].
Case 2. (vi) and (v̄i) define bases of the same complex Jordan block. Because of

uniqueness of basis v̄i = ±vi.
Case 2.1. vi = v̄i. That means, v = (vi) is a real basis of the chosen Jordan block

with [b|SpanR(v)]v = I∗.
Case 2.2. vi = −v̄i = iwi. That means, w = (wi) is a real basis basis of the chosen

Jordan block with [b|SpanR(w)]w = −I∗.

Case K = R with complex eigenvalues. Generalized Jordan blocks

Remark A.1.19. For some technical reasons, we need some linear order on C. It
does not really matter which one, but to make some constructions unique we have
to fix one. We will use the following order: we say z > z′ if Re(z) > Re(z′) or
Re(z) = Re(z′) and Im(z) > Im(z′).
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If the linear map f have a complex not real eigenvalue λ = a + ib then it has
an eigenvalue λ̄ = a − ib as well because the characteristic polynomial is real. We
consider some Jordan block J with eigenvalue λ of the size m×m. Then we have
automatically a Jordan block for λ̄. Moreover, these both blocks have the same size
because if

f(vj) = λvj + vj−1

then
f(v̄j) = λ̄v̄j + v̄j−1

where (vj) is a basis of the block J . So (v̄j) is a basis of another Jordan block with
eigenvalue λ̄ which we denote by J̄ . We denote

vj =
uj + iwj√

2

We can also assume b(vj , vk) = b(v̄j , v̄k) = δj+k,m+1

We consider another basis for pair of blocks (J, J̄):

uj =
vj + v̄j√

2
, wj =

vj − v̄j
i
√

2

It is easy to see that
f(uj) = auj − bwj + uj−1

f(wj) = buj + awj + wj−1

Because of the discussion above we can assume that all complex Jordan blocks are
orthogonal to each other. Therefore,

b(uj , uk) = −b(wj , wk) = b(vj , vk) = δj+k,m+1,

b(uj , wk) = 0.

So we get that in the real basis (u1, w1, . . . , um, wm) the pair of blocks (J, J̄) is
represented by the following matrix

K =



a b 1 0 . . . 0 0
−b a 0 1 . . . 0 0
0 0 a b . . . 0 0
0 0 −b a . . . 0 0

. . .
0 0 0 0 . . . 1 0
0 0 0 0 . . . 0 1
0 0 0 0 . . . a b
0 0 0 0 . . . −b a


2m×2m
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which we will call generalized Jordan block. The restriction of b on
Span(u1, w1, . . . , um, wm) have the form I2∗

2m, where

I2∗
2m =



0 0 0 0 . . . 1 0
0 0 0 0 . . . 0 −1

. . .
0 0 1 0 . . . 0 0
0 0 0 −1 . . . 0 0
1 0 0 0 . . . 0 0
0 −1 0 0 . . . 0 0


2m×2m

This matrix has signature

sgn(I2∗
2m) = 0

Moreover, because all complex Jordan blocks are orthogonal, this generalized block is
orthogonal to other blocks.

Corollary A.1.20. If f consists only on one generalized Jordan block then the basis
above is unique up to simultaneous multiplication of all basis vectors with −1.

Proof. The proof is identical to the proof of A.1.4.

Lemma A.1.21. There exists unique up to sign Φ ∈ Sym(n,R) such that

ΦI2∗Φ = I2∗K

Φ =



0 0 0 0 . . . c d
0 0 0 0 . . . d −c
0 0 0 0 . . . ∗ ∗
0 0 0 0 . . . ∗ ∗

. . .
0 0 c d . . . ∗ ∗
0 0 d −c . . . ∗ ∗
c d ∗ ∗ . . . ∗ ∗
d −c ∗ ∗ . . . ∗ ∗


where (c+ id)2 = a+ ib and ∗ are some rational functions in c, d.

Proof. Similar to A.1.10.

Remark A.1.22. The pair (c, d) is defined up to sign. To make Φ unique we choose
(c, d) so that c+ id is the biggest square root of a+ ib.
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A.1.4 Standard form of a pair of bilinear forms

So we can summarize that for each bilinear form b and each linear operator f which
is symmetric with respect to b there exists a basis e such that

[b]e =

I∗1 0 0
0 −I∗2 0
0 0 I2∗

 , [f ]e =

J1 0 0
0 J2 0
0 0 K


where for r = 1, 2

I∗r =


I∗1r 0 . . . 0 0
0 I∗2r . . . 0 0

. . .
0 0 . . . 0 I∗krr

 , Jr =


J1r 0 . . . 0 0
0 J2r . . . 0 0

. . .
0 0 . . . 0 Jkrr



I2∗ =


I2∗

1 0 . . . 0 0
0 I2∗

2 . . . 0 0
. . .

0 0 . . . 0 I2∗
s

 , K =


K1 0 . . . 0 0
0 K2 . . . 0 0

. . .
0 0 . . . 0 Ks


where nir := dim(I∗ir) = dim(Jir), mj := dim(I2∗

j ) = dim(Kj).

Definition A.1.23 (Order on blocks). For two (generalized) Jordan blocks J with
eigenvalue l and J ′ with eigenvalue l′ we will say that J > J ′ if dim J > dim J ′ or
dim J = dim J ′ and l > l′ (for generalized blocks we compare complex numbers using
the order defined earlier).

Definition A.1.24 (Standard form of a pair of bilinear forms). If the basis e is
chosen as above and blocks in J1, J2, K are in order of decreasing then we will say
that pair of forms b1 = b and b2 = b ◦ f is in the standard form. We will use the
following notation:

X(b1, b2) = (J1,J2,K)

X0(b1, b2) = [f ]e, X1(b1, b2) = [b1]e, X2(b1, b2) = [b2]e

Remark A.1.25. Because

sgn(I∗) =

{
0 , for dim I∗ even
1 , for dim I∗ odd , sgn(I2∗) = 0

we get
sgn(b) = #{i|dim I∗i1 is odd} −#{i|dim I∗i2 is odd}

Remark A.1.26. The standard form is unique. Instead, the basis, which puts a pair
of forms to the standard form, is not.
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Remark A.1.27. X(b1, b2) defines X0(b1, b2), X1(b1, b2), X2(b1, b2) uniquely and
defines b1, b2 uniquely up to change of basis.

X0(b1, b2) = diag(X(b1, b2))

X0(b1, b2) = (X1(b1, b2))−1X2(b1, b2)

We define the signature
sgn(X(b1, b2)) := sgn(b1)

A.1.5 Back transformation

Definition A.1.28. We will say that matrix H is consistent to the pair of forms
(b1, b2), if

H = diag(H1, H2, H3)

Hk = diag(H1k, . . . ,Hkrk)

and dimHij = dim Jij for j = 1, 2, dimHi3 = dimKi for all possible i.

Definition A.1.29. Let Y = diag(Y1, . . . , Ys), σ ∈ Sym({1, . . . , s}). The matrix

Tσ =

T11 . . . T1s

. . .
Ts1 . . . T ss


is called block permutation matrix for Y if Ti,σ(i) = IddimYi for all i and Tij = 0 for
all other (i, j).

Remark A.1.30. It is easy to see that

T Tσ diag(Z1, . . . , Zs)T = diag(Zσ(1), . . . , Zσ(Zs))

for all diag(Z1, . . . , Zs) such that dimZi = dimYi for all i.

Definition A.1.31 (Minimal ordering matrix). Let

Y = diag(Y1, . . . , Ys), Z = diag(Z1, . . . , Zs)

and dimYi = dimZi for all i ∈ {1, . . . , s}. Moreover, assume

Yi ∈ {I∗r ,−I∗r , I2∗
r | r ∈ N}

and Zi is a Jordan block for all i ∈ {1, . . . , s} such that Yi = ±I∗r and Zi is a
generalized Jordan block for all i ∈ {1, . . . , s} such that Yi = I2∗

r .
We will say that a block permutation matrix T = Tσ for Y is minimal ordering

matrix for (Y,Z) if
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• (Y ′, Y ′Z ′) := (T TY T, T TY ZT ) is the standard form for some pair of bilinear
forms, where

Y ′ = diag(Yσ(1), . . . , Yσ(s))

Z ′ = diag(Zσ(1), . . . , Zσ(s))

• if YiZi = YjZj for i < j then σ(i) < σ(j).

Remark A.1.32. For fixed pair (Y,Z) as above the minimal ordering matrix is unique
because is well-defined by the corresponding permutation σ which is unique.

Proposition A.1.33. There exist consistent to (b1, b2) matrix Φ ∈ Sym(n,R) and
the (unique) minimal ordering matrix T for (ΦX2(b1, b2)−1Φ,ΦX1(b1, b2)Φ) such that

T TΦX1(b1, b2)ΦT = X2(b∗2, b
∗
1) =: X̃2(b1, b2)

T TΦX2(b1, b2)−1ΦT = X1(b∗2, b
∗
1) =: X̃1(b1, b2).

We will call this transformation back transformation.

Proof. It follows from A.1.10 and A.1.21. We take Φ = diag(Φ1, . . . ,Φp) where Φi

are from A.1.10 or A.1.21 for corresponding pair of blocks of (X1(b1, b2), X2(b1, b2)).
After that we do a minimal ordering.

Remark A.1.34. In the previous proposition, Φ is unique up to sign of each block.
But as we already have seen, this sign can be chosen in a canonical way. So we can
assume that Φ and T are well defined by (b1, b2).

Remark A.1.35. The direct calculation shows that the back transformation applied
twice gives the identity map.

Corollary A.1.36. The last proposition can be reformulated in the following way:
Let (b1, b2) is a pair of bilinear forms on a vector space V and in a basis e:

[b1]e = X1(b1, b2), [b2]e = X2(b1, b2)

We consider a pair of bilinear forms (b∗2, b
∗
1) on the dual space V ∗. In the dual basis f :

[b1]f = X1(b1, b2)−1, [b2]f = X2(b1, b2)−1

The change of basis on V given by a matrix Φ−1T−T : e 7→ e′ induce change of basis
on V ∗ by a matrix ΦT : f 7→ f ′ so that

[b∗1]f ′ = X2(b∗2, b
∗
1), [b∗2]f ′ = X1(b∗2, b

∗
1)

This change-of-basis is determined by X(b1, b2). We denote this transformation
on bases of V by σX(b1,b2), the corresponding dual transformation of bases of V ∗ is
denoted by σ∗X(b1,b2). This transformation will be used to define the basis associated to
the opposite oriented edge.
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A.1.6 (p, q)-shape transformation

Let
n := (n1, . . . , nk1), m := (m1, . . . ,mk2), r := (r1, . . . , rk3)

be three decreasing sequences of natural numbers.

Inmr := diag(I∗n1
, . . . , I∗nk1

,−I∗m1
, . . . ,−I∗mk2 , I

2∗
r1 , . . . , I

2∗
rk3

)

We consider this matrix as a matrix of some bilinear form. Let (p, q) be the signature
of this form. We fix one matrix Pnmr such that

P TnmrIpqPnmr = Inmr

and the corresponding P -matrix for Ipq is Id.

Definition A.1.37. We denote by Ppq the set of all matrices Pnmr such that Inmr

has signature (p, q).

Definition A.1.38. Let (b1, b2) be a pair of bilinear forms and b1 has signature
(p, q). We denote by Pb1b2 the corresponding Pnmr as above such that

X1(b1, b2) = P Tb1b2IpqPb1b2

Definition A.1.39. Let X = X(b1, b2) for some pair of forms (b1, b2). Then b1 has
signature (p, q). We denote by PX the corresponding Pb1b2 as above such that

X1 = X1(b1, b2) = P TXIpqPX

Remark A.1.40. As we have seen before, X(b1, b2) defines X0(b1, b2), X1(b1, b2),
X2(b1, b2). So if we know X(b1, b2), we do not need any information about (b1, b2).
Therefore, sometimes we will write just X instead of X(b1, b2) and also X0, X1, X2

instead of X0(b1, b2), X1(b1, b2), X2(b1, b2) (and correspondent expressions with )̃ if
forms (b1, b2) are not important.

A.2 Three isomorphisms of matrix algebras

In this section, we describe three well-known matrix algebras isomorphisms that we
will use. For every algebra A and (anti-)involution σ, we denote by Aσ the set of
fixed points of σ in A.

A.2.1 Mat(n,C)⊗R C and Mat(n,C)×Mat(n,C)

Fact A.2.1. The following map is an isomorphism of C{i}-algebras:

χ : Mat(n,C{I})⊗R C{i} → Mat(n,C{i})×Mat(n,C{i})
a+ bI 7→ (a+ bi, a− bi)

where a, b ∈ Mat(n,C{i}). In particular,

χ(Id I ⊗ 1) = (i,−i), χ(Id⊗i) = (i, i).
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The induced by σ ⊗ Id anti-involution

χ ◦ (σ ⊗ Id) ◦ χ−1

on Mat(n,C{i})×Mat(n,C{i}) acts in the following way:

(m1,m2) 7→ (mT
1 ,m

T
2 ).

The induced by σ̄ ⊗ Id anti-involution

χ ◦ (σ̄ ⊗ Id) ◦ χ−1

on Mat(n,C{i})×Mat(n,C{i}) acts in the following way:

(m1,m2) 7→ (mT
2 ,m

T
1 ).

The induced by Id⊗σ̄ involution

χ ◦ (Id⊗σ̄) ◦ χ−1

on Mat(n,C{i})×Mat(n,C{i}) acts in the following way:

(m1,m2) 7→ (m̄2, m̄1).

Therefore:

χ((Mat(n,C{I})⊗R C{i})σ̄⊗Id) = {(m,mT ) | m ∈ Mat(n,C{i})},

χ((Mat(n,C{I})⊗R C{i})σ̄⊗σ̄) = Herm(n,C{i})×Herm(n,C{i}),

χ(Mat(n,C{I})) = χ((Mat(n,C{I})⊗RC{i})Id⊗σ̄) = {(m, m̄) | m ∈ Mat(n,C{i})}.

A.2.2 Mat(n,H)⊗R C and Mat(2n,C)

Fact A.2.2. The following map is an isomorphism of C{I}-C{i}-algebras:

ψ : Mat(n,H{i, j, k})⊗R C{I} → Mat(2n,C{i})

(q1 + q2j) + (p1 + p2j)I 7→
(
q1 + p1i q2 + p2i
−q̄2 − p̄2i q̄1 + p̄1i

)
.

where q1, q2, p1, p2 ∈ Mat(n,C{i}). In particular,

χ(Id i⊗ 1) =

(
Id i 0
0 − Id i

)
, χ(Id⊗j) =

(
0 Id
− Id 0

)
,

χ(Id k ⊗ 1) =

(
0 Id i

Id i 0

)
, χ(Id⊗I) = Id i.
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The induced by σ0 ⊗ Id anti-involution

ψ ◦ (σ0 ⊗ Id) ◦ ψ−1

on Mat(2n,C) acts in the following way:

m 7→
(

Id 0
0 − Id

)
mT

(
Id 0
0 − Id

)
.

The induced by σ1 ⊗ Id anti-involution

ψ ◦ (σ1 ⊗ Id) ◦ ψ−1

on Mat(2n,C) acts in the following way:

m 7→ −
(

0 Id
− Id 0

)
mT

(
0 Id
− Id 0

)
=

(
0 i
−i 0

)
mT

(
0 i
−i 0

)
.

The induced by Id⊗σ̄ involution

ψ ◦ (Id⊗σ̄) ◦ ψ−1

on Mat(2n,C) acts in the following way:

m 7→ −
(

0 Id
− Id 0

)
m̄

(
0 Id
− Id 0

)
=

(
0 i
−i 0

)
m̄

(
0 i
−i 0

)
.

The induced by σ0 ⊗ σ̄ anti-involution

ψ ◦ (σ0 ⊗ σ̄) ◦ ψ−1

on Mat(2n,C) acts in the following way:

m 7→
(

0 Id
Id 0

)
m̄T

(
0 Id
Id 0

)
.

Therefore:
ψ((Mat(n,H{i, j, k})⊗R C{I})σ1⊗Id) =

=

{
m ∈ Mat(2n,C{i}) | m = −

(
0 Id
− Id 0

)
mT

(
0 Id
− Id 0

)}
=

= o

(
0 Id
− Id 0

)
= sp(2n,C),

ψ((Mat(n,H{i, j, k})⊗R C{I})σ0⊗σ̄) =

=

{
m ∈ Mat(2n,C{i}) | m =

(
0 Id
Id 0

)
m̄T

(
0 Id
Id 0

)}
,
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ψ((Mat(n,H{i, j, k})⊗R C{I})σ1⊗σ̄) = Herm(2n,C),

ψ(Mat(n,H{i, j, k})) = ψ((Mat(n,H{i, j, k})⊗R C{I})Id⊗σ̄) =

=

{
m ∈ Mat(2n,C{i}) | m = −

(
0 Id
− Id 0

)
m̄

(
0 Id
− Id 0

)}
=

=

{(
q1 q2

−q̄2 q̄1

)
| q1, q2 ∈ Mat(n,C{i})

}
.

A.2.3 Mat(n,H)⊗R H and Mat(4n,R)

Fact A.2.3. The following map:

φ : Mat(n,H{I, J,K})⊗R H{i, j, k} → Mat(4n,R)

defined on generators of AH as follows:

φ(a⊗ i) =


0 a 0 0
−a 0 0 0
0 0 0 −a
0 0 a 0

 , φ(a⊗ j) =


0 0 a 0
0 0 0 a
−a 0 0 0
0 −a 0 0

 ,

φ(a⊗ k) =


0 0 0 a
0 0 −a 0
0 a 0 0
−a 0 0 0

 , φ(aI ⊗ 1) =


0 −a 0 0
a 0 0 0
0 0 0 −a
0 0 a 0

 ,

φ(aJ ⊗ 1) =


0 0 −a 0
0 0 0 a
a 0 0 0
0 −a 0 0

 , φ(aK ⊗ 1) =


0 0 0 −a
0 0 −a 0
0 a 0 0
a 0 0 0


where a ∈ Mat(n,R) is an R-algebra isomorphism.

The anti-involution σ1 ⊗ σ0 corresponds under φ to the following anti-involution

φ ◦ (σ1 ⊗ σ0) ◦ φ

on Mat(4n,R): m 7→ −ΞmTΞ where

Ξ :=


0 0 0 Idn
0 0 − Idn 0
0 Idn 0 0
− Idn 0 0 0

 .

The anti-involution σ1⊗σ1 corresponds under φ to the transposition on Mat(4n,R).
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Therefore:

φ((Mat(n,H{I, J,K})⊗R H{i, j, k})σ1⊗σ0) =
{
m ∈ Mat(4n,R) | m = −ΞmTΞ

}
=

= o(Ξ) ∼= sp(4n,R),

φ((Mat(n,H{i, j, k})⊗R H{i, j, k})σ1⊗σ1) = Sym(4n,R),

The real locus Mat(n,H{I, J,K}) of Mat(n,H{I, J,K})⊗R H{i, j, k} is mapped
by φ to:

φ(Mat(n,H{I, J,K})) =

=



a −b −c −d
b a −d c
c d a −b
d −c b a

 | a, b, c, d ∈ Mat(n,R)

 .

A.3 Embeddings between matrix algebras

In this section, we consider the following two embeddings:

Mat(n,C{I})⊗ C{j} ↪→ Mat(n,C{I})⊗H{i, j, k},

Mat(n,H{I, J,K})⊗ C{j} ↪→ Mat(n,H{I, J,K})⊗H{i, j, k}.

We are interested in this embedding because, for the first embedding, the restriction
of σ̄ ⊗ σ1 corresponds to σ̄ ⊗ σ̄ and the restriction of σ̄ ⊗ σ0 corresponds to σ⊗̄ Id.
For the second embedding, the restriction of σ1 ⊗ σ1 corresponds to σ1 ⊗ σ̄ and the
restriction of σ1 ⊗ σ0 corresponds to σ1 ⊗ Id, and so we can use these embedding to
see the symmetric space for the real group inside the symmetric space for complexified
group.

A.3.1 Embedding Mat(n,C{I})⊗ C{j} ↪→ Mat(n,C{I})⊗H{i, j, k}

In the previous sections, we have seen isomorphisms:

χ : Mat(n,C{I})⊗R C{j} → Mat(n,C{j})×Mat(n,C{j})
a+ bI 7→ (a+ bj, a− bj)

where a, b ∈ Mat(n,C{j}). And

ψ : Mat(n,C{I})⊗R H{i, j, k} → Mat(2n,C{i})

(q1 + q2j) + (p1 + p2j)I 7→
(
q1 + p1i q2 + p2i
−q̄2 − p̄2i q̄1 + p̄1i

)
.

where q1, q2, p1, p2 ∈ Mat(n,C{i}). Since

ι : Mat(n,C{I})⊗ C{j} ↪→ Mat(n,C{I})⊗H{i, j, k},
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we want to describe the map ψ ◦ ι ◦ χ−1.
Let (a, b) := (a1 + a2j, b1 + b2j) ∈ Mat(n,C{j})×Mat(n,C{j}) for a1, a2, b1, b2 ∈

Mat(n,R), then

χ−1(a, b) =
a+ b

2
+
a− b

2j
I =

a1 + b1 + (a2 + b2)j

2
+
a2 − b2 − (a1 − b1)j

2
I.

Therefore,

ψ(χ−1(a, b)) =
1

2

(
a1 + b1 + (a2 − b2)i a2 + b2 − (a1 − b1)i
−(a2 + b2) + (a1 − b1)i a1 + b1 + (a2 − b2)i

)
and

Im(ψ ◦ ι ◦ χ−1) =

{(
q p
−p q

)
| p, q ∈ Mat(n,C{i})

}
=

=

{
m ∈ Mat(2n,C{i}) | m = −

(
0 Id
− Id 0

)
m

(
0 Id
− Id 0

)}
.

A.3.2 Embedding
Mat(n,H{I, J,K})⊗ C{j} ↪→ Mat(n,H{I, J,K})⊗H{i, j, k}

In the previous sections, we have seen isomorphisms:

ψ : Mat(n,H{I, J,K})⊗R C{j} → Mat(2n,C{I})

(q1 + q2J) + (p1 + p2J)j 7→
(
q1 + p1I q2 + p2I
−q̄2 − p̄2I q̄1 + p̄1I

)
.

where q1, q2, p1, p2 ∈ Mat(n,C{I}) and

φ : Mat(n,H{I, J,K})⊗R H{i, j, k} → Mat(4n,R)

defined as in the Section A.2.3. Since

ι : Mat(n,H{I, J,K})⊗ C{j} ↪→ Mat(n,H{I, J,K})⊗H{i, j, k},

we want to describe the image of the map φ ◦ ι ◦ ψ−1. Note that for x ∈
Mat(n,H{I, J,K}) ⊗ H{i, j, k}, x ∈ Mat(n,H{I, J,K}) ⊗ C{j} if and only if x
commutes with 1⊗ j. So we obtain:

Im(ψ ◦ ι ◦ χ−1) = {m ∈ Mat(4n,R) | m = −φ(Idn⊗j)mφ(Idn⊗j)}
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