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Abstract
Deformation spaces have always been of importance in geometry. By understanding how
objects change one can also find properties that help understand if two objects are the same
in a certain sense, e.g. two triangles in the euclidian plane are the same if there is an isometry
sending one onto the other.
In this thesis we want to investigate deformations of n-tuples of flags in the projective plane
and provide visualizations of the changes. This will allow us to parameterize the space of
positive n-tuples of flags by considering internal parameters induced by a triangulation of
suitably nested polygons. By introducing the eruption, shearing and bulging flows discussed
byWienhard and Zhang [WZ18] we are then able to fully understand and visualize how these
parameters change.
We will also draw a connection to hyperbolic geometry through showing that ideal polygons
in properly convex sets are of finite volume with regard to the Hilbert metric. Furthermore
we will extend the deformations to marked strictly convex domains with C1 boundary.
But the main goal of this thesis remains to visualize the deformations in some of the discussed
cases.

Deformationsräume waren immer schon von Wichtigkeit in der Geometrie. Wenn man ver-
steht wie sich Objekte verändern, dann kann man dabei auf Eigenschaften treffen welche Ob-
jekte auch unterscheidbar machen, zum Beispiel sind zwei Dreiecke in der euklidischen Ebene
gleich, falls eine Isometrie existiert welche das eine auf das andere abbildet.
In dieser Arbeit wollen wir Deformationen von n-Tupeln von Flaggen in der projektiven Ebene
untersuchen und dazu Visualisierungen bereitstellen. Durch das betrachten interner Parame-
ter, induziert durch eine Triangulierung von passend verschachtelten Polygonen, können wir
somit den Raum der positiven Flaggen-n-Tupeln parametrisieren. Mit den von Wienhard und
Zhang [WZ18] eingeführten bulging,shearing und erruption flows wird es uns gelingen die
Veränderungen in den internen Parametern zu verstehen und zu visualisieren.
Wir werden außerdem eine Verbindung zur hyperbolischen Geometrie herstellen indem wir
zeigen, dass ideale Polygone in eigentlich konvexen Mengen auch ein endliches Volumen
bezüglich der Hilbertmetrik haben. Des weiteren wollen wir die Deforamtionon von Flaggen
auf strikt konvexe Mengen mit C1 Rand erweitern.
Das Hauptziel dieser Arbeit bleibt jedoch das Visualisieren der Deformationen in den betra-
chteten Fällen.
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1 Introduction
The study of convex real projective structures on a closed connected orientable surface of
genus g ≥ 2 has been pioneered by Bill Goldman [Gol90]. In recent years, Wienhard and
Zhang built on this foundation and discussed flows on the space of convex real projective
structures which are described by explicit deformations of the internal parameters associated
to each pair of pants in a pants decomposition [WZ18]. They built upon the work of Fock-
Goncharov [FG07], who parameterized the space of n-tuples of flags in R3 using internal pa-
rameters defined by cross and triple ratios. He did this by drawing a connection between
positive tuples of flags and suitably nested polygons. Using this connection Wienhard and
Zhang described the eruption, shearing and bulging flows in the context of n-tuples of posi-
tive flags and then extended these flows to the setting of marked strictly convex domains with
C1- boundary. Their initial motivation was to develop an understanding of how a generaliza-
tion of the earthquake theorem from the context of Teichmüller spaces could look like in the
space of convex real projective structures.

The aim of this thesis is to recall the work of Wienhard and Zhang up to the deformations of
convex sets in RP2 with C1-boundary while providing more details and visualizations for the
flows.

Consider a positive n-tuple of flags F = ((p1, l1), . . . , (pn, ln)) ∈ F+
n together with its corre-

sponding pair of suitably nested polygons (N,N ′). Choosing a triangulation of N we obtain
a set of internal edges ai,j between pi and pj as well as a set of triangles Ti,j,k with vertices
pi, pj, pk. Then we can make use of the projective invariants, i.e. the triple and cross ratio to
define coordinates on F+

n via:

σi,j(F ) = log
(
−C(li, pk, pk′, pipj)

)
, i < k < j < k′ < i,

τi,j,k(F ) = log
(
T ((pi, li), (pj, li), (pk, lk))

)
, i < j < k < i.

This will allow us to parameterize F+
n . Let IT be the set of internal edges for a triangulation

T and ΘT be the set of triangles.

Theorem. Let m = 2 · #IT + #ΘT . The map(
(σi,j, σj,i)ai,j∈IT , (τi,j,k)Ti,j,k∈ΘT

)
: PGL(3,R) \ F+

n −→ Rm

is a homeomorphism.

Keeping this in mind we will show how to construct convex sets in RP2 by using the Vinberg
theorem [Ben09, Theorem 1.5]. Vinberg gave sufficient conditions on when a convex polygon
in S2 tiles some convex domain.
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Theorem (Vinberg). Let P be a convex polygon of S2 and, for each edge s of P , let
Rs = Id −αs ⊗ vs be a projective reflection fixing the face s. Let as,t = αs(vt) and
suppose that conditions

1. as,t ≤ 0 and
(
as,t = 0 ⇔ at,s = 0

)
,

2. as,tat,s = 4 or as,tat,s = 4 cos2
(

π

ms,t

)
with integer ms,t ≥ 2,

are satisfied for every s, t such that codim(s ∩ t) = 2. Let Γ be the group generated
by the reflections Rs . Then

a) the polygons γ(P ), for γ ∈ Γ, tile some convex subset C of S2,

b) the group Γ is discrete in SL±(3,R).

Using this we can construct convex sets in two ways. On the one hand we will consider tilings
by triangles in S2 and on the other hand the tilings obtained from a suitably nested polygon
of an element F ∈ F+

n . From the latter approach we will be able to draw a connection to
hyperbolic geometry because the inner polygonN will be an ideal polygon in the constructed
convex set Ω. Furthermore, the Hilbert metric on Ω will induce a measure µΩ. In this setting
we have

Theorem. Let F = (F1, ..., Fn) ∈ F+
n and (N,N ′) be a pair of suitably nested poly-

gons. Let Ω be the convex set constructed from N . Then, with regard to the Hilbert
metric on Ω, µΩ(N) < ∞.

Concerning the deformations we can define the eruption flow on F+
3 which will change the

internal parameter corresponding to the triple ratio. The parameters coming from the cross
ratio will change by the bulging and shearing flows initially defined on F+

4 . To generalize
these deformations of F+

n we observe that choosing an internal edge of a triangulation on
N will also split the both N and N ′ into two components. Also, choosing a triangle in the
triangulation, we splitN andN ′ into a triangle and three more polygons. These constructions
allow us to directly generalize the flows from F+

3 and F+
4 to F+

n .

To generalize the deformations to a convex set Ω with C1-boundary we can observe that by
choosing points on ∂Ω together with the tangents at these points we obtain flags. This is a
general approach and is used to understand marked strictly convex domains with C1- bound-
ary.
If, on the other hand, a convex set Ω was constructed from a pair of suitably nested polygons
(N,N ′) we have two additional ways to define the flows on Ω. Either we transform N and
construct a newΩ′ from this polygon or we apply the deformation on every piece in the tiling.
In these cases this assures us that the group action which was used to construct these sets also
acts on Ω′. We can see that, using the right transformations both approaches will yield the
same result.

This thesis is organized as follows. In Chapter 2, we recall properties of some classical projec-
tive invariants, namely the cross ratio and the triple ratio on triples of flags. In Chapter 3 we
describe two ways to generate properly convex sets in the projective plane and provide exam-
ples and graphical assistance. Here we will also draw the connection to hyperbolic geometry
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by showing that ideal polygons are of finite volume with regard to the Hilbert metric in these
cases. Using the constructions from Chapter 3 we discuss the various deformations in Chapter
4 and also extend them from flags to properly convex sets in RP2. In the last chapter we will
give a few tipps on how to visualize certain things.

Throughout this thesis we will provide graphical assistance and visualizations of the various
constructions and deformations.

3





2 Preliminaries
Before we start with the in-depth theory of deforming properly convex sets we introduce
some needed basics for this thesis. We start by introducing the projective plane and its dual.
Afterwards we take a look at two projective invariants which will help us distinguish certain
objects later on. First we consider the cross ratio of four lines or points in RP2 with suitable
properties. Then we define flags in the projective plane by which we can consider the triple
ratio on triples of flags.
We will continue to investigate a geometric property of n-tuples of flags, that is the existence
of certain nested polygons which will also be of importance later on. The chapter will end by
giving a parametrization for a subset of the space of n-tuples of flags called the positive flags.
We closely follow [WZ18], but provide more details and graphical assistance.

2.1 Projective Space
First of all we define the mathematical space this thesis will mostly take place in, the projective
plane.

Definition 2.1.1. The projective line RP1 is the set of all 1-dimensional subspaces in R2.
The projective plane RP2 is the set of all 1-dimensional subspaces in R3.

Therefore it is also clear that each hyperplane in R3 corresponds to a projective line in the
projective plane. The following two results are characteristic for the projective setting.

Proposition 2.1. Given two points p, q ∈ RP2 with p 6= q there is a unique projective line
through p and q.
Given two lines k, l ⊂ RP2 with k 6= l there is a unique intersection point.

Proof. Since p 6= q they span a unique hyperplane which projects to a unique line in RP2.
Also two lines in RP2 correspond to two hyperplanes in R3. Because they are not equal they
intersect in a single line corresponding to a unique point in the projective plane.

Now we also know that we can identify RP2 as the quotient (R3 \ {0}) /R×, meaning that for
x, y ∈ R3 \ {0} we have x ∼ y ⇔ x = λy for some λ 6= 0. Thus we can always choose a
representative x ∈ R3. We will denote the class of x in the projective plane by [x]. Note that
we will often just write x or (x1, x2, x3) instead of [x1, x2, x3] as it should be clear from the
context in which setting we are.
For later we want to take a short look at the dual projective plane:

Definition 2.1.2. Thedual projective planeRP2∗ isP
(
(R3)

∗), i.e. the space of all 1-dimensional
subspaces in the dual of R3.

Analogous to the above observations it is clear that the dual can be seen as a quotient space.
There is a nice identification regarding projective lines and elements of the dual plane.
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2.2 Cross ratio

Proposition 2.2. There is a bijection between points in RP2∗ and projective lines in RP2 given
by

f ∈ RP2∗ 7→ ker f.

Proof. Let [f ] ∈ RP2∗. Then ker f is a hyperplane in R3 and thus a line in RP2. Because
ker(λf) = ker(f) for λ 6= 0 the map is well-defined.
Take a line l ⊂ RP2. This corresponds to a hyperplane P ⊂ R3. Now choose an element
f ∈ (R3)∗ such that P = ker f . Note that if P = ker g for a g ∈ (R3)∗ then g = λf, λ 6= 0.
Thus, we have the bijection between l and the class [f ].

We see that under this identification the condition l(p) = 0 is equivalent to p lying on the line
l. To make use of this fact we introduce the following notation.

Definition 2.1.3. The set Ln is the set of pairwise distinct n-tuples l1, . . . , ln ∈ RP2∗ such
that there exists some p ∈ RP2 so that li(p) = 0 for all i = 1, . . . , n.

Given the above identification this set identifies with n-tuples of lines which intersect in a
common point.
It is also important to take a look at projective transformations

Definition 2.1.4. A projective transformation of RP2 is an element of GL(3,R)/R×, i.e.
an invertible matrix up to scaling by non-zero real numbers.
The group of projective transformations will be denoted by PGL(3,R). Since it is clear
that these are equivalence classes we will simply write A instead of [A].

The following observation may be useful later on: for any map A ∈ PGL(3,R) we have a
unique representative in SL(3,R) via the bijection

PGL(3,R) −→ SL(3,R), A 7→
1

det(A)1/3
A.

2.2 Cross ratio
Because we understand the surrounding space now we start to consider two projective invari-
ants needed in the following sections. The first is the well-known cross ratio of four points
that lie on a line. We approach this ratio from a dual point of view and start by considering
tuples of points.

Definition 2.2.1. An n-tuple of points p1, . . . , pn ∈ RP2 is called generic if no triple of the
points lie on a projective line.
We denote the set of all generic n-tuples by Pn.

We now take a look at a well-known property of projective transformations to give a little
motivation for the invariants we want to define.

Proposition 2.3 (see [Boy]). For every pair of n+2 points inRPn such that no n+1 are linearly
dependent there is a unique projective transformation sending one onto the other.

In our case this boils down to

6 Sven Grützmacher



2.2 Cross ratio

Proposition 2.4. For every pair of generic 4-tuple in RP2 there is a unique projective transfor-
mation sending one to the other, i.e. PGL(3) acts transitively on P4.

But what happens if the 4-tuple is non-generic? By the above general version of the propo-
sition we can surely find a transformation sending 3 points on a projective line onto 3 other
points on a line. In general, using 4 points, the action may not be transitive any more. Yet
there are still several subsets in P4 where we have conditions on when the action is transitive,
e.g. when all four points lie on a projective line.
Since we lack a metric for now, we start by defining an invariant for elements inL4, i.e. certain
tuples of lines instead of tuples of points.

Definition 2.2.2. The cross ratio is the function C : L4 −→ R \ {0, 1} given by

C (l1, l2, l3, l4) =
l1(p3) · l4(p2)
l1(p2) · l4(p3)

,

for points p2, p3 ∈ RP2 \ {p} which lie on l2 and l3 respectively and p is the common inter-
section point of all four lines.

Naturally we have to choose representatives αi for the li and vj for the pj to compute the cross
ratio in each case. Luckily the value of C does not depend on the choice of those representa-
tives.

Proposition 2.5. C is well defined.

Proof. It is clear that choosing, for example, λα1 as a representative for l1 does not change the
value of C . If we know choose a point q2 = p+ t · p2 with t 6= 0 on l2 we get

C (l1, l2, l3, l4) =
l1(p3) · l4(p+ tp2)

l1(p+ tp2) · l4(p3)

=
l1(p3) · l4(p) + l1(p3) · l4(tp2)
l1(p) · l4(p3) + l1(tp2) · l4(p3)

=
l1(p3) · l4(p2)
l1(p2) · l4(p3)

,

since li(p) = 0 and li(tpj) = tli(pj).

So from now on we will simply write li instead of αi. It should be clear from the context what
happens.
We also state some properties of the cross ratio that are well-known

Proposition 2.6. Let (l1, l2, l3, l4) ∈ L4. Then

a) C (l1, l2, l3, l4) =
1

C(l1,l3,l2,l4)
= 1− C (l2, l1, l3, l4) = C (l4, l3, l2, l1),

b) C is invariant under the action of PGL(3,R),

c) C is surjective and its level sets are the PGL(3,R)-orbits in L4.

Sven Grützmacher 7



2.2 Cross ratio

Proof. a) The first equality just exchanges numerator and denominator and the last one is
obvious.

For the second equality we will, to show this once, choose representatives αi, vj and v for
p.

Because C is well defined we may choose v3 = sv1 + tv2. Then

α1(v3) · α4(v2)

α1(v2) · α4(v3)
+

α2(v3) · α4(v1)

α2(v1) · α4(v3)
=

tα1(v2) · α4(v2)

α1(v2) · α4(v3)
+

sα2(v1) · α4(v1)

α2(v1) · α4(v3)

=
α4(tv2 + sv1)

α4(v3)
= 1.

b) First of all, from linear algebra we know that if the (pi)i are transformed by g ∈ PGL(3,R),
i.e. pi 7→ gpi, then the (li)i transform via li 7→ lig

−1. Thus, for example l1(p3) 7→
l1g

−1gp3 = l1(p3). This proves the claim.

c) Again choose all four points on one line. Then there is t /∈ {0, 1} such that p2 = (1−t)p1+
tp4. Then, in the basis p1, p, p4 we get

C (l1, l2, l3, l4) =
(1− t)d

tc
.

So C is surjective. Now assume to have two elements (l1, l2, l3, l4) , (l′1, l′2, l′3, l′4) ∈ L4 with
C (l1, l2, l3, l4) = C (l′1, l

′
2, l

′
3, l

′
4). Choosing pi on a line and also a suitable bases we know

there is a g ∈ PGL(3) such that gp = p′ and gpi = p′i for i = 1, 2, 4. From b) and the fact
that the cross ratios are the same we now know the ratio d/c = d′/c′ and by linear algebra
g also sends p3 to p′3. So two elements in L4 are the same modulo PGL(3,R) if and only if
their cross ratios are the same.

We also want to define the cross ratio for four points lying in a projective line. For this we
consider the following corollary

Corollary 2.7. Let p1, . . . , p4 be four points on a projective line l and let q, q′ be two distinct
points of which both do not lie on l. Let li and l′i be the lines through pi and q or q′ respectively.
Then

C (l1, l2, l3, l4) = C (l′1, l
′
2, l

′
3, l

′
4)

Proof. This follows directly from b) of the previous proposition. Note that we can always find
a map g ∈ PGL(3,R) sending q, p1, ..., p4 to q′, p1, ..., p4 since four of those points lie on a
line.

With this we can define

C (p1, p2, p3, p4) = C (l1, l2, l3, l4) (2.1)

Next we see if we can define a notion of ametric on certain subsets ofRP2. For this we consider
convex subsets. Note that the topology on RP2 is the quotient topology on (R3 \ {0}) /R×.

8 Sven Grützmacher



2.3 Flags and Triple ratio

Definition 2.2.3. A domain Ω ⊂ RP2 is called properly convex if it is open, any two points
can be connected by a projective line segment and the closure does not contain any projective
line.
A properly convex domain is called strictly convex if ∂Ω does not contain any nontrivial line
segments.

Through this we can make use of the cross ratio to define a metric:

Definition 2.2.4. Let Ω ⊂ RP2 be a properly convex domain. For any two points p, q ∈ Ω let
a, b ∈ ∂Ω be the points so that a, p, q, b lie on a projective line in RP2 in that order. Then the
Hilbert metric is the function

dΩ : Ω× Ω −→ R; (p, q) 7→ log |C(a, p, q, b)| .

We leave it to the reader to check that this is truly a metric. It is worth noting that dΩ is
invariant under projective transformations that leave Ω invariant. Also the literature often
defines the metric with a coefficient of 1

2
. This makes the metric coincide with the hyperbolic

metric on the unit disk. For details consider [BK53, Chapter IV. 28].

2.3 Flags and Triple ratio
We now introduce the main object of this thesis, a flag. We then proceed to introduce a pro-
jective invariant for triples of flags by which we can also extract a special subset, namely the
positive flags. The section will end by giving a geometric interpretation of positive flags.

Definition 2.3.1. A flag is a pair (p, l) ∈ RP2 ×RP2∗ so that l(p) = 0. Two flags (p, l), (q, k)
are transverse if l(q) 6= 0 6= k(p). The set of ordered pairwise transverse n-tuples of flags is
denoted by Fn.

Identifying elements in RP2∗ with projective lines, a flag is a line together with a point on it
and two flags are transverse if their designated points do not lie on the other line.

Figure 2.1: A flag and two pairs of transverse flags.

Like with the cross ratio we want to build a projective invariant for a certain class of flags, in
this case for F3.

Definition 2.3.2. The triple ratio is the function T : F3 −→ R \ {0} defined by

T ((p1, l1), (p2, l2), (p3, l3)) =
l1(p2)l2(p3)l3(p1)

l1(p3)l3(p2)l2(p1)
.

Sven Grützmacher 9



2.3 Flags and Triple ratio

As with the cross ratio we have to take representatives of each class, but it is also easy to
see that the triple ratio does not depend on those choices. Let us now take a look at some
properties.

Proposition 2.8. Let (F1, F2, F3) ∈ F3. Then

a) T (F1, F2, F3) =
1

T (F1, F3, F2)
,

b) For any g ∈ PGL(3) we have T (F1, F2, F3) = T (gF1, gF2, gF3),

c) T is surjective and its level sets are the PGL(3)−orbits in F3.

Proof. a) Take the reciprocal

b) Again because of li(pj) 7→ lig
−1gpj = li(pj) the claim follows directly.

c) From b) it is easy to see that the value of T can be changed by simply sliding the points on
the line. Thus T is surjective. If you take two elements in F3 with the same triple ration
take the qi, q

′
i for i = 1, 2, 3 and p1, p

′
1. Then there is a unique g ∈ PGL(3) that sends

qi 7→ q′i and p1 7→ p′1, p2 7→ p′2. Since the coordinates of p3 and p′3 have each the same ratio
and the triple ratio is the same, g also maps p3 7→ p′3. This concludes the proof.

q1q2

q3

p1

p2

p3l3

l2

l1
m3

m2

m1

w1

w2

w3

t2

r1
r2

r3

u1

u2

u3

Figure 2.2: Important notation for cross/triple ratio in F3 (t1, t3 omitted).
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2.3 Flags and Triple ratio

It is now time to describe a relationship between triple and cross ratios which will yield a
geometric interpretation of the triple ratio. For this we need some notation:

Notation 2.3.3. Let ((p1, l1), (p2, l2), (p3, l3)) ∈ F3 and again let i, j, k = 1, 2, 3 be pairwise
distinct. Set qk = li ∩ lj and let mk be the projective line through pi, pj . Set wk to be the line
through pk and qk, tk = lk ∩mk and rk = wk ∩mk. Lastly set uk = wi ∩ wj . We will do all
the subscript arithmetic modulo 3.

Using this we can compute that

Proposition 2.9. For the above naming and notation pi, ui−1, ui+1, qi lie on a line and

C
(
pi, ui−1, ui+1, qi

)
= T (F1, F3, F2)

for all i = 1, 2, 3.

Proof. We can again choose coordinates such that qi are a basis which results in

li = eTi p1 =

0
a
b

 p2 =

c
0
d

 p3 =

e
f
0



q1q2

q3

p1

p2

p3l3

l2

l1

w1

w2

w3

u1

u2

u3

Figure 2.3: Cross ratio connected to triple ratio

Then a short computation gives us (for example w1(p1) = 0 = w1(q1))

w1 = [0, b,−a] w2 = [−d, 0, c] w3 = [f,−e, 0]

Their intersection points lie in the classes

u1 =

[
1,

f

e
,
d

c

]T
u2 =

[
e

f
, 1,

b

a

]T
u3 =

[ c
d
,
a

b
, 1
]T

It is easy to check that the necessary points really lie on a line. Plugging this in our formulas
we deduce

C
(
pi, ui−1, ui+1, qi

)
=

ade

cfb
= T (F1, F3, F2) .
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2.3 Flags and Triple ratio

For later purposes we can, by using the sign of the triple ratio, define a particular subset of F3

or in general of Fn.

Definition 2.3.4. A n-tuple (F1, . . . , Fn) ∈ Fn is called positive if T (Fi, Fj, Fk) > 0 for all
triples i < j < k < i in the cyclic order.
We denote the set of positive triples by F+

n ⊂ Fn.

There are two ways to give a geometric meaning to this property in F3 for a triple F =
(F1, F2, F3):

i) let again i, j, k = 1, 2, 3 be pairwise distinct and let rk and tk as in notation 2.3.3. Then
F > 0 if and only if rk and tk lie in distinct connected components of RP2 \ (li ∪ lj),

ii) F > 0 if and only if there is a triangle 4 with vertices p1, p2, p3 and a triangle 4′ with
edges l1, l2, l3 such that 4 ⊂ 4′. Note that by triangle we mean 2-simplex, i.e. not just
the boundary.

To see i) consider for example k = 1

Choose a basis and representatives as
in proposition 2.9. Then

t1 =

 0

− cf

ed

1

 r1 =


ade+bcf

bdf
b

a

1


which gives us

l3(t1) = 1 = l3(r1)

l2(t1) = −
cf

ed
= −T (F1, F2, F3)

a

b

l2(r1) =
a

b

So the latter have different signs if
and only if T (F1, F2, F3) > 0. q1q2

q3

p1

p2

p3l3

l2

l1

m1

w1

t1

r1

Figure 2.4: 0 < F ∈ F3 and coloured components of
RP2 \ (l2 ∪ l3)

We will consider ii) later in a more general setting. To make a last observation we denote the
parts of 4,4′ like in the picture below so that

4 = T ∪ T1 ∪ T2 ∪ T3 4′ = T ∪Q1 ∪Q2 ∪Q3
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2.4 Suitably nested polygons

T

T3

T1

T2

q1q2

q3

p1

p2

p3l3

l2

l1
m3

m2

m1

w1

w2

w3

u1

u2

u3
T

Q3

Q1
Q2

q1q2

q3

p1

p2

p3l3

l2

l1
m3

m2

m1

w1

w2

w3

u1

u2

u3

Figure 2.5: nested triangles and decomposition for triple of flags

Using this notation we can make an observation about the triangle T

Corollary 2.10. Let (F1, F2, F3) = ((p1, l1), (p2, l2), (p3, l3)) ∈ F+
3 and let 4′ be as above.

Then logT (F1, F3, F2) is the Hilbert length of the side of the triangle T with respect to the properly
convex set 4′. In particular T is an equilateral triangle with respect to this metric.

2.4 Suitably nested polygons

In this section we draw a connection between positive flags and suitably nested polygons and
try to explicitly parametrize F+

n using projective invariants.

Definition 2.4.1. i) A polygon inRP2 is a properly convex and compact set inRP2 whose
boundary is a union of finitely many projective line segments. Those segments are the
edges and the endpoints are the vertices.

ii) A labelled polygon is a polygon equipped with an ordering on its vertices, so that the
successor of any vertex v in this ordering is connected to v by an edge.

iii) We denote the vertices of a labelled polygon N as p1(N), . . . , pn(N) and the edges
e1(N), . . . , en(N) such that ei(N) has endpoints pi(N), pi+1(N).

iv) A pair (N,N ′) of labelled n-gons is suitably nested if and only if N ⊂ N ′ and pi(N) lies
in the interior of ei(N ′).

Sven Grützmacher 13



2.4 Suitably nested polygons

Figure 2.6: Suitably nested polygons with corresponding flags.

Proposition 2.11. Let ((p1, l1), . . . , (pn, ln)) = F ∈ Fn, n ≥ 3. Then F ∈ F+
n if and only if

there is a pair of suitably nested labelled n-gons (N,N ′) so that pi(N) = pi and ei(N ′) ⊂ li.

Proof. To prove this we will take three steps:

1) Let F ∈ F3 and choose the basis (qi)i.
Then there are s, t, r such that

p1 = tq2 + (1− t)q3
p2 = sq3 + (1− s)q1
p3 = rq1 + (1− r)q2

Then

T (F1, F2, F3) =
(1− t)(1− s)(1− r)

tsr

From this it is easy to check that the
theorem holds. For example (see the
picture on the right) assume T > 0
and without loss of generality that
0 < r < 1. Then if s ∈ (0, 1) it fol-
lows directly that t ∈ (0, 1) (red) and
otherwise we have s, t ∈ [0, 1]C .
Note that the green area is also a tri-
angle with vertices q1, q2, q3.

q1q2

q3

p1

p2

p3l3

l2

l1

Figure 2.7: Nested triangles in F+
3 .

2) Now take F ∈ F4.
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2.4 Suitably nested polygons

p1

p2
p4

p3

Figure 2.8: Nested triangles in F+
4 .

Given a nested pair of polygons it is
easy to compute that F ∈ F+

4 . So
assume F = (F1, F2, F3, F4) ∈ F+

4

and consider the notation from
the image on the left. Since
T (F1, F2, F4) > 0 the blue tri-
angle (p1, p2, p4) is inscribed into
(l1, l2, l4). Because T (F1, F3, F4) > 0
and T (F1, F2, F3) > 0 the green and
red line intersect in a point which
lies in the same triangle defined
by (l1, l2, l4) as (F1, F2, F4) (the
triangles need to be suitably nested).

Finally, because T (F2, F3, F4) > 0 the line l3 does not intersect with the triangle
(F1, F2, F4) and the case is proved. Note that:
1) that in the image it is also possible for p3 to lie in the triangle left of p1p4 or right of

p1p2. The same arguments hold. Observe that the polygon may look different.
2) it is easy to see that the product of the four triple ratios above is 1. So the last argument

is not necessary but perhaps provides a better understanding.

3) The above ideas generalize to arbitrary n, and we will omit the proof here.

To define the parametrization of F+
n we need to introduce some variables.

Let F = (N,N ′) = ((p̄1, l̄1), . . . , (p̄n, l̄n)) ∈
F+

n be a pair of suitably nested polygons with
a triangulation T of N such that the vertices
of the triangulation are the set of vertices ofN ,
{p̄1, . . . , p̄n}.
Let IT be the set of internal edges of T andΘT
be the set of triangles of T .
Note that this triangulation induces a trian-
gulation of a labelled n-gon of M for every
(M,M ′) ∈ F+

n .

l̄1

p̄1

Figure 2.9: N ′(black), N (blue), IT (red) and
ΘT (green).

Now choose i, j ∈ {1, . . . , n} so that p̄i, p̄j are endpoints of some internal edge ai,j ∈ IT .
Then let k, k′ ∈ {1, . . . , n} so that i < k < j < k′ < i in the obvious cyclic ordering on
{1, . . . , n} and p̄i, p̄j, p̄k and p̄i, p̄j, p̄k′ are the vertices of the two triangles inΘT that have ai,j
as a commen edge.
For any F = ((p1, l1), . . . , (pn, ln)) ∈ F+

n we define

σi,j(F ) := log
(
−C(li, pk, pk′, pipj)

)
where pipj is the projective line through pi and pj and C is the cross ratio. From the definition
of the cross ratio we can easily see the following lemma which tells us that σi,j is well defined.
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2.4 Suitably nested polygons

Lemma 2.12. For any (l1, l2, l3, l4) ∈ L4 we have C(l1, l2, l3, l4) < 0 if and only if p2 ∈ l2 \{p}
and p3 ∈ l3 \ {p} lie in distinct components of RP2 \ (l1 ∪ l4).

Proof. From the definition of the cross ratio we see directly that sign(C) is the product of the
signs of the four li(pj). Since two lines inRP2 cut the space only in two connected components
the claim follows from a short combinatorical argument.

Similarly for i < j < k < i such that there is a triangle Ti,j,k ∈ ΘT with vertices p̄i, p̄j, p̄k we
define

τi,j,k(F ) := logT
(
(pi, li), (pj, lj), (pk, lk)

)
Now if we consider all together we get for every ai,j ∈ IT two maps σi,j, σj,i and for every
Ti,j,k ∈ ΘT one map τi,j,k. We observe that they are all invariant under PGL (3,R) and thus
descend to maps PGL (3,R) \F+

n −→ R. The following result will end this section and give a
parametrization for F+

n .

Proposition 2.13. Let m = 2 · #IT + #ΘT . The map(
(σi,j, σj,i)ai,j∈IT , (τi,j,k)Ti,j,k∈ΘT

)
: PGL(3,R) \ F+

n −→ Rm

is a homeomorphism.

Proof. Denote
(
(σi,j, σj,i)ai,j∈IT , (τi,j,k)Ti,j,k∈ΘT

)
by f(F ) : PGL(3,R) \ F+

n −→ R2IT +ΘT .
It is clear that f is surjective and continuous. For the injectivity consider an argument ana-
logue to the proof of proposition 2.11. Consider F = (F1, F2, F3, F4) ∈ F+

4 with triangulation
T like in the picture. Then IT =

{
a1,3
}
and ΘT = {(F1, F2, F3), (F3, F4, F1)}.

(p2, l2)

(p3, l3)

(p4, l4)

(p1, l1)

τ1,2,3 σ1,3 σ3,1 τ3,4,1

Figure 2.10: Parameters of F+
4 . Red marks newly used information and green the resulting

information. Read from left to right.
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2.4 Suitably nested polygons

The first triple ratio defines one of the triangles up to PGL(3,R). Then the point p4 is deter-
mined uniquely (up to PGL(3,R)) by σ1,3 and σ3,1 and the line l4 is determined by the second
triple ratio. These observations also generalize directly toF+

n and thus all elements with iden-
tical coordinates are equivalent up to PGL(3,R) in F+

n .
Thus it remains to show that f−1 is continuous. This part will be left to the reader. For an idea
of the proof see [WZ18] or [FG07].
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3 Properly convex sets in RP2

In this chapter we construct properly convex sets in RP2. Since we are greatly interested in
visualizing these sets and understanding their deformations later onwewill start by construct-
ing convex subsets of RP2 as the orbit of a group of projective reflections.
As a first approach we investigate the necessary and sufficient conditions to tile convex parts
of the sphere and then apply them to generate convex sets as the orbit of a triangle reflection
group.
As a second approach we construct convex sets as the orbit of reflection groups generated
from suitably nested polygons of n-tuples of flags.

Figure 3.1: Tiling generated by a (3,3,4) tri-
angle group

Figure 3.2: Tiling generated by a (5,7,9) tri-
angle group

Figure 3.3: Convex set created from eight flags.
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3.1 Tilings of Sn

Wewill follow the articles from Benoist [Ben09] and Casselmann [Cas15] for the construction
of the convex set Ω via triangle reflection groups and [WZ18] for the approach using flags.

3.1 Tilings of Sn

Tilings of the euclidian space R2 or the hyperbolic plane H2 by triangles with angle-sum of
the interior angles less or equal to π are well known mathematical visualization. Especially
the hyperbolic case is interesting since RP2 can be embedded into the projective plane using
the Klein Disk model. The interesting fact here is that such tilings now produce, by a suitable
choice of reflections, a convex set which is not any more a disk. For this reason we start by
considering tilings of convex sets in S2 from which we get some nice convex RP2 sets later
on.
Thus, first we have to define some basic transformations in the projective sphere.

Definition 3.1.1. Let V = Rn+1. Then we define the (projective) sphere as Sn := (V \
{0})/R×

+ and its projective transformations SL±
n+1 := {A ∈ SL(n+ 1,R)| det(A) = ±1}.

Definition 3.1.2. A reflection in Sn is an element of order 2 in SL±
n+1 which is the identity

on a hyperplane (in V ).

Lemma 3.1. Every reflection R can be written as Rα,v = Id−α ⊗ v for α ∈ V ∗, v ∈ V and
α(v) = 2, e.g. R(x) = x− α(x)v.

Proof. First we see that anymapRα,v is the identity on ker(α) and is of order two. So consider a
reflectionR 6= Id. Without loss of generalityR fixes e⊥n+1 and choose α = (0 . . . 0 1). Because
R is of order two the last eigenvalue must be−1with a one dimensional eigenspaceE. Choose
v ∈ E such that vn+1 = 2. Then R = Rα,v .

Definition 3.1.3. A rotation in Sn is an element which is the identity on a subspace of

codimension 2 and is given by
(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
on the 2-dimensional subspace and in a

suitable basis. The angle of rotation is θ.

Definition 3.1.4. Let G be a group of reflections and L a closed subset of Sn. We say (G,L)

tiles a subset C of Sn if the interiors int (g(L)) , g ∈ G are disjoint and C =
⋃
g∈G

g(L).

We are interested in cases where, for example, triangles tile Sn or some subset of it. For this
we consider two reflections R1 = Rα1,v1

, R2 = Rα2,v2
and the set

L := {x ∈ Sn|α1(x) ≤ 0, α2(x) ≤ 0} .

Furthermore, let a12 = α1(v2) and a21 = α2(v1). Let G be the group generated by R1 and R2.
Let us make a short observation:

Lemma 3.2. If either α1, α2 or v1, v2 are linearly dependent, then a12a21 = 4.

Proof. Consider the matrix

C =

(
α1(v1) α1(v2)
α2(v1) α2(v2)

)
=

(
2 a12
a21 2

)
.
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3.1 Tilings of Sn

If one of the pairs is linearly dependent this matrix is singular. Since

0 = det(C) = 4− a12a21

the result follows.

Note that in our cases α1, α2 are always independent, but we state it in a general setting.
It turns out that the values a12, a21 are the key to classifying which groups tile the sphere. The
following lemma will be the basis for constructing convex domains and tilings later on.
Because our main use of this lemma will lie in part b) and c) we will not prove everything in
detail here. For further information see [Cas15].

Lemma 3.3. Using the notation above:
if a12 > 0 or a21 > 0 then (G,L) doesn’t tile any subset of Sn. For a12 ≤ 0 and a21 ≤ 0 we
consider

a) a12a21 = 0: we have either

i) a12 = 0 = a21: here G = Z/2× Z/2 and (G,L) tiles Sn

ii) or (G,L) does not tile any subset of Sn

b) 0 < a12a21 < 4: define θ by 4 cos2 (θ/2) = a12a21. Then R1R2 is a rotation of angle θ. If
θ =

2π

m
for m ≥ 3, then R1R2 is of order m and G = Z/m o Z/2. In that case (G,L) tiles

Sn. Otherwise not.

c) a12a21 = 4: then R1R2 is unipotent, i.e. all eigenvalues are 1, and (G,L) tiles a subset of Sn

whose closure is a half sphere.

d) a12a21 > 4: then R1R2 has two distinct eigenvalues and (G,L) tiles a subset of Sn whose
closure is the intersection of two half spheres.

Proof. Since each reflection fixes a hyperplane it suffices to consider the case n = 2.
We begin with the case a12 > 0 or a21 > 0:
Without loss of generality let a12 > 0. We have for x ∈ int (L)

R2(x) = R1(R2(x)) ⇔ α1(x)v1 = α1(v2)α2(x)v1 ⇔
α1(x)

α2(x)
v1 = α1(v2)v1

The two boundary points of L suffice αi(x) = 0 and αj(x) < 0 for i 6= j, i, j ∈ {1, 2} so

α1(x)

α2(x)
∈ (0,∞) , x ∈ int (L) .

The mean value theorem tells us that if a12 > 0 there is x ∈ int (L) such that R2(x) =
R1(R2(x)). Since reflections send boundary points to boundary points we get

R2(x) ∈ int (R2(L)) ∩ int (R1(R2(L))) 6= ∅

Now we assume a12 ≤ 0 and a21 ≤ 0 for the rest of the proof.
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3.1 Tilings of Sn

a) A direct computation shows that R1R2 = R2R1 so G = Z/2 × Z/2 and the computation
above shows that a12 = 0 implies that R2(x) = R1(R2(x)) if and only if α1(x) = 0. This
concludes i) since we tile Sn into 4 regions L,R1(L), R2(L), R1R2(L).
For ii) one can compute that G fixes a line and tiles each side of the line separately. Thus,
(G,L) does not tile a subset of Sn. For detailes in this case consider [Cas15, p.7-8].

b) Since this is one of our most important cases we will consider it in more detail below.

c) in this case we have four possibilities for α1, α2, v1, v2 to be linearly (in-)dependent but
will only consider the case where both α1, α2 and v1, v2 are independent. We will start
by considering the case in R3. If we consider the reflections in R3 and set L to be the
intersection of the kernels of the αi then in the quotient R3/L the vectors v1 and v2 are
linearly dependent.
It is easily shown by a short computation that the reflections become shears along the line
through these points. Furthermore, on the line through v1, v2 the reflection is a simply
multiplication by −1. A fundamental domain is thus given by the area between the two
kernels on one side of that v1, v2−axis.
Considering the action now in n dimensions again, using the fact that v1 − v2 lies in L we
can deduce that the action of G tiles a domain of Sn whose closure is a half space.

d) This is left to the interested reader.

For the proof of b) we have to consider some steps.
Again we note that it is sufficient to consider reflec-
tions in R2. Let H1, H2 be the hyperplanes fixed
by R1 or R2, respectively. Then H1 ∩ H2 has codi-
mension 2 and we can consider S2 ⊂ R3. Choose
x ∈ H1∩H2 as one basis vector and choose the pro-
jections of v1 and v2 on (H1 ∩H2)

⊥ for the other
two. Then the x-dimension is also fixed, and we
have reflections in R2. Figure 3.4: Intersecting hyper-

planes with basis
For simplicity we use the notation:

R1 = Rα,v = Id−α⊗ v R2 = Rβ,w = Id−β ⊗ w

Then (v, w) is a basis of R2 ( since a12a21 6= 4).
Next we want to show that R1R2 is a rotation, and so we need a suitable basis. Therefore we
first see that we can choose a12 = a21 since scaling, for example (α, v) −→ (cα, c−1v) with
c 6= 0, does not change the reflection. So without loss of generality let a = a12 = a21, then:

Lemma 3.4. Given 0 < a12a21 < 4 and a12, a21 < 0 there exists a positiv definite, non degener-
ate inner product ◦ on R2 such that the two reflections are orthogonal, i.e. v ⊥ kerα, w ⊥ ker β.

Proof. A short computation shows that

kerα = 〈a12v − 2w〉 ker β = 〈2v − a21w〉
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So assume we have an inner product ◦ with the desired properties. Then it needs to suffice

(a12v − 2w) ◦ v = 0 (2v − a21w) ◦ w = 0

⇔ 2w ◦ v = a12v ◦ v ⇔ 2w ◦ v = a21w ◦ w

So its matrix representation would be(
v ◦ v v ◦ w
w ◦ v w ◦ w

)
= (v ◦ w)

(
2/a12 1
1 2/a21

)
= (v ◦ w)

(
2/a 1
1 2/a

)
Choosing v ◦ w =

a

2
this becomes (

1 a/2
a/2 1

)
Now if 0 < a2 < 4 this matrix is positive definite and non-degenerate.

In this setting we have:

α = (2 a) v =

(
1
0

)
kerα =

{
t

(
1

− 2

a

)∣∣∣∣∣t ∈ R

}

β = (a 2) w =

(
0
1

)
ker β =

{
t

(
1
−a

2

)∣∣∣∣t ∈ R
}

and more importantly if τ is the angle between the two reflection axes then by setting
x = (1,−2/a)T , y = (1,−a/2)T we have

cos2(τ) =
|x ◦ y|2

(x ◦ x)(y ◦ y)
=

a2

4

and thus R1R2 is a rotation of θ = 2τ where θ is given by 4 cos2(θ/2) = a21a12. The rest of b)
follows directly from that.

3.2 Convexity
For simplicity we are, in this section, interested in tilings by triangles. Yet to be a bit more
general we use Lemma 3.3 and state the following theory for 2-dimensional convex polygons
P ⊂ S2. For the proofs we refer to [Ben09].

Definition 3.2.1. A convex polygon P in S2 is the convex hull of n ≥ 3 points pi where
pi ∈ ∂P for all i = 1, . . . , n.
An edge is a 1-dimensional convex subset which is the intersection of ∂P with a hyperplane
in R3.

So now whenever we take a convex polygon P we can consider the set of edges S. For every
s ∈ S we choose a projective reflection Rs = Id−αs ⊗ vs that fixes s. Without loss of
generality we can assume that P = {x|αs(x) ≤ 0 ∀s}. Now let as,t = αs(vt) and Γ be the
group generated by the Rs. If we want the images {γ(P )|γ ∈ Γ} to tile some subset of S2

then the following is necessary:
For all edges s, t such that s ∩ t is a point
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3.3 Examples

1. as,t ≤ 0 and
(
as.t = 0 ⇔ at,s = 0

)
2. as,tat,s ≥ 4 or as,tat,s = 4 cos2

(
π

ms,t

)
with integer ms,t ≥ 2

This boils down to the following result by Vinberg, mapped to our case S2:

Theorem 3.5 (Vinberg). Let P be a convex polygon of S2 and, for each edge s of P , let Rs =
Id −αs⊗ vs be a projective reflection fixing the face s. Suppose that conditions above are satisfied
for every s, t such that codim(s ∩ t) = 2. Let Γ be the group generated by the reflections Rs .
Then

a) the polyhedra γ(P ), for γ ∈ Γ, tile some convex subset C of S2,

b) the group Γ is discrete in SL±(3,R).

3.3 Examples
In the following we visualize some examples. They will, most likely, each span one page.
Theorywise this is the case when ai,jaj,i < 4. All images will show the orbits of the action of
triangle reflection groups together with its boundary. Note that we only draw finite iterations
and the boundary is C1 in the limit (see [Ben60]).
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3.3 Examples

Figure 3.5: Tiling generated by a (4,4,4) triangle reflection group. The depths shown
are 1,2,4,6 and 9.
Normal vector for affine plane is (1, 4, 5).
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3.3 Examples

Figure 3.6: Tiling generated by a (3,3,4) triangle group. The depths shown are 1,5 and
10.
Normal vector for affine plane is (1, 1, 1).
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3.3 Examples

Figure 3.7: Tiling generated by a (4,8,12) triangle group. The depths shown are 1,3,6,8
and 12.
Normal vector for affine plane is (0.5, 4, 5).
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3.4 Construction using flags, finite volume polygons

3.4 Construction using flags, finite volume polygons
In this section we will use a different approach to construct a properly convex set Ω ⊂ RP2.
We will make use of theorem 3.5 of the previous contruction. The idea here is that the nested
polygon for an element in F+

n creates a tiling of a convex subset inside the outer polygon.
Furthermore we will introduce the deformations we are interested in later on tuples of flags.
Thus this construction is a solid basis to construct useful convex sets for our purposes.
Let F = (F1, . . . , Fn) ∈ F+

n where Fi = (pi, li) and such that the (pi)i are ordered (e.g.
clockwise). We obtain two polygonsN andN ′ whereN has vertices (pi)i andN ′ has vertices
qi := li ∩ li+1. Note that the indices are to be taken mod n. We get this picture:

p1

pn

p2

q1

qn

q2

Figure 3.8: N in blue and N ′ in black.

3.4.1 Construction
First we define the n-gon-reflection group Γ to be the group generated by the reflections along
the (pipi+1)i. The reflections are given by

Ri := Rαi,qi
= Id−αi ⊗ qi

with αi = pipi+1. With this we can define Ω the interior of the union of orbits, i.e.

Ω := int

(⋃
γ∈Γ

γN

)

First of all we want to check if this setting generates a tiling by copies ofN . We note here that
given two points p, q we have pq = (p × q)T where × is the vector crossproduct. Also given
two lines l, k ∈ RP2∗ their intersection point can be written as l ∩ k = lT × kT . Using this
and properties of the cross product we get

pq(l ∩ k) = l(p)k(q)− k(p)l(q)

It follows
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3.4 Construction using flags, finite volume polygons

Lemma 3.6. If 2 = pi−1pi(qi) for all i = 1, . . . , n then we have

pi−1pi
(
li−1 ∩ li

)
· pipi+1

(
li ∩ li+1

)
= 4

More precisely, whenever two sides of N intersect, e.g. are labelled by consecutive numbers, we
have αi(qi+1)αi+1(qi) = 4.

Proof. We know that 2 = pi−1pi(qi) = pi−1pi(li−1 ∩ li) = −li(pi−1)li−1(pi). Thus using the
above formular and li(pi) = 0 the result follows.

So by theorem 3.5 orbits of N under Γ tile a properly convex subset of Sn.

Figure 3.9: Convex sets as boundaries of a union of orbits, drawn with initial n-gon. Shown
are values n = 4, 5, 6, 7, 8, 9. Flags are drawn in a light gray.

3.4.2 Finite volume

In this subsection we want to draw a connection to hyperbolic cases. We will only sketch the
ideas and omit most of the proofs. For more details consider [Mar17].
If we consider an ideal n-gon inH2 then it is a well known fact that its hyperbolic area is finite.
Note that being ideal simply means that the vertices of our polygon lie on the unit circle, e.g.
the boundary of H2.
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3.4 Construction using flags, finite volume polygons

Figure 3.10: Ideal triangles/5-gon in H2 and ideal tetrahedron in H3.

If we compare this fact with our construction we see some similarities and this brings up
the idea to investigate the volume of the fundamental polygon from which the properly
convex set Ω is constructed in the previous subsection. We will understand this connection
to hyperbolic geometrie in the following part.

On the interior of Ω the Hilbert metric is defined. For any two points p, q ∈ Ω let a, b ∈ ∂Ω
be the points so that a, p, q, b lie on a projective line in RP2 in that order. Then

dΩ(p, q) =
1

2
log |C(a, p, q, b)|

This will define us a so called Finsler metric on Ω which is, after choosing an affine chart and
a Euclidean norm, given by

FΩ(x, y) =
|y|
2

(
1

|xa−|
+

1

|xa+|

)
where a− and a+ are the intersection points of the half-line starting a in direction −y and y
and |xy| is the distance on the affine plane between x and y (see [Ver04]). From this we can
define an absolutely continuous measure µΩ with respect to the Lebesgue measure. We will
not need an explicit form for the measure but only state the following:

Proposition 3.7 (stated in [Mar17]). Let Ω1 ⊂ Ω2 be two properly convex open sets. Then for
any Borel set A of Ω1 we have µΩ2

(A) ≤ µΩ1
(A).

Our goal is the following:

Proposition 3.8. LetF = (F1, . . . , Fn) ∈ F+
n and (N,N ′) be a pair of suitably nested polygons.

Let Ω be the convex set constructed like in the last subsection. Then, with regard to the Hilbert
metric on Ω, µΩ(N) < ∞.

To prove we follow directly from this lemma:

Lemma 3.9. Let Fi = (pi, li). Assume that for each i = 1, ..., n there is an ellipse Ei ⊂ Ω such
that ∂Ei ∩ ∂Ω = {pi}, pj /∈ Ei for j 6= i and Ei ∩ Ej = ∅ has only two connected components.
If µΩ(N ∩ Ei) < ∞ then µΩ(N) < ∞.
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3.4 Construction using flags, finite volume polygons

Proof. The assumptions allow us to cutN into n+1 componentsM,M1, . . . ,Mn whereMi =

N ∩Ei and M = N \
⋃

i=1,...,n
Mn. In this case M is compact and thus µΩ(M) < ∞. It follows

µΩ(N) = µΩ(M) +

n∑
i=1

µΩ(Mi) < ∞.

This proves the claim.

Figure 3.11: Cutting up a suitably nested polygon to compute its volume.

So what we need to show is that we can find these ellipses Ei such that µΩ(N ∩Ei) < ∞. We
will from now on only consider the case for a single i ∈ {1, ..., n} and denote the needed data
as p, l, E,N instead of pi, li, Ei, N .
From the construction of Ω we know that the setting is as follows: l is the tangent on Ω at
p and we consider two reflections R1, R2 along lines α, β with fix point v, w (see figure 3.12
(left)). Because the group action tiles a half space the images under the reflections is given as
shown. The next lemma allows us to simplify the problem a little bit.

Lemma 3.10. For every t > 0 there exists a transformation g ∈ PGL(3,R) fixing α, β, p and w
that sends v to v′ where disteucl(v′, p) = t · disteucl(v, p).

Proof. Choose a basis e1 = p, e2 = w, e3 where e3 defines β. By scaling the ei we can assume
that α is defined by [1, 1, 1]T .
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3.4 Construction using flags, finite volume polygons

Now g fixes α, β, p, w, thus it is given byλ1 0 µ1

0 λ2 0
0 0 µ2

 ,

e.g. [e1] 7→ [λ1e1] = [e1] and [e3] 7→ [µ1e1 +
µ2e3] ∈ β. Because g fixes α, i.e.

[1, 1, 1]T 7→ ε1e1 + ε2[1, 1, 1]
T

it follows that λ2 = µ2. The coordinates
of v are given by [x, y, 0]T and thus g(v) =
[λ1x, λ2y, 0]

T . Since we can choose the
scalars arbitrarily v′ = g(v) can be chosen
as wished.

β
α

p = e1v w = e2

[1, 1, 1]T
e3

Figure 3.12: Setting around a point p with
two reflections.

This simply means that we can transform our setting by a map in PGL(3,R) such that v lies
suitably on l. Especially we can choose v in a way that there is a circle S with the following
properties:

i) S ∩ l = {p},

ii) there are points x, y ∈ S such that v, w are the intersections of l with the tangents on S
at x and y, respectively

β
α

pv w

Figure 3.13: The spheres S, S ′ and S ∩ N,S ′ ∩ N shown in orange and red. On the right we
have the upper half space model with p being mapped to ∞.

With this we can use our knowledge from hyperbolic geometry, i.e. S is preserved by the two
reflections (that can be seen easily using the upper half plane model, see figure 3.13(right)) and
thus S is a subset of the union of orbits of that action. We can now choose a smaller sphere
S ′ ⊂ S touching p and which is also preserved by the reflections. For any choice of S ′ we
then get µS(S

′ ∩N) < ∞.
Let S∗ be the ellipse obtained from S and E the one obtained from S ′. Using proposition
3.7 we get from E ⊂ S∗ ⊂ Ω that µΩ(E ∩ N) ≤ µS∗(E ∩ N) < ∞. Note that projective
transformations do not change the measure since they are isometries for the Hilbert metric.
This immediately proves proposition 3.8.
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3.5 Examples
In the following we will see pictures of two examples. In this case it is not so easy to see the
change for each level so we include a more detailed view of each example. Theorywise this is
the case when ai,jaj,i = 4.

Figure 3.14: Construction of convex set via flags. Each level is differently coloured. This is a
6-gon, 4 levels deep.

Figure 3.15: Construction of convex set via flags. Each level is differently coloured. This is a
7-gon, 4 levels deep.
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4 Deformations of convex sets in RP2

In this chapter we want to take a look at some deformations of convex sets in RP2. We will
make use of the projective invariant defined previously and define 1-parameter families of
transformations that continuously change the invariants. First we take a look at the triple ratio
and triples of flags. Their deformation will be described by the erruption flow. Afterwards we
take a look at 4-tuples of flags. There, using a division into two triangles we define the bulging
and shearing flows to understand the change in the invariants defined by the cross ratio.
After considering the generalization on n-tuples of flags we give a short insight into the case
of convex sets with C1-boundary. There we will discuss how the defined flows can be gener-
alized onto the convex sets with C1-boundary by using two approaches and looking at their
connection.

4.1 Flag deformations
In this section we want to define deformations of F+

n . Therefore we will start with F+
3 and

F+
4 and generalize these methods to the n-dimensional case.

4.1.1 Triples in F+
3

Let (F1, F2, F3) ∈ F+
3 and (4,4′) be the corresponding pair of suitably nested labelled tri-

angles. We remember the notation from notation 2.3.3. We first want to obtain three quadri-
laterals from (4,4′). We did this before in figure 2.5:

T

T3

T1

T2

q1q2

q3

p1

p2

p3l3

l2

l1
m3

m2

m1

w1

w2

w3

u1

u2

u3
T

Q3

Q1
Q2

q1q2

q3

p1

p2

p3l3

l2

l1
m3

m2

m1

w1

w2

w3

u1

u2

u3

Figure 4.1: Nested triangle in a triple of flags F ∈ F+
3 and partition into quadrilaterals plus

triangle.
So define

4 = T ∪ T1 ∪ T2 ∪ T3 4′ = T ∪Q1 ∪Q2 ∪Q3
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4.1 Flag deformations

Conversely we can use this and proposition 2.9 to construct a pair of suitably nested triangles
from three labelled quadrilaterals in P4 as follows:
Up to PGL(3,R) there is a unique labelled quadrilateral, so we may assume that all quadrilat-
erals are the same; then using the triple or cross ratio assemble them in the right way. To see
an explicit construction see section 5.3.
This also shows that we only need to change or deform those assembly instructions to get a
path in F+

3 \ PGL(3,R).
To be explicit we choose a basis (q1, q2, q3) (reminder: actually choose v1, v2, v3 representa-
tives) and define the maps

g1(t) =

1 0 0
0 et/3 0
0 0 e−t/3

 g2(t) =

e−t/3 0 0
0 1 0
0 0 et/3

 g3(t) =

et/3 0 0
0 e−t/3 0
0 0 1


Lemma 4.1. For all i = 1, 2, 3 p′ = gi−1(t)(pi) = gi+1(pi) lies on li and ui(t) := gi(t)(ui) lies
on the line through qi−1 and gi(t)(pi−1).

Proof. Here it is important to note that we have projective equivalence classes.
The first statement follows directly from the fact that

li = eTi p1 =

0
a
b

 p2 =

c
0
d

 p3 =

e
f
0


The second statement follows from a simple calculation (see proof of proposition 2.9 for help).

This implies that we are in a similar setting as above and there is a unique labelled triangle
T (t) such that (4(t),4′(t)) ∈ F+

3 where

4′(t) := (g1(t)(Q1)) ∪ (g2(t)(Q2)) ∪ (g3(t)(Q3)) ∪ T (t)

4(t) := (g1(t)(T1)) ∪ (g2(t)(T2)) ∪ (g3(t)(T3)) ∪ T (t)

Figure 4.2: Triple of flags with triple ratio 1 and its erruptions for values t = 1, 2.5, 5. 4(t) in
red and T (t) in green.

Definition 4.1.1. The erruption flow on F+
3 is the flow εt : F+

3 −→ F+
3 defined by

(4,4′) 7→ (4(t),4′(t)).

Using this flow we can describe the change in the assembly instruction. To be exact:

Proposition 4.2. Let (F1(t), F2(t), F3(t)) ∈ F+
3 be the triple of flags corresponding to

(4(t),4′(t)). Then

T (F1(t), F2(t), F3(t)) = etT (F1, F2, F3)
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4.1 Flag deformations

Proof. Choosing the usual setting we get

g3(t)p1 =

 0
a · e−t/3

b

 g1(t)p2 =

 c
0

d · e−t/3

 g2(t)p3 =

e · e−t/3

f
0


and thus

T (F1(t), F2(t), F3(t)) =
cfb

e−tade
= etT (F1, F2, F3)

As a last remark regarding F+
3 it is nice to note that the name comes from imagining 4 as a

volcano with T being the opening of the volcano. As t > 0 grows the opening becomes bigger.

Another nice visualization is the following where t ranges from 0 (red) to e±29 (purple) by
applying an t = ±0.2 erruption a hundred times.

Figure 4.3: Triangle T for triple ratio 1 and errupting a hundred times with t = 0.2 (left) or
t = −0.2 (right).

4.1.2 Quadruples in F+
4

Consider a quadruple (F1, F2, F3, F4) ∈ F+
4 with its associated pair of nested quadrilaterals

(N,N ′). We want to splitN into two triangles along an oriented line segment. LetNL, NR be
the two triangles left and right of that line segment a1,3 defined by

NL = (F1, F3, F2) NR = (F1, F3, F4)

We call p1 the backward point and p3 the forward point.
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4.1 Flag deformations

(p1, l1)

(p2, l2)

(p3, l3)

(p4, l4)
NR

NL

Figure 4.4: Decomposition of F ∈ F+
4 into (N,N ′) with triangulation.

Also a1,3 decomposes N ′ into two quadrilaterals.

We now define deformations associated to the above decomposition of N into two trian-
gles. Let v1, v3, v1,3 be vectors that span p1, p3 and the intersection point l1 ∩ l3. In the basis
(v1, v1,3, v3) define the following transformations in PGL(3,R)

s(t) =

et/2 0 0
0 1 0
0 0 e−t/2

 b(t) =

e−t/6 0 0
0 et/3 0
0 0 e−t/6


Definition 4.1.2. 1) Let

N(t) := (s(t) ·NL) ∪ (s(−t) ·NR)

N ′(t) := (s(t) ·N ′
L) ∪ (s(−t) ·N ′

R)

M(t) := (b(t) ·NL) ∪ (b(−t) ·NR)

M ′(t) := (b(t) ·N ′
L) ∪ (b(−t) ·N ′

R)

2) The shearing flow on F+
4 associated to a1,3 is the flow

(γ)t : F+
4 −→ F+

4 , (N,N ′) 7→ (N(t), N ′(t))

3) The bulging flow on F+
4 associated to a1,3 is the flow

(β)t : F+
4 −→ F+

4 , (N,N ′) 7→ (M(t),M ′(t))

Lemma 4.3. The shearing and bulging flows on F+
4 are well defined.

Proof. It is easy to see that s(t) and b(t) both fix p1 and p3. Since the matrices are diagonal in
this basis and points on the lines a1,3, l1 or l3 are given by points where one entry is always
zero we see that both flows stabilize the three lines.
Thus (N(t), N ′(t)) and (M(t),M ′(t)) are suitably nested, labelled quadrilaterals.

As in the case with the erruption flow these flows change the invariants, in this case the cross
ratio, in an easy way
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4.1 Flag deformations

Proposition 4.4. Let (F1(t), F2(t), F3(t), F4(t)) ∈ F+
4 be the quadruple corresponding to

(N(t), N ′(t)). Then, if xy is the projective line through x and y,

C
(
l1(t), p2(t), p4(t), p1(t)p3(t)

)
= etC (l1, p2, p4, p1p3)

C
(
l3(t), p4(t), p2(t), p1(t)p3(t)

)
= etC (l3, p4, p2, p1p3)

And if (F1(t), F2(t), F3(t), F4(t)) ∈ F+
4 is the quadruple corresponding to (M(t),M ′(t)), then

C
(
l1(t), p2(t), p4(t), p1(t)p3(t)

)
= etC (l1, p2, p4, p1p3)

C
(
l3(t), p4(t), p2(t), p1(t)p3(t)

)
= e−tC (l3, p4, p2, p1p3)

Proof. Given the basis (v1, v1,3, v3) and using figure 4.4 as help we find representatives for the
first case ((N(t), N ′(t))):

l1 = l1(t) = (0, 0, 1) p2 = (a, b, c) p2(t) =
(
et/2a, b, e−t/2c

)
l3 = l3(t) = (1, 0, 0) p4 = (x, y, z) p4(t) =

(
e−t/2x, y, et/2z

)
L := p1p3 = p1(t)p3(t) = (0, 1, 0)

Thus it is easy to see that

C
(
l1(t), p2(t), p4(t), p1(t)p3(t)

)
=

et/2zb

e−t/2cy

= et
zb

cy
= etC (l1, p2, p4, p1p3)

The rest is proven in the same way.
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4.1 Flag deformations

Figure 4.5: InitialF ∈ F+
4 , shearing deformation and bulging deformation. 25 times deformed

with t = 0.1 (red over green and purple to red).
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4.1 Flag deformations

Here we draw deformations using shearing and bulging flows on F+
4 together

Figure 4.6: Initial F ∈ F+
4 . First image is shear and bulge in each step with t = 0.1. Second is

bulge with t = 0.2, shear with t = 0.1 and third is bulge with t = 0.1, shear with
t = 0.2
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4.1 Flag deformations

4.1.3 n-tuples in F+
n

Nowwe have all the transformations for n = 3, 4 and thus we are ready to generalize this. Let
(N,N ′) = ((p′1, l

′
1), . . . , (p

′
n, l

′
n)) ∈ F+

n and choose a triangulation like in proposition 2.11.

Let ai,j be the edge of the triangulation with
endpoints p′i, p′j . Since the vertices of N are
labelled we get an induced orientation on N
and ai,j cuts both N and N ′ in two labelled
polygons. Note that they are always non-
empty unless ai,j is a boundary segment of
N .
Define the labelled polygons
NL, NR, N

′
L, N

′
R such that NL, N

′
L lie

on the left side of ai,j and NR, N
′
R lie on the

right side,NL∪NR = N andN ′
L∪N ′

R = N ′.

p1

p4

Figure 4.7: NL, N
′
L (orange), NR, N

′
R (green)

and a1,4 (yellow)

Now again let vi, vj, vi,j be vectors spanning p′i, p
′
j and l′i ∩ l′j respectively. Then let si,j(t)

and bi,j(t) be the transformations from above for F+
4 , represented in the basis (vi, vi,j, vj).

Analogue to the previous case set

Ni,j(t) :=
(
si,j(t) ·NL

)
∪
(
si,j(−t) ·NR

)
N ′

i,j(t) :=
(
si,j(t) ·N ′

L

)
∪
(
si,j(−t) ·N ′

R

)
Mi,j(t) :=

(
bi,j(t) ·NL

)
∪
(
bi,j(−t) ·NR

)
M ′

i,j(t) :=
(
bi,j(t) ·N ′

L

)
∪
(
bi,j(−t) ·N ′

R

)
With this we can define the analogue flows on F+

n .

Definition 4.1.3. Let ai,j be an internal edge. Then

1) The shearing flow on F+
n associated to ai,j is the flow

(γi,j)t : F+
n −→ F+

n , (N,N ′) 7→ (Ni,j(t), N
′
i,j(t))

2) The bulging flow on F+
4 associated to ai,j is the flow

(βi,j)t : F+
n −→ F+

n , (N,N ′) 7→ (Mi,j(t),M
′
i,j(t))

With the same argument as before we get the following:

Lemma 4.5. The shearing and bulging flows on F+
n are well defined.

After defining the flows above which transform the coordinates defined using the cross ratio
we also want to see if we can do a similar thing for the triple ratio of the triangles in the
triangulation of N .
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4.1 Flag deformations

Therefore consider i, j, k =
1, . . . , n so that i < j < k and let

p1 := p′i, p2 := p′j, p3 := p′k

Now the three edges ai,j, aj,k and
ak,i cut N ′ into four polygons
M ′

1,M
′
2,M

′
3 and 4 where M ′

i has
ai−1,i+1 as an edge and 4 has ver-
tices p1, p2, p3.

p′3 = p2

p′1 = p1

p′7 = p3

M ′
2

M ′
1

M ′
3

4

Figure 4.8: Decomposition into four polygons for
i, j, k = 1, 3, 7.

p2

p1

p3

Figure 4.9: N ′
1 in blue with M ′

1 less opaque. Same for
N ′

2 (green) and N ′
3 (orange)

Set u1, u2, u3 as in notation 2.3.3
and let Ti be the triangle in 4 with
vertices pi−1, ui, pi+1.
Now if we denote N ′

i := M ′
i ∪ Ti

then N ′ = T ∪ N ′
1 ∪ N ′

2 ∪ N ′
3 if

T is the triangle in 4 with vertices
u1, u2, u3. Similarly, the three edges
cutN into four polygons. LetMi be
such that N = 4∪M1 ∪M2 ∪M3

enumerated like the M ′
i . Then also

N = T ∪N1 ∪N2 ∪N3.

Now if p1 := p′i, p2 := p′j, p3 := p′k we define (qi)i=1,2,3 like in subsection 4.1.1, choose the basis
(q1, q2, q3) and define the maps g1(t), g2(t), g3(t) ∈ PGL(3,R). Then define

Ni,j,k(t) := (g1(t) ·N1) ∪ (g2(t) ·N2) ∪ (g3(t) ·N3) ∪ T (t)

N ′
i,j,k(t) := (g1(t) ·N ′

1) ∪ (g2(t) ·N ′
2) ∪ (g3(t) ·N ′

3) ∪ T (t)

Like before the pair
(
Ni,j,k(t), N

′
i,j,k(t)

)
is a pair of suitably nested polygons.

Definition 4.1.4. The erruption flow on F+
n associated to pi, pj, pk is the flow

(εi,j,k)t : F+
n −→ F+

n , (N,N ′) 7→
(
Ni,j,k(t), N

′
i,j,k(t)

)
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4.1 Flag deformations

Figure 4.10: Erruptions on a 7-gon in F+
7 associated to the drawn triangle for t = 2, 4, 6, 8.

The last two images show all values at once.
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4.1 Flag deformations

Figure 4.11: Erruptions on a 7-gon in F+
7 associated to all triangles for t = 0.2, 0.4.

Thus we have generalized all flows to F+
n . Let (N,N ′) = ((p̄1, l̄1), . . . , (p̄n, l̄n)) ∈ F+

n and
let T be a triangulation of N such that the set of vertices of the triangulation is {p̄1, . . . , p̄n}.
Again let IT be the set of internal edges of T and let ΘT be the set of triangles of T .
The erruption, shearing and bulging flows, associated to a triangulation of N , descend natu-
rally to flows on PGL(3,R) \ F+

n . Those flows have the following properties.

Proposition 4.6. Consider the collection of flows on PGL(3,R) \ F+
n

M(F+
n ) :=

{
γi,j
∣∣ai,j ∈ IT

}
∪
{
βi,j

∣∣ai,j ∈ IT
}
∪
{
εi,j,k

∣∣ {ai,j, aj,k, ak,i} ∈ ΘT
}

Then

1) For any φ1, φ2 ∈ M(F+
n ) and any t1, t2 ∈ R (φ1)t1(φ2)t2 = (φ2)t2(φ1)t1 as flows on

PGL(3,R) \ F+
n

2) For any pair F1, F2 ∈ PGL(3,R) \ F+
n there is a sequence φ1, . . . , φm ∈ M(F+

n ) and a
sequence t1, . . . , tn ∈ R such that F1 = (φ1)t1 ◦ · · · ◦ (φn)tn(F2).

Proof. These proofs follow directly from the parametrization ofF+
n and the fact that the above

flows change specific coordinates each.
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4.1 Flag deformations

Figure 4.12: Bulging of a 6-gon at all internal edges with t = 0.5. The colours show the
deformation after using 1,2 or all 3 internal edges (red to blue).

Figure 4.13: Eruption flow on F+
3 visualized in 3D.
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4.2 Deformations of convex sets

4.2 Deformations of convex sets
In this section we want to discuss how to define the introduced flows on properly convex sets.
We will give two approaches. The first will be a generalization of the results for elements in
F+

n . The second approach will apply the flows for flags on sets created by tilings via polygons.

4.2.1 With C1-boundary (general)
This subsection will give the rough outline on how to generalize the ideas from the deforma-
tions or flows on F+

n to proper convex sets with C1-boundary. This will help understand the
following set:

D :=
{
(ξ,Ω)

∣∣Ω ⊂ RP2 strictly convex with C1 boundary, ξ : S1 −→ ∂Ω homeom.
}

To be able to state the results we introduce some notation. Thiswill follow chapter 4 of [WZ18].

Notation 4.2.1. • For pairwise distinct x, y, z ∈ S1 in that order let [x, y]z and (x, y)z be
the closed and open subintervals of S1 with endpoints x, y that do not contain z.

• For any properly convex domainsΩ ⊂ RP2 and a, b ∈ Ω let [a, b] and (a, b) be the closed
and open oriented projective line segments in Ω with a, b as backward and forward
points.

• For p, q ∈ RP2 let pq be the projective line through p and q

• For any (ξ,Ω) ∈ D and for x ∈ S1 let ξ∗(x) be the tangent line to ∂Ω at ξ(x)

ξ(x)ξ(y)

ξ(z)

[ξ(x), ξ(y)]

ξ∗(x)

Figure 4.14: Notation on a convex set with C1-boundary. [ξ(x), ξ(y)]ξ(z) in blue.

We will start by defining the bulging and shearing flow in this case. Let x, y ∈ S1 be a
pair of distinct points. Then [ξ(x), ξ(y)] cuts Ω in two properly convex domains Ωx,y,L and
Ωx,y,L which lie left and right of [ξ(x), ξ(y)]. The orientation is induced by ξ. Let px,y be the
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4.2 Deformations of convex sets

intersection of ξ∗(x) and ξ∗(y). If we now choose the basis (ξ(x), px,y, ξ(y)) we define the
maps

sx,y(t) =

et/2 0 0
0 1 0
0 0 e−t/2

 bx,y(t) =

e−t/6 0 0
0 et/3 0
0 0 e−t/6


It is easy to check that each g ∈ PGL(3,R) that fixes the basis above can be written as a
product sx,y(t1)bx,y(t2). This follows directly from the fact that elements acting on the basis
act on the maps above by conjugation.
Now let gt1,t2 := sx,y(t1)bx,y(t2) for t1, t2 ∈ R. Then for any g = gt1,t2 let

Ωg := (ξ(x), ξ(y)) ∪
(
g · Ωx,y,L

)
∪
(
g−1Ωx,y,R

)
and if BL and BR are the components of S1 \ {x, y} such that ξ(BL) and ξ(BR) are the
boundaries of Ωx,y,L and Ωx,y,R let

ξg(a) =


g ◦ ξ(a) a ∈ BL

g−1 ◦ ξ(a) a ∈ BR

ξ(a) a = x, y

ξ(x)

ξ(y)

px,y

Figure 4.15: Data for shearing and bulging flow on convex sets with C1 boundary. Ωx,y,L in
blue and Ωx,y,R in green.

Note that Ωg is also strictly convex with C1-boundary and that ξg is continuous. Thus we can
define:

Definition 4.2.2. Let x, y ∈ S1. Then

1) the elementary shearing flow on D associated to (x, y) is the flow(
γx,y
)
t
: D −→ D, (ξ,Ω) 7→

(
ξsx,y(t),Ωsx,y(t)

)
2) the elementary bulging flow on D associated to (x, y) is the flow(

βx,y

)
t
: D −→ D, (ξ,Ω) 7→

(
ξbx,y(t),Ωbx,y(t)

)
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4.2 Deformations of convex sets

We note that these flows commute with elements in PGL(3,R) and thus descend to flows on
PGL(3,R) \ D. Analogue to the known behaviour for flags we want to use cross ratios to get
some characteristic values for Ω. For this we consider (ξ,Ω) ∈ D and for any y1 < z1 < y2 <
z2 < y1 along S1 in the cycling order we define

σξ(y1, z1, z2, y2) := log
(
−C

(
ξ∗(y1), ξ(z1), ξ(z2), ξ(y1)ξ(y2

))
.

This is well defined and allows us to investigate the change made by the bulging and shearing
flows.

Proposition 4.7. Let y1 6= y2 ∈ S1 and for i = L,R let zi ∈ Bi with respect to the oriented line
segment [y1, y2]. Furthermore let (ξ1,Ω1) := (γy1,y2)t(ξ,Ω) and (ξ2,Ω2) := (βy1,y2

)t(ξ,Ω). Then

1) σξ1
(y1, zL, zR, y2) = σξ (y1, zL, zR, y2)− t,

2) σξ1
(y2, zR, zL, y1) = σξ (y2, zR, zL, y1)− t,

3) σξ1
(y1, zL, zR, y2) = σξ (y1, zL, zR, y2) + t,

4) σξ1
(y2, zR, zL, y1) = σξ (y2, zR, zL, y1)− t.

Figure 4.16: Shearing (left) and bulging associated to the drawn line.

To complete the triple of flows we now consider the erruption flow. Therefore let x, y, z ∈
S1 be pairwise distinct and (ξ,Ω) ∈ D. Let p1 = ξ(x), p2 = ξ(y), p3 = ξ(z) and l1 =
ξ∗(x), l2 = ξ∗(z), l3 = ξ∗(z). This defines us three flags fromwhichwe can construct a triangle
T with vertices u1, u2, u3 (see Notation 2.3.3). Denote by Ωi the subdomain of Ω bounded by
[pi−1, pi+1]pi, [pi−1, ui] and [ui, pi+1]. Then

Ω = Ω1 ∪ Ω2 ∪ Ω3 ∪ T
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p2

p1

p3

u3

u2

u1

Ω3

Ω2

Ω1

Figure 4.17: Data for erruption flow on convex sets with C1 boundary.

Again we can define the maps g1, g2, g3 ∈ PGL(3,R) (see subsection 4.1.1) and by the same
argument as before there is a unique triangle T (t) such that

Ωx,y,z,t := (g1(t) · Ω1) ∪ (g2(t) · Ω2) ∪ (g3(t) · Ω3) ∪ T (t)

which is strictly convex with C1 boundary. Also the tangent to Ωx,y,z,t at i.e. g1(s)ξ(x) is l1.
Similarly for y, z. We can also define a continuous ξx,y,z,t : S1 −→ ∂Ωx,y,z,t by

ξx,y,z,t(a) =


g1(t)ξ(a) a ∈ [y, z]x
g2(t)ξ(a) a ∈ [z, x]y
g3(t)ξ(a) a ∈ [x, y]z

This results in

Definition 4.2.3. Let x, y, z ∈ S1 be a triple of pairwise distinct points. The elementary
erruption flow on D associated to x, y, z is the flow

(εx,y,z)t : D −→ D; (ξ,Ω) 7→
(
ξx,y,z,t,Ωx,y,z,t

)
Because this flow also commutates with elements in PGL(3,R) it descends to the flow on
PGL(3,R) \ D.
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4.2 Deformations of convex sets

Figure 4.18: Erruption flow on convex sets with C1 boundary for t = 0 to t = 4 (red to blue).

Figure 4.19: Erruption flow on convex sets with C1 boundary for t = −6 to t = 6. We include
this image just because it looks nice.
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To finish this subsection we will also define an appropriate function here and state how the
erruption flow changes this parameter. Consider

τξ(x, y, z) := logT ((ξ∗(x), ξ(x)), (ξ∗(y), ξ(y)), (ξ∗(z), ξ(z))) .

This is well defined since this triple ratio is always positiv (see [WZ18]). Then

Proposition 4.8. Let x, y, z ∈ S1 and let (ξ,Ω) ∈ D. For all t ∈ R let (εx,y,z)t(ξ,Ω) = (ξ1,Ω1).
Then

τξ1(x, y, z) = τξ(x, y, z) + t

4.2.2 Constructed from tilings
Here we try to apply the defined flows on the convex setsΩwhich we build from the reflection
group of the suitably nested polygon P of an element F ∈ F+

n . The goal is to define the
transformations in a way such that the group action is preserved. Consider a 4-gon in F+

4 and
a reflection σ along one edge (associated toΩ). Then by applying the bulging flow on the initial
4-gon we get a configuration where the original and the reflected 4-gon are not equivalent up
to PGL(3,R) since the internal parameters of the two polygons are different.

Figure 4.20: Applying the a bulge transformation associated to the red line will change the
inner parameters of the gray 4-gon but not of the blue 4-gon.

To tackle this problem we have two strategies:

1) apply the flow associated to an internal edge and all its reflections,

2) apply the flow and then reflect using new reflections constructed from the new configura-
tion.

The second approach is a lot easier with regard to the visualization process and creates a setΩ′

such that the reflection group of the transformed polygon acts nicely on it. The first approach
is harder to program but is the general method used to get the desired property, i.e. that Ω is
Γ-invariant if Γ is the group generated from the reflections.
To understand if these two processes are relatedwewill investigate it forF ∈ F+

4 with suitably
nested polygons (N,N ′). For a 4-gon the reflection group is represented by

Γ = 〈R1, R2, R3, R4|·〉

and we omit the relations since they won’t change and thus are not important for our obser-
vations.
First of we consider approach 2), i.e. we first transform our polygon and then apply the re-
flection group generated from the reflections of the transformed polygon. Let us first consider
bulging and shearing flows, so choose a triangulation and without loss of generality let a1,3
be the internal edge. Let g be one of the two transformations associated to a1,3 and Ri be the
reflections along the edges in figure 4.21.
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(p1, l1)

(p2, l2)

(p3, l3)

(p4, l4)

R1

R2

R3

R4

NR

NL

Figure 4.21: Decomposition of F ∈ F+
4 with triangulation and internal edge.

In approach 2) we only apply g once and thus the new reflection group is given by the following
generators:

R1 7→ g(t)R1g(t)
−1 =: R

g
1

R2 7→ g(t)R2g(t)
−1 =: R

g
2

R3 7→ g(t)−1R3g(t) =: R
g
3

R4 7→ g(t)−1R4g(t) =: R
g
4

We can see this as follows: the reflection Ri is generated using the points pi, pi+1 and li∩ li+1.
Since linear forms change under the rule α 7→ αg−1 if points change by v 7→ gv we get the
new reflection, e.g. R′

1, via:

R′
1 = Id−α1g

−1(t)⊗ g(t)v1 = Id−g(t)v1α1g
−1(t) = g(t) [Id−v1α1] g

−1(t) = g(t)R1g
−1(t)

Note here that because all the needed data always lies on one side of a1,3 this conjugation
works. For the erruption flow it is the same argument is this case, except g is a product of
erruption transformations on both of the triangles.

Now let us consider approach 1), i.e. we apply the flows on each γ(F ) for γ ∈ Γ. For now we
consider only bulging and shearing deformations.
Since it is trickier to work with transformations that act differently depending on which side
of a1,3 we consider we use the following trick: we are only interested in the configuration of
the flags and we know that this is invariant under PGL(3,R). So after applying the bulging
or shearing transformations we can, globally, apply an element in h ∈ PGL(3,R) and the
configuration does not change. By choosing h to be one of the transformations g(t) or g(−t)
we achieve that the bulging flow is the identity on one side of a1,3 and g(±2t) on the other side.
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We start by investigating the situa-
tion for the reflection R1 defined by
the line through p1 and p2 and the fix
point q1 = l1 ∩ l2. To get a good
graphical understanding we choose
an affine chart such that q1 = ∞
which results in l1 and l2 being par-
allel and R1 being a euclidean reflec-
tion.

R4

R3

R2

l1

l2

l4

l3

R1

Figure 4.22: Deforming the nested 4-gons in a suitable
chart. N in black, R1(N) in blue

So, applying g associated to a1,3 on N such that only the outher half changes (shaded orange
in figure 4.22), denoted by g0, and then doing the same on R1(N) (shaded in green), denoted
by g1, we obtain two new 4-gons having the same configuration and still being related by R1.
Through this process we get new reflections

R1 7→ IdR1Id 7→ IdIdR1IdId = R1

R2 7→ IdR2Id 7→ IdIdR2IdId = R2

R3 7→ g0(−2t)R3g0(2t) 7→ Idg0(−2t)R3g0(2t)Id = g0(−2t)R3g0(2t)

R4 7→ g0(−2t)R4g0(2t) 7→ Idg0(−2t)R4g0(2t)Id = g0(−2t)R4g0(2t)

It is important to note here that g1 does not change anything.
Bulging or shearing along an edge γ(a1,3) will not change the configuration of N and using
suitable affine charts we see that all four new generators are indeed reflections. Note that we
always bulge or shear outward, i.e. we choose the transformation in such a way that N is
transformed by the identity map. Thus we obtain the following:

Claim 4.9. Consider bulging or shearing transformations. Let Γ1,Γ2 be the reflection groups
attained through approach 1) or 2) respectively and Ω1,Ω2 the convex sets obtained as union of
the respective orbits. Then they are equal.

One observation to make here is that the vertices of each γ(N) are part of ∂Ω. This is
immediately clear from the construction of these sets if you consider the images of the
flags and the fact that the group action tiles a half space. Thus, taking the convexity into
account, every inner edge splits Ω into exactly two components and each triangle cuts it into
3 components plus the triangle. This makes sure that N is fixed by all transformations on the
γ(N), γ 6= Id.

For the erruption flow the same process should work. Observe that the transformation can
be chosen to be the identity on one of the three polygons of N ′ \ 4 where 4 is the triangle
associated to the erruption transformation. Thus we claim the following:
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Claim 4.10. Let F ∈ F+
n and g be one of the discussed transformations. Let Γ1,Γ2 be the reflec-

tion groups attained through approach 1) or 2) respectively and Ω1,Ω2 the convex sets obtained
as union of the respective orbits. Then Γ1 = Γ2 and Ω1 = Ω2.

To end this discussion we want to consider the trick used above shortly. As explained before
the idea is to transform the whole set Ω by g(t) or g(−t) directly after applying the transfor-
mation on each of the components. For example letNL, NR be the left and right side according
to an internal edge. Then we to the following steps:

(NL, NR) 7→ (g(t)NL, g(−t)NR) 7→ (g(t)g(t)NL, g(t)g(−t)NR) = (g(2t)NL, NR)

Effectively we choose, in each γ(N), a suitable representative for current class in PGL(3,R) \
F+

n . In the end we obtain a Γ−invariant convex set Ω whose fundamental domain N has the
desired parameters.
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Approach 2) yields the following pictures for example:

Figure 4.23: Transforming the red convex set by applying transformations associated to the
black edges. Top: bulge, left: shear, right: bulge and shear. Each 10 times for t = 0
to t = 0.9 (red to green to purple).
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Figure 4.24: Erruption flow on a 9-gon associated to one triangle. Drawn for t = 0, 0.3, 0.5
(red, green, blue).

Sven Grützmacher 57





5 Visualization
In this chapter we take a look at visualizing the theory of the previous chapters. We will give
tipps and computations on how to draw explicit pictures.

5.1 RP2 and affine charts
First of all we take a short look at ways to visualize objects in projective plane. If we see RP2

as the space of 1-dimensional subspaces of R3 we can choose representatives in many ways.
But since we want to generate images it is important to find some good representatives that
lie on a plane.
The most common way there is to use homogenous coordinates. Here we think of the
projective plane as the euclidean plane together with a set of directions. Every point (x, y) ∈
R2 can be seen as a point (x, y, 1) ∈ R3. These points are representatives for lines inR3 which
do not lie in the xy-plane z = 0. Like this we can draw most of the projective plane which is
often enough. The essence here is that we need to ignore a 2-dimensional subspace in R3 to
visualize the rest. Furthermore, to generate images from 3D data it is often the easiest to just
ignore one of the 3 coordinates.
So given the unit normal n = (n1, n2, n3) of the 2-dimensional subspaceE we want to do this:

1. Make sure n3 ≥ 0 (to simplify the rotation later on)

2. For every point L ∈ RP2 such that the corresponding line is not in E find the represen-
tative x ∈ R3 in n+ E

3. Compute the 3D-rotation Re3 that sends n to e3

4. Map the plane n+ E to the xy-plane via: x 7→ Re3(x− n)

Then we can simply generate the image using the first two coordinates of the points. We now
cover some details for this algorithm:

1. If n3 < 0 simply multiply everything with − Id

2. Every 2d subspace E can be written as a the set of points solving

〈n, x〉 =

〈nx

ny

nz

 ,

x
y
z

〉 = nxx+ nyy + nzz = 0

where n is the unit normal of the plane. The idea now is to glue a parallel copy of E on
the sphere at n. A point A = (a b c) lies on the plane n+ E if and only ifa

b
c

− n ∈ E ⇔ 〈n,A− n〉 = 0 ⇔ 〈n,A〉 − 〈n, n〉 = 0 ⇔ 〈n,A〉 = 1
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So, given a line L in R3 \ E choose a representative x ∈ R3 such that [x] = L in RP2.
Now the representative in n+ E is given by x

〈n,x〉
.

3. We will compute the general case here: find the rotation in R3 that sends a unit vector
P to a unit vector Q.
This is simply a rotation around the normal of the plane spanned by P and Q. We will
make use of the cross product for this.
First consider a rotation in the xy-plane:

G =

cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1


Using the cross product to deduce the angle of rotation this becomes

G =

 〈P,Q〉 − ‖P ×Q‖ 0
‖P ×Q‖ 〈P,Q〉 0

0 0 1


Having this we only need to find a suitable basis to apply this rotation in the desired way.
For this we make use of the fact that P ×Q is orthogonal to P andQ and forms a right-
handed system. To apply the rotation above we need an ONB. This can be constructed
in two steps

a) Compute P ×Q to get (P,Q, P ×Q). Here P and Q are not orthogonal
b) Compute (P ×Q)× P = Q− 〈P,Q〉P

Now the desired ONB is given by
(
P,

Q−〈P,Q〉P
‖Q−〈P,Q〉P‖

,
P×Q

‖P×Q‖

)
. Using the change of basis

formula with base change matrix F =
(
P

Q−〈P,Q〉P
‖Q−〈P,Q〉P‖

P×Q

‖P×Q‖

)
our rotation will be

given by

Rot = FGF−1

5.2 Convex sets in RP2 from tilings
Before we start it is important to note that we will only deal with triangles here. Even though
the theory allows us to consider suitable n-gons it is by far the nicest and easiest case to use
triangles since we act mostly in R3.
To understand this let us take a look at our setting:

Given a triangle T we want to construct the convex set which is the union
of the orbits of the triangle reflection group 4(a, b, c) for interior angles
π/a, π/b, π/c with a, b, c > 2.
The reflections are given in the form R(x) = Id−α⊗ v.

So first of all consider the reflections R1, R2, R3 defined by αi, vj for i, j ∈ {1, 2, 3}. Due to

theorem 3.5 it is sufficient that αi(vj)αj(vi) = 4 cos2
(

π

mi,j

)
where mi,j ∈ {a, b, c} whenever

the two sides intersect.
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Because the edges of T then correspond to the kernels of the αi we can and should choose
T = (e1, e2, e3)where the ei are the standard basis ofR3. Through this we have the following:

αi = eTi v1 =

 2
v21
v31

 v2 =

v12
2
v32

 v3 =

v13
v23
2


where, for example, v21v12 = 4 cos2

(
π

a

)
. Since we need explicit values to work with we set in

this case v21 = 1 and obtain v12 = 4 cos2
(

π

a

)
.

We thus have our triangle T and all the needed information encoded into the αi and vj . Now
only three steps remain:

1) Generate the group using the Ri as generators. Most times it is enough to compute words
up to length 8,

2) For each γ in the group compute γ(T ) and project it onto a suitable affine plane like it is
described in the last section,

3) Compute the convex hull to get an approximation of the boundary.

If you want to generate images using color here are two ideas that can improve your visual-
ization:

i) consider building the triangle group and not the triangle reflection group, i.e. use rotations
like S1 = R1R2 as generators. In our case the representations would look like this

triangle reflection group: {R1, R2, R3|R2
i = 1, (R1R2)

a = (R2R3)
b = (R3R1)

c = 1}
triangle group: {x, y, z|xa = yb = zc = 1, xyz = 1}

where x = (R1R2), y = (R2R3), z = (R3R1).

Then we essentially only draw every second triangle which results in a cleaner image.

ii) Filter words/triangle: it is likely that some words are actually the same. Thus, to save
computation time, it is good to filter words beforehand. On the other hand one can also
first compute all triangles and then remove duplicates by checking if two triangles only
differ by a small ε (at each vertex). This also gives us a cleaner image especially if we work
with opacity since we have no overlap.
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5.3 Convex sets in RP2 from flags
First of all we want to describe how we can construct a pair of nested triangles given their
triple ratio T. This way we will build a kind of “nice” model pair (4,4′).
Given a triple of flags (F1, F2, F3) ∈ F+

3 the picture is the following:

q1q2

q3

p1

p2

p3l3

l2

l1
m3

m2

m1

Figure 5.1: Initial setup

where the (qi)i are again the intersections of the flags. If we choose the basis (q1, q2, q3) the
coordinates of the (pi)i become:

li = eTi p1 =

0
a
b

 p2 =

c
0
d

 p3 =

e
f
0

 .

Which gives us T = T (F1, F2, F3) =
cfb

eda
. So choosing the (pi)i such that the ratio of the

non-zero entries is the same, i.e. T we obtain

T = T 3 p1 =

 0
a
aT

 p2 =

dT
0
d

 p3 =

 e
eT
0


This is nice for theoretical observations but to draw pictures it is better to have an even easier
representation. Thus using convex combinations

p1 =

 0
t

1− t

 p2 =

1− t
0
t

 p3 =

 t
1− t
0

 (5.1)

we get t = 1/(T + 1).
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So in short:

1) given a desired triple ratio T > 0 compute T =
3
√
T

2) compute the points in equation 5.1 for t = 1/(T + 1)

If we want to draw the quadrilaterals we know that the needed intersection points are the
classes

u1 =

 1
1/τ
τ

 u2 =

 τ
1

1/τ

 u3 =

1/ττ
1


for τ = t/(1− t).
Through this construction we can get a very nice and symmetric triangle for a given triple
ratio.
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