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Summary

The magnetic flow on the two-dimensional sphere S2 is determined by a Riemannian metric
g and a two-form σ, each on S2. The triple (S2, g, σ) is called a magnetic system. The
goal of this thesis is to find a condition on the magnetic system so that the magnetic flow
has infinitely many periodic orbits. We will use existing results that allow us to view the
problem in a contact geometric context where the dynamics of the Reeb flow corresponds
to the dynamics of the magnetic flow on different kinetic energy level sets. We will then
construct a global surface of section that is an annulus and find a condition for which the
first return map of the surface of section satisfies the requirements of the Poincaré-Birkhoff
Theorem which then implies that the first return map has infinitely many fixed points and
the Reeb flow therefore has an infinite number of periodic Reeb orbits.

Zusammenfassung

Der magnetische Fluss auf der zweidimensionalen Sphäre S2 ist bestimmt durch eine Rieman-
sche Metrik g und einer zwei-Form σ, jeweils auf S2. Das Tripel (S2, g, σ) wird auch magnetis-
ches System genannt. Das Ziel dieser Arbeit ist eine Bedingung an das magnetischen System
zu finden, für die der magnetische Fluss unendlich viele periodische Orbiten hat. Wir werden
existierende Resultate verwenden, um das Problem in einem kontakgeometrischen Kontext zu
betrachten. Dabei korrespondiert die Dynamik des Reeb Flusses mit dem des magnetischen
Flusses auf unterschiedlichen Niveaumengen der kinetischen Energiefunktion . Wir werden
dann einen Poincaré-Schnitt konstruieren, der ein Kreisring ist, und eine Bedingung finden, für
welche die Poincaré-Abbildung die Voraussetzungen des Satzes von Poincaré-Birkhoff erfüllt,
welcher dann impliziert, dass die Poincaré-Abbildung unendlich viele Fixpunkte und der Reeb
Fluss unendlich viele periodische Orbiten besitzt.
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1 Introduction

Since the end of the 18th century, when theoretical electromagnetism emerged, many physi-
cists and mathematicians have been interested in making statements about the motion of a
charged particle in an electromagnetic field.

The motion of a particle, constrained to a surface and subjected to a Lorentz force, is
described by a differential equation (Newton’s second law of motion). The set of solutions
gives rise to a flow, which we call the magnetic flow.

In this thesis we restrict our studies to the magnetic flow on the two-sphere, which induces
a flow on its tangent space TS2 (We will usually refer to the induced flow on TS2 as the
magnetic flow). The magnetic flow depends on a Riemannian metric g and a two-form σ,
each on S2. The triple (S2, g, σ) is called a magnetic system.

Another way of describing the magnetic flow is by studying the Hamiltonian flow of the
manifold (TS2, ωσ := dλ− π∗σ), associated to the kinetic energy function

E : TS2 → R, E(x, v) =
1

2
gx(v, v).

The one-form λ ∈ Ω1(TS2) corresponds to the tautological one-form on T ∗S2.

If σ = 0, the Hamiltonian flow describes the geodesic flow. For the geodesic flow on
S2, it was proven in [Banger, 1993] that there are infinitely many periodic orbits for every
Riemannian metric.

In this thesis we want to find a condition on the magnetic system so that the magnetic
flow has infinitely many periodic orbits. We will prove the following theorem:

Theorem. Let (S2, g, σ = f volg) be a magnetic system such that its magnetic strength f is
positive everywhere. Assume that f has a minimum point p− and a maximum point p+. If

1

f3
(p+)

√
det Hessgf (p+) 6= 1

f3
(p−)

√
det Hessgf (p−),

where Hessgf is the Hessian in orthonormal coordinates according to g, then the magnetic flow
has infinitely many periodic orbits with speed m > 0, for every m small enough.

The level sets Σm := {E = m} are invariant under the Hamiltonian flow. The dynamics of
the flow on (TS2, ωσ) restricted to Σm corresponds to the dynamics of the flow of the manifold
(TS2, ωm) restricted to SS2 := Σ1, where ωm := mdλ − π∗σ. This enables us to study the
dynamics on the different level sets Σm by studying the dynamics of the Hamiltonian flow
corresponding to the one-parameter family of forms ωm, restricted to SS2.

In Section 3 we look at some properties of the low energy levels: that is Σm for m small.
An important result from [Benedetti, 2014] is that for m small enough ωm has a primitive
of contact type, i.e. there is a contact form λm ∈ Ω1(SS2) such that dλm = ωm. Because
the dynamics of the Hamiltonian flow on (SS2, ωm) is equivalent to that of the Reeb flow of
(SS2, λm), we can study the magnetic flow in the framework of contact geometry.
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Based on the results of [Benedetti and Kang, 2018], in Section 4 we construct a global
surface of section as an annulus in SS2. In other words, we find an embedding S : A→ SS2

such that S(̊A) is transversal to the Reeb flow, and the boundary S(∂A) is the support of
periodic orbits of the Reeb flow.

In Section 5 we revisit the Poincaré-Birkhoff theorem which tells us that area preserving
homeomorphisms of the annulus F : A→ A have infinitely many fixed points if F satisfies the
so called boundary twist condition.

We then find a condition on the magnetic system so that the first return map of our
constructed global surface of section satisfies the boundary twist condition. As a consequence
of the first return map being twist, it has infinitely many fixed points, meaning that the
Reeb flow has infinitely many periodic Reeb orbits. As the dynamics of the Reeb flow of
(SS2, λm) corresponds to the dynamics of the magnetic flow on Σm, this directly implies that
the magnetic flow has infinitely many periodic orbits.
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2 Preliminaries

In this chapter we briefly introduce the mathematical objects and some theoretical basics
which we need throughout this thesis.

2.1 General notation

Let S1 = Z/2π. If not otherwise mentioned, M is a closed orientable surface with a Rie-
mannian metric g. Unless stated differently all objects are assumed to be smooth. We
have the tangent bundle π : TM → M , the metric g induces the Levi-Civita connection
∇ : Γ(TM)× Γ(TM)→ Γ(TM). The canonical volume form on M induced by g is denoted
by volg. We usually denote points in TM by (x, v), where x ∈ M and v ∈ TxM . We also
have the Sasaki metric on TM and can work with it’s corresponding Levi-Civita connection.

The metric g induces an isomorphism between TM and it’s dual space T ∗M .

[ : TM → T ∗M

(x, v) 7→ gx(v, ·).

Its inverse is denoted by ] : T ∗M → TM .

Let M0 be a smooth manifold. The vector space of smooth k-forms on M0 is denoted by
Ωk(M0). If we have another smooth manifold M1 and a map ψ : M0 → M1, then we denote
its differential at p ∈M0 by Tpψ : TpM0 → Tψ(p)M1.

For each x ∈ M , the metric g induces a norm ‖·‖ on TxM that we can use to define a
norm for vector fields and one-forms. Let W ∈ Γ(M) and η ∈ Ω1(M) then

‖W‖C0 := sup
x∈M
‖Wx‖, ‖η‖C0 := sup

x∈M
sup

v∈TxM

|ηx(v)|
‖v‖

.

A norm for two-forms can be defined similarly. For higher Ck norms used in this thesis we
refer to the Appendix of [Benedetti and Kang, 2018]. A summary of the Ck estimates that
are important for us can be found in Subsection 6.1.

2.2 Horizontal and vertical lifts

We briefly introduce horizontal and vertical lifts which we will occasionally use in this thesis.

The double tangent bundle Tπ : TTM → TM splits into a vertical and horizontal sub-
bundle, denoted by V (TM) and H(TM) respectively, such that He(TM)⊕Ve(TM) = TeTM ,
for each e ∈ TM . The vertical bundle is fiberwise defined as Ve(TM) := kerTeπ. The vertical
lift at (x, v) is a map LV(x,v) : TxM → T(x,v)TM , defined by LV(x,v)(w) = d

dt |t=0(v + tw). We
have

T(x,v)π(LV(x,v)(w)) =
d

dt
|t=0π(v + tw) =

d

dt
|t=0x = 0,

showing that LV(x,v)(w) lies indeed in the vertical space.
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By the explanation of the term ’connection’ in [Jost, 2005] on page 104, using the Levi-
Civita connection ∇, we can define the horizontal bundle the following way. Let e ∈ TM ,
then Ve(TM) = kerTeπ. Let x := π(e), X ∈ TxM and c : R → M be a curve such that
c(0) = x and ċ(0) = X . We can use ∇ to parallel transport e along c yielding a curve
ê : R→ TM, t 7→ ê(t), where ê(0) = e. This induces a map

LHe : TxM → TeTM

X 7→ d

dt
|t=0ê(t),

which is called the horizontal lift at e. Define He(TM) := LHe (TM) to be the horizontal space
at e and observe that

TeπL
H
e (X ) =

d

dt
|t=0π(ê(t)) =

d

dt
|t=0c(t) = X .

Hence, LHe is injective and He(TM) ∩ Ve(TM) = {0}, implying that

He(TM)⊕ Ve(TM) = TeTM.

2.3 The geodesic flow

The geodesic vector field X ∈ Γ(TTM) is the generator of the geodesic flow φX , which is
defined as the solution of the geodesic equation

∇vv = 0.

Choose the Lagrangian L(x, v) := 1
2gx(v, v). With help of the Legendre transformation

L : TM → T ∗M

(x, v) 7→ dL

dv
|(x,v),

we can define the Hamiltonian H : T ∗M → R

H(p) := p(L−1(p))− L(L−1(p)),

The tautological one-form on T ∗M is defined by λ∗ := p ◦ Tπ for p ∈ T ∗M .

Let φX
∗

be the Hamiltonian flow of the Hamiltonian vector field X∗ of dλ∗ associated to
the Hamiltonian H. Then, the geodesic flow on TM can be obtained via φX = L−1(φX

∗
).

We can use L to pull H and λ∗ back to TM . Define

λ := L∗λ∗, E := H ◦ L.

Since L(x, v) = dL
dv |(x,v) = gx(v, .), for each w ∈ T(x,v)TM

λ(x,v)(w) = L(x, v)(T(x,v)π(w)) = gx(v, T(x,v)π(w)).
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And the energy can be expressed as

E(x, v) = H ◦ L(x, v) =
∂

∂v
L(x, v)− L(x, v)

= gx(v, v)− 1

2
gx(v, v) =

1

2
gx(v, v).

Since L(x, y) = [(x, y), we can instead define λ as [∗λ∗.

Therefore, if λ is the pullback of the tautological one-form on T ∗M under [, then the
geodesic vector field X can be equivalently defined as the Hamiltonian vector field of dλ,
associated to the kinetic energy function E(x, v) = 1

2gx(v, v). The pair (TM, dλ) is called the
standard tangent bundle.

A detailed discussion about the geodesic flow can be found in [Geiges, 2008] Section 1.5.

2.4 The magnetic flow

Let σ ∈ Ω2(M) and define the generalized Lorentz force F : TM → TM by the equation

gx(Fx(v), w) = σ(v, w) ∀v, w ∈ TM. (1)

The magnetic flow is defined to be the solution of the equation

∇vv = Fx(v).

As the geodesic flow, the magnetic flow is generated by a vector field, which we call the
magnetic vector field Xσ ∈ Γ(TTM).

On a local domain U ⊂M we can find a one-form θ ∈ Ω1(M), such that dθ = σ. Choose
a Lagrangian Lσ(x, v) := 1

2gx(v, v)− θx(v) on the domain U .

We define the Legendre transformation for Lσ and the corresponding Hamiltonian by

(x, v) 7→ dLσ

dv
|(x,v), Hσ(p) := p(L−1

σ )− L(L−1
σ ).

Define the one-form on T ∗M
λ∗σ := λ∗ − π∗θ

And the symplectic form
ω∗σ := dλ∗σ = dλ∗ − π∗σ.

Like in the geodesic case, the magnetic flow corresponds to the flow of the Hamiltonian vector
field of ω∗σ associated to Hσ.

Once again, we can pull the objects back to TM .

H ◦ Lσ(x, v) =
∂

∂v
Lσ(x, v)− Lσ(x, v)

= gx(v, v)− θx(v)− 1

2
gx(v, v) + θx(v) =

1

2
gx(v, v) = E(x, v).
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Therefore,

ωσ := L∗σω∗σ = L∗σ(λ∗ − π∗θ) = dλ− π∗σ.

The magnetic vector field Xσ is then given by the Hamiltonian vector field of ωσ associated
to the energy function E.

2.5 Magnetic systems

This subsection is based on Section 2.2 of [Benedetti, 2014]. As we have seen in the previ-
ous subsections, we have a one-form λ ∈ Ω1(TM) defined as the pull-back under [ of the
tautological one-form on T ∗M that acts on vectors w ∈ T(x,v)TM by

λ(x,v)(w) = g(x,v)(v, T(x,v)π(w)).

Its exterior differential dλ is symplectic and the tuple (TM, dλ) is a symplectic manifold,
which we call the standard tangent bundle.

We have a symplectic form ωσ := dλ − π∗σ, where σ ∈ Ω2(M). The tuple (TM,ωσ) is
called the twisted tangent bundle.

We keep the notation and denote the geodesic and magnetic vector field by X and Xσ

respectively.

Definition 2.1. The triple (M, g, σ) is called a magnetic system, where σ is the correspond-
ing magnetic form. We call (M, g, σ) a symplectic magnetic system if the magnetic form
is symplectic.

Definition 2.2. Because σ is a top-dimensional form, there is a unique function f : M → R,
called the magnetic strength, such that σ = f volg.

Let j : R × TM → TM be the rotational flow going in positive direction with speed 2π.
Then j1/4 : TM → TM is a map that rotates each fiber by π

2 in the positive sense. The
Lorentz force can be expressed in terms of the magnetic strength by Fx(v) = f(x)j1/4(x, v).
One can see this by taking an orthonormal frame {e1, e2} and and plugging it into Equation
1.

gx(f(x)jx(e1), e2) = f(x) = f(x)volM (e1, e2) = σ(e1, e2).

Let V be the generator of the flow j, and fix the notation V for the rest of this thesis.

The vector field V can also be defined as the vertical lift of j1/4(x, v), while the geodesic

vector field X can be defined via the horizontal lift of v. Indeed, write φX(t) = (x(t), v(t))
then, T(x(t),v(t))π(X) = d

dt |t=0π(x(t), v(t)) = v(t). Implying that X(x,v) = LH(x,v)(v).

As mentioned in [Benedetti, 2014] Chapter 1, we can decompose the magnetic field Xσ

into its horizontal and vertical part Xσ = X + fV .

Because of dE(Xσ) = ω(Xσ, Xσ) = 0, the level-sets of the kinetic energy function are
invariant under the flow of Xσ, therefore we can study the restrictions of the magnetic field
Xσ to the sets

Σm := { (x, v) ∈ TM | E(x, v) = m } for m ≥ 0.
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Taking the scaling map Sm : TM → TM , (x, v) 7→ (x, vm), we get

TSm(Xσ|Σm) = (mX + fV )|Σ1 = mX
σ
m
E |Σ1 .

This means that instead of studying the magnetic flow of the magnetic system (M, g, σ)
on Σm, we can study the rescaled magnetic system (M, g, σm) on Σ1. We abbreviate

ωm := mσ σ
m

= mdλ− π∗σ, Xm := mX
σ
m
E = mX + fV. (2)

Note that scaling the magnetic field doesn’t change its dynamics. Also note that

ωm → σ and Xm → fV

as m→ 0, showing that the dynamics becomes very simple as m goes to zero.
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3 The magnetic flow on low energy levels

From now on we restrict our studies to the symplectic magnetic system (S2, g, σ). In this sec-
tion we are going to discuss some results of [Benedetti, 2014] Chapter 4 and 6, and [Benedetti
and Kang, 2018] Part I. that are going to help us understand the magnetic flow on low energy
levels: that is, the magnetic flow on the level sets Σm for m small.

3.1 Contact geometric framework

The 2-form ωm having a primitive that is contact on SS2, for m small enough, is one of the
main results of [Benedetti, 2014].

Let K be the Gaussian curvature on M . Define the curvature form σg ∈ Ω2(M) by
σg := KvolM . By [Benedetti, 2014] Example 2.15, the corresponding S1-connection form
τ ∈ Ω1(SS2) is then defined by τ(V ) = 1 and dτ = −π∗σg. Recall that V is the generator of
the 2π periodic flow that rotates each fiber of SS2.

From [Benedetti, 2014] Chapter 4 we know that the 1-form λm := mλ − π∗β + τ , where
dβ = σ − σg, is a primitive of ωm and that there exists a mβ > 0 such that λm is a positive
contact form on SS2 for m ∈ [0,mβ]. Thus, for such m the function

hm(x, v) := λm(Xm) = m2 − βx(v)m+ f(x)

is positive and Rm := 1
hm
Xm = m

hm
X + f

hm
V is the Reeb vector field of λm.

This shows that to understand the dynamics of the flow of Xm, we can instead study the
Reeb vector field Rm of λm.

The following lemma, which was taken from [Benedetti, 2014] Lemma 7.4, enables us to
bring λm in a form that is easier to work with.

Lemma 3.1. There exists a diffeomoprhism Fm : SS2 → SS2 and a real function

qm : SS2 → R

such that
F ∗mλm = eqmλ0.

The map [0,mβ)→ C∞(SS2,R), m 7→ qm is smooth and admits a Taylor expansion at m = 0

qm =
m2

2f
+ o(m2).

Proof. See [Benedetti, 2014] Lemma 7.4.

Expanding eqmλ0 at m = 0 implies

eqmλ0 = (1 +
m2

2f
)λ0 + o(m2) =

1

Hm
λ0 + o(m2),

where Hm := 1− m2

2f
.
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Therefore, there exists a m1 ∈ [0,mβ] such that

F ∗mλm =
1

Hm
λ0 + o(m2).

for m ∈ [0,m1).

3.2 The Ginzburg function

Another important result from [Benedetti, 2014] Section 7 is going to help us find periodic
orbits near critical non-degenerate points of the magnetic strength f . This will be important
for us later to construct a surface of section whose boundaries have to be the support of
periodic orbits.

We state Proposition 7.5 in [Benedetti, 2014].

Proposition 3.2. There exists a smooth family of functions m 7→ Sm, where Sm : SS2 → R,
such that

1. the critical points of Sm are the support of those periodic orbits of Xm which are close
to a vertical fiber;

2. the following expansion at m = 0 holds:

Sm = 2π +
π

f
m2 + o(m2).

Proof. See [Benedetti, 2014] Section 7.2.

Its corollary ( [Benedetti, 2014], Corollary 7.6) links the periodic orbits to non-degenerated
critical points of the magnetic strength f . We use a slightly adapted version of the corollary’s
statement:

Corollary 3.3. If x ∈ S2 is a non-degenerate critical point of f : S2 → R, then there exists
a smooth family of curves m 7→ γm, such that

1. γ0 winds uniformly once around SxS
2 in the positive sense;

2. the support of γm is a periodic orbit for Xm;

3. dist(x, γm(0)) = O(m).

Proof. Because of (3.2) we have the expansion Sm = 2π+ π
fm

2 + o(m2) = 2π+m2Ŝm, where

Ŝm = π
f + o(m). Sm and Ŝm have the same critical points and all points of SpS

2 are critical

points for Ŝ0 if p is a critical point of f . Assuming that p is a non-degenerate critical point and
that m is small enough, by applying the inverse function theorem one can find a critical point
pm of Ŝm such that dist(pm, SpS

2) = O(m). Because the critical points of Sm correspond
with periodic Reeb orbits, the corollary follows. See [Benedetti, 2014] Corollary 7.6 for more
details.
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3.3 A suitable Darboux covering

For m = 0, the contact form λm and its Reeb vector field Rm reduce to

λ0 = −π∗β + τ, R0 = V.

Recall that V generates a rotational 2π periodic flow on the fibers of TS2. For each (x, v) ∈
SS2, the flow φVs (x, v) : S1 × SxS2 → SxS

2 simply rotates v by s degrees. Therefore, φV

induces a free S1 action on SS2. Contact forms whose Reeb vector fields induce a S1 action
are called Zoll forms and are a central subject of study in [Benedetti and Kang, 2018]. We
follow the procedure described in the beginning of Chapter 3 in [Benedetti and Kang, 2018]
to find a suitable Darboux covering of (λ0, SS

2).

Let a > 0, take the Euclidean metric gstd on R2 and denote by B and B′ the ball of radius
a and a

2 respectively.

Consider the tautological one-form λ̄std = 1
2(x1dx2 − x2dx1), where (x1, x2) ∈ B.

Using the trivial bundle πstd : B × S1 → B, we can define the forms

λstd := dφ+ π∗stdλ̄std, ωstd := dλstd = π∗stddλ̄std

on B × S1, where φ is the fiber coordinate in S1. The Reeb vector field of λstd is given by
Rstd := ∂φ and also called the standard Reeb vector field.

Let Z ⊂ SS2 be a finite set of points and Q := π(Z). Consider S1-equivariant embeddings

Dz : B × S1 → SS2, Dz(0, 0) = z, ∀z ∈ Z,

and the corresponding embeddings

dq : B → S2, dq(0) = q, ∀q ∈ Q

such that
π ◦Dz = dπ(z) ◦ πstd, ∀z ∈ Z.

Because of SS2 being compact, if a is small enough, we can assume that

D1 S2 =
⋃
q∈Q dq(B),

D2 ∃CD > 0, ‖TDz‖C1 < CD, ∀z ∈ Z,

D3 D∗zλ0 = λstd.
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3.4 Weakly normalized forms

Lemma 3.1 enabled us to find a diffeomorphism Fm : SS2 → SS2 such that

F ∗mλm =
1

Hm
λ0 + o(m2) (3)

for m small enough and Hm := 1− m2

2f◦π .

To construct a global surface of section of annulus type for the Reeb flow of F ∗mλm, we need
to find two periodic Reeb orbits, to whose support we can send the two boundary components
of the section. In Subsection 3.2 we already briefly discussed that periodic Reeb orbits can
always be found near non-degenerate critical points of the magnetic strength f .

With help of some results from [Benedetti and Kang, 2018] Chapter 3, we find a diffeomor-
phism that maps the periodic Reeb orbits near non-degenerate critical points of f to the circle
fibers of these points. Define a class of one-forms that have a periodic Reeb orbit winding
uniformly around the S1-fiber of some point in the positive sense.

Definition 3.4. We call a contact form α ∈ Ω1(SS2) weakly normalized at q ∈ S2 if α
has a periodic orbit winding uniformly once around SqS

2 in the positive sense.

One of our goals therefore is to find a diffeomorphism that pulls F ∗mλm back to a form
that is weakly normalized at a certain point. However, we don’t want to lose the convenient
expansion 1

Hm
λ0 + o(m2) of F ∗mλm, meaning that the diffeomorphism we find needs to be

’small’ enough.

To measure distances between one-forms we use the following norm, which was introduced
in [Benedetti and Kang, 2018] Chapter 3.

Definition 3.5. Let α ∈ Ω1(SS2), the Ck,+-norm for 1-forms is defined by

‖α‖Ck,+ := ‖α‖Ck + ‖dα‖Ck .

Definition 3.6. We call the contact form αHm := 1
Hm

λ0 the unperturbed form. And its
Reeb vector field the RαHm the unperturbed Reeb vector field.

Define a set of families of forms that are C1,+-close to the unperturbed form αHm .

B := { αm ∈ Ω1(SS2) |∃M > 0, ∀m ∈ [0,M) : ‖αHm − αm‖C1,+ = o(m2) }. (4)

With αm ∈ Ω1(SS2) we actually mean a one-parameter family of forms in Ω1(SS2).

We will sometimes refer to forms in B − {αHm} as perturbed forms and to their Reeb
vector fields as perturbed Reeb vector fields.

Observe that F ∗mλm ∈ B and that every αm ∈ B has the expansion αm = 1
Hm

λ0 +o(m2) at
m = 0. The diffeomorphism we construct to weakly normalize a contact form is then required
to leave the set B invariant, implying that it preserves the expansion.

Talking about forms in B being weakly normalized only makes sense for contact forms.
However, Lemma 6.5 implies that every αm ∈ B is contact for m small enough.
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Let q ∈ S2, we denote the subset of forms in B that are weakly normalized at q by

Bq := { αm ∈ B | ∃M > 0, ∀m ∈ [0,M) : αm is weakly normalized at q }.

We also denote the subset of forms that are weakly normalized at multiple points q1, . . . , qk
by Bq1,...,qk .

For the time being we only take care of the case when p is a non-degenerate critical point
of f . Our goal then is to find, for any αm ∈ B, a diffeomorphism ψ : SS2 → SS2, such that
the pullback ψ∗αm lies in Bp.

We do this in multiple steps. The following lemma shows that, if f has a non-degenerate
critical point, then we can transform any αm ∈ B to a form that still is in B and has a
periodic Reeb orbit that ’pierces’ the fiber at this non-degenerate critical point. Later we will
find another diffeomorphism that sends the complete orbit to the fiber it pierces.

Lemma 3.7. Let am ∈ B, p ∈ S2 be a non-degenerate critical point of f and m > 0 small
enough, then there exists a diffeomorphism Ψ1,m such that Ψ1,m

∗αm lies in B and has a
periodic orbit γm with period Tm := 2π +O(m) and γm(0) ∈ SpS2.

Proof. The proof is the local version of Lemma 3.5 in [Benedetti and Kang, 2018], with the
only addition that it is ensured that αm ∈ B.

We know from corollary 3.3 that there exists a periodic Reeb orbit γ̂m of αm such that

dist(γ̂m(0), x̂) = O(m), for some x̂ ∈ SpS2. (5)

Fix x̂ and ensure that m is small enough so that γ̂m(0) ∈ Dx̂(B′ × S1).

Let (xm, φm) ∈ B × S1, such that

Dx̂((xm, φm)) = γ̂m(0).

Let φ̃m ∈ (π/2, π/2) be a lift of φm to R, such that |(xm, φm)| = O(m) by (). Consider
the function

Km(x) := µ · (φ̃m + gstd(x, ixm)),

where µ : B → [0, 1] is a cut-off function that equals 1 on B′ and 0 outside a neighborhood of
B′ contained in the inner of B. By Section 2.3 in [Geiges, 2008], a contact vector field Y m of
(λstd, B × S1) can be defined via the contact Hamiltonian Km ◦ πstd and the equations

λstd(Y
m) = Km ◦ πstd,

ιYmdλstd = d(Km ◦ πstd)(Rλstd)λstd − d(Km ◦ πstd).

Because Rλstd lies in the kernel of πstd the second equation simplifies to

ιYmdλstd = −d(Km ◦ πstd).

Y m is uniquely defined by those equations. Let φY
m

be the flow generated by Y m. By
Cartan’s ’magic’ formula we have

d

dt
φY

m

t
∗
λstd = LYmλstd = d(λstd(Y

m)) + ιYmdλstd = 0,
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where the last equality followed from Y m satisfying the contact Hamiltonian equations above.
This implies, together with φY

m

0
∗
λstd = λstd, that φY

m

t
∗
λstd = λstd for all t ∈ R.

Furthermore, observe that Km(xm) = φ̃m = λstd((xm, φm)) implying that (txm, tφm) is a
flow line of φY

m

t .

Hence, φY
m

1 is a strict contactomorphism of (λstd, B×S1), sends 0 to (xm, φm) and equals

idB×S1 outside a neighborhood of B′. Since
∥∥∥(xm, φ̃m)

∥∥∥ = O(m),

‖Y m‖Ck = O(m), for every k ∈ N. (6)

Because of
∥∥φYm1 (x)− x

∥∥ =
∥∥∥∫ 1

0 Y
m(φt(x))dt

∥∥∥ = O(m), we have
∥∥φYm1 − idB×S1

∥∥
C1 = O(m).

In the coordinates of B × S1, by expanding at m = 0 and using the form

1/Hm(x) = 1 +m2/2f + o(m2),

we directly get 1/Hm(φY
m

1 (x)) = 1/Hm(x) + o(m2). Because of (6), the higher derivatives of
φY

m

1 are all bounded and won’t affect the order of the o(m2) term. Therefore, together with
the fact that φY

m

1 is a contactomorphism, we have∥∥∥∥∥ 1

Hm
λstd −

1

Hm ◦ φYm1

φYm1

∗
λstd

∥∥∥∥∥
C1,+

= o(m2). (7)

Now, define the global contactomorphism Ψ1,m : SS2 → SS2:

Ψ1,m(x) :=

{
Dx̂ ◦ φY

m

1 ◦D−1
x̂ (x), if x ∈ Dx̂(B × S1).

idSS2(x), if x /∈ Dx̂(B × S1).

Set γm := Ψ−1
1,m ◦ γ̂m, then γm(0) ∈ SpS2 and γmis a periodic Reeb orbit of Ψ∗1,mαm.

Equation 7, together with (D2), implies
∥∥αm − ψ∗m,1αm∥∥C1,+ = o(m2).

We want to build a diffeomorphism that takes the periodic Reeb Orbit we get via Lemma
3.7 and maps it to the fiber SpS

2. In the following lemma we see that the unperturbed form
αHm already has a periodic Reeb orbit winding around SpS

2. Our plan is to later send the
Reeb orbit from Lemma 3.12 to the periodic orbit of αHm winding around SpS. We can then
use Lemma 6.5 to estimate the C2 difference between both orbits which helps us ensure that
the diffeomorphism we later build leaves B invariant.

Lemma 3.8. Let p be a critical point of f then, αHm has a periodic orbit that winds uniformly
around SpS

2 in the positive sense.

Proof. By Lemma 7.14 in [Benedetti, 2014] the Reeb vector field RαHm of Hmλ0 splits as
follows:

RαHm = LH(XHm) +HmV,

where XHm is the Hamiltonian vector field on (S2, σ) associated to the Hamiltonian Hm.
Because dHm(p) = 0, we have σp(XHm(p), .) = 0.
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By assumption, σ = f volg does nowhere vanish. Hence, XHm(p) = 0. Therefore,

Rλ0 = HmV,

where V was the generator of the flow rotating each fiber in the positive sense.

If p is a non-degenerate critical point of f then, after applying Lemma 3.7, we can assume
that αm ∈ B has a periodic Reeb orbit intersecting SpS

2. Furthermore, we know that in this
case αHm has a periodic orbit winding around SpS. We can make the following estimates
about the distance between both orbits and the corresponding Reeb vector fields along them.

Lemma 3.9. Let αm ∈ B with a periodic Reeb orbit γm with period Tm = 2π + O(m) such
that γm(0) ∈ SpS

2 and then γm ⊂ B × S1 for m small enough. Furthermore, if we write
(xm, θm) : R→ B × R for the lift of D−1

p ◦ γm with (xm(0), θm(0)) = 0, then

‖(xm(t), θm(t)−Hm(p)t)‖ = o(m2),
∥∥∥(ẋm, θ̇m −Hm(p))

∥∥∥
C1

= o(m2) (8)

Proof. Since γm(0) ∈ SpS2, γm(t) ∈ Dp(B × S1) for t ∈ [0, t0], for some t0 ∈ [0, Tm]. Then,
γp,m(t) := D−1

p ◦ γm(t) is well defined for t ∈ [0, t0] small.

Let γHm be the periodic Reeb orbit of αHm with γHm(0) = γm(0), Set

αp,m = Dp
∗αm, γp,m = Dp

−1 ◦ γm,
αp,Hm = Dp

∗αHm , γp,Hm = Dp
−1 ◦ γHm .

and let Rαp,m and Rαp,Hm denote the respective Reeb vector fields. We calculate∥∥Rαp,m(γp,m)−Rαp,Hm (γp,Hm)
∥∥
C0

≤
∥∥Rαp,m(γp,m)−Rαp,Hm (γp,m)

∥∥
C0 +

∥∥Rαp,m(γp,Hm)−Rαp,Hm (γp,Hm)
∥∥
C0

≤
∥∥Rαp,m −Rαp,Hm∥∥C0 +

∥∥Rαp,Hm∥∥C1‖γp,m − γp,Hm‖C0 .

(9)

Therefore,

‖γp,m − γp,Hm‖C0 ≤
∫ t

0

∥∥Rαp,m(γp,m)−Rαp,Hm (γp,Hm)
∥∥
C0ds

≤ t
∥∥Rαp,m −Rαp,Hm∥∥C0 +

∫ t

0

∥∥Rαp,Hm∥∥C1‖γp,m − γp,Hm‖C0ds.

By applying the integral form of Gronwall’s lemma we get

‖γp,m − γp,Hm‖C0 ≤ t
∥∥Rαp,m −Rαp,Hm∥∥C1 exp

(
t‖Rp,Hm‖C1

)
. (10)

And because of Lemma 6.5 and D2, there exists A > 0∥∥Rαp,m −Rαp,Hm∥∥C1 < A‖αm − αHm‖C1,+ = o(m2). (11)

Combining Equation 10 and 11 yields

‖(xm(t), θm(t)−Hm(p)t)‖ = ‖γp,m(t)− γp,Hm(t)‖ = o(m2) exp
(
t
∥∥TRαp,Hm∥∥C1

)
. (12)
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Since γm(t) has period Tm = 2π +O(m), and

‖xm(t)‖ ≤ ‖(xm(t), θm(t)−Hm(p)t)‖ = o(m2) exp
(
t‖TRp,Hm‖C1

)
,

we can achieve that γm ⊂ B by making m small enough, therefore γp,m(t) is defined for all t
and

‖γp,m(t)− γp,Hm(t)‖ = o(m2) exp
(
Tm‖TRp,Hm‖C1

)
= o(m2). (13)

This shows the first equation at (8).

For the second equation, use Equation 13 and 11 and calculate∥∥∥∥ ddtγp,m − d

dt
γp,Hm

∥∥∥∥
C0

=
∥∥Rαp,m(γp,m)−Rαp,Hm (γp,Hm)

∥∥
C0

≤
∥∥Rαp,m −Rαp,Hm∥∥C0 +

∥∥TRαp,Hm∥∥C1‖γp,m − γp,Hm‖C0

= o(m2).

(14)

Doing similar estimates as in Equation 9 for the C1-norm we get∥∥Rαp,m(γp,m)−Rαp,Hm (γp,Hm)
∥∥
C1

≤
∥∥Rαp,m(γp,m)−Rαp,Hm (γp,m)

∥∥
C1(1 + ‖γ̇m‖C0) +

∥∥Rαp,m(γp,Hm)−Rαp,Hm (γp,Hm)
∥∥
C1

≤
∥∥Rαp,m −Rαp,Hm∥∥C1 + ‖Rp,Hm‖C2‖γp,m − γp,Hm‖C1 .

(15)
By Equation 14 and the previous C0 estimate we have ‖γp,m − γp,Hm‖C1 = o(m2). This,
together with Equation 11 and Equation 15, implies∥∥Rαp,m(γp,m)−Rαp,Hm (γp,Hm)

∥∥
C1 = o(m2).

Hence, ∥∥∥(ẋm, θ̇m −Hm(p))
∥∥∥
C1

=
∥∥Rαp,m(γp,m)−Rαp,Hm (γp,Hm)

∥∥
C1 = o(m2),

showing the second equation at (8).

To build the desired diffemorphism, we are going to reparameterize the orbits of our
interest so that they have period 2π.

Definition 3.10. Let be p a non-degenerate critical point of f , αm ∈ B and γm a periodic
Reeb orbit of αm such that γm(0) ∈ SpS2.

Define the 2π periodic reparameterized Reeb orbit

γrepm : S1 → SS2, t 7→ γm(
Tm
2π

t),

and the trivial periodic Reeb orbit of λ0 winding around SpS
2 and starting at γm(0)

γ̄m : S1 → SS2, t 7→ φλ0
t (γm(0)).

Then, γ̄m is a 2π-periodic reparameterized Reeb orbit of αHm.
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The following lemma gives an estimate of the C2 difference of the 2π-periodic reparame-
terized Reeb orbits we just defined.

Lemma 3.11. Let αm ∈ B with a periodic Reeb orbit γm such that γm(0) ∈ SpS
2 and

γm ⊂ B × S1. Let

γrepp,m(t) := D−1
p (γrepm (t)), γ̄p,m(t) := D−1

p (γ̄m(t)),

then ∥∥γrepp,m − γ̄p,m
∥∥
C2 = o(m2).

Proof. By plugging Tm into the first equation at (8) of Lemma 3.9 we get

|2π − TmHm(p)| = o(m2). (16)

Now, for the second order derivative, estimate∥∥∥∥ ddtγrepp,m −
d

dt
γ̄p,m

∥∥∥∥
C1

=

∥∥∥∥Tm2π
(ẋm, θ̇m)rep − (0, 1)

∥∥∥∥
C1

≤ Tm
2π

∥∥∥(ẋm, θ̇m −Hm(p))rep

∥∥∥
C1

+

∣∣∣∣TmHm(p)

2π
− 1

∣∣∣∣
(By Equation 8) = o(m2) +

∣∣∣∣TmHm(p)

2π
− 1

∣∣∣∣
= o(m2) +

1

2π
|TmHm(p)− 2π|

(By Equation 16) = o(m2)

In the next lemma, we construct a diffeomorphism that maps the periodic orbit that we
obtained via Lemma 3.9, to the fiber SpS

2.

Lemma 3.12. Let αm ∈ B and p ∈ S2 be a non-degenerate critical point of f . For m > 0
small enough, there exists a diffeomorphism Ψm such that Ψ∗mαm ∈ Bp.

Proof. This proof is a slightly adapted version of the proof of Lemma 3.6 in [Benedetti and
Kang, 2018].

Let Ψ1,m be the contactomorphism from Lemma 3.7, and set

αΨ1,m := Ψ∗1,mαm.

Let γm be the Reeb orbit of αψm such that γm(0) ∈ SpS2. By Lemma 3.9 we can assume that
γm ⊂ Dp(B × S1) for m small enough.

Consider the γrepm,p(t) := D−1
p (γrepm (t)) on B′ × S1. and write (xrepm (t), θrep(t)) = γrepm,p(t).

By making m even smaller we can ensure that xm(t) ∈ B′.
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Let (x̂repm , θ̂rep) : R → B × R be the lift of (xrepm , θrep) such that (x̂repm (0), θ̂rep(0)) = 0.
Consider the diffeomorphism

ψ̂m : B × R→ B × R

(x, s) 7→ (x+K(‖x‖)x̂repm (s), s+K(‖x‖)(θ̂repm (s)− s)),

where K : [0, a]→ [0, 1] is a cut-off function that equals 1 on [0, a/2] and 0 on [3
4a, a]. The 2π

periodic diffeomorphism ψ̂m is the lift of a diffeomorphism ψm : B × S1 → B × S1.

From Lemma 3.11 we know that ‖γrepp,m − γ̄p,m‖C2 = o(m2), implying that

‖ψm − idB×S1‖C2 ≤ ‖K · (xrepm , θrepm − idS1)‖C2

≤ ‖K‖C2

∥∥γrepp,m − γ̄p,m
∥∥
C2 = o(m2),

(17)

. On B × S1, Equation 17 and Lemma 6.4 imply∥∥ψ∗m(D∗pαΨ1,m)−D∗pαΨ1,m

∥∥
C1,+ = o(m2). (18)

Define the global diffeomorphism Ψ2,m : SS2 → SS2:

Ψ2,m(x) :=

{
Dp ◦ ψm ◦D−1

p (x), if x ∈ Dp(B × S1).

idSS2(x), if x /∈ Dp(B × S1).

Then, by Equation 18 and the Darboux property D2 together with Lemma 6.2, there exists
an A > 0 such that∥∥Ψ∗2,mαΨ1,m − αΨ1,m

∥∥
C1,+ ≤ A

∥∥ψ∗m(D∗pαΨ1,m)−D∗pαΨ1,m

∥∥
C1,+ = o(m2).

This means that Ψ∗2,mαΨ1,m ∈ B.

By construction, Ψ2
m ◦ γ0 = γrepm hence, Ψ∗2,mαΨ1,m ∈ Bp and Ψm := Ψ2,m ◦ Ψ1,m is the

desired diffeomorphism.

Corollary 3.13. Let p1, . . . , pk be critical non-degenerate points of f . For m > 0 small
enough, there exists a diffeomorphism ψm such that ψ∗mαm ∈ Bp1,...,pk .

Proof. Observe that the diffeomorphism from Lemma 3.12 equals the identity outside a small
O(m) neighborhood of the non-degenerate critical point the lemma is applied to. Because
non-degenerate critical points are isolated, we can choose m small enough, so that no critical
point lies in the neighborhood of another one. By applying Lemma 3.12 multiple times we get
diffeomorphisms ψ1

m, . . . , ψ
k
m for each point so that (ψ1

m ◦ . . . ◦ ψkm)
∗
αm is weakly normalized

at p1, . . . , pk. Set ψm := ψ1
m ◦ . . . ◦ ψkm.
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4 A global surface of section

From now on, let p+, p− be the North and South Pole of S2, with respect to some global
polar coordinates. Assume that f has a local minimum at pmin and local maximum at pmax.
Morse’s lemma famously implies that non-degenerate critical points are isolated. Therefore,
we can choose coordinates of S2 such that p+ = pmax and p− = pmin.

For the remainder of this thesis, we assume that f has a local maximum at p+ and a local
minimum at p−. Denote by γ+ and γ− the periodic Reeb orbits of φλ0 which wind uniformly,
in positive direction, around Sp+S

2 and Sp−S
2 respectively.

At first, we will construct a global surface of section for the Reeb flow φλ0 and show that
this surface is also a global surface of section for the Reeb flow of forms αm ∈ Bp+,p− for m
small enough.

As the definition of a global surface of section, we use a slightly modified version of
Definition 3.11 in [Benedetti and Kang, 2018].

Definition 4.1. Let φ be the Reeb flow of some contact form on SS2 and N a compact
surface. An embedding S̄ : N → SS2 is a global surface of section for φ if the following
properties hold:

(i) The surface S̄(N̊) is transverse to the flow φ and S̄(∂N) is the support of a finite
collection of periodic orbits of φ.

(ii) For each z ∈ SS2 \ S̄(∂N), there is a t− < 0 < t+ such that φt−(z), φt+(z) lie in S̄(N̊).

Associated to the global surface of section, there is a first return time and first return
map. The definitions are as follows:

First return time:

τ̄ : S̄(N̊)→ R, τ̄(q) := inf{ t > 0 | φt(q) ∈ S̄(N̊) },

First return map:
P̄ : S̄(N̊)→ S̄(N̊), P̄ (q) := φτ̄(q)(q).

Let φη be the Reeb flow of some contact form η ∈ Ω1(SS2). Notice that the requirement
for the global surface of section having a boundary is necessary.

Indeed, assume we had a compact surface N0 ⊂ SS2 that is transverse to φη. Then, dη
has no kernel on N0 and therefore is a volume form on N0. By Stokes theorem∫

N0

dη =

∫
∂N0

η.

Now, if ∂N0 = Ø, the right hand side vanishes, thus a surface of section without boundary
is not possible.

Later we will see that in the case of φ being the flow of a form in Bp+,p− the first return
time and first return map extend to the boundary, which is important because twist maps
need to be defined on the boundary.

19



4.1 Construction of the surface of section

Based on the definition in [Milnor, 1965] on page 22 we define:

Definition 4.2 (Index of a vector field). Let Y be a vector field on S2 with a singularity at
some point p ∈ S2. In local coordinates U ⊂ R2, choose a small ball B ⊂ U centered at p and
consider the map

v̄p : ∂B → S1, x 7→ Yx
‖Yx‖

.

Define the index at p by indexY (p) := deg(v̄p), where deg means the degree of continuous S1

maps.

Now, define the annulus A := [0, 1]× S1 and the following sets.

C+ := [0, a)× S1, C− := (1− a, 1]× S1, C := C+ ∪ C−, (19)

where a was the radius of B, which was defined in Section 3.3. Choose (r, θ) ∈ [0, 1]× S1 as
the coordinates of A and orient A according to dr ∧ dθ > 0. Orient C similarly.

Let Ŝ2 := S2 − {p+, p−} and z+ ∈ Sp+S
2, z− ∈ Sp−S2. Furthermore, let P : A→ S2 be a

polar coordinate map with the following properties:

(i) P(0, θ) = p+, P(1, θ) = p−, for all θ ∈ S1;

(ii) The unit normalized radial vector field ∂θ : Å→ SS2 induced by P has singularities at
p+ and p− with index 1 each.

(iii) ∂θ extends to a map ∂̂θ : A→ SS2, with ∂̂θ(0, θ) = φλ0
θ (z+), ∂̂θ(1, θ) = φλ0

−θ(z−).

Denote the restriction of P to Å by P̊.

The map P is already a surface of section for the Reeb flow of λ0. However, we want to
have local coordinates on a collar region of ∂A, for which the pullback of λ0, under the surface
of section embedding, has a standard coordinate expression.

Choose a local chart ϕz+ : B × S1 → SS2 with

ϕz+(0, φ) = φλ0
φ (z+), ϕz+(reiθ, θ) = ∂̂θ(y+(r, θ)).

Here, (r, θ) ∈ C̊+ and y+(r, θ) := P−1 ◦ π ◦ ϕz+(reiθ, θ).

By Darboux, we can assume that we have coordinates on B such that ϕ∗z+π
∗σ = π∗stdωstd.

Contrary to the contact Darboux charts we defined in subsection 3.3, ϕz+ does not pull λ0

back to the standard form. Instead, we have ϕ∗z+λ0 = π∗stdη + dφ, where φ ∈ S1 is the fiber
coordinate and η an one-form with π∗stddη = π∗stdωstd.

Then, d(π∗stdλstd − π∗stdη) = 0 and by Poincaré’s lemma there is a function h : B → R,
with h(0) = 0 and dh = π∗stdλstd − π∗stdη.
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Set ϕh(x, φ) = ϕz+(x, φ+ h), then

ϕ∗hλ0 = π∗stdη + d(φ+ h) = π∗stdλstd.

Since h(0) = 0, we have ϕh(0, φ) = ϕz+(0, φ) = ∂̂θ(0, φ), and because of the way ϕz+ was
chosen, we can assume , after ensuring that a (See (19)) is small enough, that

g(ϕh(reiθ, θ), ∂̂θ(yh(r, θ))) > 0,

where yh(r, θ) := P−1 ◦ π ◦ ϕh(reiθ, θ) and (r, θ) ∈ C̊+.

A similar Darboux chart can be constructed for z− as the base point. In this case, we
start from a chart ϕz− : B × S1 → SS2 with

ϕz−(0, φ) = φλ0
φ (z−), ϕz−((1− r)e−iθ,−θ) = ∂̂θ(y−(r, θ)),

where (r, θ) ∈ C̊− and y−(r, θ) := P−1 ◦ π ◦ ϕz−((1 − r)e−iθ,−θ). Analogously to the case
where z+ was the base point, we can do the same procedure to construct a Darboux chart
that coincides with ϕz− on the boundary.

Consider charts Dz+ , Dz− with corresponding charts dp+ , dp− of S2 such that

π ◦Dz± = dp± ◦ πstd.

By the above discussion, we can assume that for Dz+ , Dz− we have

g(Dz+(reiθ, θ), (∂̂θ ◦ P̊−1 ◦ dz+)(reiθ)) > 0,

g(Dz−((1− r)e−iθ,−θ), (∂̂θ ◦ P̊−1 ◦ dz−)((1− r)e−iθ)) > 0.
(20)

on C+ and C− respectively. Furthermore, we can assume that

Dz+(0, θ) = ∂̂θ(0, θ), Dz−(0,−θ) = ∂̂θ(1, θ). (21)

Define the embedding SC : C→ SS2

SC(r, θ) =

{
Dz+(reθi, θ) if r ∈ [0, a),

Dz−((1− r)e−θi,−θ) if r ∈ (1− a, 1].

and iC : C̊→ SS2:

i̊C(r, θ) =

{
dp+(reiθ), if r ∈ (0, a)

dp−((1− r)e−iθ), if r ∈ (1− a, 1).

Notice that SC ◦ i−1

C̊
is a local section of SS2 with singularities at p+ and p−, each of index 1.

Because of (20), for all x ∈ i̊C(̊C)

g(SC ◦ i−1

C̊
(x), ∂̂θ ◦ P̊−1(x)) > 0.
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Choose compact neighborhoods Kp+ ⊂ i̊C(C+), Kp− ⊂ i̊C(C−) and K ′p+
⊂ K̊p+ , K ′p− ⊂ K̊p− of

p+ and p− respectively. Let µ : S2 → [0, 1] be a bump function, such that µ = 1 on K ′p+
∪K ′p−

and µ = 0 outside of Kp+ ∪Kp− . Define Ŝ : Ŝ2 → SS2

Ŝ(x) :=
µ(x) · (SC ◦ i−1

C̊
)(x) + (1− µ(x)) · (∂̂θ ◦ P̊−1)(x)∥∥∥µ(x) · (SC ◦ i−1

C̊
)(x) + (1− µ(x)) · (∂̂θ ◦ P̊−1)(x)

∥∥∥ .
Then, Ŝ is a section of SS2 that vanishes only at p− and p+.

The section Ŝ ◦ P̊ extends to an embedding S′ : A→ SS2 such that on the boundary

S′(0, θ′+(θ)) = Dz+(0, θ) = φλ0
θ (z+), S′(1,−θ′−(θ)) = Dz−(0,−θ) = φλ0

−θ(z−),

where θ′± : S1 → S1 are diffeomorphisms of the circle. Using a bump function, one can define
a diffeomorphism ξ : A → A such that ξ(0, θ) = (0, θ′+(θ)) and ξ(0, θ) = (0, θ′−(θ)). Then,
S := S′ ◦ ξ : A→ SS2 is an embedding of the annulus such that

S(0, θ) = Dz+(0, θ) = φλ0
θ (z+), S(1,−θ) = Dz−(0,−θ) = φλ0

−θ(z−). (22)

Choose collar neighborhoods N+ of ∂+A and N− of ∂−A with P(N̊+) ⊂ K ′p+
, P(N̊−) ⊂ K ′p−

and set N = N+ ∪ N−. There exist coordinates (r, θ) on N such that (0, θ) and (1, θ) are
the original coordinates of A winding around the boundary and the pullback S∗λ0 has the
coordinate expression

S∗λ0|N+
= (

1

2
r2 + 1)dθ,

S∗λ0|N− = −(
1

2
(1− r)2 + 1)dθ.

In these coordinates, S can be written as

S(r, θ)|N+
= Dz+(reiθ, θ), S(r, θ)|N− = Dz−((1− r)e−iθ,−θ).

(After extending P−1◦ i̊C to the boundary, the coordinates on N are provided by ξ−1◦P−1◦ i̊C)

Let x ∈ S2, observe that for z ∈ SxS2, φλ0(z) simply winds around SxS
2 in the positive

sense. If x /∈ {p+, p−}, then φλ0(z) intersects S(̊A), as S on Å was defined to be a section
of SS2. If x ∈ {p+, p−} then, by Equation 22, the flow line φλ0(z) is supported by S(∂A).
Therefore, S is a global surface of section for φλ0 .

4.2 Extending weakly normalized Reeb vector fields

The following discussion is based on [Benedetti and Kang, 2018] Chapter 3.4. We have an
annulus A = [0, 1]× S1 and a global surface of section S : A→ SS2. Set

∂+A := {0} × S1, ∂−A := {1} × S1.

By combining S with the Reeb flow of λ0 we get the map

Ξ : A× S1 → SS2

(q, s) 7→ φλ0
s (S(q)).

(23)
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In coordinates (r, θ, s) on N × S1 the map Ξ can be expressed as

Ξ|N :=

{
Dz+(reiθ, θ + s) if (r, θ) ∈ N+

Dz−((1− r)e−iθ,−θ + s) if (r, θ) ∈ N−.
(24)

Observe that Ξ is not injective only on the boundary, so by restricting Ξ to the interior we
get a diffeomorphism

Ξ̊ : Å× S1 → π−1(S2 − {p+, p−}).

We have T Ξ̊(∂s) = ∂
∂s Ξ̊ = φ̇λ0 = Rλ0 , showing that the Reeb vector field RΞ̊∗λ0

of Ξ̊∗λ0 equals
∂s |̊A×S1 . Therefore, ∂s is a smooth extension of the Reeb vector field Rλ̊0

. We have the local
coordinate expressions

Ξ∗λ0|N+×S1 = (1 +
r

2

2
)dθ + ds, Ξ∗dλ0|N+×S1 = rdrdθ, (25)

Ξ∗λ0|N−×S1 = −(1 +
(1− r)

2

2

)dθ + ds, Ξ∗dλ0|N−×S1 = (1− r)drdθ, . (26)

From the coordinate expression we directly see that

Ξ∗λ0(∂s) = 1 ι∂s(Ξ
∗dλ0) = 0 φ∂s

∗
(Ξ∗λ0) = Ξ∗λ0. (27)

We show that the Reeb vector fields of forms, that are weakly normalized at p+ and p−,
extend to the boundary in a similar manner.

Fix some αm ∈ Bp+,p− and denote the pullbacks of αm and the undisturbed form αHm by

βm := Ξ∗αm, βHm := Ξ∗αHm

respectively. The forms restricted to Å× S1 are the pullbacks under Ξ̊

β̊m = Ξ̊∗αm β̊Hm = Ξ̊∗αHm .

Both forms are contact since Ξ̊ is a diffeomorphism.

The following proposition is a slightly adapted version of Proposition 3.10 in [Benedetti
and Kang, 2018].

Proposition 4.3. The Reeb vector field Rβ̊m of β̊m extends to a vector field Rβm on A× S1

such that Rβm is tangent to ∂A× S1 and

βm(Rβm) = 1, ιRβmdβm = 0, φβm
∗
βm = βm. (28)

Since αHm ∈ B, the Reeb vector field Rβ̊Hm
of β̊Hm extends similarly to a vector field RβHm

and we have ∥∥Rβm −RβHm∥∥C0 = o(m2).

Proof. In the coordinates (x, φ) ∈ B×S1, given by Dpz , we have the following local description
of Rαm .

Rαm = Rxαm +Rφαm∂φ. (29)
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Because αm is weakly normalized at p+, the Reeb vector field is tangent to Sp+S
2, thus

Rxαm(0, φ) = 0. By Lemma 6.6, Rxαm can be written as Rxαm(x, φ) = Wαm(x, φ)x, where Wαm

is a matrix valued function with ‖Wαm‖C0 ≤
∥∥Rxαm∥∥C1 .

We use Wαm to write Rxαm in polar coordinates as

Rxαm(reiφ, φ) = gstd(Wαm(reiθ, φ)reiθ, eiθ)∂r + gstd(Wαm(reiθ, φ)reiθ, ieiθ)
∂θ
r

= gstd(Wαm(reiθ, φ)reiθ, eiθ)∂r + gstd(Wαm(reiθ, φ)eiθ, ieiθ)∂θ.

Using the functions
Rrαm(r, θ, φ) := gstd(Wαm(reiθ, φ)reiθ, eiθ),

Rθαm(r, θ, φ) := gstd(Wαm(reiθ, φ)eiθ, ieiθ).

we have Rαm = Rrαm∂r +Rθαm∂θ +Rφαm∂φ on B \ {0} × S1.

The functions Rrαm ◦ Ξ+, R
θ
αm ◦ Ξ+ are defined on N+ with

max{
∥∥Rrαm ◦ Ξ+

∥∥
C0 ,
∥∥∥Rθαm ◦ Ξ+

∥∥∥
C0
} ≤

∥∥Rxαm∥∥C1 .

Because of
TΞ+(∂r) = ∂r, TΞ+(∂θ) = ∂θ + ∂φ, TΞ+(∂s) = ∂φ,

we can define Rβm on N+ × S1 as

Rβm := (Rrαm ◦ Ξ+)∂r + (Rθαm ◦ Ξ+)∂θ + (Rφαm ◦ Ξ+ −Rθαm ◦ Ξ+)∂s. (30)

Observe that
Rrαm(0, θ, φ) = 0, (31)

indicating that Rβm |∂+A is tangent to ∂+A. The same procedure works analogously for defining

Rβm on N−×S1, with Rβm |∂−A being tangent to ∂−A. On (A−N ×S1) we set Rβm := Rβ̊m .
The vector field Rβm is the desired extension of Rβ̊m .

By definition βm(Rβ̊m) = 1 and ιRβ̊m
dβm = 0. Because Rβm is a smooth extension of

Rβ̊m , the first two identities at (28) hold as well. This means that the lie derivative

LRβmβm = ιRβmdβm + d(βm(Rβm)) vanishes, implying that φβm
∗
βm = βm.

Now, we take care of the C0 closeness to RβHm .

At first, estimate
∥∥Rβm −RβHm∥∥C0 on N × S1. Similarly to (29), we can write the Reeb

vector field of αHm near Sp+S
2 in the coordinates (x, φ) ∈ B × S1, given by Dz+ .

RαHm = RxαHm +RφαHm∂φ.

We can again define functions in polar coordinates

RrαHm (r, θ, φ) := gstd(WαHm (reiθ, φ)reiθ, eiθ),

RθαHm (r, θ, φ) := gstd(WαHm (reiθ, φ)eiθ, ieiθ)

24



such that we obtain a description in polar coordinates RαHm = RrαHm∂r +RθαHm∂θ +RφαHm∂φ
on B \ {0} × S1.

Again, by Lemma 6.6, there exists a matrix valued function W such that

W (x, φ)x = Rxαm(x)−RxαHm (x)

and
‖W‖C0 <

∥∥∥Rxαm −RxαHm∥∥∥C1
≤
∥∥Rαm −RαHm∥∥C1 = o(m2).

Furthermore, observe that W = Wαm −WαHm . Therefore,∥∥∥Rrαm −RrαHm∥∥∥C0
=
∥∥∥gstd((Wαm −WαHm )(reiθ, φ)reiθ, eiθ)

∥∥∥
C0

≤ ‖W‖C0 = o(m2).

For the same reason, we have
∥∥∥Rθαm −RθαHm∥∥∥C0

= o(m2). For the terms in the φ direction

we have ∥∥∥Rφαm −RφαHm∥∥∥C0
≤
∥∥Rαm −RαHm∥∥C0 = o(m2).

Hence ∥∥Rβm −RβHm∥∥C0 ≤ 3 max
{∥∥∥Rrαm ◦ Ξ+ −RrαHm ◦ Ξ+

∥∥∥
C0
,∥∥∥Rθαm ◦ Ξ+ −RθαHm ◦ Ξ+

∥∥∥
C0
,∥∥∥Rφαm ◦ Ξ+ −RφαHM ◦ Ξ+ +Rθαm ◦ Ξ+ −RθαHm ◦ Ξ+

∥∥∥
C0

}
≤3 max

{∥∥∥Rrαm −RrαHm∥∥∥C0
,
∥∥∥Rθαm −RθαHm∥∥∥C0

,∥∥∥Rφαm −RφαHM ∥∥∥C0
+
∥∥∥Rθαm −RθαHm∥∥∥C0

}
= o(m2).

The estimation of the C0 distance between the vector fields near Sp−S
2 can be done analo-

gously. Consequently
∥∥Rβm −RβHm∥∥C0 = o(m2) on N × S1.

On Å× S1 we have∥∥∥Rβ̊m −Rβ̊Hm∥∥∥C0
≤ C0

∥∥∥β̊m − β̊Hm∥∥∥
C0

= C0

∥∥∥Ξ̊∗(αm − αHm)
∥∥∥
C0

≤ C0

∥∥∥T Ξ̊
∥∥∥
C0
‖αm − αHm‖C0 = o(m2).

We conclude that
∥∥Rβm −RβHm∥∥C0 = o(m2).

25



4.3 Expanding the magnetic strength

Let ω ∈ Ω2(S2) be a symplectic form, h : S2 → R a function and x ∈ S2 a critical point of h.
Hessωh(x) is the Hessian matrix of h at x in the coordinates of a Darboux Chart for ω, i.e. let
ψ : B → S2 be a coordinate chart such that ψ∗ω = ωstd. Then Hessωh(x) := Hessh◦ψ−1(ψ(x)).
This clearly depends on the choice of ψ, however, the determinant det Hessωh(x) is independent

of the choice of Darboux coordinate, since for any other Darboux chart ψ̃ : B → S2, the
derivative of the coordinate change T

ψ̃(x)
(ψ ◦ ψ̃−1) lies in the symplectic group Sp(2). Hence,

det Hessωh(x) = det Hessh◦ψ(ψ−1(x))

= det
(

(T
ψ̃(x)

(ψ ◦ ψ̃−1))−1 Hessh◦ψ(ψ−1(x))T
ψ̃(x)

(ψ ◦ ψ̃−1)
)

= det Hess
h◦ψ̃(ψ̃−1(x))

By Lemma 4.3, we know that the Reeb vector fields Rβm are tangent to the boundary ∂A.
The following lemma will be useful to calculate the Reeb vector fields Rβm |∂A. This will be
important to later determine the return map of the global surface of section.

Lemma 4.4. In the local coordinates of dp± : B × S1 → SS2, let c± :=
√

det Hessσ1/f (p±),

then Hm has the expansion

Hm(x) = 1− m

2

2( 1

f(p±)
± c±

2
(x2

1 + x2
2) + o(|x|2)

)
at x = 0.

Proof. In the coordinates of dp+ , by expanding 1/f at x = 0, we get

1/f(x) = 1/f(p+) +
1

2
xT Hess1/f (0)x+ o(|x|2). (32)

Because p+ is a local minimum of 1/f , there is a rotation A ∈ SO2(R), such that

Hess1/f◦A(0) := AT Hess1/f (0)A =

(
a2 0
0 b2

)
, for some a, b > 0. (33)

Let s : s−1(B)→ B ⊂ R2 be the symplectic transformation

s : (x1, x2) 7→ (

√
b

a
x1,

√
a

b
x2).

Then, in the coordinates of s ◦A ◦Dp+ , the expansion at (32) becomes

1/f(x) = 1/f(p+) +
1

2
ab(x2

1 + x2
2) + o(|x|2).

And c+ :=
√

det Hess1/f (p+) = ab. The same works for p−, the change of sign results from

the eigenvalues of the Hessian matrix at (33) being negative in this case.

Remark 4.5. The numbers c± =
√

det Hess1/f (p±) do not depend on the choice of Darboux

coordinates of (S2, fdλ0) since the derivatives of the transition functions lie in the symplectic
group Sp(2).
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4.4 The unperturbed Reeb vector field

Because βHm = Ξ∗λHm = 1
Hm

Ξ∗λ0, we have βH0 = Ξ∗λ0 and we can write

βHm =
1

Hm
βH0 (34)

, where we abused the notation and mean Hm = Hm ◦ Ξ.

Due to Proposition 4.3, the Reeb vector field Rβ̊Hm
extends to a vector field Rβ on A×S1

satisfying
βHm(RβHm ) = 1, ιRβHm

dβHm = 0, φβHm
∗
βHm = βHm . (35)

To see that S is a surface of section for the Reeb flow of λHm and to later calculate the
first return map, we find a description of Rβ̊Hm

close to the boundaries ∂A in the coordinates

(r, θ, s) ∈ A× S1.

Proposition 4.6. Write the Reeb vector field RβHm in the coordinates (r, θ, s) ∈ A× S1.

RβHm = RrβHm∂r +RθβHm∂θ +RsβHm∂s,

for some functions RrβHm
, RθβHm

, RsβHm
: A×S1 → R. Because RβHm is tangent to ∂A we know

that RrβHm
= 0 on ∂A.

If r = 0 we have:

RθβHm = −m
2c+

2
, RsβHm = 1 +

m2c+

2
− m2

2f(p+)
.

Similarly, if r = 1:

RθβHm = −m
2c−
2

, RsβHm = 1− m2c−
2
− m2

2f(p−)
,

where c± =
√

det Hessσ1/f (p±), which was defined in Lemma 4.4.

Proof. Because of the equations at (35) and Equation 34, we have 1 = βHm(RβHm ) =
1
Hm

βH0(RβHm ). Therefore,
βH0(RβHm ) = Hm. (36)

Furthermore

0 = ιRβHm
dβHm = ιRβHm

(−dHm

H2
m

βH0 +
1

Hm
dβH0)

⇐⇒ 0 = ιRβHm
(−dHm

Hm
βH0 + dβH0).

(37)
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And

0 = ιRβHm
(−dHm

Hm
βH0 + dβH0)

= −
dHm(RβHm )

Hm
βH0 +

dHm

Hm
βH0(RβHm ) + ιRβHm

dβH0

(By Equation 36) = −
dHm(RβHm )

Hm
βH0 + dHm + ιRβHm

dβH0 . (38)

In local coordinates on N × S1 we can write

RβHm = RrβHm∂r +RθβHm∂θ +RsβHm∂s,

for some functions RrβHm
, RθβHm

, RsβHm
: A× S1 → R.

At first, assume that r near 0. Because of Lemma 4.4, we know that

Hm = 1− m2

2f(p+)
− m2c+

4
r2 +m2o(r2).

Therefore, keeping in mind that Hm is smooth, we have

dHm = −m
2c+r

2
dr +m2o(r). (39)

Recall that βHm = Ξ∗λ0, thus by Equation 25 we have

ιRβHm
dβH0 = r(RrβHmdθ −R

θ
βHm

dr).

Continuing from (38), together with Equation 39, we calculate

0 = −
dHm(RβHm )

Hm
βH0 + dHm + ιRβHm

dβH0

=−
−m2c+rR

r
βHm
− 2m2o(r)

2Hm
((1 +

r

2

2
)dθ + ds)− m2c+r

2
dr +m2o(r) (40)

+ r(RrβHmdθ −R
θ
βHm

dr).

Dividing by r and reordering results in

0 =−
−m2c+R

r
βHm

+ 2m2o(1)

2Hm
((1 +

r

2

2
)dθ + ds) +RrβHmdθ

− (
m2c+

2
+RθβHm )dr +m2o(1).

By comparing the basis covector dr, we get

m2c+

2
+RθβHm +m2O(r) = 0 =⇒ RθβHm = −m

2c+

2
−m2O(r).
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Hence, RθβHm
= −m2c+

2 at r = 0.

By Equation 25 and Equation 36 we have RsβHm
+RθβHm

= Hm at r = 0. Therefore,

RsβHm = Hm −RθβHm = 1 +
m2c+

2
− m2

2f(p+)
.

This proves the statement for r = 0.

Now, assume r is close to 1. Similar to the previous case, by Lemma 4.4, we get

Hm = 1− m2

2f(p−)
+
m2c−

4
(1− r)2 +m2o((1− r)2),

dHm = −m
2c−
2

(1− r)dr +m2o(1− r).

Doing almost the same calculations as before, using the equations at 26

0 =−
dHm(RβHm )

Hm
βH0 + dHm + ιRβHm

dβH0

=−
−m2c−(1− r)RrβHm − 2m2o(1− r)

2Hm
(−(1 +

(1− r)
2

2

)dθ + ds) (41)

− m2c−
2

(1− r)dr +m2o(1− r) + (1− r)(Rrdθ −Rθdr).

reordering and dividing by (1− r) results in

0 =−
−m2c−R

r
βHm

+ 2m2O(1− r)
2Hm

(−(1 +Rr +
(1− r)

2

2

)dθ + ds)

− (
m2c−

2
+Rθ)dr +m2O(r).

By comparing the covector dr again, we have Rθ = −m2c−
2 . Equation 36 and Equation 26

then imply

RsβHm = 1− m2c−
2
− m2

2f(p−)
.

This concludes the proof for the case r = 1.
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Corollary 4.7. We have
∥∥RβHm − ∂s∥∥C0 = o(m) and the embedding S is a global surface of

section for the Reeb flow of αHm.

Proof. Using the equations from Proposition 4.6, on the boundary ∂A× S1 we have∥∥RβHm − ∂s∥∥C0 ≤ 3 max{
∥∥∥RrβHm∥∥∥C0

,
∥∥∥RθβHm∥∥∥C0

,
∥∥∥RsβHm − 1

∥∥∥
C0
}

≤ 3 max{0, |c±m
2

2
|, |c±m

2

2
− m2

2f(p±)
|} ≤ o(m).

On Å× S1, with help of Lemma 6.5 and Lemma 6.2, we can estimate∥∥RβHm − ∂s∥∥C0 ≤ C‖αHm − λ0‖C0,+ = o(m) (42)

for some C > 0. Thus,
∥∥RβHm − ∂s∥∥C0 = o(m) on A× S1. This indicates that

ds(RβHm ) = 1 + o(m).

Therefore, φβHm is transverse to A × {0} for m small enough. Because Ξ is diffeomorph on
Å × {0}, the flow φλHM = Ξ|̊A×{0} ◦ φ

βHm is transversal to Ξ(̊A × {0}) = S(Å), showing that
S is global a surface of section for the Reeb flow of λHm .

4.5 The perturbed Reeb vector field

Take again an arbitrary αm ∈ Bp+,p− and its pullback βm = Ξ∗αm to A× S1.

Corollary 4.8. We have ‖Rβm − ∂s‖C0 = o(m) and the embedding S is a global surface of
section for the Reeb flow of αm for m small enough.

Proof. By Proposition 4.3,
∥∥Rβm −RβHm∥∥C0 = o(m2). Together with Corollary 4.7 we have

‖Rβm − ∂s‖ =
∥∥Rβm −RβHm +RβHm − ∂s

∥∥
≤
∥∥Rβm −RβHm∥∥+

∥∥RβHm − ∂s∥∥ = o(m).

Similar to the proof of Corollary 4.7, S is a global a surface of section as a consequence of

ds(Rβm) = 1 + o(m).
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As for the unperturbed Reeb vector field RβHm , we have a similar local description of the
perturbed Reeb vector field Rβm on the boundaries of A× S1.

Corollary 4.9. Write the Reeb vector field Rβm in the coordinates (r, θ, s) ∈ A× S1

Rβm = Rrβm∂r +Rθβm∂θ +Rsβm∂s,

for some functions Rrβm , R
θ
βm
, Rsβm : A×S1 → R. Because Rβm is tangent to ∂A we know that

Rrβm = 0 on ∂A. If r = 0, we have:

Rθβm = −m
2c+

2
+ o(m2), Rsβm = 1 +

m2c+

2
− m2

2f(p+)
+ o(m2).

Similarly, if r = 1:

Rθβm = −m
2c−
2

+ o(m2), Rsβm = 1− m2c−
2
− m2

2f(p−)
+ o(m2).

Here, c± =
√

det Hessσ1/f (p±), which was defined in Lemma 4.4.

Proof. From Proposition 4.3 we know that ‖Rβm −Rβm‖C0 = o(m2). Together with Propo-
sition 4.6, which gave local description of Rβm on the boundary of ∂+A × S1, we directly
deduce

Rθβm =
m2c+

2
+ o(m2),

Rsβm = 1 +
m2c+

2
− m2

2f(p+)
+ o(m2).

The same argument works for the vector field on ∂−A× S1.

4.6 The first return map

Knowing that Rβm extends to the boundary, we can define a first return time and first return
map that both extend to the boundary as well. The first return time τm(x) : A→ R is given
by

τm(x) = inf{ t > 0 | φβmt (x) ∈ A× {0} }, (43)

and the first return map Pm : A→ A is

Pm(x) = φβmτm (x). (44)

In the next Section we will use Proposition 4.9 to calculate the first return time and the first
return map on the boundary ∂A. We then compare the first return maps behavior on the two
different boundary components ∂+A and ∂−A to check under what conditions Pm satisfies the
boundary twist conditions, which we will discuss in the beginning of the next Section.
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5 A Twist Condition for the magnetic flow

In this final section we are going to show that the first return map Pm : A → A, which we
defined in the previous section, is twist under a suitable condition on f .

As introduction and motivation on why we take great interest in Pm being twist, we
briefly introduce the Poincaré-Birkhoff theorem and the consequences it carries for the Reeb
flow corresponding to Pm.

5.1 The Poincaré-Birkhoff theorem

This subsection is based on [Le Calvez, 2011] Chapter 2.

Let F : A → A be a homeomorphism of the annulus A = [0, 1] × S1, that leaves the
boundaries ∂A invariant. The universal cover is given by Ã := [0, 1] × R. Consider the
translation T : Ã→ Ã, (r, θ) 7→ (r, θ+ 2π) and the lift F̃ : Ã→ Ã of F to Ã. Let F̃1 : Ã→ [0, 1]
and F̃2 : Ã → R functions such that F̃ = (F̃1, F̃2). We state the Poincaré-Birkhoff theorem,
based on how it was formulated at [Le Calvez, 2011] Theorem 1.

Theorem 5.1. If the following conditions hold:

(i) F̃ ∗dr ∧ dθ = dr ∧ dθ.

(ii) For every θ ∈ R, one has F̃2(0, θ) < θ < F̃2(1, θ),

then F̃ has at least two fixed points with different T orbit, i.e. if z1,2 ∈ Ã are the two fixed
points, then there is no k ∈ Z such that T k(z1) = z2.

The following discussion about why the theorem actually implies that an infinite number
of fixed points exist was taken from [Le Calvez, 2011] Chapter 2.

Assume that z ∈ A is a fixed point of F q for some q ∈ Z≥1. The fixed point z is also called
a periodic point of F and the smallest q ∈ Z≥1 such that z = F q(z) is called the period of
z. Consider a lift z̃ ∈ Ã of z, then there exists a p ∈ Z such that F̃ q(z̃) = T p(z̃).

If we take a different lift ẑ := T r(z̃) of z, then F̃ q(ẑ) = T r ◦ F̃ q(z̃) = T r+p(z̃) = T p(ẑ).
Therefore, p is independent of the choice of the lift of z. The number p/q is called the rotation
number of z. By choosing another lift T r ◦ F̃ of F we get

(T r ◦ F̃ )
q

= T rq ◦ F̃ q = T qr+p,

with rotation number p/q + r instead of p/q.
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We state the corollary about the existence of infinitely many fixed points. This is a slightly
adapted version of [Le Calvez, 2011] Corollary 2.

Corollary 5.2. Let F be a homeomorphism of A leaving the boundaries ∂A invariant, and
F̃ : Ã→ Ã the lift of F to Ã. Assume that F̃ has the following properties:

(i) F̃ ∗dr ∧ dθ = dr ∧ dθ.

(ii) There exist two numbers ρ0 < ρ1 ∈ R such that F̃2(0, θ) ≤ θ + ρ0 ≤ θ + ρ1 ≤ F̃2(1, θ).

Then, every reduced rational number ρ = p/q, that lies in the open interval (ρ0, ρ1), is the
rotation number of a periodic orbit of F with period q.

Proof. Let ρ = p/q be some reduced rational number in the open interval bounded by ρ0 and
ρ1. The map F̃ q ◦ T−p is another lift of F . Let p : Ã → R the projections onto the second
component. For every θ ∈ R we have

p ◦ F̃ q ◦ T−p(0, θ) ≤ θ − p+ qρ0 < θ

p ◦ F̃ q ◦ T−p(1, θ) ≥ θ − p+ qρ1 > θ.

Therefore F̃ q ◦ T−p satisfies the requirements of the Poincaré-Birkhoff theorem [5.1], which
ensures the existence of a fixed point z ∈ Ã of F̃ q ◦ T−p implying F̃ q(z) = T p(z). Therefore z
is a periodic point of F with rotation number p/q.

This immediately implies that the homeomorphism F in Corollary 5.2 has an infinite
number of periodic points.

Remark 5.3. The second requirement (ii) of Corollary 5.2 is also called the boundary twist
condition.

Remark 5.4. Corollary 5.2 is actually still valid if F̃ satisfies the requirements of Theorem
5.1 instead. For details see Chapter 2 in [Le Calvez, 2011].

Remark 5.5. Homeomorphisms of the annulus A that satisfy the requirements of the Poincarè-
Birkhoff Theorem 5.1 or its corollary, are also referred to as area preserving twist maps.
For convenience we sometimes simply refer to such maps as being twist.

Going back to the first return map Pm. We go through all the requirements of an area
preserving twist map. At first, observe that Pm is a diffeomorphism since it was defined via
the flow φβm . Furthermore, by Equation 28 we have φβm

∗
dβm = dβm and ιRβm = 0. Because

the flow φβm of Rβm is transverse to A ⊂ A×{0} and dβm only having a 1-dimensional kernel
distribution, the restriction dβm|A is an area form on A. This means that Pm is an area
preserving diffeomorphism.

The rest of this section will deal with the remaining boundary twist condition (ii) of
Corollary 5.2.
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5.2 The boundary twist condition of the first return map

Because of Proposition 4.3, the vector field Rβm is tangent to ∂A× S1 and on ∂A× S1 it can
be written in the coordinates (θ, s) ∈ ∂A× S1.

Rβm |∂A×S1 = Rθβm∂θ +Rsβm∂s,

for functions Rθβm , R
s
βm

: ∂A× S1 → R.

By Corollary 4.9, on ∂+A we have

Rθβm = −m
2c+

2
+ o(m2), Rsβm = 1 +

m2c+

2
− m2

2f(p+)
+ o(m2).

On ∂−A:

Rθβm = −m
2c−
2

+ o(m2), Rsβm = 1− m2c−
2
− m2

2f(p−)
+ o(m2).

Recall that c± =
√

det Hessσ1/f (p±).

Let φ̃βm be the lift of the Reeb flow φβm to Ã such that φ̃βm0 (0) = 0. By integrating the
Reeb vector field along the boundaries for initial values (θ0, s0) ∈ ∂+Ã× R, we get

φ̃βmt |∂+Ã(θ0, s0)

= (−t(m
2c+

2
+ o(m2)) + θ0, t(1 +

m2c+

2
− m2

2f(p+)
+ o(m2)) + s0).

(45)

If (θ0, s0) ∈ ∂−Ã× R, we have

φ̃βmt |∂−Ã(θ0, s0)

= (−t(m
2c−
2

+ o(m2)) + θ0, t(1−
m2c−

2
− m2

2f(p−)
+ o(m2)) + s0),

(46)

We can now determine the first return time and first return map on the boundary.

Let θ0 ∈ ∂Ã. By definition, the first return time for θ0 is the smallest τ0 > 0, such that
φ̃βmτ0 |∂Ã(θ0, 0) = (θ1, 2π), for some θ1 ∈ ∂A. Assuming that θ0 ∈ ∂+Ã and using the local
description 45 of the flow, the return time τ0 is determined by

2π = τ0(1 +
m2c+

2
− m2

2f(p+)
+ o(m2))

⇐⇒ τ0 =
4π

2 +m2c+ −m2/f(p+) + o(m2)
,

(47)

and θ1 is given by

θ1 = −τ0(
m2c+

2
+ o(m2)) + θ0

=
2πm2c+

2 +m2c+ −m2/f(p+) + o(m2)
+ o(m2) + θ0

(48)
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Define the restrictions τ+
m, τ

−
m := τm|∂+A, τm|∂−A of the first return time of βm defined at (43).

Then, by the calculations above,

τ+
m(θ) =

4π

2 +m2c+ −m2/f(p+) + o(m2)
.

and similarly

τ−m(θ) =
4π

2−m2c− −m2/f(p−) + o(m2)
.

Let P̃m : Ã→ Ã be the lift of the first return map Pm of βm. By Equation 48, the restrictions
P̃+
m , P̃

−
m := P̃m|∂+A, P̃m|∂−A can be described as follows:

P̃+
m(θ) =

2πm2c+ + o(m2)

2 +m2c+ −m2/f(p+) + o(m2)
+ θ

= πm2c+ + o(m2) + θ

P̃−m(θ) =
2πm2c− + o(m2)

2−m2c− −m2/f(p−) + o(m2)
+ θ

= πm2c− + o(m2) + θ.

(49)

We can now state a condition for the first return time being twist.

Proposition 5.6. If c− 6= c+, where c− :=
√

det Hessσ1/f (p−) and c+ :=
√

det Hessσ1/f (p+),

then the first return map Pm : A → A of the Reeb flow φβm is an area preserving twist map
for m small enough.

Proof. We already mentioned why Pm is area preserving and a diffeomorphism and only need
to show that Pm satisfies the boundary twist condition (ii) in Corollary 5.2.

Because of the equations at (49), for the lift P̃m we have

P̃m(0, θ) = (0, πm2c+ + o(m2) + θ), P̃m(1, θ) = (1, πm2c− + o(m2) + θ).

Set

ρ0 :=
3

4
πm2c− +

1

4
πm2c+,

ρ1 :=
3

4
πm2c+ +

1

4
πm2c−.

Let p2 : Ã→ R, (r, θ) 7→ θ. W.l.o.g. c− < c+, then ρ0 < ρ1 and for m small enough we have

p2 ◦ P̃m(1, θ) = πm2c− + o(m2) + θ

< ρ0 + θ < ρ1 + θ

< πm2c+ + o(m2) + θ = p2 ◦ P̃m(0, θ).

As an immediate consequence, it follows that the Reeb flow of βm has infinitely many
periodic orbits if m is small enough.
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5.3 Reformulated conditions on the Hessian

We reformulate the condition on the Hessian in Proposition 5.6. We compute in coordinates
around p±:

Hessσ1/f (p±) = (
∂2

∂xixj
|p±(1/f))i,j

= (
2

f3
(p±)

∂

∂xi
|p±f −

1

f2
(p±)

∂2

∂xi∂xj
|p±(f))i,j

= − 1

f2
(p±)(

∂2

∂xi∂xj
|p±(f))i,j (

∂

∂xi
|p±f = 0, since is p± is critical)

= − 1

f2(p±)
Hessσf (p±).

Consequently √
det Hessσ1/f (p±) =

1

f2(p±)

√
det Hessσf (p±). (50)

Furthermore, the Hessian can be calculated according to Darboux coordinates of the volume
form volg which is induced by the Riemannian metric g on S2. Speaking about Darboux
coordinates makes sense since volg is symplectic on S2. In other words, let ψ̃ : V ⊂ R2 →
U ⊂ S2 be a diffeomorphism such that ψ̃∗ volg = ωstd, then we are interested in the Hessian
of f ◦ ψ̃. Observe that such diffeomorphisms are exactly those whose induced basis vectors
∂x1 , ∂x2 on TU ⊂ TS2 form an orthonormal frame with respect to the metric g.

We will use the notation
Hessg := Hessvolg

for Hessians in such coordinates.

Assume that p± ∈ U and ψ(0) = p±. Since σ = f volg, we have T0d± = 1/f(p±)T0ψ̃,
implying that f(p±)1 = T0(d−1

± ◦ ψ̃) which enables us to calculate

Hessgf (p±) = Hessf◦ψ̃(0)

= T T0 (d−1
± ◦ ψ̃) Hessf◦d±(0)T0(d−1

± ◦ ψ̃)

= f2(p±) Hessf◦d−1
±

(0)

= f2(p±) Hessσf (p±)

Hence, √
det Hessσf (p±) =

1

f
(p±)

√
det Hessgf (p±).

Together with Equation 50 we get√
det Hessσ1/f (p±) =

1

f3
(p±)

√
det Hessgf (p±).
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5.4 Consequences for the magnetic flow

The magnetic flow was defined as the Hamiltonian flow φXm of the symplectic twisted bundle
(TS2, ω = dλ−π∗σ). Recall that σ = f volg. We have seen that the dynamics of the magnetic
flow on the level sets Σm can be studied through the Reeb vector field of the contact manifold
(SS2, λm), where dλm = ωm = mdλ− π∗σ.

By Lemma 3.1, there exists a diffeomorphism F : SS2 → SS2 such that F ∗λm = 1
Hm

λ0 +

o(m2) for m small enough.

Set λ̂m := F ∗λm then, λ̂m ∈ B (See (4)). In other words, λ̂m is C1,+-close to the unper-
turbed form λHm = 1

Hm
λ0.

Assuming that p+, p− are non-degenerate maximum and minimum points respectively.
By choosing suitable spherical coordinates we can assume that p+ is the North-Pole and
p− is the South-Pole. In Subsection 3.4 about weakly normalized forms, we saw that there
is a diffeomorphism Ψm such that Ψm

∗λ̂m is weakly normalized (See Definition 3.4). Set
λΨm := Ψm

∗λ̂m

In Section 4 we constructed a global surface of section S : A → SS2 for the Reeb flow of
the unperturbed form λHm . By Corollary 4.8, we know that S is a global section of surface
for the Reeb flow φλΨm of λΨm for m small enough.

With the help of Corollary 4.9, it’s possible to express the first return time and first return
map, corresponding to φλΨm and its surface of section, in local coordinates on the boundary.
In this last section we used the description in local coordinates to see that the first return

map is twist for m small enough, if 1
f3 (p+)

√
det Hessgf (p+) 6= 1

f3 (p−)
√

det Hessgf (p−).

Then, Corollary 5.2 implies that the Reeb flow φλΨm has infinitely many periodic orbits.
As the dynamics of the Reeb flow is the same with that of the magnetic flow φX

m
, restricted

on the level set Σm, the magnetic flow has an infinite number of periodic orbits if m is
small enough. In particular the magnetic flow has infinitely many periodic orbits in general
(Without specifying a kinetic energy level set). We summarize these results in the following
theorem.

Theorem 5.7. Let (S2, g, σ) be a magnetic system such that its magnetic strength f is positive
everywhere. Assume that f has a minimum point p− and a maximum point p+. If

1

f3
(p+)

√
det Hessgf (p+) 6= 1

f3
(p−)

√
det Hessgf (p−),

where Hessgf is the Hessian in orthonormal coordinates according to g, then the magnetic flow
has an infinite number of periodic orbits with speed m, for every m small enough.
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6 Appendix

6.1 Ck norms and estimates

For the uniform Ck norms used in this thesis we refer to the appendix A of [Benedetti and
Kang, 2018]. We only summarize a few lemmas that are important for us.

Definition 6.1. Let h ∈ {1, 2}, k ∈ {0, 1}, and define the numbers Bh,k(‖Tψ‖)

B1,0(‖Tψ‖) = ‖Tψ‖C0 , B1,1(‖Tψ‖) = ‖Tψ‖C0 + ‖Tψ‖C1 ,

B2,0(‖Tψ‖) = ‖Tψ‖2C0 , B2,1(‖Tψ‖) = ‖Tψ‖2C0 + ‖Tψ‖C0‖Tψ‖C1 .

Lemma A.1 in [Benedetti and Kang, 2018] states the following

Lemma 6.2. For any ϑ ∈ Ωh(M1) with h ∈ {1, 2} and any diffeomorphism ψ : M0 →M1 we
have

‖ψ∗ϑ‖Ck ≤ Bh,k(‖Tψ‖)‖ϑ‖C1 .

Remark 6.3. This statement generalizes to Ck norms and differential forms of higher degree.
For more details see lemma A.1 in [Benedetti and Kang, 2018].

Lemma A.4 in [Benedetti and Kang, 2018] states the following

Lemma 6.4. Let B ⊂ R2 be a closed ball. For every k ∈ N and δ0 > 0, there exists δ1 > 0
such that, if ψ1, ψ2 : B × S1 → B × S1 are smooth maps and h ∈ N, then

‖ψ2 − ψ1‖Ck+1 ≤ δ1 =⇒ ‖ψ∗2η − ψ∗1η‖Ck ≤ δ0‖η‖Ck+1 .

The following lemma is taken from Lemma A.6 in [Benedetti and Kang, 2018] and is
extremely useful to estimate the Ck distance between Reeb vector fields.

Lemma 6.5. Let k ∈ N and let M0 be compact manifold of dimension 2n+1 with contact form
α0. There exists a constant Ak > 0 such that, if α is a one-form on M0 with ‖α− α0‖C0,+ < δ,
then α is a contact form and there holds

‖Rα −Rα0‖Ck ≤ Ak‖α− α0‖Ck,+ .

Proof. See Lemma A.6 in [Benedetti and Kang, 2018].
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6.2 Vanishing functions as matrix valued functions

Lemma 6.6. Let U ⊂ R2 an open neigbourhood of 0, f : U → R2 a smooth map such that
f(0) = 0. Then there exists a matrix valued function W : U → R2×2 such that f(x) = Wxx
and ‖W‖C0 < ‖f‖C1.

Proof. Write (f1(x), f2(x)) = f(x) ∈ R2, (x1, x2) = x and define

Wx :=

(∫ 1
0 ∂1f1(x1u, x2u)du

∫ 1
0 ∂2f1(x1u, x2u)du∫ 1

0 ∂1f2(x1u, x2u)du
∫ 1

0 ∂2f2(x1u, x2u)du

)

and check that Wxx = f(x). From the definition it follows that ‖W‖C0 ≤ ‖f‖C1 .
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