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Summary

The magnetic flow on the two-dimensional sphere S? is determined by a Riemannian metric
g and a two-form o, each on S2. The triple (52, g,0) is called a magnetic system. The
goal of this thesis is to find a condition on the magnetic system so that the magnetic flow
has infinitely many periodic orbits. We will use existing results that allow us to view the
problem in a contact geometric context where the dynamics of the Reeb flow corresponds
to the dynamics of the magnetic flow on different kinetic energy level sets. We will then
construct a global surface of section that is an annulus and find a condition for which the
first return map of the surface of section satisfies the requirements of the Poincaré-Birkhoff
Theorem which then implies that the first return map has infinitely many fixed points and
the Reeb flow therefore has an infinite number of periodic Reeb orbits.

Zusammenfassung

Der magnetische Fluss auf der zweidimensionalen Sphire S? ist bestimmt durch eine Rieman-
sche Metrik g und einer zwei-Form o, jeweils auf S2. Das Tripel (52, g, o) wird auch magnetis-
ches System genannt. Das Ziel dieser Arbeit ist eine Bedingung an das magnetischen System
zu finden, fiir die der magnetische Fluss unendlich viele periodische Orbiten hat. Wir werden
existierende Resultate verwenden, um das Problem in einem kontakgeometrischen Kontext zu
betrachten. Dabei korrespondiert die Dynamik des Reeb Flusses mit dem des magnetischen
Flusses auf unterschiedlichen Niveaumengen der kinetischen Energiefunktion . Wir werden
dann einen Poincaré-Schnitt konstruieren, der ein Kreisring ist, und eine Bedingung finden, fiir
welche die Poincaré-Abbildung die Voraussetzungen des Satzes von Poincaré-Birkhoff erfiillt,
welcher dann impliziert, dass die Poincaré-Abbildung unendlich viele Fixpunkte und der Reeb
Fluss unendlich viele periodische Orbiten besitzt.
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1 Introduction

Since the end of the 18th century, when theoretical electromagnetism emerged, many physi-
cists and mathematicians have been interested in making statements about the motion of a
charged particle in an electromagnetic field.

The motion of a particle, constrained to a surface and subjected to a Lorentz force, is
described by a differential equation (Newton’s second law of motion). The set of solutions
gives rise to a flow, which we call the magnetic flow.

In this thesis we restrict our studies to the magnetic flow on the two-sphere, which induces
a flow on its tangent space T.S? (We will usually refer to the induced flow on 7'S? as the
magnetic flow). The magnetic flow depends on a Riemannian metric g and a two-form o,
each on S2. The triple (52, g,0) is called a magnetic system.

Another way of describing the magnetic flow is by studying the Hamiltonian flow of the
manifold (T'S?,w, := d\ — 7*0), associated to the kinetic energy function

1
E:TS> %R, E(z,v)= §gx(v,v).

The one-form A € Q'(TS?) corresponds to the tautological one-form on T*S2.

If o = 0, the Hamiltonian flow describes the geodesic flow. For the geodesic flow on
S? it was proven in [Banger, 1993] that there are infinitely many periodic orbits for every
Riemannian metric.

In this thesis we want to find a condition on the magnetic system so that the magnetic
flow has infinitely many periodic orbits. We will prove the following theorem:

Theorem. Let (S%,g,0 = fvoly) be a magnetic system such that its magnetic strength f is
positive everywhere. Assume that f has a minimum point p_ and a maximum point py. If

F3 (01 fAet Hess] () # 5 (p-) fdet Hessf (),

where Hess is the Hessian in orthonormal coordinates according to g, then the magnetic flow
has infinitely many periodic orbits with speed m > 0, for every m small enough.

The level sets ¥,,, := {E = m} are invariant under the Hamiltonian flow. The dynamics of
the flow on (T'S?, w,) restricted to X, corresponds to the dynamics of the flow of the manifold
(T'S%, wy,) restricted to SS? := ¥, where w,, := md\ — 0. This enables us to study the
dynamics on the different level sets >, by studying the dynamics of the Hamiltonian flow
corresponding to the one-parameter family of forms w,,, restricted to SS2.

In Section [3| we look at some properties of the low energy levels: that is 3, for m small.
An important result from [Benedetti, 2014] is that for m small enough w,, has a primitive
of contact type, i.e. there is a contact form \,, € Q'(5S?) such that d\,, = w,,. Because
the dynamics of the Hamiltonian flow on (552, w,,) is equivalent to that of the Reeb flow of
(852, \;m), we can study the magnetic flow in the framework of contact geometry.



Based on the results of [Benedetti and Kang, 2018|, in Section {4 we construct a global
surface of section as an annulus in SS2. In other words, we find an embedding S : A — 55?2
such that S(A) is transversal to the Reeb flow, and the boundary S(AA) is the support of
periodic orbits of the Reeb flow.

In Section [5| we revisit the Poincaré-Birkhoff theorem which tells us that area preserving
homeomorphisms of the annulus F': A — A have infinitely many fixed points if F' satisfies the
so called boundary twist condition.

We then find a condition on the magnetic system so that the first return map of our
constructed global surface of section satisfies the boundary twist condition. As a consequence
of the first return map being twist, it has infinitely many fixed points, meaning that the
Reeb flow has infinitely many periodic Reeb orbits. As the dynamics of the Reeb flow of
(852, A\n) corresponds to the dynamics of the magnetic flow on X,,, this directly implies that
the magnetic flow has infinitely many periodic orbits.



2 Preliminaries

In this chapter we briefly introduce the mathematical objects and some theoretical basics
which we need throughout this thesis.

2.1 General notation

Let S' = Z/2n. If not otherwise mentioned, M is a closed orientable surface with a Rie-
mannian metric g. Unless stated differently all objects are assumed to be smooth. We
have the tangent bundle 7 : TM — M, the metric g induces the Levi-Civita connection
V:I(TM)xT'(T'M) — I'(TM). The canonical volume form on M induced by ¢ is denoted
by vol,. We usually denote points in T'M by (x,v), where x € M and v € T, M. We also
have the Sasaki metric on T'M and can work with it’s corresponding Levi-Civita connection.

The metric g induces an isomorphism between T'M and it’s dual space T*M.
b:TM —T*M
(z,v) = gz(v,-).
Its inverse is denoted by §: T*"M — T M.

Let My be a smooth manifold. The vector space of smooth k-forms on My is denoted by
QOF(My). If we have another smooth manifold M; and a map ) : My — Mj, then we denote
its differential at p € Mo by Ty : T Mo — Tip(pp) Mi.

For each x € M, the metric g induces a norm ||-|| on 7, M that we can use to define a
norm for vector fields and one-forms. Let W € T'(M) and n € Q'(M) then

Nz U
[Wllco == sup [|[Wall, |Inllco := sup sup 172 )’
zeM zeM veT M H’UH

A norm for two-forms can be defined similarly. For higher C* norms used in this thesis we
refer to the Appendix of [Benedetti and Kang, 2018]. A summary of the C* estimates that
are important for us can be found in Subsection [6.1

2.2 Horizontal and vertical lifts

We briefly introduce horizontal and vertical lifts which we will occasionally use in this thesis.

The double tangent bundle T'w : TTM — T M splits into a vertical and horizontal sub-
bundle, denoted by V(T'M) and H (T'M) respectively, such that H.(TM)® V(T M) = T.TM,
for each e € TM. The vertical bundle is fiberwise defined as V.(T'M) := ker Tew. The vertical
Eft at (z,v) is a map L&U) 1 ToM — Ty TM, defined by LXM) (w) = 4},_o(v + tw). We
ave

d d
Ty ™ (L 0y (w)) = g le=om(v +tw) = liox =0,

showing that LE; U)(w) lies indeed in the vertical space.

4



By the explanation of the term ’connection’ in [Jost, 2005] on page 104, using the Levi-
Civita connection V, we can define the horizontal bundle the following way. Let e € T M,
then Vo(T'M) = kerTem. Let z := w(e), X € T, M and ¢ : R — M be a curve such that
¢(0) = z and ¢(0) = X. We can use V to parallel transport e along c¢ yielding a curve
€:R—TM, t— é(t), where é(0) = e. This induces a map

LE . T,M - T,TM

d
X — —|=0é(t
> <limoé(t),

which is called the horizontal lift at e. Define H.(T'M) := LY (T M) to be the horizontal space
at e and observe that

Tor L () = Llicom(e(t) = lomoelt) = X.

Hence, LY is injective and H.(TM) N V.(TM) = {0}, implying that

H(TM) & Vo(TM) = T,TM.

2.3 The geodesic flow

The geodesic vector field X € T'(TTM) is the generator of the geodesic flow ¢, which is
defined as the solution of the geodesic equation

Vv =0.
Choose the Lagrangian L(z,v) := % gz (v,v). With help of the Legendre transformation

L:TM = T*M

dL

(.’L‘, U) = %‘(x,v)v

we can define the Hamiltonian H : T*M — R
H(p) :=p(L™ (p)) — L(L™(p)),

The tautological one-form on T*M is defined by A* :=poTw for p € T*M.

Let ¢X" be the Hamiltonian flow of the Hamiltonian vector field X* of d\* associated to
the Hamiltonian H. Then, the geodesic flow on TM can be obtained via ¢X = L71(¢X").

We can use £ to pull H and A* back to T'M. Define
A=L"'\", E:=HoL.
Since L(z,v) = %’(w,v) = gz(v,.), for each w € T{, ., TM

Az (W) = L(z,0)(Tg)T(w)) = ga (0, T(g,0) 7 (w))-



And the energy can be expressed as

0

E(z,v) = Ho L(x,v) = %L(iﬂ,’l}) — L(z,v)
= ga(0,0) — 500(0,0) = 5000, 0).

Since L(x,y) = b(x,y), we can instead define A as b*\*.

Therefore, if A is the pullback of the tautological one-form on T*M under b, then the
geodesic vector field X can be equivalently defined as the Hamiltonian vector field of dA,
associated to the kinetic energy function E(z,v) = 3g5(v,v). The pair (T'M,d)) is called the
standard tangent bundle.

A detailed discussion about the geodesic flow can be found in [Geiges, 2008 Section 1.5.

2.4 The magnetic flow

Let o € Q*(M) and define the generalized Lorentz force F': TM — TM by the equation
9z (Fp(v),w) = o(v,w) Yv,w € TM. (1)
The magnetic flow is defined to be the solution of the equation
Vv = Fy(v).
As the geodesic flow, the magnetic flow is generated by a vector field, which we call the

magnetic vector field X7 € I'(TTM).

On a local domain U C M we can find a one-form 6§ € Q(M), such that df = 0. Choose
a Lagrangian L°(z,v) := 1g,(v,v) — 0,(v) on the domain U.

We define the Legendre transformation for L7 and the corresponding Hamiltonian by

dLe

(2,0) = =@y, HO(P) = (L, 1) = LL, ).
Define the one-form on T*M

A

=\ =70

And the symplectic form
wy = dA, =d\* — 10

Like in the geodesic case, the magnetic flow corresponds to the flow of the Hamiltonian vector
field of w} associated to H?.

Once again, we can pull the objects back to T'M.

HoLy(z,v) = ;}Lg(x,v) — L7 (x,v)

= gz (v,v) — O, (v) — %gm(fu,v) +0,(v) = %gx(v,v) = E(z,v).



Therefore,
we = Low, = LN —70) = d\ — 0.

The magnetic vector field X7 is then given by the Hamiltonian vector field of w, associated
to the energy function FE.

2.5 Magnetic systems

This subsection is based on Section 2.2 of [Benedetti, 2014]. As we have seen in the previ-
ous subsections, we have a one-form A € QY(TM) defined as the pull-back under b of the
tautological one-form on 7™M that acts on vectors w € T(, ,,) T M by

A(a:,v) (w) = 9(z,v) (U7 T(m,'u)ﬂ-(w))

Its exterior differential d\ is symplectic and the tuple (T'M, d)) is a symplectic manifold,
which we call the standard tangent bundle.

We have a symplectic form w, := d\ — 70, where o € Q?(M). The tuple (T'M,w,) is
called the twisted tangent bundle.

We keep the notation and denote the geodesic and magnetic vector field by X and X¢
respectively.

Definition 2.1. The triple (M, g, 0) is called a magnetic system, where o is the correspond-
ing magnetic form. We call (M, g,0) a symplectic magnetic system if the magnetic form
1s symplectic.

Definition 2.2. Because o is a top-dimensional form, there is a unique function f : M — R,
called the magnetic strength, such that o = fvol,.

Let j : Rx TM — TM be the rotational flow going in positive direction with speed 2.
Then ji/4 : TM — TM is a map that rotates each fiber by 7 in the positive sense. The
Lorentz force can be expressed in terms of the magnetic strength by Fy.(v) = f(z)j1/4(7,v).
One can see this by taking an orthonormal frame {e1,e2} and and plugging it into Equation
@

92(f(x)ja(e1), €2) = f(x) = f(z)voln(e1, e2) = o(e1, e2).

Let V be the generator of the flow j, and fix the notation V for the rest of this thesis.

The vector field V' can also be defined as the vertical lift of jj 4(x,v), while the geodesic
vector field X can be defined via the horizontal lift of v. Indeed, write ¢X(t) = (z(t),v(t))
then, T({E(t),v(t))ﬂ-(X) = %|t:0ﬂ'(l‘(t), v(t)) = v(t). Implying that X(zﬂ,) = ng,v)(”)'

As mentioned in |[Benedetti, 2014] Chapter 1, we can decompose the magnetic field X7
into its horizontal and vertical part X° = X + fV.

Because of dE(X7) = w(X7?,X7) = 0, the level-sets of the kinetic energy function are
invariant under the flow of X7, therefore we can study the restrictions of the magnetic field
X7 to the sets

Ym =1 (z,v) €eTM | E(z,v) =m } for m > 0.



Taking the scaling map Sy, : TM — TM, (z,v) — (v, =), we get
TSn(X7s,,) = (mX + fV)|s, = mXg |5,

This means that instead of studying the magnetic flow of the magnetic system (M, g, 0)
on ¥,,, we can study the rescaled magnetic system (M, g, %) on ¥;. We abbreviate

W =Moo =md\ — 1o, X, = mX§ =mX + fV. (2)
Note that scaling the magnetic field doesn’t change its dynamics. Also note that
W — o and X, — fV

as m — 0, showing that the dynamics becomes very simple as m goes to zero.



3 The magnetic flow on low energy levels

From now on we restrict our studies to the symplectic magnetic system (52, g, o). In this sec-
tion we are going to discuss some results of [Benedetti, 2014] Chapter 4 and 6, and [Benedetti
and Kang, 2018| Part I. that are going to help us understand the magnetic flow on low energy
levels: that is, the magnetic flow on the level sets X, for m small.

3.1 Contact geometric framework

The 2-form w,, having a primitive that is contact on SS?, for m small enough, is one of the
main results of [Benedetti, 2014].

Let K be the Gaussian curvature on M. Define the curvature form o, € Q2(M) by
o4 := Kvoly. By [Benedetti, 2014] Example 2.15, the corresponding S1-connection form
T € Q1(55?) is then defined by 7(V) = 1 and dr = —7*0,. Recall that V is the generator of
the 27 periodic flow that rotates each fiber of SS2.

From [Benedetti, 2014] Chapter 4 we know that the 1-form A, := mX\ — 7*8 + 7, where
dB = o — 04, is a primitive of w,, and that there exists a mg > 0 such that A, is a positive
contact form on SS? for m € [0,mg]. Thus, for such m the function

B (2, 0) := A (X™) = m? — Bo(v)m + f(z)

is positive and R™ := ﬁXm = %X + %V is the Reeb vector field of \,.

This shows that to understand the dynamics of the flow of X™, we can instead study the
Reeb vector field R™ of \,,.

The following lemma, which was taken from |Benedetti, 2014] Lemma 7.4, enables us to
bring A,, in a form that is easier to work with.

Lemma 3.1. There exists a diffeomoprhism F,, : SS? — SS? and a real function
Gm : SS? >R

such that
F;L)\m = e?m ).

The map [0,mg) — C*°(SS?,R), m + g, is smooth and admits a Taylor expansion at m = 0

m2

Qm = ﬁ + 0(m2).

Proof. See |Benedetti, 2014] Lemma 7.4. O

Expanding e?" \g at m = 0 implies
2
1
efm XNy = (1+ 72717)/\0 + o(m?) = H—m)\g + o(m?),
2
where H,, ;=1 — m

of



Therefore, there exists a m; € [0, mg] such that
* 1 2

for m € [0,m;).

3.2 The Ginzburg function

Another important result from |[Benedetti, 2014] Section 7 is going to help us find periodic
orbits near critical non-degenerate points of the magnetic strength f. This will be important
for us later to construct a surface of section whose boundaries have to be the support of
periodic orbits.

We state Proposition 7.5 in |[Benedetti, 2014].

Proposition 3.2. There exists a smooth family of functions m +— S,,, where Sy, : SS? — R,
such that

1. the critical points of Sy, are the support of those periodic orbits of X™ which are close
to a vertical fiber;

2. the following expansion at m = 0 holds:

Sm =21+ §m2 + o(m?).

Proof. See |Benedetti, 2014] Section 7.2. O

Its corollary ( |[Benedetti, 2014], Corollary 7.6) links the periodic orbits to non-degenerated
critical points of the magnetic strength f. We use a slightly adapted version of the corollary’s
statement:

Corollary 3.3. If x € S? is a non-degenerate critical point of f : S*> — R, then there exists
a smooth family of curves m — v, such that

1. 7o winds uniformly once around S;S? in the positive sense;
2. the support of vm, is a periodic orbit for X, ;
3. dist(z, v (0)) = O(m).

Proof. Because of lb we have the expansion S,, = 27 + %mQ +o(m?) = 27 + m28,,, where

Sy = % +o(m). Sy, and §m have the same critical points and all points of S/pS2 are critical
points for §0 if p is a critical point of f. Assuming that p is a non-degenerate critical point and
that m is small enough, by applying the inverse function theorem one can find a critical point
Pm Of Sp, such that dist(pm, SpS?) = O(m). Because the critical points of S, correspond

with periodic Reeb orbits, the corollary follows. See [Benedetti, 2014] Corollary 7.6 for more
details. O

10



3.3 A suitable Darboux covering

For m = 0, the contact form A, and its Reeb vector field R™ reduce to
X=-mB+7, R'=V.

Recall that V generates a rotational 27 periodic flow on the fibers of T'S%. For each (z,v) €
SS2, the flow ¢Y (z,v) : S x S,58% — S.5? simply rotates v by s degrees. Therefore, ¢V
induces a free S! action on SS2. Contact forms whose Reeb vector fields induce a S' action
are called Zoll forms and are a central subject of study in [Benedetti and Kang, 2018]. We
follow the procedure described in the beginning of Chapter 3 in [Benedetti and Kang, 2018]
to find a suitable Darboux covering of (Ao, $52).

Let a > 0, take the Euclidean metric gy 4 on R? and denote by B and B’ the ball of radius
a and 5 respectively.

Consider the tautological one-form Agq = %(mld:z;g — xodzx), where (z1,z92) € B.
Using the trivial bundle 7yq : B x S! — B, we can define the forms
)\std = d¢ + W;ktd/_\std; Wstd = dAstd = W:tdd/_\std

on B x S', where ¢ is the fiber coordinate in S*. The Reeb vector field of Ayyq is given by
Rgiq := 0y and also called the standard Reeb vector field.

Let Z C SS? be a finite set of points and @ := 7(Z). Consider S'-equivariant embeddings
D.:Bx S+ 858% ©.00,0)=2 Vze Z,
and the corresponding embeddings
Dq:B—>S2, 2,(0)=¢q, VgeQ

such that
TOoD, =0y(z) O Tstd, V2 € Z.

Because of S5? being compact, if a is small enough, we can assume that
D1 S2 = UqEQ DQ(B)7
D2 3Cp > 0, ||TD;||c1 < Cp, Vz € Z,

D3 D\ = Asta.

11



3.4 Weakly normalized forms
Lemma [3.1] enabled us to find a diffeomorphism F},, : SS? — $5? such that
F* A = —— o + (m?) (3)
m\m — Hm 0 om

m2

for m small enough and H,, :=1 — 3for

To construct a global surface of section of annulus type for the Reeb flow of F; A\, we need
to find two periodic Reeb orbits, to whose support we can send the two boundary components
of the section. In Subsection we already briefly discussed that periodic Reeb orbits can
always be found near non-degenerate critical points of the magnetic strength f.

With help of some results from |Benedetti and Kang, 2018] Chapter 3, we find a diffeomor-
phism that maps the periodic Reeb orbits near non-degenerate critical points of f to the circle
fibers of these points. Define a class of one-forms that have a periodic Reeb orbit winding
uniformly around the S'-fiber of some point in the positive sense.

Definition 3.4. We call a contact form a € Q(SS?) weakly normalized at q € S? if a

has a periodic orbit winding uniformly once around Sq52 in the positive sense.

One of our goals therefore is to find a diffeomorphism that pulls F}} A, back to a form
that is weakly normalized at a certain point. However, we don’t want to lose the convenient
expansion ﬁ)\o + o(m?) of F A, meaning that the diffeomorphism we find needs to be
small” enough.

To measure distances between one-forms we use the following norm, which was introduced
in [Benedetti and Kang, 2018] Chapter 3.

Definition 3.5. Let a € Q'(SS?), the C**-norm for 1-forms is defined by
ledllenr = llaller + lldal| -
Definition 3.6. We call the contact form ag,, = ﬁ)\o the unperturbed form. And its

Reeb vector field the Ray, — the unperturbed Reeb vector field.

Define a set of families of forms that are C1"-close to the unperturbed form ay,, .
B:={ anecQ(SS?) |3M > 0,Ym € [0, M) : |an,, — amlcs = o(m?) }. (4)
With a,, € Q1(55?) we actually mean a one-parameter family of forms in Q!(55?).

We will sometimes refer to forms in B — {a,, } as perturbed forms and to their Reeb
vector fields as perturbed Reeb vector fields.

Observe that F\ A\, € B and that every «,, € B has the expansion o, = ﬁ)\o +o(m?) at
m = 0. The diffeomorphism we construct to weakly normalize a contact form is then required
to leave the set B invariant, implying that it preserves the expansion.

Talking about forms in B being weakly normalized only makes sense for contact forms.
However, Lemma implies that every «,,, € B is contact for m small enough.

12



Let ¢ € S2, we denote the subset of forms in B that are weakly normalized at ¢ by
By ={ameB|3IM>0Yme[0,M): a is weakly normalized at ¢ }.
We also denote the subset of forms that are weakly normalized at multiple points q1, ..., g
by Bqlw“zqk'

For the time being we only take care of the case when p is a non-degenerate critical point
of f. Our goal then is to find, for any a,, € B, a diffeomorphism 1 : SS5? — SS52, such that
the pullback ¥ *ay, lies in B),.

We do this in multiple steps. The following lemma shows that, if f has a non-degenerate
critical point, then we can transform any «,, € B to a form that still is in B and has a
periodic Reeb orbit that ’pierces’ the fiber at this non-degenerate critical point. Later we will
find another diffeomorphism that sends the complete orbit to the fiber it pierces.

Lemma 3.7. Let a,, € B, p € S? be a non-degenerate critical point of f and m > 0 small
enough, then there exists a diffeomorphism V1 ., such that Wi ,," oy, lies in B and has a
periodic orbit vp, with period T, == 2w + O(m) and 7, (0) € S,S2.

Proof. The proof is the local version of Lemma 3.5 in |[Benedetti and Kang, 2018, with the
only addition that it is ensured that a,, € B.
We know from corollary that there exists a periodic Reeb orbit 4,, of a,, such that
dist(%,(0),2) = O(m), for some 3 € S,S>. (5)

Fix # and ensure that m is small enough so that 4,,(0) € Dz(B’ x S1).
Let (Zm, ¢m) € B x S, such that

Qi"((xm; ¢m)) - 'S/m(o)

Let ¢ € (7/2,7/2) be a lift of ¢,, to R, such that |(z,, ¢m)| = O(m) by (). Consider
the function

Km(x) = (@gm + gstd(l'a 'Lxm))7

where p: B — [0,1] is a cut-off function that equals 1 on B’ and 0 outside a neighborhood of
B’ contained in the inner of B. By Section 2.3 in [Geiges, 2008]|, a contact vector field Y™ of
(Asta, B x S1) can be defined via the contact Hamiltonian K,, o msg and the equations

)\std(Ym) = K 0 Tstd,
tymdAstg = d(Kp, © Tsq) (R, ) Astd — A(FKm © Ttq).
Because R)_,, lies in the kernel of 744 the second equation simplifies to
LYmd)\std = —d(Km 0] Wstd)-

Y™ is uniquely defined by those equations. Let ¢¥" be the flow generated by Y™. By
Cartan’s ‘'magic’ formula we have

d Ym*

g Astd = LymAstg = d(Astg(Y™)) + tymdAgqg = 0,
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where the last equality followed from Y™ satisfying the contact Hamiltonian equations above.
This implies, together with ¢ " Astq = Asta, that ¢ Astg = Asta for all t € R,

Furthermore, observe that K, (2m) = ém = Asta((Zm, dm)) implying that (tzm,, tom) is a
flow line of ¢} ™.

Hence, ¢} " is a strict contactomorphism of (Agq, B x S1), sends 0 to (¥, ¢m) and equals
idgy g1 outside a neighborhood of B’. Since H(xm, sz)H = O(m),
Y™ o = O(m), for every k € N. (6)
Because of ||¢} " (z) — z|| = Hfol Ym(qbt(x))dtH = O(m), we have ||¢}" — idpy s Hcl = O(m).
In the coordinates of B x S!, by expanding at m = 0 and using the form
1/Hp(x) = 14+ m?/2f + o(m?),

we directly get 1/Hp,(¢Y " (x)) = 1/H,,(x) + o(m?). Because of @, the higher derivatives of
@7 are all bounded and won’t affect the order of the o(m?) term. Therefore, together with
the fact that ¢} is a contactomorphism, we have

1 1
Astd = ——3-

- _ 2
BN o o(m?). ™

Y *
¢1 " )\std

Now, define the global contactomorphism ¥ ,,, : $5? — §52:

() D007 " oD (z), ifxeDi(BxSh).
m\T) ‘=
b idggs (), if 2 ¢ D;(B x SY).

Set Y, = \Ilfin 0 Am, then v, (0) € S,S? and yy,is a periodic Reeb orbit of U1 .

Equation |7, together with , implies Ham — w;kmlocchL+ = o(m?). O

We want to build a diffeomorphism that takes the periodic Reeb Orbit we get via Lemma
and maps it to the fiber SpSQ. In the following lemma we see that the unperturbed form
oy, already has a periodic Reeb orbit winding around Sp5’2. Our plan is to later send the
Reeb orbit from Lemma to the periodic orbit of af,, winding around S,S. We can then
use Lemma [6.5] to estimate the C? difference between both orbits which helps us ensure that
the diffeomorphism we later build leaves B invariant.

Lemma 3.8. Let p be a critical point of f then, ap,, has a periodic orbit that winds uniformly
around Sp5’2 in the positive sense.

Proof. By Lemma 7.14 in [Benedetti, 2014] the Reeb vector field R#m of H,,\o splits as
follows:
Rom = LM(Xy, )+ HpV,

where Xy, is the Hamiltonian vector field on (S%,0) associated to the Hamiltonian H,,.
Because dH,,(p) = 0, we have o,(Xg,,(p),.) = 0.
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By assumption, ¢ = fvol, does nowhere vanish. Hence, Xg,, (p) = 0. Therefore,
R™ = H,V,

where V' was the generator of the flow rotating each fiber in the positive sense. O

If p is a non-degenerate critical point of f then, after applying Lemma [3.7] we can assume
that ., € B has a periodic Reeb orbit intersecting S,52. Furthermore, we know that in this
case ap,, has a periodic orbit winding around S5,S. We can make the following estimates
about the distance between both orbits and the corresponding Reeb vector fields along them.

Lemma 3.9. Let oy, € B with a periodic Reeb orbit 7, with period T,, = 21w + O(m) such
that v (0) € Sp52 and then v, C B x S' for m small enough. Furthermore, if we write
(Zm, Om) : R = B xR for the lift of D, 0y, with (,,(0),0,,(0)) = 0, then

1@ (8), 0() = Hon (D)) | = 0(m2), || (s B — ()| | = 0(m?) (8)

Cl

Proof. Since 7, (0) € SpS%, Y (t) € Dp(B x S1) for t € [0,t], for some tg € [0,T,]. Then,

Yo.m(t) == @51 © Ym(t) is well defined for ¢ € [0, tp] small.

Let g, be the periodic Reeb orbit of ag,, with vg,, (0) = v, (0), Set

* —1
Opm = :Dp Qm, Ypm = Qp O Ym,
. * _ -1
ap H,, = Dp an,, Vo, Hp = Op " O VH,,-

and let Ry, ,, and Ro, 4, denote the respective Reeb vector fields. We calculate

HROCP,m (7p7m) - Rap,Hm (prHm) Hco
< HRapvm ('Yp,m) o Ravam (7p7m) HC’O + HRap,m (’YP,Hm) - Rap,Hm (VP,Hm) HCO 9)
< HRap,m - ROép,Hm Hco + HROcp,Hm Hcl ”f)/pﬂn ~ Tp.Hm ”CO'

Therefore,
t
1vp,m — 'Yp,HmHCO < /0 HRap,m (Ypm) — Rap,Hm (’Yp:Hm)HCOdS

t
< tHRap,m = Ray, u,, Hco +/0 HRap,Hm Hcl 1Vp,m = Vp, ol cods.
By applying the integral form of Gronwall’s lemma we get
||'Yp,m - 'Yp,HmHCo < tHRap,m - Rap,Hm HCI eXp(tHR ,Hchl)' (10)

And because of Lemma and there exists 4 > 0
| Rey e = Ropoiry |l oo < Allm — am,, loas = o(m?). (11)

Combining Equation [I0] and [I1] yields
| @ (8): 0m(t) = Hin O = [ (8) = Yputt D] = 0(m?) exp (| TRep i, ) (12)
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Since Yy, (t) has period T,,, = 27 + O(m), and
|z O] < (@m(8), O (t) — Hu(p)t)]| = o(m?) exp(t| T Rp,,, || 1)

we can achieve that v, C B by making m small enough, therefore v, ,(t) is defined for all ¢
and

1o, () = Vp, 11 (D) = 0(m®) exp(Tonl|T Ry 11,0 [l 1) = 0(m?). (13)
This shows the first equation at .
For the second equation, use Equation [I3] and [TT] and calculate

da da
dt Pm T g |

- HRap,m (yp,m) - Rap,Hm (’Vp,Hm)HCO

14
< HR%,m - Rap,Hm Hco + HTRocp,Hm Hcl ”’Yp,m - 'Yp,Hcho ( )

= o(m?).

Doing similar estimates as in Equation |§| for the C'-norm we get

HRO‘P,m ('Yp,m) - ‘ROép,Hm (’Yp,Hm) HCl
S HRO‘PJVL (,.vam) - Rap,Hm <7P,m)||cl(1 + ”7771“00) + HRap,m (’YILHm) - Rap,Hm (PYP,Hm>HCI

< HRap,m - Rap,Hm Hcl +|R ,Hm||c2”’7p7m - 'Yp,Hchl-
(15)
By Equation [14] and the previous C? estimate we have ||Vpm — ¥p, o llcn = o(m?). This,
together with Equation [11] and Equation implies

HRO‘P’m (Vp:m) - Rap,Hm (’yp,Hm)HCI = O(m2)'

Hence,
|Gms b = Hn2))|

showing the second equation at . O

= | Ray (tpn) = Rery 11, (i) | o = 0(m?),

To build the desired diffemorphism, we are going to reparameterize the orbits of our
interest so that they have period 27.

Definition 3.10. Let be p a non-degenerate critical point of f, cm € B and v, a periodic
Reeb orbit of au, such that v,,(0) € S,52.

Define the 21 periodic reparameterized Reeb orbit
rep 1 2 Tm
VP ST — SS%) t e i (=—1),
27
and the trivial periodic Reeb orbit of Ao winding around Sp52 and starting at vy, (0)
Fm : ST = 882, t = $° (v (0)).

Then, 4, is a 2m-periodic reparameterized Reeb orbit of am,, .
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The following lemma, gives an estimate of the C? difference of the 27-periodic reparame-
terized Reeb orbits we just defined.

Lemma 3.11. Let oy, € B with a periodic Reeb orbit ~, such that v, (0) € Sp5’2 and
Ym C B x S'. Let

Tom(®) =D (P (1), Apam(t) == Dy (1)),

then

H’V;% :Yp,muw = o(m?).

Proof. By plugging T,,, into the first equation at of Lemma we get
1270 — T Hon(p)| = o(m?). (16)

Now, for the second order derivative, estimate

HdtV;E;rJL - 7717, H .’L'my m 'rep - (0, 1) o
TnH
< 7“ ZL‘m,em - Hm(p))Tep o1 + ‘7712;?@ — 1‘
ThwH
(By Equation = 0(m2) + 'QO(m _ 1‘
i

1
2
=o(m T Hpy(p) —2
o(m?) + o Ty Hi(p) 211
(By Equation [T6) = o(m?)

O]

In the next lemma, we construct a diffeomorphism that maps the periodic orbit that we
obtained via Lemma to the fiber S,S 2,

Lemma 3.12. Let o, € B and p € S? be a non-degenerate critical point of f. For m > 0
small enough, there exists a diffeomorphism ¥, such that U}, o, € Bp.

Proof. This proof is a slightly adapted version of the proof of Lemma 3.6 in |[Benedetti and
Kang, 2018].

Let ¥y ,, be the contactomorphism from Lemma and set
ay, , = \If{’mam

Let v, be the Reeb orbit of v, such that 7,,(0) € S,5%. By Lemma we can assume that
Ym C Dp(B x S1) for m small enough.

Consider the v, (t) := D, (ym? (1)) on B’ x St and write (a7, (£), 07P(t)) = ymp(t).
By making m even smaller we can ensure that z,,(t) € B'.
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Let (&7 67P) : R — B x R be the lift of (zj?,07") such that (25:2(0),6"¢P(0)) = 0.
Consider the diffeomorphism
@@m :BxR—=BxR
(@, 8) = (x + K(|[x])27:7(s), s + K([[=])) (67" (s) — 5)),
where K : [0,a] — [0,1] is a cut-off function that equals 1 on [0,a/2] and 0 on [2a,a]. The 27
periodic diffeomorphism Qﬁm is the lift of a diffeomorphism 1, : B x S' — B x S1.
From Lemma we know that [|[yph — Fpmllc2 = o(m?), implying that

[¥m —idpxsillce <K - (20", 05" — idgr)| o2

m ’rm

17
< UK e 5 = T o = om), "

. On B x 8!, Equation 17| and Lemma imply
H¢:n(©;*)a\111,m) - Q:)a‘l’l,m H01,+ = O(mQ)' (18)

Define the global diffeomorphism Wy, : S S? — 5§52

Wy () = Dpothm oDy (z), ifzeDy(B xS
2m - idSS2 (x)a if x ¢ @p(B X Sl)

Then, by Equation [18 and the Darboux property together with Lemma, there exists
an A > 0 such that

H‘I’E,ma%,m - a‘1’1,mHCl,+ < A“¢:n(®;a@1,m) - Q;;aqjl,mucl,‘F = O(mQ)-
This means that 3, oy, ,, € B.

By construction, \Il?n o = ym?’ hence, \Il;moz\pl’m € B, and ¥, := Uy, 0 ¥y, is the
desired diffeomorphism. ]

Corollary 3.13. Let pi1,...,pr be critical non-degenerate points of f. For m > 0 small
enough, there exists a diffeomorphism 1, such that ¥y, 0 € By, . -

Proof. Observe that the diffeomorphism from Lemma [3.12| equals the identity outside a small
O(m) neighborhood of the non-degenerate critical point the lemma is applied to. Because
non-degenerate critical points are isolated, we can choose m small enough, so that no critical
point lies in the neighborhood of another one. By applying Lemma [3.12| multiple times we get
diffeomorphisms . , ..., ¢F for each point so that (¢} o...0 zpfn)*am is weakly normalized

at p1, ..., pr. Set Yy, =Pl ook, O
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4 A global surface of section

From now on, let p,,p_ be the North and South Pole of S?, with respect to some global
polar coordinates. Assume that f has a local minimum at p,,;, and local maximum at p;,qz.
Morse’s lemma famously implies that non-degenerate critical points are isolated. Therefore,
we can choose coordinates of S? such that Pt = Pmaz and p— = Dpin.

For the remainder of this thesis, we assume that f has a local maximum at p4 and a local
minimum at p_. Denote by v, and v_ the periodic Reeb orbits of ¢*° which wind uniformly,
in positive direction, around S, 52 and Sp_ S? respectively.

At first, we will construct a global surface of section for the Reeb flow ¢* and show that
this surface is also a global surface of section for the Reeb flow of forms oy, € By, ,_ for m
small enough.

As the definition of a global surface of section, we use a slightly modified version of
Definition 3.11 in |[Benedetti and Kang, 2018§].

Definition 4.1. Let ¢ be the Reeb flow of some contact form on SS? and N a compact
surface. An embedding S : N — SS? is a global surface of section for ¢ if the following
properties hold:

(i) The surface S(N) is transverse to the flow ¢ and S(ON) is the support of a finite
collection of periodic orbits of ¢.

(ii) For each z € SS*\ S(ON), there is a t_ < 0 <ty such that ¢;_(2), ¢, (2) lie in S(N).

Associated to the global surface of section, there is a first return time and first return
map. The definitions are as follows:

First return time:

7:S5(N) =R, 7(q):=inf{ t >0 ¢:(q) € S(N) },

First return map:

P S(N) - S(N)> P(Q) = QZ)?(q)(Q)'
Let ¢ be the Reeb flow of some contact form n € Q'(S5?). Notice that the requirement
for the global surface of section having a boundary is necessary.

Indeed, assume we had a compact surface Ny C SS? that is transverse to ¢”7. Then, dn
has no kernel on Ny and therefore is a volume form on Ny. By Stokes theorem

/ dn = / 7.
No 9Ny

Now, if 9Ny = @, the right hand side vanishes, thus a surface of section without boundary
is not possible.

Later we will see that in the case of ¢ being the flow of a form in B, ,_ the first return
time and first return map extend to the boundary, which is important because twist maps
need to be defined on the boundary.
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4.1 Construction of the surface of section

Based on the definition in [Milnor, 1965] on page 22 we define:

Definition 4.2 (Index of a vector field). Let Y be a vector field on S? with a singularity at
some point p € S%. In local coordinates U C R?, choose a small ball B C U centered at p and
consider the map

xT

1Yz

vy OB — S, x—

Define the index at p by indexy (p) := deg(v,), where deg means the degree of continuous S
maps.

Now, define the annulus A := [0,1] x S* and the following sets.
¢ :=[0,a) xS, ¢ :=(1-a1] xS, ¢c:=c¢c,uc_, (19)
where a was the radius of B, which was defined in Section Choose (r,0) € [0,1] x S! as

the coordinates of A and orient A according to dr A df > 0. Orient € similarly.

Let $2 := §2 — {p4+,p-} and 2} € S, 52, 2z € S,_S?. Furthermore, let P : A — 52 be a
polar coordinate map with the following properties:

(i) P(0,0) = ps, P(1,0) = p, for all § € S*;

(ii) The unit normalized radial vector field Oy : A — S§52 induced by 8 has singularities at
p+ and p_ with index 1 each.

(iii) Op extends to a map Jp : A — 52, with 9p(0,0) = ¢)°(2.), p(1,60) = ¢™%(2-).

Denote the restriction of 3 to A by ‘B

The map ‘P is already a surface of section for the Reeb flow of \g. However, we want to
have local coordinates on a collar region of JA, for which the pullback of Ay, under the surface
of section embedding, has a standard coordinate expression.

Choose a local chart ¢., : B x St — 552 with
Pzy (07 ¢) = QS(;O (Z-i-)a Py (T,eiG’ 9) = é@(y+ (T, 0))

Here, (r,0) € €, and y,(r,0) := P Loro @2, (re,0).

By Darboux, we can assume that we have coordinates on B such that ¢% . O = T Wstd-
Contrary to the contact Darboux charts we defined in subsection 2, does not pull Ag
back to the standard form. Instead, we have 7 Ao = 75,n + d¢, where ¢ € S s the fiber
coordinate and 7 an one-form with 77, ,dn = 77, ;wsta-

Then, d(7%, A \sta — 74yn) = 0 and by Poincaré’s lemma there is a function h : B — R,

with h(0) = 0 and dh = 7, Asta — T540-
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Set pp(x, ) = ., (x,¢ + h), then
90;;)\0 = F:tdn + d(¢ + h) = W:td)\std-

Since h(0) = 0, we have ¢5(0,¢) = ¢, (0,¢) = ég((),gb), and because of the way ¢., was
chosen, we can assume , after ensuring that a (See ) is small enough, that

g(soh(reiea 0)’ éQ(yh(Tz 9))) > 0,
where yp,(r,8) := P o 7o pp(re?, 6) and (r,0) € €.

A similar Darboux chart can be constructed for z_ as the base point. In this case, we
start from a chart ¢, : B X St 5§52 with

0o (0,0) = 630 (2-), o (1 =r)e™™, =0) = Dp(y—(r,0)),

where (r,6) € €_ and y_(r,0) := P Lomwop, ((1—r)e® —f). Analogously to the case
where z; was the base point, we can do the same procedure to construct a Darboux chart
that coincides with ¢, on the boundary.

Consider charts ©,, ©,  with corresponding charts 9, , 9,_ of S? such that

Z4
mTo®D,, = 0p, OMeq-

By the above discussion, we can assume that for ® 9, we have

Z4

9D, (rew, 0), (39 o ‘fi&*l o DZ+)(rei9)) >0,

, ) (20
9D, (1—=7r)e ™, =0),(0goP 00, )(1—r)e ")) >0.
on €, and €_ respectively. Furthermore, we can assume that
D.,(0,0) = 9p(0,0), D._(0,—6) = Dy(1,06). (21)

Define the embedding Sg : € — S5

CDZ+(T6(%,9) if r € [0,a),

et {mz(u —r)e”=0) ifre(l-al].

and ig : ¢ — 552
i (r,0) = o, (re'?), if r € (0,a)
e o ((1—=r)e®), ifre(l—a,l).

Notice that Sg o igl is a local section of S$.S? with singularities at p, and p_, each of index 1.

Because of 1’ for all z € 1¢(€)

9(Se 0iz! (@), po P~ (2)) >0,
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Choose compact neighborhoods K, Ci3(€), K, Cig(€-)and K, C K, K, C K,_ of
p+ and p_ respectively. Let u: S? — [0, 1] be a bump function, such that 4 = 1 on K:;+ UKI’L
and p = 0 outside of K, U K,,_. Define .52 5§82

S(x) = () - (Seoirt) (@) + (1 — pu(2)) - (8 o B~1)()
Hﬁ‘(l‘) (Seo 1;1)(16) + (1 —p(x)) - (Gpo s‘pfl)(gj)H

Then, S is a section of $52 that vanishes only at p_ and p.
The section S o ‘3 extends to an embedding S’ : A — S52 such that on the boundary
5'(0,04.(0)) = D=, (0,60) = 6 (24),  5'(1,—0"(0)) = D:_(0,~6) = 6X(=-).

where ', : S' — S! are diffeomorphisms of the circle. Using a bump function, one can define
a diffeomorphism § : A — A such that £(0,60) = (0,6, (6)) and £(0,6) = (0,0"_(6)). Then,
S :=5"0¢&:A— S5?is an embedding of the annulus such that

5(079) = ©z+ (Ov 9) = ¢20 (z4), S(1, _9) =9, (07 —0) = d)iog(z—)' (22)

Choose collar neighborhoods N of A and N_ of 9~ A with P(N,) C K., PWN_) C K,

and set N' = N} UN_. There exist coordinates (r,6) on N such that (0,6) and (1,6) are
the original coordinates of A winding around the boundary and the pullback S*\g has the
coordinate expression

1
S*/\QV\/7L = (57"2 + 1)d(9,

suwm;:4%@_rf+1m&
In these coordinates, .S can be written as
S(r,0)n, =Dz, (rew, 0), S0 =9 ((1- r)e*w, —0).
(After extending ! oig to the boundary, the coordinates on N are provided by & “lop—! oig)

Let o € S2, observe that for z € S;S52, ¢*°(z) simply winds around S.S? in the positive
sense. If ¢ {py,p_}, then ¢*(2) intersects S(A), as S on A was defined to be a section
of $S%. If € {py,p_} then, by Equation the flow line ¢*°(z) is supported by S(OA).
Therefore, S is a global surface of section for ¢,

4.2 Extending weakly normalized Reeb vector fields
The following discussion is based on [Benedetti and Kang, 2018] Chapter 3.4. We have an
annulus A = [0,1] x St and a global surface of section S : A — SS2. Set
OTA:={0} x S', 9 A:={1} xS,
By combining S with the Reeb flow of A\g we get the map
E:Ax S'— S5

23
(q,5) = 62°(S(q)). 29

22



In coordinates (r,6,s) on A x S! the map = can be expressed as

_ {©2+(7‘ei9,0+s) if (r,0) € Ny
B =

D, (1—r)e ™ —0+s) if (r,0) € N_. (24)

Observe that = is not injective only on the boundary, so by restricting = to the interior we

get a diffeomorphism o
E:Ax S - a7 (S% —{py,p_}).

We have Té(&s) = %é = ¢ = R),, showing that the Reeb vector field Rz. X of é*)\o equals
8S| Axgl- Lherefore, Os is a smooth extension of the Reeb vector field R;\D. We have the local
coordinate expressions

2
E*)‘0|N+><Sl =(1+ % )df + ds, E*d/\0|/\/+x51 = rdrdf, (25)

(1-7)?

E*/\O\N,xsl =—(1+ )db + ds, E*d/\0|/\f,><51 = (1 —r)drds,. (26)

From the coordinate expression we directly see that
ZN(0s) =1 15,(ZdNg) =0 ¢% (2" Ng) = Z*Xo. (27)

We show that the Reeb vector fields of forms, that are weakly normalized at p; and p_,
extend to the boundary in a similar manner.

Fix some o, € By, p_ and denote the pullbacks of a;, and the undisturbed form ay,, by

Bm = E"am, PBm, =Z am,,

respectively. The forms restricted to A x S1 are the pullbacks under =
Both forms are contact since = is a diffeomorphism.

The following proposition is a slightly adapted version of Proposition 3.10 in [Benedetti
and Kang, 2018].

Proposition 4.3. The Reeb vector field Rﬁ:n of B;n extends to a vector field Rg, on A x S1
such that Rg,, is tangent to OA x S* and
Bn(Rp,) =1, iRy, B =0, ¢™ By = B (28)

Since ap,, € B, the Reeb vector field RBH of BQHW extends similarly to a vector field Rg,,
and we have
HRBm - R/BHm HCO = 0(m2).

Proof. In the coordinates (x, $) € Bx S, given by D)., we have the following local description
of Ry,

m

R., =R + R 0, (29)
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Because a;, is weakly normalized at p;, the Reeb vector field is tangent to .S, +Sg, thus
R% (0,¢) = 0. By Lemma R% ~can be written as RY, (z,¢) = Wa,, (x, ¢)x, where Wi,

is a matrix valued function with ||Wy,,|c0 < HRZ’;m HCI'

We use W,,, to write R’ in polar coordinates as
m

RE (re'.¢) = gsa(Wa,, (1, ¢)re®, )0, + gua(Wa,, (e, ¢)re®, iew)?@

= gstd(Wam (Tewv ¢)rei07 eie)aT + gstd(Wam (rei07 ¢)€i67 iei@)ae'

Using the functions ' -
Rgm (T, 97 ¢) = gstd(Wam (T6197 (b)rew, 619),
Rgzm (’l", 03 QS) = gstd(Wam (rew, qs)eiﬂ’ iew).
we have Ry, = R, 9, + R’ 85+ R4, 05 on B\ {0} x S.

The functions R!, oZ;, R’ o=, are defined on N} with

max{|| Ry, 0 Z+ oo R, 024 L} < I1RE,en-

Because of
TE;(0y) = 8y, TE1(0p) =9+ 0p, TE,(0s) = 0y,

we can define Rg,, on N x St as

Rg, = (R, 0Z.)d, + (R} 0Z.)d+ (RS oE;—RY 0=.)ds. (30)

m

Observe that
Rgm<0797 (b) = 07 (31)

indicating that Rg,, O+A is tangent to 9T A. The same procedure works analogously for defining
Rpg,, on N_ x St with Rg,, 5-p being tangent to 97A. On (A — N x S') we set Rg,, = Ry .
The vector field Rg,, is the desired extension of R .

By definition 57”(R,B°m) = 1 and LR, dBm = 0. Because Rg,, is a smooth extension of

R the first two identities at hold as well. This means that the lie derivative

(e
LR, Bm = LR, dBm + d(Bm(Rs,)) vanishes, implying that ¢%" 8, = By,.
Now, we take care of the C” closeness to Rgy, -
At first, estimate HRBm — Rg,, Hco on N x S'. Similarly to , we can write the Reeb
vector field of apy,, near S,, S? in the coordinates (z,¢) € B x S, given by D, .
Ray, = RS, +RS, 0
We can again define functions in polar coordinates

RgHm (T7 97 ¢) = gstd(WaH (Teie, ¢)T€i9, 67:6),

m

RS, (r.0,0) = gua(Way, (re”, ¢)e’ i)

m
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i O + Bl 09+ RGO

such that we obtain a description in polar coordinates R,, = Ry,

on B\ {0} x SL.

Again, by Lemma [6.6] there exists a matrix valued function W such that

W(z,¢)x = R, (z) — Rg,, (x)

aHm

and

IWlleo < || B, - B2, = o(m?).

QHypy,

S
ct

art

Furthermore, observe that W = W, — W, . Therefore,

QAH,y,

|5 = B

co = gstd((Wam - WaHm )(reie, (b)reiea ei@)‘

< [Wlleo = o(m?).

CO

For the same reason, we have HRg - RZH ‘ = o(m?). For the terms in the ¢ direction
m m || C0
we have
2
|R2. =B | o < [ Bar = R [l o = olm®).
Hence

)

HRBm - RrBHmHCO < 3max{HR2m oE+ _ RgHm OE+’ -

- 0
Ram 0=t — ROch

ox=
Jr‘coa

= = 0 = 0 )
RgmoHJr—RgHMou++Ramou+—RaHmoH+‘

o)

6 6
<smax {||R}, — Ro,, || | Be — Bl [ o
¢ ¢ 0 0 _ 2
RS, ~ RS, ||+ HR% - RaHm‘ o} = olm?).

The estimation of the C° distance between the vector fields near Sp_ 52 can be done analo-
gously. Consequently ||Rg, — Rg,, HCO = o(m?) on N x St.

On A x S' we have

HRBm a RBHm’ o0 = COHﬁm B ﬁHm‘ co
= C() é*(am — OCHm) oo
< Go|[ T2 llam = o llco = o(m?).
We conclude that ||Rg,, — Rgy, HC’O = o(m?). O
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4.3 Expanding the magnetic strength

Let w € Q2(5?) be a symplectic form, h : S — R a function and x € S? a critical point of h.
Hess} (z) is the Hessian matrix of h at x in the coordinates of a Darboux Chart for w, i.e. let
¢ : B — 52 be a coordinate chart such that ¢*w = wgq. Then Hess} (z) := Hesspoy-1(¥(2)).
This clearly depends on the choice of ¢, however, the determinant det Hess? (z) is independent

of the choice of Darboux coordinate, since for any other Darboux chart ¢ : B — 52, the
derivative of the coordinate change TJ(z) (1) o1p~1) lies in the symplectic group Sp(2). Hence,

det Hessy () = det Hesspoy (40 ()
= det (T (1 0 571)) ™ Hesspoy (41 (2) Ty (0 0 571))
= det Hessho{pv(wfl(:v))
By Lemma we know that the Reeb vector fields Rg, are tangent to the boundary 0A.

The following lemma will be useful to calculate the Reeb vector fields R, 9a- This will be
important to later determine the return map of the global surface of section.

Lemma 4.4. In the local coordinates of 0,, : B X S — 882, let ¢y := \/det Hessclr/f(pi),
then H,, has the expansion
1 Cc+

2 2 2
Fom £ g e +olle?)

m?2

Hm(x):l—g (

at x = 0.

Proof. In the coordinates of 9, , by expanding 1/f at x = 0, we get

1
1/f(x) =1/f(p+) + §$T Hessy 7 (0)a + o(|z[?). (32)
Because py is a local minimum of 1/f, there is a rotation A € SO3(R), such that
2
AT o a 0
Hess;/po4(0) := A" Hess;/r(0)A = <0 bz> , for some a,b > 0. (33)

Let s: s71(B) — B C R? be the symplectic transformation

s:(z1,22) — <\/§x1’ \/gscg).

Then, in the coordinates of so Ao D, , the expansion at becomes

P+

1 F(@) =1/f(p+) + gablat +23) + of|af).

And ¢y = \/ det Hess;/¢(py) = ab. The same works for p_, the change of sign results from
the eigenvalues of the Hessian matrix at being negative in this case. O

Remark 4.5. The numbers c+ = \/det Hess; /f(p+) do not depend on the choice of Darbouz

coordinates of (S, fd\o) since the derivatives of the transition functions lie in the symplectic
group Sp(2).
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4.4 The unperturbed Reeb vector field

Because B, = Z*A\g,, = HLE*)\O, we have Bp, = Z*\g and we can write
m

B, = Fmﬁﬂo (34)

, where we abused the notation and mean H,, = H,, o =.

Due to Proposition the Reeb vector field RBH extends to a vector field Rg on Ax S 1

satisfying
B, (Rgy, ) =1, try, dBm, =0, ¢°" By, = fm,. (35)

To see that S is a surface of section for the Reeb flow of Ay, and to later calculate the
first return map, we find a description of RéH close to the boundaries A in the coordinates

(r,0,s) € Ax St "

Proposition 4.6. Write the Reeb vector field Rg,, ~in the coordinates (r,0,s) € A x St
6
RﬁHm - RgHm O + RﬁHm 9 + R%Hm s,

for some functions Ry, ,R%H R, AX S — R. Because Rg,,  is tangent to OA we know
that R =0 on OA.

m

If r = 0 we have:

2 2 2

m-c4 m-cy4 m
R, =—-——""TT Ry =1 -
P =T e T T T 3y
Similarly, if r = 1:
2 2 2
m°c_ m“c_ m
R, =—"—"" R, =1- -
BHm 2 BHm, 2 Qf(p_) ’

where ¢y = \/det Hessi’/f(pi), which was defined in Lemma .

Proof. Because of the equations at and Equation we have 1 = BHm(RﬁHm) -
ﬁﬁHo(RgHm). Therefore,

/BHO (RﬂHm) = Hp,. (36)

Furthermore
dH,, 1

dH,,
< 0 = LRﬁHm (—TBHO + dﬁHo)
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And

dH,,
0= Ry, (= B, +dbu,)
dH,n(Rg, ) dH,,
i P’ By + 77 P (Bap,, ) + trg,, dB,
By Equati _ _HHulFRpy,) dH d
(By Equation [36) = —TmﬁHo +ay, + LRy, BH,-

In local coordinates on A x St we can write

Rp, = Rj

w Or+ RG, 09+ RE, 0O,
for some functions R, ,R% .R% :AxS!' —R.
BHp, " BHy " BHp,

At first, assume that r near 0. Because of Lemma [4.4] we know that

m m2cy
H,, =1- — r2 + m2o(r?).
" 2f(p+) 4 )

Therefore, keeping in mind that H,, is smooth, we have

2
dH,, = _m ;err +mZo(r).

Recall that g, = Z* Ao, thus by Equation [25| we have
u@Hmdﬁﬂb::r(RgHde——R%Hmdr)
Continuing from , together with Equation we calculate

0 dHy (R, )

= Sl gy e dHo + iy, B,
—m2ey TRy —2m2o(r) 2

o BHm, T _

= i (14 5 )do + ds)

+7(Rp, df— Ry, dr).

2
m C+rdr + m2o(r)

Dividing by r and reordering results in

—m20+RgHm + 2m2o(1)
2H,

T2 .
0=— ((1+ B )dO + ds) + RBHde

m20+
2

—( +R%Hm)dr+m20(1).
By comparing the basis covector dr, we get

m2 Cyt

2

9 _ _Mct
BHy 92

+ R%Hm +m?0(r)=0 = R
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2
Hence, R%H = —m;* at r = 0.

By Equation [25| and Equation [36{ we have R;Hm + R%Hm = H,, at r = 0. Therefore,

m2cy m?

R, =H,—-R) =1 - .
P = T B = T T 9y

This proves the statement for r = 0.

Now, assume 7 is close to 1. Similar to the previous case, by Lemma 4.4}, we get

m? m2c_ 9
H,=1- + 1—7)2 +m?o((1—1)?),
S T A el )
m2c_
dH,, = — 5 (1 —7)dr +m?o(1 — 7).

Doing almost the same calculations as before, using the equations at

de(R,BHm)

0=-— T,BHO +dH,, + LRﬁHm d/BHO
—m?c_(1—-7)R, —2m2o(1 —r) 1—p)2
S ;;m (141 . ") )a6 + ds) (41)
m2c_

5 (1 —7r)dr +m?o(1 —r) + (1 — r)(R,df — Rydr).

reordering and dividing by (1 — r) results in

—mzc_RgHm +2m20(1 —r)

0=~ 9H,.

(-(1+ R, + u ; T)z)de + ds)

’I?’L2 C_

5 + Ryg)dr + m2O(r).

—(

2
By comparing the covector dr again, we have Ry = —™5—. Equation 36| and Equation

then imply
2 2
mc_ m
R} =1- — .
i 2 2f(p-)

This concludes the proof for the case r = 1.
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Corollary 4.7. We have HRﬁHm — 8SHC() = o(m) and the embedding S is a global surface of
section for the Reeb flow of apy,, .

Proof. Using the equations from Proposition on the boundary 0A x S we have

6
| R, = Oullo < 3max{ | R, || oo || B | o [ B, = 1| )
2 2 2
c+m cEm m
< 3max{0, , — < o(m).
< 0151~ g P <ot

OnAx S ! with help of Lemma and Lemma we can estimate
HRBHm - asHCo < Cllan,, — Aollco+ = o(m) (42)

for some C' > 0. Thus,

Rgy, — acho = o(m) on A x S1. This indicates that
ds(Rg, ) =1+ o(m).
Therefore, ¢%H#m is transverse to A x {0} for m small enough. Because Z is diffeomorph on

A x {0}, the flow ¢ ur = E\AXEO} o ¢PHm is transversal to Z(A x {0}) = S(A), showing that
S is global a surface of section for the Reeb flow of \g,,. O

4.5 The perturbed Reeb vector field

Take again an arbitrary o, € By, ,_ and its pullback 3, = Z*ay, to A x St

Corollary 4.8. We have ||Rg,, — Osl|co = o(m) and the embedding S is a global surface of
section for the Reeb flow of oy, for m small enough.

Proof. By Proposition HRBm — Rgy, | Hco = o(m?). Together with Corollary we have

1R, — 0sll = [|Rs,, — Rsy,, + Ry, — 0|
< [R5 = Rom,, || + | R, = 0s]| = o(m).

Similar to the proof of Corollary [£.7], S is a global a surface of section as a consequence of

ds(Rg,,) = 1+ o(m).
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As for the unperturbed Reeb vector field Rg, , we have a similar local description of the
perturbed Reeb vector field Rg,, on the boundaries of A x S1.

Corollary 4.9. Write the Reeb vector field Rg,, in the coordinates (r,0,s) € A x S1
Rg, =R 0.+ RS 09+ R} 05,

for some functions Ry, Rgm, Ry - Ax S' = R. Because Rg,, is tangent to OA we know that
R =0 ondA. If r =0, we have:

2 2 2
S S
b+
Similarly, if r = 1:
m2c_ m2c_ m?
RY =— +o(m?), R, =1- — + o(m?).

Here, c4 = \/det Hess‘{/f(pi), which was defined in Lemma .

Proof. From Proposition we know that [|Rg,, — Rg,,[|co = o(m?). Together with Propo-
sition which gave local description of Rg,, on the boundary of 0TA x S1, we directly
deduce

Rj, = T+ o(m?),
2 2
mecy m 9
R =1+ — + o(m?).
o > 3oy )
The same argument works for the vector field on ~A x S*. O

4.6 The first return map

Knowing that Rg,, extends to the boundary, we can define a first return time and first return
map that both extend to the boundary as well. The first return time 7,,,(z) : A — R is given
by

Tm(z) =inf{ t >0 | ¢, (z) € Ax {0} }, (43)

and the first return map P, : A — A is
Py(z) = ¢7m (). (44)

In the next Section we will use Proposition to calculate the first return time and the first
return map on the boundary JA. We then compare the first return maps behavior on the two
different boundary components A and 9~ A to check under what conditions P, satisfies the
boundary twist conditions, which we will discuss in the beginning of the next Section.
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5 A Twist Condition for the magnetic flow

In this final section we are going to show that the first return map P,, : A — A, which we
defined in the previous section, is twist under a suitable condition on f.

As introduction and motivation on why we take great interest in P,, being twist, we
briefly introduce the Poincaré-Birkhoff theorem and the consequences it carries for the Reeb
flow corresponding to P,.

5.1 The Poincaré-Birkhoff theorem

This subsection is based on [Le Calvez, 2011] Chapter 2.

Let F : A — A be a homeomorphism of the annulus A = [0,1] x S!, that leaves the
boundaries A invariant. The universal cover is given by A := [0,1] x R. Consider the
translation T : A — A, (r,60) — (r,0+27) and the lift F: A — A of F to A. Let Fy : A — [0, 1]
and Fy : A — R functions such that F' = (F}, Fy). We state the Poincaré-Birkhoff theorem,
based on how it was formulated at [Le Calvez, 2011] Theorem 1.

Theorem 5.1. If the following conditions hold:

(i) F*dr Adf = dr A df.
(ii) For every 0 € R, one has 5(0,0) < 6 < Fy(1,6),

then F has at least two fized points with different T orbit, i.e. if 212 € A are the two fized
points, then there is no k € Z such that T*(z1) = 2».

The following discussion about why the theorem actually implies that an infinite number
of fixed points exist was taken from [Le Calvez, 2011] Chapter 2.

Assume that z € A is a fixed point of F'? for some g € Z>;. The fixed point z is also called
a periodic point of F' and the smallest ¢ € Z>; such that z = F~q(z) is called the period of
z. Consider a lift Z € A of z, then there exists a p € Z such that F9(Z) = T?(Z).

If we take a different lift 2 := T7 (%) of z, then F9(2) = T" o Fi(3) = T"*P(3) = TP(3).
Therefore, p is independent of the choice of the lift of z. The number p/q is called the rotation
number of z. By choosing another lift 7" o F' of F' we get

(T" o F)! =T7 0 F1 = TP,

with rotation number p/q + r instead of p/q.
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We state the corollary about the existence of infinitely many fixed points. This is a slightly
adapted version of |Le Calvez, 2011 Corollary 2.

Corollary 5.2. Let I' be a homeomorphism of A leaving the boundaries OA invariant, and
F: A= A the lift of F to A. Assume that F has the following properties:

(i) F*dr Adf = dr A df.

(i) There exist two numbers py < p1 € R such that FQ(O, 0) <O+py <0+ p < 13’2(1,9).

Then, every reduced rational number p = p/q, that lies in the open interval (po, p1), is the
rotation number of a periodic orbit of F' with period q.

Proof. Let p = p/ q be some reduced rational number in the open interval bounded by py and
p1. The map F9 o TP is another lift of F. Let p : A — R the projections onto the second
component. For every 6 € R we have

poFloTP(0,0) <O —p+qpy <6
poﬁ’qufp(l,Q) >0—p+qp1 > 0.

Therefore F'? o T~7 satisfies the requirements of the Poincaré-Birkhoff theorem [5.1], which
ensures the existence of a fixed point z € A of F'10 TP implying F(z) = TP(z). Therefore z
is a periodic point of F' with rotation number p/q. O

This immediately implies that the homeomorphism F' in Corollary has an infinite
number of periodic points.

Remark 5.3. The second requirement of Corollary 1s also called the boundary twist
condition.

Remark 5.4. Corollary is actually still valid if F satisfies the requirements of Theorem
instead. For details see Chapter 2 in [Le Calvez, 2011).

Remark 5.5. Homeomorphisms of the annulus A that satisfy the requirements of the Poincare-
Birkhoff Theorem[5.1] or its corollary, are also referred to as area preserving twist maps.
For convenience we sometimes simply refer to such maps as being twist.

Going back to the first return map F,,. We go through all the requirements of an area
preserving twist map. At first, observe that P, is a diffeomorphism since it was defined via
the flow ¢®m. Furthermore, by Equation we have ¢ "dB,, = dB,, and ¢ Rg,, = 0. Because
the flow ¢%m of Rg, is transverse to A C A x {0} and df3,,, only having a 1-dimensional kernel
distribution, the restriction dﬁm|A is an area form on A. This means that P, is an area
preserving diffeomorphism.

The rest of this section will deal with the remaining boundary twist condition of
Corollary
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5.2 The boundary twist condition of the first return map

Because of Proposition the vector field R, is tangent to 0A x S I and on OA x S it can
be written in the coordinates (6,s) € OA x S*.

Rﬁm\&Axsl = Rgmaf’ + Rj, 05,
for functions R%m, RE :OA X St - R.

By Corollary on 1A we have

m2c,y m2c m?
RY =— +o(m?), R, =1+ +_ + o(m?).
On 0~ A:
m2ec_ m2c_ m?
RY =— +o(m?), R, =1- — + o(m?).
B 5 tolm?), R, > o) o)

Recall that ¢y = \/ det Hess{ ¢ (p+)-

Let ¢Pm be the lift of the Reeb flow ¢ to A such that ggom(O) = 0. By integrating the
Reeb vector field along the boundaries for initial values (6, sg) € 0TA x R, we get

o o+ (0o, s0)
. m2c+ m20+ m2 (45)
- (_t( 92 + O(mg)) + 907 t(l + 9 - 2f<p+) + 0(m2)) + 30)‘

If (Ao, so) € O0~A x R, we have

/" 15-4(00: 50)
m2C_ 9 m2C_ m2 2 (46)
= (—¢( 5 + o(m*)) + 6o, t(1— > 2 ) + o(m?)) + so),

We can now determine the first return time and first return map on the boundary.

. Let 0y € OA. By definition, the first return time for 8y is the Smallest 79 > 0, such that
¢Egn\8,&(90,0) = (01,27), for some 6, € OA. Assuming that 6y € A and using the local
description 45| of the flow, the return time 7y is determined by

M o)
2 2f(p+) o (47)

47
~ 24 m2ey —m2/f(py) +o(m?)’

27 = ’7’0(1 +

<~ 70

and 61 is given by

m2 Cyt

+ 0(m2)) + 00

01 = —7o(
2rm2cy (48)

— 2
" e, —m () o) O

34



my'm

Define the restrictions 7,-, 7.~ := Tim|o+As Tm|o-A Of the first return time of 3, defined at .

Then, by the calculations above,

47
T(0) = .
) = e — R F(pe) + o)
and similarly
4
7 (6) ul

T 2—m2e —m2/f(p-) + o(m?)’
Let ]me A — A be the lift of the first return map Py, of 5. By Equation the restrictions
Pr P, = m|o+As Pmja-a can be described as follows:

~ 2rm?ey + o(m?)
BPL(0) = *
m () = o te, —m2/ fpy) + om®) T

= mm?cs + o(m?) + 0

(19)
~ 2rm2c_ + o(m?
P (0) = 2 —m?c_ — mQZ—f(ZE) J)F o(m?) e

= mm?c_ + o(m?) + 0.

We can now state a condition for the first return time being twist.

Proposition 5.6. If c_ # ¢4, where c_ = \/det Hess‘lf/f(p_) and ¢4 = \/det Hess({/f(er),

then the first return map Py, : A — A of the Reeb flow ¢P™ is an area preserving twist map
for m small enough.

Proof. We already mentioned why P,, is area preserving and a diffeomorphism and only need
to show that P, satisfies the boundary twist condition in Corollary
Because of the equations at 1} for the lift P, we have

Pn(0,0) = (0,7m%cy + o(m?) +0), Pn(1,0) = (1,7m?%c_ + o(m?) + 0).

Set
= § 2c —l—1 m2ec
po = 47Tm - 47r 4,
3 2. 4+ 1 9
= - — _.
01 1 m-cy 47rm c

Let pp : A =R, (r,0) — 6. W.lo.g. c— < c4, then pg < p; and for m small enough we have
P20 P(1,0) = mm2c_ 4+ o(m?) + 6
<pot+O0<pL+0
< mm2ecy 4+ o(m?) 40 = pa o Pp(0,6).
O

As an immediate consequence, it follows that the Reeb flow of 3, has infinitely many
periodic orbits if m is small enough.
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5.3 Reformulated conditions on the Hessian

We reformulate the condition on the Hessian in Proposition We compute in coordinates
around p:

82
Hess(f/f(pi) = (W’pi( /)i

2 1 0?
F(pi)afmboif - P(pi)m’pi(f))i,j

1 0? d e
:—f( )(8 s [ps ()i (%|pif:0, since is p4 is critical)

= (

1
=— 200 Hess% (p+).

Consequently

\/det Hess{ ¢ (p+) = f2( N det Hess% (p). (50)

Furthermore, the Hessian can be calculated according to Darboux coordinates of the volume
form vol, which is induced by the Riemannian metric g on S2. Speaking about Darboux
coordinates makes sense since vol, is symplectic on 52, In other words, let ¢ : V C R?2 —
U C S? be a diffeomorphism such that 1;* voly = wgq, then we are interested in the Hessian
of fo 1/; Observe that such diffeomorphisms are exactly those whose induced basis vectors
Oz,,0x, on TU C T'S? form an orthonormal frame with respect to the metric g.

We will use the notation
Hess? := Hess "l

for Hessians in such coordinates.

Assume that p4 € U and 1/}(0) = p+. Since o = fvoly, we have Tpd4 = 1/f(pi)Tm/~1,
implying that f(p+)1l = Tg(bil o 1)) which enables us to calculate

Hess$ (p+) = Hess;,5(0)
=T (03" o) Hess oo, (0)T0(0%" 0 %))
— f2(pi) HessfoD; (0)
= f*(p+) Hess§ (p+)
Hence,

1
det Hess? (py) = ? (p+)4/det Hess?c (p+)-

Together with Equation [50] we get

1( +)y/det Hess’ +(pt).

\/det Hess{ ¢ (p+) = 7
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5.4 Consequences for the magnetic flow

The magnetic flow was defined as the Hamiltonian flow ¢X™ of the symplectic twisted bundle
(TS?,w = d\—7*0). Recall that o = fvol,. We have seen that the dynamics of the magnetic
flow on the level sets 3, can be studied through the Reeb vector field of the contact manifold
(852, \pm), where d\,, = wy, = md\ — 0.

By Lemma there exists a diffeomorphism F : §5% — SS? such that F*\,, = Hilm)‘o +
o(m?) for m small enough.

Set 5\m := F* )\, then, S\m € B (See ) In other words, ;\m is CtT-close to the unper-
turbed form Ap,, = H—lm)\o.

Assuming that p;,p_ are non-degenerate maximum and minimum points respectively.
By choosing suitable spherical coordinates we can assume that p; is the North-Pole and
p— is the South-Pole. In Subsection about weakly normalized forms, we saw that there
is a diffeomorphism W,, such that RS W weakly normalized (See Definition . Set
Aw,, =V A

In Section 4| we constructed a global surface of section S : A — SS? for the Reeb flow of
the unperturbed form Ap,,. By Corollary we know that S is a global section of surface
for the Reeb flow ¢*¥m of Ay, . for m small enough.

With the help of Corollary [£.9] it’s possible to express the first return time and first return
map, corresponding to ¢*¥m and its surface of section, in local coordinates on the boundary.
In this last section we used the description in local coordinates to see that the first return

map is twist for m small enough, if %(er) det Hess’ (p+) # %(p_)1 /det Hess%(p—).

Then, Corollary implies that the Reeb flow ¢*¥= has infinitely many periodic orbits.
As the dynamics of the Reeb flow is the same with that of the magnetic flow ¢X ", restricted
on the level set ¥,,, the magnetic flow has an infinite number of periodic orbits if m is
small enough. In particular the magnetic flow has infinitely many periodic orbits in general
(Without specifying a kinetic energy level set). We summarize these results in the following
theorem.

Theorem 5.7. Let (S2,g,0) be a magnetic system such that its magnetic strength f is positive
everywhere. Assume that f has a minimum point p— and a maximum point py. If

1
13
where Hess is the Hessian in orthonormal coordinates according to g, then the magnetic flow
has an infinite number of periodic orbits with speed m, for every m small enough.

F3 (01 Aot Hess] (1) # 5 (p-) et Hessf (),
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6 Appendix

6.1 C* norms and estimates

For the uniform C* norms used in this thesis we refer to the appendix A of [Benedetti and
Kang, 2018]. We only summarize a few lemmas that are important for us.

Definition 6.1. Let h € {1,2}, k € {0,1}, and define the numbers By, ;,(||T]|)

Bio(ITyl) = 1T¢[lco,  BialllT¥l) = 1T%llco + [Tl 1,
Boo(IT9l) = 1T%0¢0,  Bea(IT9l) = IT% 020 + [1T¢ll oI TW |-

Lemma A.1 in [Benedetti and Kang, 2018| states the following

Lemma 6.2. For any ¥ € Q"(My) with h € {1,2} and any diffeomorphism 1 : My — My we
have
10" o < B (T2 -

Remark 6.3. This statement generalizes to C* norms and differential forms of higher degree.
For more details see lemma A.1 in [Benedetti and Kang, 2018].

Lemma A.4 in [Benedetti and Kang, 2018| states the following

Lemma 6.4. Let B C R? be a closed ball. For every k € N and 6y > 0, there exists 6; > 0
such that, if Y1,¢2 : B x S* — B x S' are smooth maps and h € N, then

H% - 1/11Hck+1 <6 = \W;U - wi‘ank < 50H77uck+1-

The following lemma is taken from Lemma A.6 in |[Benedetti and Kang, 2018| and is
extremely useful to estimate the C* distance between Reeb vector fields.

Lemma 6.5. Let k € N and let My be compact manifold of dimension 2n+1 with contact form
ag. There exists a constant A, > 0 such that, if o is a one-form on My with || — o[ o+ < 0,
then « is a contact form and there holds

|Ra — Rag llcr < Aklla — agllon,+-

Proof. See Lemma A.6 in [Benedetti and Kang, 2018|. O
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6.2 Vanishing functions as matrix valued functions

Lemma 6.6. Let U C R? an open neigbourhood of 0, f : U — R? a smooth map such that
f(0) = 0. Then there exists a matriz valued function W : U — R**2 such that f(z) = Wyx
and [Wco < |1 Fllcn.

Proof. Write (f1(x), fa(x)) = f(x) € R?, (z1,22) = = and define

W.. .= fol oL f1(w1u, zou)du fol Do f1(z10, x2u)dU
’ fol o1 fa(w1u, Tou)du fol Do fa(z1u, x2U)dU

and check that W,x = f(x). From the definition it follows that ||W {0 < [|f|l - O
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