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Abstract

Topological Data Analysis (TDA) aims to study the structure of a data set repre-
sented as a finite metric space. Edelsbrunner and Wagner [1] extended the framework
of TDA to data measured with Bregman divergences, which made TDA methods ac-
cessible to new applications.

In this thesis, we consider how the usual constructions and algorithms in TDA can
be generalized to the setting with Bregman divergences. Furthermore, we present a
stability result of persistence diagrams and an approximative Kiinneth formula.

Zusammenfassung

Topologische Datenanalyse (TDA) verfolgt das Ziel, die Struktur einer Daten-
menge zu untersuchen, welche als ein endlicher metrischer Raum représentiert ist.
Edelsbrunner und Wagner [1]| erweiterten die Theorie fiir Daten, deren Distanzen
durch Bregman-Divergenzen gegeben sind. Damit wurden Methoden der TDA fiir
neue Anwendungen zugénglich gemacht.

In dieser Arbeit diskutieren wir, wie die iiblichen Konstruktionen und Algorith-
men der TDA im Falle von Bregman-Divergenzen verallgemeinert werden konnen.
Ferner présentieren wir ein Stabilitdtsresultat fiir Persistenz-Diagramme und eine
approximative Kiinneth-Formel.
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1. Introduction

Understanding large and complex data sets can be very demanding. The goal of
data analysis is to find descriptors of the data that are easy to understand, can be
computed fastly, but still reflect relevant information. Topological Data Analysis
(TDA) provides such a descriptor, the so-called persistence diagram. It describes the
shape of the data in the form of easily understandable diagrams.

In 1999, V. Robins introduced in her paper [2| persistent homology that became
a central tool in TDA. The first papers about TDA were written by Edelsbrunner
et al. [3] in 2002 and by Carlsson et al. [4] in 2005. Since then, there are many
available papers, surveys, and books about topological data analysis. It has become
an important research topic in modern mathematics. TDA also has a wide range
of applications. It is used, e.g., to analyse viral evolution [5], sensor networks [6],
neuronal network dynamics [7].

The usual TDA pipeline can be summarized as follows:

filtered

Tt simplicial persistent persistence
ata . homology diagram
complex

Usually, the data is represented as a finite metric space, also called a point cloud.
From this, we build a filtered simplicial complex that stores the topological features
of the data set at different scale parameters. After applying the homology functor, we
get persistent homology groups that we can characterize using persistence diagrams.

The entire process strongly depends on the choice of the metric. In practice, it
could be challenging to find the “right” metric for the data set. For some applications,
one wishes to measure the data with a dissimilarity measure that does not satisfy the
axioms of a metric function. The Kullback-Leibler divergence is such a dissimilarity
measure. It is commonly used to analyse text documents [8] and images [9],[10].
The Itakura-Saito divergence is well suited for sound data [11]. Both divergences are
members of the class of Bregman divergences.

Edelsbrunner and Wagner [1] introduced a TDA framework where the data is mea-
sured with a Bregman divergence. This thesis aims to understand TDA in this new
setting. We recall the statements from [1] and we try to extend some results in the
usual TDA, such as stability theorem and Kiinneth theorem, to our new Bregman
setting.

The thesis is organized as follows. In chapter 2, we recall some basic definitions
and results from TDA. The third chapter is about Bregman geometry. We intro-
duce Bregman divergences and show some elementary properties of them. These
statements will be helpful later when we are doing TDA, but one can enjoy this
chapter on its own. In chapter 4, we will consider how the usual TDA setting can
be extended to the setting with Bregman divergences. At the end of the chapter,
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we also describe some algorithms for the computation of persistence diagrams. In
chapter 5, we present a stability result that tells us that a slight noise in the input
data does not have too much effect on the corresponding persistence diagram. In the
last chapter, we try to find a Kinneth-type formula for Bregman point clouds. One
can find some Matlab code in the appendix that we will use to do some experiments
with synthetic data sets during the thesis. Matlab was also used to create figures
that can be found in the chapters.

To avoid confusion, we fix some notations that we will use throughout the thesis.

List of symbols

positive integers

nonnegative integers

positive real numbers

absolute value of a € R

Euclidean scalar product of z,y € R"
Euclidean norm of x € R"

maximum norm of z € R™

a fixed but arbitrary field

category of k-modules

disjoint union of sets

cardinality of a finite set X

power set of X

full simplicial complex of X

interior of a subset U in a topological space
closure of U

boundary of U

closed ball with radius  and center m in a metric
space (M, dur)

affine hull of a subset P C R"

convex hull of P

Jacobi matrix of a differentiable function f
image of a function f

epigraph of a function f

isomorphic

homotopic

geometric realization of a simplicial complex K
functor category



2. Preliminaries

In this chapter, we give a brief review of topological data analysis. The aim in doing
so is to fix some basic definitions and recall the most important theorems. The
chapter is based on [12] and [13].

2.1. From data to persistence diagrams

In the usual setting of TDA, we always start with a finite metric space, which is also
called a point cloud. In the next step of TDA, we build a filtered simplicial complez.

Definition 2.1 A finite collection K of finite nonempty sets is called a
simplicial complez, if c € K and ) # 7 C o implies 7 € K.

We call each o0 € K a simplex. A simplex o € K is called a vertez if it contains
exactly one element. We write Vert(K) for the set of vertices of K.

The dimension of a simplex o € K is defined as dim(o) := card(c) — 1.
The dimension of K is given by dim(K) := max dim(o).

A simplicial map f: K — K’ between simplicial complezes is a
Junction f: Vert(K) — Vert(K') such that for every {v,...,vn} € K it holds that

{f(vo), . f(vn)} c K.
We denote the category of simplicial complexes and simplicial maps by Simp.
One can turn every finite collection of sets into a simplicial complex.
Definition 2.2 Let F be a finite collection of sets. The nerve of F is defined as

Nrv(F):={T CF|[()7#0}

TeT

There are several ways to construct a simplicial complex from a point cloud. Each
of them has its advantages and disadvantages. The Cech complex is commonly used,
because it is suitable to prove theoretical statements.

Definition 2.3 Let (M,dy;) be a point cloud and v > 0 a fized nonnegative real
number. The simplicial complex

Cech(M,r) := Nrv <{Br(m)}meM> ={ocC M| ﬂ B, (m) # 0}

meo

is called the Cech complex of (M, dy) at scale r.
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If the point cloud (M, dys) lives in some Euclidean space R™ i.e. M C R™ and the
metric dyy is the restricted Euclidean distance, then the Nerve Theorem implies that

| Cech(M,r) | and |J B,(m) have the same homotopy type, and therefore they
meM
have isomorphic homology groups.

Theorem 2.4 (Nerve Theorem) [12] Let F be a finite collection of closed sets in
an Euclidean space such that the intersection of each subcollection is either empty or
contractible. In this case, the union of the sets in F' and | Nrv(F') | have the same
homotopy type.

The Cech complex can be extremely high dimensional. That could cause a lot of
problems if we actually wanted to compute persistence diagrams. The Vietoris—Rips
complez is easier to compute. There are well-developed algorithms [14] and software
packages [15] that can be used in practice.

Definition 2.5 Let (M,dys) be a point cloud and v > 0 a fized nonnegative real
number. The simplicial complex

Rips(M,r) :={oc C M |Ym,n € o : dys(m,n) <r}

is called the Vietoris-Rips complex of (M,dyr) at scale r.

Due to a small interleaving between the Vietoris-Rips and Cech complexes (see
6.25 for further details), the Vietoris-Rips complex is similar enough to the Cech com-
plex, and therefore to the union of the balls, to reflect relevant information about
the structure of the point cloud.

In the above definitions, we always fixed a real number r. Since there is no natural
choice of a scale parameter r, we would like to study all parameters at once.

Definition 2.6 A parametrised simplicial complez is a functor K, : [0,00) — Simp,
where [0,00) denotes the poset category associated to the set of nonnegative real num-
bers with its usual order.

1f all the maps K, — K, r < t are inclusions, we call Ko a filtered simplicial complex.

Example 2.7 Let (M, dy) be a point cloud. Rips(M,e) and Cech(M, ) are filtered
stmplicial complexes.

In algebraic topology, one uses homology groups to characterize topological fea-
tures of spaces, for more details, we refer to [16, Chapter 2]. Applying the homology
functor Hy(e) with coefficients in a fixed field k, we can turn each parametrised
simplicial complex K, into a persistence k-module that is also called the
persistent homology of K,.
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Definition 2.8 A persistence k-module is a functor V4 : [0, 00) — k-Mod.

We wish to have easily understandable invariants that describe the isomorphism
classes of persistence modules. To do so, we decompose the persistence modules into
simpler pieces.

Definition 2.9 Let I C [0,00) be an interval. The persistence k-module 1(e) given
by

K et el
lf(i)::{ fie and]ll(igj)::{lk ifi,je

0 otherwise

1s called an interval module.

Theorem 2.10 (Crawley-Boevey Theorem) [13, Thm. 1.6]

Every pointwise finite-dimensional persistence k-module Vy is a direct sum of interval
modules. Moreover, the decomposition is unique up to isomorphism and permutation
of the terms in the direct sum.

Because a point cloud (M, dys) contains only a finite number of points, we can
apply the Crawley-Boevey Theorem to persistent homology H, (Rips(M ,o)) and
H,, (Cech(M,e)). Since the interval decomposition is unique up to isomorphism, it
seems to be the invariant what we are looking for. We just need to find a way to
note the lower and upper bound of the intervals.

Definition 2.11

a) A multiset is a pair (S, p) where S is a set and p: S — NoU{oo} is a function.
For each s € S, we call p(s) the multiplicity of s.

b) We call a bijective map

u(s) W)
UL {st= U [
seS i=1 s’'eS’ i=1

a bijection between the multiset (S, ) and (S',u').
We write n : (S, ) EEN (S’ 1) for short.

With other words, we interpret each point of a multiset with multiplicity m as m
individual points and a bijection of multisets is a bijective map between the resulting
sets.
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Definition 2.12 Let V, be a pointwise finite-dimensional persistence k-module with

o

interval decomposition Vo = @ 1y,(e). The persistence diagram of Ve is a multiset
deD

with underlying set (R U {oo})? and multiplicity function p given by

(a,b) = card ({d € D | a is a lower, b is an upper bound of I }) if a #b
mla,b) = N s

We denote this multiset by dgm(Vs).

By definition, every point with positive multiplicity lies above the diagonal. The
reason to consider the diagonal with infinite multiplicity is rather technical. It allows
us to define a metric for persistence diagrams, see section 5.1 for more details.

It must be noted that there is a new approach to TDA based on homotopical
methods at chain complexes level. In the frame of this new approach, the points
in a persistence diagram lying on the diagonal are not just noise anymore. Thus,
we may lose some information if we put infinite multiplicity to the diagonal. This
new approach is out of our scope, we just refer to the original paper [17] for further
details.

3. Bregman geometry

The notion of Bregman divergences was introduced in [18]. The most basic example is
the squared Euclidean distance. More interesting are the Kullback-Leibler divergence
and the Itakura-Saito divergence, both are commonly used in applied mathematics.

Bregman divergences can be seen as a measure of the distance between two points,
even they satisfy only one of the three metric axioms, as we will see in section 3.2.
Because of the missing axioms, it is not a surprise that Bregman geometry will differ
from the usual Euclidean geometry.

Since the Bregman divergences are not symmetric, we will always need to define
a primal and a dual object. It turns out that dual objects have better behaviour.
Using Legendre duality we can translate primal objects to dual and dual objects back
to primal objects, which allows us to show some useful properties for primal objects.

Our main goal is to introduce objects like Bregman balls, Voronoi diagrams and
their properties, which we will need in the data analysis part later, but one can read
this chapter on its own and enjoy the beauty of Bregman geometry. This chapter is
based on [1].

3.1. Functions of Legendre type

Bregman divergences are induced from functions of Legendre type. In this part, we
will study such functions. They are strictly convex differentiable functions with
some additional properties. The authors [19], [20] and [1]| require slightly different
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properties. We use the definition from [1] and require that the length of the gradient
goes to infinity whenever we approach the boundary of the domain. This will ensure
that the convex conjugate of a function of Legendre type is a function of Legendre

type, however, this additional requirement has a disadvantage we can not restrict
our domain arbitrarily.

Definition 3.1 Given a nonempty open convez set  C R™, a function F: Q@ — R
1s of Legendre type if F is

(L1) strictly conver,
(L2) differentiable,
(L3) |VF(xy)| — oo whenever x, — x € bd(Q) .

Using standard real analysis tools, one can show that the following functions are
of Legendre type.

Example 3.2

function of Legendre type F: Q>R

one dimensional half the squared Euclidean norm R—>Rz— %xQ

one dimensional convex Shannon entropy Ry - Rz —z-ln(x)—x
one dimensional Burg entropy Ry - Rz —1—In(x)

. .
\ / i
\ / \\ 1 2 ) i
el 1 ~—
-1 0 1
half the squared Euclidean norm convex Shannon entropy
\
\
21\
\
| \
\\
1 2 e I —
05} T

Burg entropy

Figure 1: Graph of functions of Legendre type
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The data that we want to study, lives in higher-dimensional spaces. The next
proposition gives us a nice way to build higher-dimensional functions of Legendre
type.

Proposition 3.3 Let F: Q — R, G : Q' — R be functions of Legendre type. Then
F+G:QxQ =R, (z,y) — F(x)+ G(y) is a function of Legendre type.

Proof: Since  C R™ and £ C R™ are nonempty open convex sets, the Cartesian
product Q x Q' C R™™™ is nonempty, open and convex as well.

The strict convexity of F' 4+ G follows from the strict convexity of F' and G.

The partial derivatives of F + G in a = (a1, ..., apim) € Q x Q' are given by

8F+G()_ g—gi(alv---’an) for1<i<n
O g_g(an+1>"->an+m) forn+1<i<n+m

They are continuous, since F' and G are differentiable. This implies the differen-
tiability of F'+ G on  x .

It remains to be shown that the length of the gradient of F + G goes to infinity
whenever we approach the boundary of Q x . Let ((:zrn, yn))n N be a sequence in
Q x Q such that (zp,yn) — (x,y) € bd(Q x ). It is well known that

bd(Q2 x Q) = Q x U\ int(Q x Q) = QxX)\ (2x Q)=
[21, Theorem 19.5]
= (bd(Q) x @) | (@ x bd(2))

So we can assume without loss of generality that (x,y) € bd(Q) x /. From this
follows x, — x € bd(Q2). Since F is a function of Legendre type, we have

IV(E + G) (@, yn) |* = | VF (20) |2 + VG (yn) | — 0o

—00 >0

This implies that |V(F + G)(xn, yn)|| — 0. .

Due to the above result, we can extend our examples 3.2 and define higher-
dimensional functions of Legendre type.
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Example 3.4

function of Legendre type F:Q—R
half the squared Euclidean R = R,z % i 22 = %HUEHQ
norm =
n
convexr Shannon entropy RY = Rz Y (- In(z;) — ;)
i=1
n
Burg entropy R% = Rz Y (1—In(z))

Remark 3.5 In the original paper [22], Shannon defined the entropy of a discrete
n
probability distribution as — Y (z;-In(x;)). Following [1] we turn this into a function

=1
of Legendre type and use the definition from 3.4.

In the rest of this section, we follow [23] and show that the convex conjugate of a
function of Legendre type is a function of Legendre type, and the gradient map is a
homeomorphism onto its image. Before we do this, we need to recall some definitions
from [23].

Definition 3.6

a) Let f : R"™ - RU{oco} be a function. We define the domain of f as the set
dom(f) :={x € R" | f(x) < oo} where it has finite values.

b) We call a function f:R™ — R U {oc} proper, if dom(f) # 0.

c) A proper convex function f:R™ — RU {oo} is called closed, if its lower
semi-continuous, i.e. f(lim z,) < lim f(x,) for all convergent sequences

(Tn)nen in R™.
d) Let f:R™ - RU{oo} be a convexr function. We call the map
Of :R* - P(R"),z— {y eR" |Vz € R": f(2) > f(2) + (y,z — z)}
the subdifferential of f.

As one would expect, the subdifferential is in a strong relationship with the usual
gradient.

Lemma 3.7 Let f : R" — RU{oo} be a proper convex function. Then we have the
following:

a) For x ¢ dom(f), Of(x) is empty.

b) There exists at least one x € R™ such that Of(x) # 0.
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c) Of(x) is a nonempty bounded set if and only if x € int(dom(f)).

d) f is differentiable in x € dom(f) if and only if Of(x) contains exactly one
element. In this case Of(x) = {V f(x)}.

Proof: For the proofs we refer to [23]. Part a) and ¢) is [23, Theorem 23.4]. Part b)
follows from [23, Theorem 6.2| and [23, Theorem 23.4|. The last part is [23, Theorem
25.1). n

Definition 3.8 Let f : R” — RU{oo} be a closed proper convez function. We define
the convexr conjugate of f as the function

[ :R*" > RU{oo},y — seuﬂgl ((y,a:> —f(x))

Lemma 3.9 Let f : R" — R U {oo} be a closed proper convex function. Then the
convex conjugate f* is a closed proper convexr function and it holds that f** = f.

Proof: 'We refer to |23, Theorem 12.2] for the proof. |

Lemma 3.10 For every closed proper convex function f : R™ — R U {oo} and for
every x,y € R™ the following are equivalent:

i) x € 0f*(y)
i) f(z)+ f*(y) = (2,y)
iii) y € Of (x)
Proof: [23, Theorem 23.5] u

Definition 3.11 A map p: R" — P(R“) is called multivalued mapping.

e [t is called single-valued, if p(x) contains at most one element for each x € R™.

o [t is called one-to-one, if p and the inverse multivalued mapping
p~t R = P(R™),y — {z |y € p(x)} are both single-valued.

Obviously, the subdifferential is a multivalued mapping. The next theorem presents
a nice characterization of functions of Legendre type using the above terminology.

Theorem 3.12 Let f : R® — R U {oc} be a closed proper convexr function. The
subdifferential Of is one-to-one if and only if f : int(dom(f)) — R is a function of
Legendre-type.

10
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We split the proof into the following two lemmata:

Lemma 3.13 For every closed proper convex function f : R™ — R U {oo} the fol-
lowing are equivalent:

i) The subdifferential Of is single-valued.

(i1) The interior of dom(f) is nonempty, f : int(dom(f)) — R is differentiable and
it satisfies the condition (L3) in definition 3.1.

In this case,
e Of(z) ={Vf(z)} for x € int (dom([)) and

e Of(x) =0 for x ¢ int(dom(f)).

Proof: We recall the proof from [23, Theorem 26.1] to see why the condition (L3)
is important. We write C for int(dom(f)).

First we assume that i7) holds. By lemma 3.7, the subdifferential 0f(x) is empty
for ¢ dom(f) and 9f(x) = {Vf(z)} for x € C. So it is enough to consider the
points in dom(f) \ C.

By our assumption C' # (), applying [23, Theorem 6.3] for the convex set dom(f)
we have that dom(f) = C. From this follows that every point in dom(f) \ C lies on
the boundary of C.

Assume that there is a point « € dom(f) \ C such that df(z) # (). By [23, The-
orem 25.6] there is a sequence (2, )nen in C such that z, — =z, f is differentiable
in z, for all n € N and the limit of (Vf(2,)), y is in df(x). By continuouty of the
norm we have |V f(z,)|| — | 7}1—{20 Vf(zy)| < co. But this contradicts (L3), thus

we have df(z) = 0 for all x € dom(f) \ C. In conclusion, df is a single valued map.

Conversely, let 0f be single-valued. By Lemma 3.7 c), the subdifferential is not
empty if x € C. From this follows the differentiability of f: C — R.

To show that C' is nonempty, we use lemma 3.7. By part b), there is at least one y
such that 9f(y) # 0. Since Jf is single-valued, df(y) has exactly one element. This
implies differentiability of f in y. By [23, Corollary 25.1.1], every point, where f is
differentiable, lies in C', so C' is not empty.

To get a contradiction, we assume that f : C'— R does not satisfy (L3), i.e. there

is a convergent sequence (x,)nen in C such that x := lim x,, lies on the boundary of
n—oo

C and (VF(a:n))neN is bounded. This implies that (VF(:cn))neN has a convergent
subsequence.

11
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To simplify the notation, we assume that (VF(a:n))n cn is convergent. By [23,

Theorem 24.4] the limit of (VF(x,)) o lies in Of (z). Together with our assumption
on Jf this implies differentiability in z. Using again |23, Corollary 25.1.1] we see
that z lies in C, but this is a contradiction to z € bd(C). [

Lemma 3.14 For every closed proper convex function f : R™ — R U {oo} the fol-
lowing are equivalent:

i) The inverse subdifferential (Of)~" is single-valued.

(11) [ is strictly convex on every convex subset of {x € R™ | df(x) # 0}.

Proof: We refer to [23, Theorem 26.3] for the proof. |

Proof of Theorem 3.12: If f satisfies i) from 3.13, then
{x € R™ | 9f(x) # 0} = int(dom(f)). In this case the condition 4i) from 3.14
is equivalent to the strict convexity of f in int(dom(f)). With this in mind, the
theorem follows immediately from 3.13 and 3.14. |

Notation 3.15 Let F': Q) — R be a function of Legendre type.
a) We write QO for the gradient space Q* := {VF(x) | z € Q}.

b) We extend F' to a closed proper convex function F:R™ - RU {oo} by setting
F(x):= F(z) for x € Q and F(x) := oo for z ¢ Q.

¢) We write F* for the restriction of the conver conjugate of ' to int(dom(F™*)).

Theorem 3.16 Let F' : 2 — R be a function of Legendre type, and let F* and Q*
be defined as above. Then we have:

a) int(dom(E™*)) = Q*
b) F*: Q" = R is a function of Legendre type.

¢) The gradient map VF : Q — Q*, @ — VF(z) is a homeomorphism with inverse
map VF*.

Proof: From theorem 3.12, it follows that the subdifferential OF is one-to-one. By
lemma 3.10, it holds that (0F)~' = §F*. This implies that OF* is one-to-one as
well, and F* : int(dom(F*)) — R is a function of Legendre type.

Using 3.13, we have int(dom(F*)) = {y € R™ | dF*(y) # 0} = Q*.

In conclusion, the induced maps Q@ — Q*,x — VF(z) and Q* — Q,y — VF*(y)
are inverses of each other. Convex differentiability implies continuous differentiability
(|23, Theorem 25.5]), so VF and VF* are continuous, i.e. VF' is a homeomorphism.

|

12
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Notation 3.17 Let F' :  — R be a function of Legendre type. If F is clear from
the context we write ©* for VF(x).

Theorem 3.18 Let F': Q — R be a function of Legendre type. The convexr conjugate
F*: Q" — R is given by F*(z*) = (z*,x) — F(x) for all z* € Q*.

Proof: By theorem 3.16, the gradient map VF : Q — Q* is a homeomorphism, so
there exists a unique = € Q such that VF(z) = x*.

By definition 3.8, the convex conjugate of z* is given by sup,cq ((a:*, y) — F(y))
Since g : Q@ — R,y — (x*,y) — F(y) is a concave function, the supremum is reached
at the unique point where its gradient is zero (|23, Theorem 27.1.¢]). The gradient
of g is given by Vg(y) = * — VF (y) for all y € Q. Thus we have

F*(a*) = sup ((z",y) — F(y)) = (&",2) — F(2).
ye

Lemma 3.19 Let F : Q — R, G : Q' — R be functions of Legendre type. The
conver conjugate of their sum is the sum of the convex conjugates i.e.

(F+G)*=F"+G".
Proof: By proposition 3.3, F+G : Qx Q' — R, (z,y) — F(z)+G(y) is a function of

Legendre type, and the partial derivatives of F + G in a = (a1,...,0n4+m) € Q x
are given by

8F+G(): %F;(al,...,an) for1<i<n
Ox; g—g(an+1,...,an+m) forn+1<i<n+m

From this it follows that V(F+G)(z,y) = (VF(z), VG(y)) for all (z,y) € Q@ x
so we have (€ x Q)" = Q* x Q.

From theorem 3.18 it follows immediately that

(F+G) (V(F + G)(z,y) = (V(F + G)(,y), (z,9)) = (F + G)(z,y) =
= (VF(z),z) + (VG(y),y) — F(z) - G(y) = F*(VF(z)) + G*(VG(y)). W

Using theorem 3.18 and lemma 3.19 one can easily compute the convex conjugate
of the functions introduced in example 3.4.
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3. Bregman geometry

F:Q5R | Q VF(z) 2 F(a)
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squared n n 1).%)2
Euclidean R v " 2l

norm

convex LI
Shannon R? (in(x1), ..., In(xn)) R™ ; e
entropy B

Burg RY (—L,... 1) R™ i(—Q—ln(—xf))
entropy & Z wn - i=1

3.2. Bregman divergences

Bregman divergences measure the vertical distance between the graph of a function
and a tangent plane of the graph. In his original work [18], Bregman used strictly
convex differentiable functions, we follow [20],[1] and we use functions of Legendre
type. This is a smaller class of functions, but it still contains prominent examples
and it allows us to show better properties. We recall the results from [20] and [23],
which are relevant for our later work.

In this section F': 2 — R denotes a function of Legendre type.

Definition 3.20 The Bregman divergence associated with F' is the map

Dp:QxQ =R, (2,y) = Dr(zly) == F(z) = (F(y) + (VF(y),z — y)).

The next propositon presents two alternative characterizations of the Bregman
divergence.

Proposition 3.21

a) Let y € Q, and Hy : Q@ = R,z — Hy(z) := F(y) + (VF(y),z — y) be the best
linear approzimation of F in y, then Dp(zx|y) = F(x) — Hy(x) for all x € 2.

b) For all x,y € Q, it holds that Dp(x|ly) = F(x) + F*(y*) — (y*, x).

Proof: Part a) is obvious. Part b) is a straightforward computation using Theorem
3.18, i.e. F*(y*) = (y*,y) — F(y) and y* = VF(y). [

14



3.2. Bregman divergences

q p Q

Figure 2: Dp(p||q) measures the vertical distance between (p, F(p)) and (p, Hy(p))

In general, a Bregman divergence does not satisfy the triangle inequality and it is
not symmetric. If we want to talk about two explicit points p, g € Q, we call D (p||q)
the Bregman divergence from p to q. We only have the following metric axiom:

Lemma 3.22 For all x,y € Q, we have that Dp(x||y) > 0, and Dp(z|ly) = 0 if and
only if v = y.

Proof: Since F' is differentiable, the subdifferential of F' in every point z € { con-
tains exactly one element, i.e. 9F(z) = {VF(z)} (see lemma 3.7).

The claimed inequality is equivalent to F'(x) > F(y)+ (VF(y),x —y). Since F is
convex and VF(y) € 0F (y), this inequality is satisfied.

Using proposition 3.21, we see that the claimed equality is equivalent to
F(z) + F*(y) = (y", ).
By lemma 3.10, this is satisfied if and only if
y* € OF(z) = {VF(x)}.
Since VF' is bijective (see theorem 3.16), this is equivalent to y = x. [ |

It turns out that the characterization in proposition 3.21 b) is extremely useful to
show some properties of Dp.

Lemma 3.23 The function Dr is strictly convex in its first argument, and contin-
uous in both arguments.

15



3. Bregman geometry

Proof: The continuouty follows immediately from proposition 3.21 b), since F', F*,
VF (see theorem 3.16) and the scalar product are continuous functions.

To show the strict convexity, let us fix a point y € 2. The function Dp(e||y) is
the sum of F' and the affine linear function Q — R,z — F*(y*) — (y*, z). Since F'is
strictly convex, one can easily show that Dp(e||y) is strictly convex. |

Informally speaking, one would expect that the ‘distance’ D between a point and

‘us‘ is getting smaller and smaller, if ‘we‘ are moving closer and closer to that point.
The next lemma formalizes this.

Corollary 3.24 Let (y,)n be a sequence in Q0 such that its limit y lies in Q. Then
(DF(yHyn))n and (Dp(ynHy))n are converging to 0.

Proof: By lemma 3.23, D is continuous in both arguments. |
As we have already seen in theorem 3.16, the gradient map VF :  — Q* is a

homeomorphism. It also preserves the Bregman divergence, however it swaps the
arguments.

Lemma 3.25 (Legendre duality)
For all z,y € Q, it holds that Dr(z|ly) = D« (y*||z*).

Proof: Since z* = VF(x) and VF*(z*) = z for every z € 2, the result follows from
proposition 3.21 b). |

At the end of this section, we introduce some important examples.

Proposition 3.26 Let G : ' — R a function of Legendre type. For all x,y € €,
a,b € Y it holds that Dpi¢((z,a)||(y,b)) = Dr(z|y) + Da(al|b).

Proof: Using lemma 3.19 and the fact that V(F + G)(z,a) = (VF(z), VG(a)) for
all (z,a) € Q x ', we have:

Drya((x,a)ll(y.b)) = (F + G)(z,a) + (F + G)"((,0)") = {(V(F + G)(y,b), (v, 0)) =
= F(z) + G(a) + F*(y") + G*(07) = (y", 2) = (0", a) = Dp(z[ly) + Da(afb). W

In example 3.4 we have seen some functions of Legendre type. Using these func-
tions we get the following Bregman divergences:

16
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function of Bregman
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type
half the half the
squared 1012 squared T o112
Euclidean 2l Euclidean 2llz =l
norm distance
convex n Kullback- n
Shannon Z (l’iln(%z) - xz) Leibler Z (len(%) —x; + yz)
entropy = divergence =l
Bur n Itakura- n
8 S (1—tn(z) | Saito S (2~ in(2) - 1)
entropy i=1 . i=1 7' '
divergence

3.3. Elements of Bregman geometry

In the previous section, we have introduced Bregman divergences. Using this ’dis-
tance’ function, we can define basic geometrical objects analog to the usual Euclidean
geometry.

During this section, F': 2 — R stands for a function of Legendre type.

Definition 3.27 Let x € Q) and r > 0.
The primal Bregman ball with center x and radius r is defined as

Br(x,r) :={y € Q| Dr(zlly) <r}.

The dual Bregman ball with center x and radius r is given by

Bp(@,r) = {y € Q| Dr(ylz) <r}.

The primal Bregman sphere with center x and radius r is defined as

OBp(z,r) :={y € Q| Dp(z|y) = r}.

The dual Bregman sphere with center x and radius r is given by

OBp(xz,7) :=={y € Q| Dp(y|z) =r}.

17



3. Bregman geometry

Figure 3: primal and dual Itakura-Saito balls

We follow the method described in [19] and give a geometrical approach to con-
struct dual Bregman balls. First, we fix some notation.

Notation 3.28 We write
a) O for the Cartesian product 2 x R,
b) F for the graph of F, i.e. F := {(z,F(z)) € Olze Q},

c¢) epi(F) for the points in 9 lying above the graph of I,
i.e. epi(F) = {(z,2) € Q| 2> F(x)},

d) Projg:Q — Q,(x,2) = x for the natural projection map.
Definition 3.29

a) A set H C R™ is called a hyperplane, if there exists an a« € R™\ {0} and § € R
such that H = {v € R™ | (a,v) + 8 = 0}. The vector a is said to be normal to
the hyperplane H.

b) A hyperplane H with normal vector o defines two half-spaces
HT :={veR™| (a,v) +b< 0} and H™ :={v € R" | (a,v) + b > 0}.

The choice of the superfixes ” 7" and ” ~” seems to be unnatural. The next remark
gives an explanation why we should not choose the superfixes the other way around.

18



3.3. Elements of Bregman geometry

Remark 3.30 Let H : R" — R,z — (a,x) + b be an affine linear map for some
a € R" and b € R. The graph of H is a hyperplane H in R with normal vector
a=(a,—1) and B =0b. The set of points above the graph is the half-space H™, i.e.

HT = {(z,2) e R"™ | 2 > H(z)}.
The set of points under the graph H is the half-space H™, i.e.
H™ = {(x,2) e R"™ | 2 < H(z)}.

Lemma 3.31 For every dual Bregman ball B’ C §) there is a hyperplane H C R™t!
such that Projo(H~ Nepi(F)) = B'.

Proof: Let B’ = Bl(c,r) be a dual Bregman ball with center ¢ € Q and radius
r > 0. Recall that the Bregman divergence from a point x € €2 to c is the difference
between F(x) and H.(z), where H, is the best linear approximation of F' in ¢, i.e.
H.:R" = R,z — H(x) :=F(c)+ (VF(c),z — ¢).

Let #H., be the graph of R — R,z — H.(x) +r, i.e. H., is a vertical translate
of the graph of H, with height r.

A point = € Q lies in Projqo(H,, Nepi(F)) if and only if there is a z € R such that
H.(z)+r >z and z > F(x). This is equivalent to r > F(x) — He(z) = Dp(z|/c). B

Figure 4: visualization of lemma 3.31
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3. Bregman geometry

In general, primal Bregman balls are not convex. Fortunately, we have this nice
property for dual Bregman balls.

Corollary 3.32 Dual Bregman balls are conver.

Proof: By lemma 3.31, every dual Bregman ball can be written as

Projo(H™ Nepi(F)) for a hyperplane H C R"*!. The convexity of F implies that
epi(F) is a convex set. Since intersection of convex sets is convex, every dual Breg-
man ball is convex as the image of a convex set under a linear map. |

In lemma 3.31, we have seen that every dual Bregman ball is the projection of
epi(F') intersected with a hyperplane. Conversely, one could ask which hyperplanes
give us dual Bregman balls.

Lemma 3.33 Let a € R", b € R, and let H be the graph of the affine linear map
Q— R, (a,z) +0b. If a € Q¥ then Projo(H™ Nepi(F)) is a dual Bregman ball with
center VF*(a) and radius (a,VF*(a)) — F(VF*(a)) + b.

Proof:
Set ¢ := VF*(a). Using VF(VF*(a)) = a (theorem 3.16), we have that

(a,z) +b=(VF(c),z —c)+ F(c)+ (VF(c),c) — F(c)+b

Set r:= (VF(c),c) — F(c) + b. A similar argument as in the proof of lemma 3.31
shows that z lies in Projo(H™ Nepi(F)) if and only if » > Dp(z||c).

So Projo(H ™ Nepi(F)) is a dual Bregman ball with center VF*(a) and
radius (a, VF*(a)) — F(VF*(a)) + b. |

As we have already mentioned before, using Legendre duality, one can translate
primal to dual objects and vice versa.

Proposition 3.34 For all x € Q2 and r > 0 we have that
VF(Bp(z,r)) = Bp«(z*,7)  and  VF(Bg(z,r)) = Bp-(z*,7).

Proof: Tt follows immediately from Legendre duality 3.25. |

Lemma 3.35 Primal und dual Bregman balls are compact.

Proof: We start with dual Bregman balls. Let B7%(c,r) be the dual Bregman ball
with center ¢ € Q and radius » > 0. Because of the Heine-Borel theorem, it is
enough to show that B.(c,r) is closed and bounded.
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3.3. Elements of Bregman geometry

Consider the function Dp(e|lc) : @ — R,z — Dpg(z|c). By lemma 3.23, this
function is continuous and strictly convex.

Since B(c,r) is the preimage of the closed interval [0,r] under Dp(e|c), it is
closed.

By proposition 3.21 b), we have Dp(z||c) = F(x) + F*(c¢*) — (¢*, z) for all z € .
So B (c,r) is bounded if and only if {x € Q| F(z) — (¢*,z) < r} is bounded. This
set is a sublevel set of f: Q — R,z — F(x) — (c*, x).

We may extend the functions F' and f to R™ by setting F'(x) := oo, f(z) := o0
for = ¢ Q. One can easily see that f : R™ — R is a closed proper convex function. If
we can show that 0 € int(dom(f*)), then from [23, Corollary 14.2.2] will follow that
the set {x € Q| f(x) <r} is bounded.

By definition 3.8, the convex conjugate is given by

f*(z) = sup ((z,m) — F(z)+ (C*,l‘>) = sup ((z +ctx) — F(l‘)) =F*(z+¢")
zeR? zeR?
for all z € R™. This implies that int(dom(f*)) = {z* — ¢* | € int(dom(F™))}.
Since ¢* € Q* = int(dom(F™)), 0 lies in int(dom(f*)). From this follows that the
dual Bregman ball B.(c,r) is bounded.

By proposition 3.34, we can write every primal Bregman ball with center ¢ € €2
and radius r > 0 as Bp(c,7) = VF*(Bp.(c*,r)). We have already shown above
that dual Bregman balls are compact. Since VF* is a homeomorphism, the primal
Bregman ball Bp(c,r) is compact. |

Before we introduce other objects of Bregman geometry, we show a property of
primal Bregman balls, which will play an important role in the data analysis part.

Lemma 3.36 Intersections of primal Bregman balls are either empty or contractible.

Proof: Let {Bp(c, rc)}c ¢ be a collection of primal Bregman balls. Since VF is a

homeomorphism, (| Bp(c,r.) is contractible if and only if
ceC

VF( N Br(ec, rc)) = [\ Bp.(c*, 1) is contractible.
ceC ceC
By corollary 3.32, dual Bregman balls are convex, so the intersection is also con-
vex. It is a well-known result in algebraic topology that nonempty convex sets are
contractible. |

In the rest of this section we follow [19] and introduce some basic objects in
Bregman geometry.
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3. Bregman geometry

Definition 3.37 Let x and y be points in . The primal Bregman bisector of x and
y is defined as

BBp(,y) :=={2 € Q| Dp(z[]z) = Dr(yl[2)}.
The dual Bregman bisector of x and y is defined as

BBr(z,y) :={z € Q| Dr(z|lz) = Dr(z[ly)}-

Proposition 3.38 A dual Bregman bisector BBy (x,y) C Q is a hyperplane, if and
only if x # y. In this case, x and y lie on different sides of the hyperplane BBy (z,y).

Proof: A point z € Q lies on BB (z,y) € Q if and only if Dp(z||z) = Dp(z||y). Us-
ing the characterization from proposition 3.21, a straightforward computation shows
that this is equivalent to (y* — x*, z) + F*(2*) — F*(y*) = 0. This is an equation of
a hyperplane if and only if * # y* or equivalently x # y.

The points « and y lie on different sides since
(y* —a*, @) + F*(2*) — F*(y*) = Dp(2|lz) — Dp(z(ly) <0 and
(y* —a*,y) + F*(z*) — F*(y*) = Dr(ylz) — Dr(ylly) > 0. u

Primal Bregman bisectors do not have to be hyperplanes, however we can use
Legendre duality again.

Proposition 3.39 For all x,y € , we have that
VF(BBp(z,y)) = BBp.(z*,y*)  and VF(BBy(z,y)) = BBp«(z*,y").

Proof: 1t follows from Legendre duality 3.25. [ |

\ BBF* ($*7 y*)
2 ~BBp(z,y)

Figure 5: primal and dual Bregman bisectors

One can see the next property as a weak version of the triangle inequality. Using
this result one can compute which triplet of points violates the triangle inequality.

22



3.3. Elements of Bregman geometry
Proposition 3.40 (Three-point property) For all x,y,z € Q it holds that

Dp(z|2) + (2" —y*, x —y) = Dr(zlly) + Dr(yl2)-

Proof: 'The proof is a straightforward computation using definition 3.20 and the
linearity of the scalar product. |

Proposition 3.41 Let A C Q2 be a nonempty closed convex subset. For every y € €,
there exists a unique point x € A that minimizes the Bregman divergence from x to
y. This point is denoted by ya and called the Bregman projection of y onto A.

Proof: Consider the function f := Dp(e|ly) : A — R,a+ Dp(ally). This is strictly
convex and continuous by lemma 3.23.

Pick a point a € A and consider the dual Bregman ball with center y and radius
r:= Dp(ally). By lemma 3.35, this dual Bregman ball is closed and bounded, from
this follows that AN BY(y,r) is closed and bounded, i.e. it is a compact set.

Since f is continuous, f [ 4n Bl (y.r) has a minimum point. We denote this minimum
point by ya. For every x € A\ B (y,r) we have Dp(z|ly) > r > Dp(yally), so ya
is a minimum point of f.

The uniqueness of y 4 follows by a standard argument of convex analysis. We recall
it for completeness.

Let z € A another minimum point sucht that z # y4. Since A is convex, yA; =
lies an A. The strict convexity of f implies that f(¥452) < 2 f(ya)+3f(2) = f(ya)
but this contradicts to the minimality of f(ya).

The Bregman Pythagoras inequality is a well-known result in Bregman geometry.
Several slightly different proofs are known in the literature e.g. [19, Property 6|, [24,
Proposition 1|, [20, Proposition 3.16]. We recall the proof from [24, Proposition 1|
for the sake of completeness.

Lemma 3.42 (Bregman Pythagoras inequality) Let A C Q be a closed convex
subset, y € Q and y4 its Bregman projection onto A. For every a € A we have that

Dr(ally) > Dr(allya) + Dr(yally)

with equality if A is an affine subspace.
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3. Bregman geometry

Figure 6: Bregman Pythagoras inequality

Proof: By the three-point property (proposition 3.40), it is enough to show that
(VF(y) = VF(ya),a —ya) <0 (1)

holds for all a € A with equality if A is an affine subspace.

First, we assume that F(y) = 0 and F has its minimum at y € . In this case, we
have that

VF(y)=0 and Drp(z|ly) = F(x)

for every x € Q. Thus, y4 is the minimum point of A — R, a +— F(a).
By [23, Theorem 27.4|, =V F(y4) is normal to A at y4 i.e.

(a—ya,—VF(y4)) <0

for every a € A. This implies (1), since VF(y) = 0. In the case where A is an affine
subspace, from [23, Theorem 27.4] it follows that VF(y4) is orthogonal to A. Thus,
it holds equality in (1).

For an arbitrary F' we consider
G: Q= Rz — Gz) = Fz) - (F(y) + (VF(y),z — y)).
It is easy to check that
* G(y) =0,
e VG(y) =0,
e Dg(v||w) = Dp(v||w) for every v,w € Q.

Thus, we can apply the above argument for G and establish (1) for F. [ |
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Definition 3.43

a) For x,y,z € Q, the triplet (x,y,z) is said to be Bregman orthogonal in Q, if
Dp(zlly) + Dr(ylz) = Dr(x]2).

b) We say that X C Q is Bregman orthogonal to Z C Q if for every x € X and
z € Z there exists a y € X N Z such that (z,y, z) is Bregman orthogonal.

Proposition 3.44 A triplet (x,y,z) of points in Q is Bregman orthogonal if and
only if (z*,y*, x*) is Bregman orthogonal in Q*.

Proof:  Using the three-point property (proposition 3.40) we see that (z,y,z) is
Bregman orthogonal if and only if (z* — y*, 2 — y) = 0 or equivalently

(x —y,z* —y*) = 0. But this is equivalent to say that the triplet (z*,y*,z*) is
Bregman orthogonal in Q. |

Figure 7: Bregman orthogonal points in € and in Q*

Remark 3.45 Bregman orthogonality is not symmetric. To present this behaviour,
we give a counterexample using the Itakura-Saito divergence.
Let z = (2,2),y := (1,1) and z := (5,3). An easy computation shows that

Dr(zlly) + Dr(yl|z) = 1.6354 = Dr(x|2)
Dr(z|ly) + Dr(y|lx) = 2.9202 # 2.5339 = Dp(z||z)

Thus, X := {x,y} is Bregman orthogonal to Z := {y,z} but Z is not Bregman
orthogonal to X.

Notation 3.46 Let x,y be in Q). We write

a) Tp(z,y) :={2z€ Q| 2" = (1 —t)z*+ty*,t € [0,1]} for the geodesic arc joining
T to vy,

b) Ap(z,y) ={2€Q|2z=(1—t)x+ty,t €[0,1]} for the line segment between
x and y.
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3. Bregman geometry

Proposition 3.47 For all x,y € Q we have VF(FF(x,y)) = Ap«(z*,y*) and

Proof: Tt follows immediately from the above definition using that x** = z for all
x € Q. |

Lemma 3.48 For all points x,y in €1,
a) the dual Bregman bisector BBy (x,y) is Bregman orthogonal to T'(z,y),

b) and the line segment A(x,y) is Bregman orthogonal to the primal Bregman
bisector BBp(x,y).

Proof: A complete proof is given in [19, Lemma 7], we recall it for completness.

For x = y is the lemma trivial. So we assume that x # y. In this case BB;;(:L’, Y)
is a hyperplane and z, y lies on different sides of it (see proposition 3.38). Using the
duality result from propisiton 3.47 we see that I'(x,y) is a continuous path between
z and y. This implies that the intersection I'(x, y) () BB%(HS, y) is not empty.

Consider points a € BBy (,y), ¢ € I(z,y), b € T(x,y) () BBy(z,y) and show
that (a,b,c) is Bregman othongonal. By the three point property 3.40, it is enough
to show that (¢* — b*,a — b) = 0.

Both b and ¢ are in I'(z,y), so there are some s,t € [0, 1] such that
b =(1—s)z" + sy” and F=01-t)z" +ty"

From this follows that
cF=b"=(s—t)(x" —y").

If s =t then b = ¢, and the triplet (a, ¢, ¢) is Bregman orthogonal, since
Drp(c|lc) = 0. In the following, we assume that s # ¢, this allows us to divide by
(s —t). We have z* — y* = Lo (c* — b*).

s—t
Since a,b € BB};(Q:, y), we have
—F(z)—(a",a—z) = =F(y)=(y",a—y) and —F(z)—(z",b—z) = —F(y)—(y", b—y).
Subtracting the first equality from the second, we get
(z%a—z) = (2% b—x) = (y",a—y) — (¥, b—y).

This is equivalent to (x* — y*,a — b) = 0. After substituting z* — y* = ﬁ(c* —b)

we have - (c* — b*,a — b) = 0.
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This shows part a). The second part follows using duality. Let v € A(z,y) and
w € BBp(x,y). By proposition 3.39 and 3.47, we have VF (BB (z,y)) = BBp. (2", y*)
and VF(A(:U, y)) = Tp«(z*,y").

By part a) thereis a 2* € BBj. (x*,y*) (Tp« (z*,y*) such that (w*, 2*,v*) is Breg-
man orthogonal. From propositon 3.44 it follows that (v, z,w) is a Bregman orthog-
onal triplet. Since VF' is a homeomorphism it is clear that z € A(z,y) (BBr(z,y).

|

3.4. Smallest including dual balls

In rest of this chapter, we will study geometrical objects, which will play an essential
role in the next chapter where we will build simplicial complexes. We start with the
smallest including dual ball and its center.

In this section F': 2 — R denotes a function of Legendre type.

Definition 3.49 Let P C Q be a finite subset. We call a dual Bregman ball B* C Q
including dual Bregman ball of P if P C B’.

Proposition 3.50 Let P C Q a finite subset and By.(c,r) a dual Bregman ball with
center ¢ € Q and radius r > 0.

The center c lies in the intersection (| Bp(p,r) if and only if B:(c,r) is an including
peP
dual Bregman ball of P.

Proof: The statement follows from definition 3.27 and 3.49:

ce ﬂ Br(p,r) & Vp € P: Dp(p|c) <r < P C Bp(c,r) [ |
peP

Figure 8: intersection of primal Bregman balls
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Definition 3.51 The smallest including dual ball of a finite subset P C § is an
including dual Bregman ball of P such that there is no other including dual Bregman
ball of P with smaller radius.

In definition 3.51, we were shameless and talked about ‘the‘ smallest including dual
ball without knowing the uniqueness and the existence of it. The next proposition
fills these gaps.

Proposition 3.52 Let P C 2 a finite subset. The smallest including dual ball of P
exists and it is unique.

Proof: For each fixed ¢y € Q the smallest radius r such that Bl (co,r) includes P is
given by max Dr(p||co)- So in order to find the smallest including dual ball of P we
pe

have to find a minimum point of the function f: Q — R,z — max Dp(p||z).
pE

Using the fact that maximum of continuous function is continuous and lemma 3.23
we see that f is a continuous function. We want to use that continuous functions on
compact sets have a minimum point. Unfortunately, €2 is not compact, so we have
to find an other compact set.

Pick an arbitrary point g € €. Using 3.35, we can see that the set

K = () Br(p, f(q)) is compact, so there is a ¢ € K such that f [k has a minimum
peP
at c.

From proposition 3.50 it follows that every point z € Q with f(z) < f(g) lies in
() Br(p, f(z)) C (| Br(p, f(¢)) = K. This implies that ¢ is a minimum
peEP peP

point of f.
Now, we show the uniqueness. Assume there are two smallest including dual balls.
Let ¢,d € € be their centers and let » > 0 be their radius. Using the duality

property (lemma 3.25) and using that Bregman divergences are strictly convex in
the first argument (lemma 3.23) we have for all p € P that

Do (“55)) = pe (5

p*) < 5D (¢ lp%) + 5D (0" [p7) =

2 2
1 1 1 1
. QDF(Z?HC) + §DF(p||d) Sgrtgr=r
But this contradicts to the minimality of 7. |

Notation 3.53 Let P C Q a finite subset. We write cp(P) for the center of the
smallest including dual ball of P and op(P) for its radius. We follow [24] and call
cr(P) the Chernoff point of P.
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Figure 9: smallest including dual ball of a finite set P = {p1, p2, p3}

In [25] and [26], Nielsen and Nock presented an algorithm to compute the center
of the smallest including primal Bregman ball of a finite set. Using Legendre duality
3.25, we can apply this algorithm to compute the Chernoff point of a finite set.
However, it will be advantageous to have some theoretical properties about Chernoff
points. In [24|, Edelsbrunner et al. studied the location of Chernoff points. Now we
recall their result.

Lemma 3.54
The Chernoff point of a finite subset P C ) lies in the convexr hull of P.

Proof: Let ¢ := cp(P) be the Chernoff point and r := pp(P) the radius of the
smallest including dual ball of P.

We write A for the complex hull of P. This is a convex closed subset of €2, so we
can apply the Bregman Pythagoras inequality 3.42.

Assume that c¢ is not in A. In this case, the Bregman projection of ¢ onto A
and ¢ must be different points, this implies that Dp(callc) > 0. Using this and the
Bregman Pythagoras inequality 3.42 we have that

Dr(pllca) < Dr(pllca) + Dr(calle) < Dr(plle) <

for all p € P. Thus, there is an including dual Bregman ball of P with center c4 and
radius less than r, but this is a contradiction to the minimality of 7. |
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3. Bregman geometry

At the end of this section, we present a result about the behaviour of smallest
including dual balls with Cartesian products.

Lemma 3.55 Let G : ' — R be an other function of Legendre type. Let P C )
and Q C Q finite subsets. We have the following relations for the radii of smallest
ncluding dual balls:

orrc(P x Q) < 0p(P) + 06(Q) < 20r+6(P x Q)

Proof: In order to show the first inequality, we show that the dual Bregman ball
centered at (wq,ws) := (c¢p(P), cq(Q)) with radius op(P) + 0¢(Q) includes P x Q.

By proposition 3.26, it holds for every (p,q) € P x @ that

Dpyc((p @)||(w1,w2)) = Dp(pllwr) + Dalq, w2) < or(P) + 06(Q)

The first inequality follows from the minimality of op G (P X Q).

For the second inequality it is enough to show that op(P) < opic(P x Q). Write
(c1,co) for cpyg(P x Q) € Q x Q. Since the Bregman divergence is always non-
negative, for any ¢ € Q) we have:

Dr(pllc1) < Dp(pller) + Da(qlle2) = Dt ((p,a)|(c1,¢2)) < orra(P x Q)

Thus, the dual Bregman ball centered at ¢; with radius opiq(P x @) includes P.
This implies op(P) < op+c(P X Q). [

3.5. Circumballs

In chapter 4, we want to compute the smallest including dual ball of each simplex
of a simplicial complex. As we have already mentioned, using the algorithm from
[25], [26] and Legendre duality one can compute the smallest including dual balls.
However, if we had to call this algorithm for each simplex, it would cost too much
time.

In [1], Edelsbrunner and Wagner presented a somewhat more efficient algorithm
using circumballs and discrete Morse theory. In this section, we discuss how to
compute circumballs. Here again, F': {2 — R denotes a function of Legendre type.

Definition 3.56 Let P C Q) be a finite subset, c € Q and r > 0. We say

a) the primal Bregman ball Bp(c,r) is a primal circumball of P, if P C OBp(r,c).

b) the dual Bregman ball B.(c,r) is a dual circumball of P, «f P C OBy(r,c).
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Figure 10: primal and dual circumballs

Proposition 3.57 Let P C 2 a finite subset, c € Q) and r > 0.

a) The point c is a center of a primal circumball of P 1f and only ifc € (| BB'(p,q).
p,qEP

b) The point c is a center of a dual circumball of P if and only ifc € (| BB(p,q).
p,qEP

Proof: By definition ¢ is a center of a primal circumball of P if and only if
Dp(c|lp) = Dr(cllq) for all p,q € P. This is exactly the same as saying that
¢ € BB(p,q) for all p,q € P. Part b) follows by a similar argument. [ |

By proposition 3.38, dual Bregman bisectors are hyperplanes, so to determine
whether a set has a primal circumball, it is enough to compute the intersection of
some hyperplanes, which can be easily done using linear algebra techniques.

Lemma 3.58 Let P = {py,...,pr} C Q be a finite subset. A point c € Q is a center
of a primal circumball of P if and only if ¢ is a solution of the linear system:

(p1 —po,x) + F*(py) — F*(p1) =0

Pk —po, @) + F*(po) — F"(px) = 0
Proof: By proposition 3.38, the hyperplane BB'(p, q) is given by the equation
(" —p"2) + F*(p*) = F*(¢") =0

for all p,q € Q.

Fixing pg € P, we have () BB'(p,q) = () BB'(po,p). Now, the result follows
pgeP peP
immediately from proposition 3.57. |
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3. Bregman geometry

Note that not every solution of the above linear system is a center of a primal
circumball. In general, there is no guarantee that a solution lies in €. Using duality
we can translate the above result to dual circumballs.

Proposition 3.59 Let P C 2 be a finite subset, c € Q and r > 0.
Then Bi(c,r) is a dual cirumball of P if and only if Bp«(c*,r) is a primal cirumball
of P*:={p" | p€ P}

Proof: By lemma 3.25, we have Dp(p||c) = Dp«(c*||p*) for all p € P. The result
follows using definition 3.56. |

Lemma 3.60 Let P = {pg,...,pr} C Q be a finite subset, c € Q and r > 0. There
is a dual circumball of P with center c if and only if ¢* € QF is a solution of the
linear system:

(p1 — po,z) + F(po) — F(p1) =0

{pr — po, ) + F(po) — F(px) =0

Proof: By proposition 3.59, there exists a dual circumball of P with center c¢ if and
only if there is a primal circumball of P* with center c*.

Using F' = F**, p = p** and lemma 3.58, it follows that P* has a primal circumball
with center ¢* if and only of ¢* is a solution of the above linear equation system. W

The solvability of the linear system does not imply the existence of a dual cir-
cumball, since a solution does not have to be in Q*. However, if the linear system
is not solvable, there is no dual circumball. So the existence of circumballs is not
guaranteed. It is not a surprise, since even in the usual Euclidean geometry not every
set of points has a circumball.

Example 3.61 To represent this phenomenon, let us consider the points
po := (0,0),p1 := (1,0),p2 := (—1,0) in R? and let F be the half the squared Eu-

clidean norm. The linear system

1
(1,0).2) 0~ 5 =0

((=1,0),2) + 0 — % =0

has no solution. This implies that there exists no circumball of {po, p1,p2}-
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Figure 11: visualization of example 3.61

If the set P C € is affinely independent, there exists always a dual circumball.
In their paper [1], Edelsbrunner and Wagner gave an algorithm for computing the
circumball of an affinely independent set.

Algorithm 1: CircumBall
Input : P
let A be the affine hull of the points (p, F'(p)),p € P ;
find (¢,%) € A minimizing R"*! — R, (a,a) — F(a) — o over A ;
Output: (¢, — F(q))

Lemma 3.62 Let P C Q be an affinely independent set. The CircumBall algorithm
computes the center and the radius of a dual circumball of P.

Proof: Let P = {po,...,pr} C £ be an affinely independent subset. In the first part
of the proof we show that g : R"*! — R, (a,a) — F(a) — « has always a minimum

over A := Aff((po, F(po)), -, (pk, F(pr)))-

The epigraph of F is a closed convex set, since F' is a continuous convex function.
By definition 3.28, for every (a,a) € A it holds that

Fla) - a <0 if (a,®) € epi(F)
>0 if (a,) ¢ epi(F)

From this follows that the minimum point of ¢ lies in A Nepi(F), if it exists.
Since g is continuous, it is enough to show that A Nepi(F') is compact, or equiva-

lently, it is bounded and closed. The sets A and epi(F') are closed so their intersection
is closed as well.
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3. Bregman geometry

The recession cone of the convex set A N epi(F) consists of the zero vector alone.
From [23, Theorem 8.4] follows that it is bounded.

In conclusion, g has always a minimum. Denote (g,%) € A the minimum point of
g over A. Since g is strictly convex, the minimum point (g, ) is unique.

In the second part of the proof we show that P has a dual circumball with center
q and radius ¢ — F'(¢q). In the rest of this proof we consider the vectors in R™ as
column vectors.

One can easily show that { < F](?;; )> S < F](? ; )> } is affinely independent as
0 k

well. This implies that the matrix

,_ P1— Do Pk — Po (n+1)xk
M = eR
<F(p1) —F(po) ... F(px)— F(po)>

has rank %, and the affine linear map ¢ : R¥ — R™*1 1+ My + b is injective,

Po
where b = c R(n+1),
<F(Po)>

The image of ¢ is A by construction. There is a unique A € R¥

such that ¢(\) = <i) This A minimizes the function

k k k k
fi=go0 R o R F((1=" pipot Y ami ) = (1= D i) F(po) = Y 1P (ps)
=1 =1 =1 =1

Since ¢ is an injective affine linear function and g is strictly convex, one can easily
show that f is strictly convex. The minimum point of a strictly convex function is
unique. A point A is a minimum point of f if and only if

0= Jp(A) = Jg(d(N)) - Js(A) = (VF(q)", 1) - M.

This is equivalent to (p; — po, VF(q)) + F(po) — F(pi) = 0 for all i = 1,... k.
From lemma 3.60 it follows that ¢ is a center of a dual circumball of P.

Using ¢ = 3%, Aj(pj — po) + po and ¥ = 35 X (F(pi) — F(po)) + F(po) one
can compute the radius of this dual circumball. We give the computation for com-
pleteness.
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3.5. Circumballs

Dp(pollg) = F(po) — F(q) = (VF(q),po — q) =

k
= F(po) — F(q) + (VF(q), Z)\j(pj — o)) =
j=1

= F(po) = Fg) + Y X (VF(q). (p; — po)) =

-

1

J

= F(po) = F(a) + Y _ X (F(p;) = F(po)) = ¥ — F(q). u

-

1

J
Remark 3.63 The constrained n-dimenisonal optimization problem

minimize F(a) —«
(a,a) R H1

subject to  (a,a) € Aff((po,F(po)), SRR (pk,F(pk)))

can be very demanding if n is big. In the proof above we have seen that it is enough
to solve the unconstrained k-dimenisonal convex optimization problem

k k k k
minimize F((l = pipo + Zum-) — (1= ) Flpo) = Y miF(pi)
=1 i=1 =1 =l

ueERk
which could be done more effectively.

In Matlab, there are several built-in functions for solving unconstrained convex
optimization problems. For the implementation of the CircumBall algorithm, we
used the function fminunc. One can find the corresponding Matlab code in
appendix A.1.

Definition 3.64 Let P C Q) be a finite subset. We call a dual (resp. primal) cir-
cumball of P smallest dual (resp. primal) circumball, if there is no other dual (resp.
primal) circumball P with smaller radius.

Proposition 3.65 If there is at least one dual (resp. primal) circumball of P, then
exists the smallest dual (resp. primal) circumball of P and it is unique.

Proof: First, we consider primal circumballs. By lemma 3.57, the center of each

primal circumball of P liesin (| BB’(p,q). So from the assumption follows that
pgeP
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3. Bregman geometry

(| BB/(p,q) is a nonempty set. From proposition 3.38 it follows that (| BB'(p,q)
p.qEP p,qEP
is closed and convex.

Pick a point p € P. The radius of a primal circumball with center c¢ is given by
Dr(c|lp). So, the center of the smallest primal circumball of P is the Bregman pro-

jection of p onto (| BDB'(p,q). In proposition 3.41, we have already seen that the
p,qEP
Bregman projection onto a nonempty closed convex set always exists and it is unique.

The result for dual circumballs follows with duality. If P has a dual circumball,
then P* has a primal circumball by proposition 3.59 and therefore there is a unique
smallest primal circumball Bp«(c*,r) of P*.

Using lemma 3.25 one can show that VIE™* (BF* (c*, T)) is a dual circumball of P.
It is the smallest dual circumball and it is unique, since every dual circumball of P
corresponds to a primal circumball of P*. |

In [24] Edelsbrunner et al. studied the location of the center of smallest dual
circumballs. We recall their result.

Proposition 3.66 Let P C 2 be a finite subset such that there is a dual circumball
of P. The center of the smallest dual circumball lies in the affine hull of P.

Proof: By proposition 3.65, the smallest dual circumball of P exists if P has a dual
circumball. Let ¢ € € be the center of the smallest dual circumball of P and r its
radius.

Assume that ¢ ¢ Aff(P) and let c4 € Aff(P) be the Bregman projection of ¢ onto
Aff(P). Since Aff(P) is an affine subspace, lemma 3.42 implies that

Dr(pllca) = Dr(plle) — Dr(calle) = r — Dr(calle)

for each p € P C Aff(P). Thus, there is a dual circumball of P with center
ca € Aff(P) and radius r — Dp(cal|c) < r. But this contradicts to the minimality
of r. [

Lemma 3.67 Let P C Q) be an affinely independent subset. The CircumBall algo-
rithm computes the center and the radius of the smallest dual circumball of P.

Proof:  We follow the notation used in the proof of lemma 3.62 and we write
{po,...,px} for P. Lemma 3.62 tells us that the CircumBall algorithm computes a
dual circumball with center in Aff(P). However, we do not know yet whether it is
the smallest dual circumball or not.
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3.6. Voronoi diagrams

Let ¢ € € be the center of the smallest dual circumball of P By proposmon 3.66,
¢ lies in Aff(P). Thus, there is a u € R¥ such that ¢ = (1 — Z ,ul)po + E WiDi-
By lemma 3.60, VF(c) satisfies

{pi — o, VF(c)) + F(po) — F(p;) =0

for all i = 1,..., k. If we recall the proof of lemma 3.62, we see that this implies that
4 is a minimum point of the function f.

Since f is strictly convex, so it has a unique minimum point. The CircumBall
algorithm computes this minimum point. In conclusion, the first output of the
CircumBall algorithm is c. |

The next corollary seems to be a bit unnecessary, but in the next chapter it will
turn out that it is extremely useful to have such a statement.

Corollary 3.68 Let P C § be an affinely independent subset and By (c,r) be a dual
circumball of P. If ¢ lies in Aff(P), then By (c,r) is the smallest dual
circumball of P.

Proof: Write {pq, ...,px} for P. If ¢ lies in Aff(P) then there is a € R¥ such that
k k
c= (1 - Mz’)po + > wipi.
i=1 i=1

Analog to the proof above, it follows from lemma 3.60 that y is a minimum point
of the function f from the proof of lemma 3.62. Since the minimum point of f is
unique, c¢ is the center of the smallest dual circumball of P. |

3.6. Voronoi diagrams

Last but not least, we introduce Voronoi diagrams. They will help us to build
lower-dimensional simplicial complexes for Bregman point clouds. In this section, let
F : Q — R"” be a function of Legendre type.

Definition 3.69 Let X C ) be a finite subset. The primal Voronoi domain
of x € X is defined as

Vi(z) =={a € Q|Vy € X: Dp(z[la) < Dp(ylla)}-

The dual Voronoi domain of x is defined as

Vir(z) :=={a € Q|Vy € X : Dp(a||z) < Dp(ally)}-

Proposition 3.70 Let X C Q be a finite subset. The dual Voronoi domain Vi (x)
18 convex for all x € X.
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3. Bregman geometry

Proof: Before we go into the proof we recall some notation.
The best linear approximation of F' in y is given by

Hy:Q—=R,a— Hy(a) = F(y) +(VF(y),a —y).
The halfspace above the graph of Hy, is given by H, = {(a, ) € Q| Hy(a) < a}.

Fix a point z € X. By proposition 3.21, Dp(a||xz) < Dp(ally) is equivalent to
Hy(a) < Hy(a) for all a € Q and y € X.

This implies that a € Q lies in the dual Voronoi domain V}(z) if and only if
(a, Hy(a)) is in the convex set () H; (| Ha-

yeX
Thus, Vi () is the image of the convex set () H, (M, under Projq : O— Q.
yeX
Since the projection map is linear, it follows that V/.(z) is a convex set. |

In general, primal Voronoi domains are not convex.
Proposition 3.71 Let X C () be a finite subset. For all x € X it holds that
Vi(z) = VF* (Vi (2%)) and Vi(z) = VF* (V- (2¥)).
Proof: Tt follows from definition 3.69 and Legendre duality (lemma 3.25). |

Figure 12: dual and primal Voronoi domains

Lemma 3.72 Intersection of primal (resp. dual) Voronoi domains is either empty
or contractible.

Proof: The proof is similar to the proof of lemma 3.36. From proposition 3.71 it
follows that the intersection of dual Voronoi domains is convex, this implies that
their intersection is either empty or contractible.

The result for primal Voronoi domains follows from proposition 3.71 and the fact
that VF* is a homeomorphism. [ |
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Definition 3.73 Let X C Q be a finite subset. The primal Voronoi diagram of X
1s defined as the set of all primal Voronoi domains of the points in X, i.e.

Vorp(X) :={Vr(z) |z € X}.

We define the dual Voronoi diagram of X as

Vo' (X) := {Vi(x) | x € X}.

Proposition 3.74 Let X C Q2 be a finite subset. Then |J Vr(z)= Q.
rzeX

Proof: Since X is a finite set, for every a € €2 there is a p € X such that

Dp(p|la) = ;rg} Dp(z||a). By construction, a € Vg(p). |

Lemma 3.75 Let X C Q be a finite subset and X* := {z* | z € X}, it holds that
Vorp(X) = VF*(Vork. (X*)) and Vory(X) = VF*(Vorp-(X™)).
Proof: 1t follows from proposition 3.71. |

In [19], Boissonnat and Nielsen proved that dual Voronoi diagrams are identical
to power diagrams, also known as Fuclidean weighted Voronoi diagrams. There are
several algorithms that compute power diagrams see e.g. [27]. Furthermore, one
can find an implemented algorithm on MATLAB Central File Exchange [28]. Using
these observations and lemma 3.75, we can also compute primal Voronoi diagrams.

In the rest of this section, we introduce power diagrams and show the correspon-
dence between dual Voronoi diagrams and power diagrams.

Definition 3.76 Let U be a finite subset in some Euclidean space R™. To each point
u € U we order a number w, € R and say w, is the weight of u.

a) The power of a point z € R™ is defined as m,(2) := ||z — u||* — wy.

b) The power cell of u € U is the set of points z € R™ with m,(z) < m,(2) for all
v e U. We write pow(u) for this set.

¢) The power diagram of U with weights (wy)ucy s the set of all power cells.

Lemma 3.77 Let X C Q be a finite subset. The dual Voronoi diagram
of X*:={a* =VF(x) |z € Q} corresponds to the power diagram of X with weigths
wy = ||2||?> — 2F (), © € X. This correspondence is given by

Vi (2*) = pow(z) N Q*
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4. Topological data analysis with Bregman divergences

Proof: The proof is a straightforward computation. Let z,y € X and a* € Q*. Using
proposition 3.21 b), one can observe that Dp«(a*||z*) < Dp«(a*||y*) is equivalent to
2F (x) — 2(z,a*) < 2F(y) — 2(y,a").

Adding and subtracting ||a* — x||? to the left and ||a* — y||? to the right side we
have

la* — x| = [la*[|* = z|* + 2F () < [la* = y|* = lla*|* — [ly]|* + 2F (y),

and adding ||a*||? to both sides we get

lo* = |2 = (l2* - 2F(@)) < lla" ~ yl* = (Iyl* - 2F () -

4. Topological data analysis with Bregman divergences

After we have studied the basic objects of Bregman geometry, we are ready to start
with data analysis. First, we introduce Cech and Delaunay complezes of Bregman
point clouds. These constructions are well understood for metric spaces [12] [29]. We
can generalize these results to our Bregman setting using the statements from the
previous chapter. We follow [1] and describe algorithms that compute these filtered
simplicial complexes of Bregman point clouds.

4.1. Bregman point clouds and their simplicial complexes

Definition 4.1 Let F : © — R be a function of Legendre type and X C Q a finite
subset. We call the pair (X, F) a Bregman point cloud.

Definition 4.2 Given a Bregman point cloud (X, F) and r > 0, the Cech complex
of (X, F) and r > 0 is defined as the nerve of the collection of primal Bregman
balls { Bp(z,7)}

pex? W€

Cechp(X,r) ={Q C X | () Br(q,r) # 0}
q€eQ

A Cech complex can be extremely high-dimensional even when the data lives in a
low dimensional space. In the usual Euclidean setting there is another well known
simplicial complex of the data, the Delaunay complex, or also called alpha complex
[12]. The dimension of such an alpha complex is generically less or equal than
the dimension of the containing space. This motivates us to introduce Delaunay
complezes for Bregman point clouds.
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\\\‘B\F(Qb 7)

Figure 13: a simplex spanned by 4 points in the Cech complex

Definition 4.3 The nerve of the primal Voronoi domains is called the
Delaunay triangulation of (X, F'), denoted by Delp(X), with other words

Delp(X) :={Q C X | (] Vr(q) # 0}.
q€Q

Definition 4.4 Let U be a finite set of points in some Euclidean space R™ with real
weights (wy)uev. The Euclidean weighted Delaunay triangulation of U is the nerve
of the power diagram of U.

Lemma 4.5 Let (X, F) a Bregman point cloud such that Q* = R™. In this case, the
Delaunay triangulation of (X, F) is the same as the Fuclidean weighted Delaunay
triangulation of X with weights w, = ||z||*> — 2F (z), v € X.

Proof: Since VF* is a bijection, from proposition 3.71 it follows for each @ C X
that () Vr(q) # 0 if and only if () Vi (¢*) # 0.
qeQ q€Q
By lemma 3.77, the second intersection is equal to (] pow(q) N Q*. The assump-
qeQ

tion 2* = R"™ implies that the Delaunay triangulation of (X, F') and the Euclidean

weighted Delaunay triangulation of X with weights w, = ||z||* —2F(x) are the same.
|
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4. Topological data analysis with Bregman divergences

T3

x1

Ty T3
Figure 14: Delaunay triangulation of {x1,z9, z3, 24}

Unfortunately, the Burg entropy does not satisfy the condition of 4.5. Nevertheless,
we can use the above statement for our two other examples, for the Shannon entropy,
and the squared Euclidean norm.

In these cases, one can use the Matlab function WeightedDelTriangulation (see
appendix A.4) for the computation of the Delaunay triangulation of a Bregman point
cloud. The function WeightedDelTriangulation is a modified version of [28].

Definition 4.6 The Delaunay complex of (X, F) and r > 0 is the nerve of the
collection {Bp(z,r) N Vr(z)}

sex 2 b€

Delp(X,r) ={Q C X | (| Br(g,r) N Vr(q) # 0}.
q€Q

Lemma 4.7 For a Bregman point cloud (X, F) and r > 0 we have that

| Cechp(X,7) | =~ | Delp(X,7) | ~ U Bp(z,r).
reX

Proof: By lemma 3.36, the intersection of two primal Bregman balls is either empty
or contractible. From the Nerve Theorem 2.4, it follows that | Cechp(X,r) | has the
same homotopy type as the union of the primal Bregman balls.

From lemma 3.36 and lemma 3.72 it follows that the intersection of two elements
of the collection {Bp(z,7) N Vp(x)}m cx is either empty or contractible. The Nerve
Theorem 2.4 implies that | Delp(X,r) | ~ U Br(z,r) N Vp(x).

zeX
From proposition 3.74 it follows that
U Bp(z,r)NVp(z) = U Br(z,r)N U Vr(z)= U Br(z,r). u
zeX zeX zeX zeX
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4.1. Bregman point clouds and their simplicial complexes

Remark 4.8 In the setting of metric spaces, the Vietoris-Rips complex approzimates
the Cech complez of the data. In [1], Edelsbrunner and Wagner gave an example that
there is no interleaving between the Cech and Vietoris-Rips complex of a Bregman
point cloud. That is the reason why we do not consider Vietoris-Rips complexes of
Bregman point clouds.

In [29], Bauer and Edelsbrunner showed that the Delaunay and Cech complexes
of points living in a Euclidean space arise as sublevel sets of generalized discrete
Morse functions. We can translate this result to our Bregman setting. It will play a
significant role in computing simplicial complexes of Bregman point clouds.

In order to handle Cech and Delaunay complexes at the same time, we generalize
these constructions.

Definition 4.9 Let (X, F) be a Bregman point cloud, S C X and r > 0.

a) The primal Voronoi ball of x € X is defined as

Ve(z,r|S) :={a€ Q| Dp(zlla) <r and Vs € S : Dp(z|a) < Dp(s|a)}.

b) The selective Delaunay complex Delp(X,r | S) is the nerve of the collection
{Vp(x,r | S)}xeX i.e.

Delp(X,r | S)={P C X | (| Velz,r|S)+#0}.
zeP

¢) The selective Delaunay triangulation is given by

Delp(X | 8) := | Delp(X,r | 5).

r>0

Proposition 4.10 Let (X, F') be a Bregman point cloud, S C X and r > 0. It holds
that

a) Ve(z,r | 0) = Br(z,r),

b) Delp(X,r | 0) = Cechp(X,7),

¢) Delp(X | 0) = A(X),

d) Ve(z,r | X) = Br(z,r) N Vp(z),
e) Delp(X,r | X) = Delp(X,r),

f) Delp(X | X) = Delp(X).

Proof: All of the statements follow immediately from the definitions. [ |
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4. Topological data analysis with Bregman divergences

Proposition 4.11 Let (X, F) be a Bregman point cloud, S C X and r > 0.
a) For every r < r' it holds that Delgp(X,r | S) C Delp(X,r" | S).

b) For every E C S it holds that Delp(X,r | S) C Delp(X,r | E).

Proof: Note that Vp(z,r | S) C Vp(z,r’' | S) for all z € X and r < r’. From this,
part a) follows immediately.

If ECS, then Vp(z,r | E) has less constraints than Ve (z,r | ) and this implies
that Vp(x,r | S) C Vp(x,r | E) for all z € X. |

Definition 4.12 Let (X, F) be a Bregman point cloud and S C X. We say that a
dual Bregman ball Bl (z,r) excludes S if Dp(s||z) > r for all s € S.

x1 To
' 2 SBp(z,r)
° N °
’ Ty L5
° \
Lg
o .338
z
g N Y
) o Z10

Figure 15: the dual Bregman ball B7.(z,r) excludes S = {z1, x5, 210}

Proposition 4.13 Let (X, F) be a Bregman point cloud and P,S C X, P # (.
There ezists an including dual Bregman ball of P that excludes S if and

only if P € Delp(X | 5).

In this case, there is a unique smallest including dual Bregman ball of P that excludes
S. i.e. there exists a unique including dual Bregman ball of P that excludes S such
that there is no other including dual Bregman ball of P excluding S with smaller
radius.

Proof: 1If there is a dual Bregman ball B%(y||r) that includes P and excludes S then

yisin () Vr(p,r|S) and therefore P € Delp(X | S) by definition 4.9.
peP
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4.1. Bregman point clouds and their simplicial complexes

Conversely, assume that P € Delp(X | S). This implies that () Ve(p,r | S) is
peP

nonempty, i.e. there is an a € Q such that Dp(plla) < r and Dp(p|la) < Dp(s||a)
for all p € P and s € S. Note that the dual Bregman ball B.(a,r) includes P but
it does not necessarily exclude S.

We can write each primal Voronoi ball Vi (p,r | S) as the intersection of the com-
pact set Bp(p,r) and the closed set {a € Q| Vs € S: Dp(plla) < Dp(slla)} =
-1
= ) (DrGslle) = Dr(le))  ([0,0)) -

seSs

From this follows that [ Ve(p,r | S) is a compact set. Since this intersection is
peEP
nonempty by our assumption, the continuous function

£ () Ve[ ) = Rya = max Dr(pl2)
peP

has a minimum point. Let z denote a minimum point of f and p the value of f

at z. Since P is a finite set, there is a pg € P such that Dp(po|lz) = p. From
z € Vr(po,r | S) it follows that p = Dp(pol|z) < Dp(s||z) for all s € S.

In conclusion, the dual Bregman ball B.(z, p) includes P and excludes S.

To show uniqueness, it is enough to show that f has a unique minimum point.
In order to show this, we use Legendre duality 3.25 and consider the strictly convex
function g : () Viu(p*,7 | S*) = R,a — mfilg(DF(a*Hp*), where for each p € P

pEP pe

Vi (p*,r | S*) = {a* € O |Dp«(a”||p*) < r and

Vs € S : Dp+(a*||p*) < Dp- (a*||s*)}.

Since VF preserves the divergence, VF(Vp(p,r | S)) = Vi (p*,r | S*) and a
point y is a minimum point of f if and only if * is a minimum point of g. Because
of the strict convexity, g has at most one minimum point, so the minimum point of
f is unique. |

Corollary 4.14 Let (X, F) be a Bregman point cloud. A simplex P € A(X) is in
the Delaunay triangulation Delp(X) if and only if it has a unique smallest empty dual

circumball B (z,7), i.e. a dual circumball such that its interior (B (z,r)\OB(z,1))
contains no point of X, and no other such dual circumball has smaller radius.

Proof: Note that an including dual Bregman ball that excludes X is an empty dual

circumball and vice versa. By proposition 4.10 Delp(X) = Delp(X | X). Now, the
corollary follows from proposition 4.13 by § = X. |
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Figure 16: B.(z,r) is an empty dual circumball of {z2, 24, 27, 210, 211}
Definition 4.15 Let (X, F') be a Bregman point cloud and S C X. The function
o Delp(X | $) = R, P s min {r € [0,00)‘]3 € Delp(X,r, | S)}
is called the radius function of (X, F) and S.

We write QgeCh for QQ}T and call it the Cech radius function of (X, F).

We write QPDPI for gfé and call it the Delaunay radius function of (X, F).

Once we know the radius function, we can build a so-called explicit simplex stream
in Matlab using the JavaPlex package [15]. This means that we can put the filtered
simplicial complex Delp(X,e | S) in a form that our computer can understand
and applying functions from JavaPlex we can compute persistent homology and
persistence diagrams.

Lemma 4.16 Let (X, F') be a Bregman point cloud and S C X.
For all P € Delp(X | S), 0%(P) is the radius of the smallest including dual Bregman
ball of P that excludes S.

Proof: By proposition 4.13, each P € Delp(X | §) has a smallest including dual
Bregman ball that excludes S. Let z € Q be its center and p > 0 its radius. It is
enough to show that P € Delp(X,r | S) if and only if r > p.

If P € Delp(X,r | S), then there is a y € Q sucht that y € Ve(p,r | S) for all
p € P. From this follows that ' := max Dr(plly) <r.
pe

The dual Bregman ball By (y,7’) includes P and excludes S. By minimality of p
we have r > r’ > p.

If r > p, then P € Delp(X,p | S) C Delp(X,r,| S) by proposition 4.11. |
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4.2. Discrete Morse theory

Corollary 4.17 Let (X, F) be a Bregman point cloud.

a) For every P € A(X), QgeCh(P) is the radius of the smallest including dual
ball of P.

b) For every P € Delp(X), g?el 1s the radius of the smallest empty dual circumball
of P.

Proof: Note that the smallest including dual Bregman ball of P that excludes the
empty set is the smallest including dual ball of P.

Similarly, the smallest including dual Bregman ball of P that excludes X is the
smallest empty dual circumball of P. |

4.2. Discrete Morse theory

In this section, we show that the radius function of a Bregman point cloud is a gen-
eralized discrete Morse function if we assume that the points are in general position.
This property will help us introduce efficient algorithms to compute the radius func-
tions. This section is based on [1] and [29]. First, we recall some definition from
discrete Morse theory.

Definition 4.18 Let K be a simplicial complez.
a) For two simplices P, R € K we call the set of simplices
[P,R|:={Qe K|PCQCR}
the interval with lower bound P and upper bound R.

b) A generalized discrete vector field is a partition of K into intervals.

¢) We call K a generalized discrete gradient if K is a generalized discrete vector
field and there is a function f: K — R such that for every P,Q € K with
P C Q it holds that f(P) < f(Q), with equality if and only if P and Q belong to
a common interval. The function f is called a generalized discrete Morse function.

Before we can establish that the Cech and Delaunay radius functions are gener-
alized discrete Morse functions, we need a couple of preliminary statements. The
main ingredient will be the (Karush)-Kuhn-Tucker Theorem [23, Corollary 28.3.1]
from convex optimization theory.

Theorem 4.19 (KKT-Theorem) Let C C R" be a nonempty convex set and
fo,-o oy fr :+ C — R differentiable convex functions. A wvector z € C is an optimal
solution to the conver optimization problem

minimize fo(x)
subject to  fi(x) <0 Vi=1,...,k

if and only if there are nonnegative real numbers Ai,..., A\ € [0,00) satisfying
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4. Topological data analysis with Bregman divergences

(KKT0) fi(z) <0 foralli=1,...,k

(KKT1) Nifi(2) =0 foralli=1,...,k
(KKT2) Vfo(2) + 3 A Vfilz) = 0.
=1

Lemma 4.20 Let (X, F') be a Bregman point cloud and Q,S C X. Let Bj(z,7) be
an including dual Bregman ball of @ that excludes S.

a) Assume that there is an y € QN S. The dual Bregman ball By (z,7) is the
smallest including dual Bregman ball of Q that excludes S if and only if there
are nonnegative real numbers (Ag)geq, (its)ses such that

e \;=0ifq€Q\IBy(zr)
e us=0ifs€ S\ IBL(z,7)

o > Ag=1
q€qQ
o z= ) )‘q'q"i'()‘y"i‘ > Ms)'@H‘ > Ae—pz) -+ D (—ps)-s.
qeQ\S seS\{y} zeQNS\{y} s€S\Q

b) 1f S =10, we have that By (z,7) is the smallest including dual Bregman ball of
Q if and only if there are nonnegative real numbers (\g)qeq such that

o \=01ifq€Q\Bk(z,r)

o > N\ =1
q€eqQ
e z= ) A -q.
q€Q

Proof:  First, we consider part a). Notice that y € @ NS lies on the boundary
of every dual Bregman ball that includes @) and excludes S. With this in mind,
we can see that B (z,7) is the smallest including dual Bregman ball of @) that ex-
cludes S if and only if 2 is an optimal solution of the following optimization problem.

imize D
TTEZS r(qlla)
subject to  Dp(ylla) < Dp(s|la) Vse S

This problem is equivalent to its epigraph problem form [30]
minimize «
(a,0)eQxR

subject to max Dp(q|la) < «
q€Q

Dr(y|la) < Dp(s|la) Vse S
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4.2. Discrete Morse theory

Using proposition 3.21 we can see that this is equivalent to
minimize «
(a*,0)eQ* xR
subject to  F*(a*)+ F(q) — (g,a") —a <0 VgeQ
F(y) = (y,a") = F(s) + (s,a") <0 Vse§

Since it is a convex optimization problem and the functions are differentiable, we can
apply the KKT-Theorem 4.19. Since B.(z,7) is an including dual Bregman ball of
@ that excludes S, the vector (z*,r) satisfies the condition (K K7T0). Thus, (z*,r)
is an optimal solution if and only if there are nonnegative real numbers (A\g)qe0,
(11s)ses such that

e \;- (Dp(qllz) —r) =0forall ¢ € Q,
e us- (Dp(yllz) — Dp(s||z)) =0 for all s € S,

e (0,1)+ eZQAq-(Z—q’—l)Jr %us-(s—y,O)Z(O,O)-

One can easily rewrite these into the form given in part a).

Part b) follows from a similar argument. Since S = (), we do not have to consider
its points. B(z,r) is the smallest including dual Bregman ball of @ if and only if
(z,7) is an optimal solution of the optimization problem

minimize «
(a,0) QxR

subject to  max Dp(q|la) < «
qe@
Using proposition 3.21 and the KKT-Theorem 4.19, it follows that (z,r) is optimal
if and only if there are nonnegative real numbers (A;)4eq such that
e )\, (Dp(qllz) —r) =0forall g € Q,

e (0,1)+ %‘b}\q-(z—q,—l) =(0,0) .

These conditions are equivalent to the conditions given in part b). |

Definition 4.21 A Bregman point cloud (X, F) is in general position if for every
P C X CR"” of cardinality at most n + 1,

(G1) the points in P are affinely independent and

(G2) no points of X \ P lie on the boundary of the smallest dual circumball of P.
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4. Topological data analysis with Bregman divergences

Proposition 4.22 Let (X, F) be a Bregman point cloud in general position such
that X C R™. In this case,

a) every subset of X of cardinality at most n + 1 has a dual circumball,

b) no subset of X of cardinality at least n+ 2 has a dual circumball.

Proof: By lemma 3.62, every affinely independent subset of X has a dual circumball,
so part a) follows from (G1) .

To get a contradiction, we assume that there is a ¢ C X of cardinality at least
n+ 2 such that @ has a dual circumball B7.(z,r). Without loss of generality we can
assume that B (z,7) is the smallest dual circumball of @ (see proposition 3.65).

Let P C @ be a subset of cardinality n 4+ 1. By assumption (G1), the set P is
affinely independent. From this follows that Aff(P) = Aff(Q).

By proposition 3.66, z lies in Aff(Q) and therefore in Aff(P). The smallest dual
circumball of @ is also a dual circumball of P. Since z € Aff(P), it follows from corol-
lary 3.68 that B (z,r) is the smallest dual circumball of P. This is a contradiction
to (G2). |

Corollary 4.23 The dimension of the Delaunay complex of a Bregman point cloud
in general position is bounded above by the dimension of the including space.

Proof: Let (X, F') be a Bregman point cloud in general position such that X C R".
By corollary 4.14, every simplex in Delr(X) has an empty dual circumball.

From proposition 4.22 b), it follows that every simplex in Delp(X) has cardinality
at most n + 1. |

Definition 4.24 Let (X, F) be a Bregman point cloud in general position and By (z, 1)
the smallest dual circumball of some subset P C X. Let (vp)pep a collection of real
numbers such that z = 3 vp-p and Y v, =1 We define

peP peP
a) the front face of P as Front (Bj(z,7)) :={p € P | v, > 0}
b) and the back face of P as Back (Bp(z,7)) :={p € P| v, < 0}.

Remark 4.25 In proposition 4.22 we have shown that every simplex P C X with
a dual circumball has cardinality ot most n + 1. By proposition 3.66, the center of
the smallest dual circumball of P C X lies in the affine hull of P, so such an affine
combination always exists and it is unique since P is affinely independent by (G1).
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Figure 17: Examples for front face of a simplex

Proposition 4.26 Let (X, F) be a Bregman point cloud in general position and
Bo(z,r) the smallest dual circumball of a subset P C X. Then it holds that

Front (By(z,r)) U Back (Bf(z,r)) = P.

Proof: Let (vp)pep be a collection of real numbers such that z = ) v, - p and
peEP

> vp = 1. It is enough to show that v, # 0 for all p € P.

peEP

To get a contradiction, we assume that there is a pg € P such that v,, = 0. In
this case z is an affine combination of P\ {pp} and B} (z,r) is a dual circumball of
P\ {po}. From corollary 3.68 it follows that B7%(z,r) is the smallest dual circumball
of P\ {po}. This contradicts (G2). |

Theorem 4.27 Let (X, F) be a Bregman point cloud in general position
and Q € A(X). Let Bi(z,7) be an including dual Bregman ball of Q.
It is the smallest including dual Bregman ball of Q if and only if

e it is the smallest dual circumball of OBy (z,r) N X,
e Front (B (z,7)) C Q,
e and Back (Bj(z,7)) C 0.

Proof: Define Q := Q N B (z,7).

First, we assume that B7(z,r) is the smallest including dual Bregman ball of Q. By
lemma 4.20 b) there are nonnegative real numbers (Ag) .5 such that

o > A¢ =1 and
4€Q

e z=> N -q.
9€Q
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4. Topological data analysis with Bregman divergences

Define oy := A\g and B, := 0 for all ¢ € Q and fix a point y € Q. So (o)
(Bg),e are nonnegative and they satisfy

q€Q

e > a;=1and
9€@Q

o z=(ay+ 2 Bs) y+ > (og—Bq) q
seQ\{y} q€Q\{y}

By lemma 4.20 a), B(z,r) is the smallest including dual Bregman ball of Q that
excludes @, i.e. it is the smallest dual circumball of Q. By (G2) we have that
Q = 0Bp(z,7)NX.

Conversely, let By (z,7) the smallest dual circumball of 9B%(z,r) N X such that
Front (B (z,r)) C Q and Back (Bj(z,7)) C 0.

From proposition 4.26, it follows that
OB}:(z,7) N X = Front (B} (z,)) UBack (B (z,7)) C QU,
and therefore 9B (z,7) N X = Q.

Since Bl(z,r) the smallest dual circumball of Q, from lemma 4.20 a) it follows
the existence of nonnegative real numbers () 5, (Bq) g Such that

° Z O‘q = 17
q€Q
o z=(oy+ > Bs) -y + > (og—Bq)
s€Q\{y} q€Q\{y}

for a fixed y € Q.

Define A\, :=ay, + 3. Bs>0and \,:=a, — B, for g € Q\ {y}.
s€Q\{v}
The numbers (Ag) 5 are nonnegative since Back (B(z,1)) = 0.

For g € Q\ OB(z,7) we set Ay := 0. So (N\g)qeq satisfy the conditions of 4.20 b),
and therefore B7.(z,r) is the smallest including dual Bregman ball of Q. [

Notation 4.28 Let (X, F) a Bregman point cloud, S C X and P € Delp(X | S).
We write B(P | S) for the smallest including dual Bregman ball of P that
excludes S.
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Remark 4.29
e BL(P|0) is the smallest including dual ball of P.
e BL(P | P) is the smallest dual circumball of P.

e BL(P | X) is the smallest empty dual circumball of P.

Definition 4.30 Let (X, F') be a Bregman point cloud in general position. We define
Low(X, F) as the set of simplices {P € A(X) | BR(P | P) = BRp(P | 0)}.

Corollary 4.31 (Cech Morse Function Corollary)

The Cech radius function of a Bregman point cloud (X, F) in general position is
a generalized discrete Morse function. Its generalized discrete gradient consists the
intervals [P, B(P,P)N X], P € Low(X, F).

Proof: First, we show that the intervals [P, BR(P, P) N X], P € Low(X, F) build a
partition of A(X).

Let Q € A(X) be a simplex. By theorem 4.27, the smallest including dual Breg-
man ball B(Q | 0) is the smallest dual circumball of P := IBL(Q | 0) N X,
Front (B (Q | 0)) € Q and Back (BR(Q | 0)) C 0.

Since Front (Bp(Q | #)) C P, we can use theorem 4.27 again and establish that
B(Q | 0) is also the smallest including dual Bregman ball of P.
In conclusion, P € Low(X,F) and Q € [P,BL(Q | 0) N X] .

If there is a P’ € Low(X, F') such that Q € [P, Bi.(P', P') N X], then
P'c Q C BR(P,0).

By theorem 4.27, B(P’,0) is the smallest dual circumball of 0B%L(P',0) N X,
Front (Bj.(P',0)) C P’ C Q and Back(B}(P',0)) C 0.

Using the other direction of theorem 4.27, we see that Bp(P’,0) is the smallest
including dual Bregman ball of . Which implies that P = 0BL(P' |0) N X =
= JdBR(P'| P')N X. By (G2), we have that P = P’. So the intervals are disjoint.

In the rest of the proof let ) # R C Q. By corollary 4.17, QgeCh(Q) is the ra-
dius of the smallest including dual ball of ). From this follows immediately that

0Seh(R) < pSech(QQ).

If there is a P € Low(X, F) such that both R and @ belong to the interval

|P, Bl-(P, P)N X], then both B%(R | #) and B%(Q | 0) are the smallest dual circum-

balls of P, since it is unique, it follows that Qg“h(R) = Qged‘(Q).
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4. Topological data analysis with Bregman divergences

If 0%°B(R) = 05°h(Q), then no other including dual Bregman ball of R has
smaller radius than the radius of B%(Q | 0), so Br(Q | 0) is the smallest including
dual Bregman ball of R. This implies that dB%(Q | 0) N X = 0BL(R | 0) N X, i.e.
R and @ belong to the same interval. |

Theorem 4.32 Let (X, F) be a Bregman point cloud in general position and

let Q,S C X such that QNS # 0. Let Bi(z,r) be an including dual Bregman ball
of Q that excludes S. It is the smallest including dual Bregman ball of Q that excludes
S if and only if

e it is the smallest dual circumball of OBy (z,r) N X,
e Front (Bj(z,7)) C Q and

e Back (Bj(z,7)) C S.

Proof: Fix a point y € QNS and define Q := (QNOBR(z,7))\ S,

§:=(SNOBp(z,m)\ Q. W :=(SNQ)\ {y}. )
By construction, we have (QU S)NdBp(z,7r) =Q U {y} UW U S =: P.

Notice that the smallest dual circumball of P is the smallest including dual Breg-
man ball of P that excludes P. By lemma 4.20 a), B (z,r) is the smallest dual
circumball of P if and only if there are nonnegative real numbers (ay)pep, (Bp)pep
such that

(¥*) > ap=1and
peP

(**)Z:(O‘y"" > 58)'9"‘ > (O‘p_ﬁp)'p‘

seP\{y} zeP\{y}

First, we assume that Bl.(z,r) is the smallest including dual Bregman ball of Q
that excludes S. By lemma 4.20, there are nonnegative real numbers (Ag) cay, oW

(IU’S)SGS'L'J{y}UW such that

(o) > Ag =1 and

q€QU{yuW
(OO)Z:qu'q"i‘()‘y"i' > Ms)'y+ Y A —pg) -+ Y (—ps) - s
€@ seSUW zeW seS

Set oy 1= Ag, By :=0for all ¢ € Q,
Qg = Ay, Bp = g forall x € W,
s :=0, Bs := us for all s € S
and ay = Ay, By :=0
Then (ap)pep, (Bp)pep are nonnegative real numbers satisfiying (x) and (¥x), so
B.(z,r) is the smallest dual circumball of P.
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4.2. Discrete Morse theory

By (G2), we have P = 0B(z,r) N X. And from (oo) it follows
that Front (Bj(z,r)) C Q and Back (Bj(z,7)) C S.

Conversely, assume that B7.(z,r) is the smallest dual circumball of 0B (z,7) N X,
Front (Bj(z,7)) C Q and Back (Bj(z,7)) C S.

From proposition 4.26 it follows that 0By (z,7)NX C QUS, so 0By (z,7)NX = P.
Since Bl(z,r) is the smallest dual circumball of P, there are nonnegative real num-

bers (ap)pepr, (Bp)pep satisfying (x) and (xx).

For ¢ € Q define \, := oy — ;. This is nonnegative, since Back (Bj.(z,1)) C S.
For s € S define ps := 85 — as. It is nonnegative, since Front (B%(z, r)) C Q.
Forz e Wset Ay :=a, > 0and p, := 5, >0
and we set Ay :=ay + > as+ > B, >0.

seS qeqQ

By construction we have

At D me=oy+ Y ast+ Y Bet > Bt ) (Bs—a)=ay+ Y B

seSUwW sesS q€Q seW se8 seP\{y}
and
Yo A= ay Yot Y Bit ) et ) (ag—fg) =1
q€QUWU{y} seS q€Q zeW 7€Q

We set \q := 0 for ¢ € Q \ 0By (z,7) and pg := 0 for s € S\ 0B (z,7). Then
(Ag)qeq, (1s)ses satisfy the conditions from lemma 4.20 a). In conclusion, B (z,7)
is the smallest including dual Bregman ball of @ that excludes S. |

Corollary 4.33 Let (X, F) be a Bregman point cloud in general position and
let Q@ C X. Let By(z,7) be an empty dual circumball of Q. It is the smallest empty
dual circumball of Q if and only if

e it is the smallest dual circumball of OBy (z,7) N X and
e Front (Bj(z,7)) C Q.
Proof: Apply the theorem with S = X. [

Definition 4.34 Let (X, F') be a Bregman point cloud in general position. We define
Upp(X, F) as the set of simplices { P € Delp(X) | Bp(P | P) = Bp(P | X)}.

Corollary 4.35 (Delaunay Morse Function Corollary)

The Delaunay radius function of a Bregman point cloud (X, F') in general position is
a generalized discrete Morse function. Its generalized discrete gradient consists the
intervals [Front (B (P, P)), P], P € Upp(X, F).
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4. Topological data analysis with Bregman divergences

Proof: The arguments are very similiar to the proof of the Cech Morse Function
Corollary 4.31. We give the proof for the sake of completeness.

First, we show that {[Front (Bj(P, P)), is a partition of Delp(X).

P] }PEUpp(X,F)
Let @ € Delp(X) be a simplex. By corollary 4.14, the smallest empty dual cir-
cumball B%(Q | X) exists.

By corollary 4.33, B%(Q | X) is the smallest dual circumball
of P:=0Bj(Q| X)NX and Front (BR(Q | X)) C Q.
Since Front (Bj(Q | X)) C P, we can use corollary 4.33 again and see that
B-(Q | X) is the smallest empty dual circumball of P. It means that P € Upp(X, F)
and Q € [Front (BR(Q | X)), P].

Let P’ € Upp(X, F) be an other upper bound such that
Q € [Front (BR(P' | X)),P']. By corollary 4.33, the smallest empty dual cir-
cumball By (P’ | X) is the smallest dual circumball of dBL(P' | X) N X and
Front (Bj(P' | X)) C P

Since Front (Bj(P' | X)) C Q C P, from Corollary 4.33 it follows that
B%.(P'| X) is the smallest empty dual circumball of ). This implies that
P =0BL(Q | X)NX = 0BR(P' | X)NX. The assumption (G2) implies that
P = P’. In conclusion, the intervals are disjoint.

Let R,Q € Delp(X) such that R C Q. By corollary 4.17, 02¢/(Q) is the radius of
the smallest empty dual circumball of Q. This implies that o2°(R) < 02(Q).

If R and @ belong to the same interval then both By (R | X) and BR(Q | X)
are the smallest dual circumball of 0BL(R | X)NX = 0B%(Q | X) N X, indeed

op?(R) = 0p(Q).

If o2Y(R) = 02°(Q), then the smallest empty dual circumballs of R and Q are
the same, since B(Q, X) is an empty dual circumball of R and there are no other
empty dual circumball of R with smaller radius. From this follows that
OBR(Q| X)NX = 90BR(R | X)NX and therefore they belong to the same interval.

[ |

4.3. Radius function algorithms

This section concludes the results of the previous one. Here, (X, F) stands for a
Bregman point cloud in general position.

‘We start with Cech complexes. By the Cech Morse Function Corollary 4.31,
0%°P : A(X) — R is a generalized discrete Morse function. A simplex P € A(X) is
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4.3. Radius function algorithms

a lower bound of an interval if and only if the smallest including dual Bregman ball
and the smallest dual circumball of P are the same. Using the CircumBall algo-
rithm, we can compute the center and the radius g$°(P) of the smallest including
dual circumball of P. The upper bound of the interval is easily computable, we just
collect the points of X lying in the smallest dual circumball of P. Once we have the
lower and the upper bound of the interval, we mark each simplex of the interval with
051 (P). This can be done with the following algorithm.

Algorithm 2: MarkTheInterval
Input : an interval [P, R] of simplices and a real number o
let Q be the set containing all subsets of R\ P;
forall Q € @ do
L mark P U Q with g;

It is still a question how we can decide whether a simplex is a lower bound.
Our strategy is quite simple, we consider the simplicies in the order of increasing
dimension. If we find an unmarked simplex, it must be a lower bound, so we mark
the whole interval. An implementation of the CechRadiusFunction algorithm can
be find in appendix A.2.

Algorithm 3: CechRadiusFunction

Input : a Bregman point cloud (X, F')
let A(X) be the set containing all nonempty subsets of X;
for i =0 to dimA(X) do
foreach P € A(X) with dim P =i do
if P is unmarked then
(2, 0%°M(P)) +— CircumBall (P) ;
R<+— P,
forall x € X\ P do

if Dp(z)z) < 0§°(P) then

L R <+— RU{z};

| MarkTheInterval (P, R, ggeCh(P));

Output: filtered simplicial complex (A(X ), QgeCh)

The case of Delaunay complexes is similar. By the Delaunay Morse Function
Corollary 4.35, 02 : Delp(X) — R is a generalized discrete Morse function. In this
case, we know the upper bounds of the intervals. Using the CircumBall algorithm
we can compute o2¢(P) for each P € Upp(X, F). To compute the lower bound,
we must determine Front (B (P, P)). In order to do so, we modify the CircumBall
algorithm.
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4. Topological data analysis with Bregman divergences

Algorithm 4: CircumBallFront
Input : P={po,...px}
let A be the affine hull of the points (p, F'(p)), p € P ;
find (g,9) € A minimizing R"™! — R, (a,a) — F(a) — a over A ;

k
find Ao, ..., A\x € R such that ¢ = > A\ips ;
i=0

Q<+—0;
for i=0to k do
Lif)\i>0then

| Q«— QU {pi};
Output: (¢,v — F(q),Q)

With Delaunay complexes, we have another difficulty, namely not every subset
of X is in Delp(X). Using the WeightedDelTriangulation function, we can solve
this problem. After Delp(X) is computed, we consider the simplicies in order of
decreasing dimension and mark the unmarked simplices. A Matlab implementation
of the following algorithm is given in appendix A.5.

Algorithm 5: DelaunayRadiusFunction

Input : a Bregman point cloud (X, F)
foreach x € X do
L we «— |lz]|* — 2F (2);
Delp(X) <— WeightedDelTriangulation (X, (wy)zex);
for i =dimDelp(X) to 0 do
foreach P € Delp(X) with dim P =i do
if P is unmarked then
(z,02(P), Q) «— CircumBallFront (P) ;
L MarkTheInterval (Q, P, o2¢(P));

Output: filtered simplicial complex ( Delp(X), oP)

For the CechRadiusFunction algorithm, we get the triangulation almost for free.
The Delaunay triangulation requires some preliminary computations. In corollary
4.23, we have seen that the dimension of the Delaunay complex is bounded above
by the dimension of the including space if the points are in general position. Thus,
it may be worth doing some preliminary job to make the computation faster.

To test this, we did some experiments using synthetic data sets. One can find
the Matlab code in appendix A.7. The functions CechPersistenceDiagram (see ap-
pendix A.3) and the DelaunayPersistenceDiagram (see appendix A.6) compute the
persistence diagram of a Bregman point cloud. They use the CechRadiusFunction
resp. DelaunayRadiusFunction functions for the computation of the filtered sim-
plicial complexes. After that, they apply functions from the JavaPlex package [15]
to get the persistence diagrams. Figure 4.3 concludes the results.
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Figure 18: Performance of the CechPersistenceDiagram and the

DelaunayPersistenceDiagram functions

In conclusion, we can say that it is worth to compute the Delaunay triangulation.
The running time of the computation of the persistence diagram increases much
slower, if we use the DelaunayRadiusFunction algorithm. It must be noticed that
our implementation of the DelaunayRadiusFunction algorithm only works if the di-
mension of the containing space is smaller than the number of points in the Bregman
point cloud minus two and * is the whole space R™.

5. Stability of persistence diagrams

In real-life applications, it is almost impossible to get a dataset without any noise.
The measured data approximates the real data, but due to experimental errors, they
will never be the same, after each measurement, the dataset will look a bit different.
A good descriptor of a dataset should be closer to the descriptor of the real data
if the measured data approximate better the real one. For a point cloud measured
with a metric function, this property is ensured by the following theorem.

Theorem 5.1 [31, Thm. 5.2.] Let (M,dy),(N,dn) be totally bounded metric
spaces. Then

g ((dgm (H,(Rips(M, »))), dgm (Hy(Rips(N. #))) ) < 2dan(M, N),

dp (dgm (H,(Cech(M, »))), dgm ( H,(Cech(N, .)))) < 2dgu(M, N)

for all n € Ny.

Here, the bottleneck distance dp is used to compare persistence diagrams and we
use the Gromov-Hausdorff distance dgu [31, Section 4.2] for metric spaces.
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5. Stability of persistence diagrams

If we want to trust the persistence diagrams of Bregman point clouds, we need
something similar. As far as I know, there is no such theorem in the literature. We
present the first statement in this direction. As our result is much weaker than the
one for metric spaces, further improvements are still desirable.

5.1. Metrics

In this section, we introduce a dissimilarity measure for each collection of objects in
the usual TDA workflow. Following [12], we use the bottleneck distance for persistence
diagrams.

Definition 5.2 Let D, D’ be two persistence diagrams. The bottleneck distance be-
tween D and D' is defined as:

ds(D, D)= inf  supd - n(d)l
nzDi}p/dE'D

where the infimum is taken over all bijections n : D Ll D' between the multisets D
and D'.

By [12, Chapter VIIL.2|, the bottleneck distance between persistence diagrams
satisfies the axioms of a metric function.

Notice that by definition 2.12, a persistence diagram includes the points of the
diagonal with infinite multiplicity and it has only a finite number of points above
the diagonal. The bottleneck distance describes the best matching between two per-
sistence diagrams. If a point lying above the diagonal is unmatched, we match it
with the nearest point on the diagonal. To get an intuitive feeling, look at the figure
below. For further details we recommend [13, Chapter 3.1].

Figure 19: best matching between D and D’
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5.1. Metrics

Using the JavaPlex package, one can easily write a Matlab code that computes the
bottleneck distance between two persistence diagrams. For completeness, this code
is given in appendix A.8.

We follow [13] to define a distance between two persistence k-modules.

Definition 5.3 Let V,, W, be two persistence k-modules and € > 0. An e-interleaving
between Vo and W, is given by two families of homomorphisms {¢, : V; — WT+E}T€[0700)
and {3y : W = Viyebrelo,00) Such that the following diagrams commute for

every r,s € [0,00) with r < s:

V;“ ‘/S ‘/rJre VS+6
~ ~ s >
Wr—l—e Ws-l—e Wr Ws
‘/7" VT+26 ‘/r—i-e
N >N
Wr-i—e W W’I"-‘r2€

Definition 5.4 The interleaving distance between two persistence k-modules Vo and
W, is defined as

di(Ve, We) :=inf{e > 0| there is an e-interleaving between Vo and W, }

By [32, proposition 4.3], the interleaving distance satisfies the triangle inequality.
It is easy to see that it is symmetric and non-negative. If we restrict it to pointwise
finite-dimensional persistence modules, then the interleaving distance is zero if and
only if the modules are isomorphic. Thus, in this case, we have a metric function.
This last property is implied by the Isometry Theorem.

Theorem 5.5 (Isometry Theorem) [32, Thm. 4.11] Let Vo and W, be point-
wise finite-dimensional persistence k-modules, then it holds that

dg (dgm(Vs), dgm(W,)) = di(Va, Wa).

Last but not least, we introduce a dissimilarity measure for Bregman point clouds.
We are interested in the question of what happens if we add some noise to the dataset.
That is why we compare the underlying set of the Bregman point clouds using the
usual Euclidean distance and not the Bregman divergence. Our constructions are
based on the definitions in [31].
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5. Stability of persistence diagrams

Definition 5.6

a) Let X andY be two sets. We call a subset C of the Cartesian product X xY
a correspondence if the canonical projection maps are surjective. In this case,
we write C: X =Y.

b) Let X,Y be subsets of R™. The distortion of a correspondence C : X =Y s
defined as dis(C) := sup{||lz — y|| | (z,y) € C}.

b) Let (X, F),(Y,F) be Bregman point clouds. We define the
Gromov-Hausdorff distance as

den(X,Y) :==min{dis(C) | C : X =2 Yis a correspondence }.

5.2. A stability result

We are going to present our stability result. Throughout this section, (X, F') denotes
a Bregman point cloud. We consider this as the real data, i.e. the data without any
noise. The Bregman point cloud (Y, F') will play the role of the noisy, measured data.

Further, we want to assume that our measured data is not completely wrong; it is
not too far away from X, i.e ||z —y|| < max{||z —2/|| | z,2’ € X} =: dfor all z € X,
yey.

In the following, we construct a convex, compact subset X C Q = dom(F') such
that ||z —y|| < d for all x € X, y € X. The union of the Euclidean balls centered
at the points of X with radius d may lie outside of 2. If we cut the union of these
balls with €, it could happen, that the closure of this intersection is not contained
in €. This phenomenon is illustrated in the next figure.

Figure 20: union of the Euclidean balls lies outside of Q2 = ]R?F
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To avoid the problems with the boundary of €2, we put a small tube around it.

Let us define T:= |J By(b) where ¢ := Jinf{|[b — 2| | b € bd(Q),z € X}.
bebd (%)

Figure 21: a small tube T" around the boundary of ) = Ri

zeX

compact subset of 2. Since 2 is convex, the set X' := Conv <( U Ba(z))
reX
is contained in . One can easily show that X is a compact set.

By construction Q \ 7" is a closed subset of 2. Thus, ( U Bd(a:)) N (Q \ T) is a
n(@\T))

In the rest of this section, we assume that the measured data Y is contained
in X. The choice of X is quite arbitrary. In fact, every convex, compact subset of )
containing X and Y would do the job.

Theorem 5.7 Assume that the partial derivatives of F are continuously differen-
tiable and' Y C X. Then there are constants o, 5 € R depending only on (X, F) such
that dgn(X,Y) < e implies

dp (dgm (H,(Cechp (X, o)), dgm ( H,(Cechp (Y, .)))) <&.a+te B
for all n € Ny.

The functions from example 3.4 satisfy the assumption of the theorem. Thus, in
these cases, the bottleneck distance between the persistence diagrams converges to
zero if the distance between X and Y converges to zero. We can conclude that the
information of the persistence diagram from a noisy dataset describes the persistence
diagram of the real dataset better if we make a better measurement.
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5. Stability of persistence diagrams

The proof of the theorem is quite technical. We split it into several lemmata. The
key ingredient will be the Dowker interleaving lemma from [31]. First, we recall the
definition of a Dowker complex.

Definition 5.8 Let L, W be two sets and A : L x W — R a function.
The Dowker complex of A at scale v > 0 is the simplicial complex:

Dow(A,r):={PCL|3weWVvieP:Al,w) <r}.

Definition 5.9 Let L, L', W, W’ be sets with functions A : L x W — R
N:LxW —Randlet C: L =L, D: W =W’ be two correspondences. We
define the distortion of the pair C,D as

dis(C,D):= sup sup |A(l,w)—AN({ w)]|.
(L,I"eL (ww')eD

Lemma 5.10 (Dowker interleaving) Let L, L', W, W' be sets with functions
A:LxW —=wRand N :L'xW —R. IfC:L =L and D : W = W’ are
correspondences such that € > dis(C, D) then there is an e-interleaving between the
persistence k-modules Hy, (Dow(A, ®)) and H,, (Dow(A’,e)) for all n € Ny.

To show theorem 5.7, we want to use the Dowker interleaving lemma. The choice
of L, L' and A, A’ is quite obvious. But we have to choose W, W' carefully. To build
the Cech complex we only need the Chernoff points of the simplices i.e. the centers
of the smallest including dual balls.

Definition 5.11 For a Bregman point cloud (U, F) we define
Wy = {cr(P)| P AU)}
as the set containing the Chernoff points of the simplicies in A(U).

Proposition 5.12 Let X be defined as at the beginning of this section and assume
that Y C X. Then Wx and Wy are contained in X.

Proof: By lemma 3.54, the center of the smallest including dual ball of each simplex
P e A(X), Q@ € A(Y) is contained in the convex hull of P resp. (. Since X is
convex, it contains Conv(P) and Conv(Q). |

Lemma 5.13 Let P = {po,...,pr} and Q = {qo,...,qr} subsets of Q such that
lpi — ai|| < € for some e >0 and all i =0, ..., k. Let z be the center of the smallest
including dual ball of Q. Then ||z|| < e+ max l|pil]
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Proof: By lemma 4.20, there are nonnegative real numbers Ag, ..., Ax such that
k k
z=> Ai-g and >  \; = 1. From this it follows that
i=0 i=0
k k k k k
Izl = 1> A(g—pitp) |l < 1D Xis(@=—p)ll+1D>_ Xiepill <D Nillai—pill+ > Nillpill
i=0 i=0 i=0 i=0 i=0
We can overestimate each term in the first sum by A;e and in the second sum by
k
Ai - max lp:i|l. Using that > A\; = 1, the statement follows. |
i=0,..., i=0

Corollary 5.14 For all w € Wy, the Euclidean length of w is bounded by max llz||-

Proof: For every P C X, use the above lemma with P = @ and ¢ = 0 and notice

that max ||p|| < max ||z||. [ |
peEP zeX
Lemma 5.15

a) Every continuously differentiable function f: X — R is Lipschitz continuous,
i.e. there is a K € Ry such that | f(x) — f(y) |< K - ||z — y|| for all z,y € X.

b) F: X — R is Lipschitz continuous.

¢) VF : X — QF is Lipschitz continuous, if the partial derivatives of F are
continuously differentiable.

Proof: By definition X" is a convex, compact set. Since f is differentiable, by the
mean value theorem, for all z,y € X there is a z € X lying on the line segment
between x and y such that

| f(@) = F() SNV - e =yl < itelgllvf(w)\\ Nz =yl

Since |V f(®)|| : X — Ris a continuous function on a compact set, K := sup ||V f(w)]]
weX
is a real number. Indeed, f is a Lipschitz continuous function with Lipschitz

constant K.

Convex differentiable functions are continuously differentiable. Thus, part b) fol-
lows immediately from part a).

By our assumption and by part a), the partial derivatives % X —=>Ri=1,...,n
are Lipschitz continuous. Thus, for all ¢ = 1,...,n there is a K; € R such that
g—g(l’) - g—g(y) |< K; - ||z — y|| for all z,y € X. This implies
"\ OF OF =
IVF(z) = VE(y)? =) (3—%(@ - 8—962‘(3/))2 <Y O KF e -yl
i=1 i=1
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n
In conclusion, VF is Lipschitz continuous with Lipschitz constant K f |
\/ i=1

Lemma 5.16 Let W := Wx U Wy. Assume that the partial derivatives of F are
continuously differentiable and Y C X. There are constants «, B € R depending only
on (X, F) such that max IVE(w)|| <a-e+ B forall e > dagu(X,Y).

we

Proof: Since W is the union of Wx and Wy, we have

VF = F F .
mae |[VF(w)]| = max { max |[VF(w)], max [VF ()]}

By definition, for all z € Wy there is a Q = {qo,...,qx} € A(Y) such that z is
the center of the smallest including dual ball of Q.

Since € > dgu(X,Y), there are po,...,pr € X such that ||p; — ¢;|| < € for all
i = 0,...,k. Denote c, the center of the smallest including dual ball of P :=

{pro,....or}
From lemma 5.13 it follows that

Iz = el < llzll + fle=ll < €+ max fjaf| + [le: || < €+ max |z + max flc].

By lemma 5.15, VF' is Lipschitz continuous. Thus, there is a K > 0 independent
from Y such that

IVE(2)|| = [VF(2) = VF(c:) + VF(c:)|| < |[VF(2) = VF(c:)|| + [VF(c)[| <
<K-|z—c| +[[VF(c.)| < K - (e + max ||z]| + max [c[) + max [|[VF(c)|.
zeX ceWx ceWx

From K > 0 it follows that

IVF(w)|]| < K- (e + max ||z|| + max Hc||) + max ||[VF(c)|.
zeX ceWx ceWx

for every w € Wx. In conclusion, we have that

max | VF(w)|| < K - (e + max [|z| + max |c||) + max |[VF(c)]|.
weW zeX ceWx ceWx

The scalars o := K, f:= K - max||z|| + K - max [|c|| + max ||[VF(c)| depend only
zeX ceWx ceWx
on (X, F). [

Now we are ready to show theorem 5.7.
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Proof of Theorem 5.7:
If dga(X,Y) <e, then C:={(z,y) € X xY | ||z — y|| < €} is a correspondence.

Let W = W' := Wx UWy and A := Dp X< W, A = Dp lyxw. If we
compare the definition of a D9Wker complex 5.2 and corollary 4.17, we see that
Cechp(X,r) = Dow(A,r) and Cechp(Y,r) = Dow(A’,r) for all » > 0.

Obviously, D := {(w,w) € W x W | w € W} is a correspondence. By the Dowker
interleaving lemma 5.10, there is a J-interleaving between H, (CeChF(X ,®)) and

H, (Cechp(Y,e)) for all n € Ny, if § > dis(C, D).

Using the above lemmata, we can compute an upper bound of dis(C, D).

dis(C, D) = sup sup | Dp(z|lw) — Dr(y[w) |=

(z,y)eC weW

= sup sup | F(z) - F(y) + (VF(w),y —z) [<
(z,y)eC weW

< sup sup | F(z) - F(y) |+ [ (VF(w),y — ) |
(z,y)eC weW

Since F' is Lipschitz continuous on X (lemma 5.15), there is a constant K such
that
| F(x) — F(y) |< K - ||z —y|| < K - € for every (z,y) € C.

Using the Cauchy-Schwarz inequality and lemma 5.16, we have for every (z,y) € C,
w € W that

[ (VE(w),y — ) [ [VF()[ - ly —zl| < (- e+ 8) - €
for some constants «, 5 € R independent from Y.

In conclusion: dis(C,D) < K -e+ (a-e+ )€ = (K + ) - € + a - €. Thus, there
isa d:= (K + ) e+ a-e interleaving between the persistence k-modules.

This implies that dp (Hn (Cechp (X, o)), H, (Cechp(Y, o))) < 6.

From the Isometry Theorem 5.5 it follows that
dp (dgm (Hn(CechF(X, o))),dgm (Hn(CechF(Y, o)))) <. [ |

Using the algorithms discussed in the previous chapter, we do some experiments
with synthetic data sets. First, we compute a random Bregman point cloud. After
that, we create a sequence of Bregman point clouds converging to the first one in
the Hausdorff distance. For each Bregman point cloud in the sequence, we call the
function CechPersistenceDiagram (see appendix A.3) to compute the persistence
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5. Stability of persistence diagrams

diagram, and we call BottleneckDistance to compute the bottleneck distance. To
measure the Hausdorff distance, we use the function HausdorffDist [33]. The Mat-
lab code of the experiment is given in appendix A.9. Figure 5.2 concludes the results.
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We can clearly observe in figure 5.2 what theorem 5.7 tells us. If the Bregman point
clouds are converging in the Hausdorff distance, then the corresponding persistence
diagrams will converge in the bottleneck distance.

6. Kiinneth-type formula

In algebraic topology Kiinneth-type formulas describe a relation between the homol-
ogy of the product space and the homology of its factors.

Theorem 6.1 (topological Kiinneth formula)
Let T and T' be topological spaces and let R be a principal ideal domain. There exists
a natural short exact sequence

0= P (H(T;R) ®r H;(T";R)) = Hu(T x T'; R) —
i+j=n
— P Torgr(Hi(T;R),H; 1(T"; R)) — 0
i+j=n
which splits, but not naturally.

One can find the proof of the theorem in several introductory books on algebraic
topology, see e.g. [16, Theorem 3B.6] or [34, Theorem 59.3].

If we take the coefficients from a field k, the Tor term is zero. Indeed, we have a
natural isomorphism

P (Hi(T;k) @k H;(T';k)) = Hy(T x T'; k)
i+j=n
In this case, we can understand the homology of the product spaces, which can
be quite complicated in terms of simpler objects. It would be nice to have a similar

result for persistent homology. Some recent papers considered this question. In [35],
Gakhar and Perea showed a Kiinneth formula for Vietoris-Rips complexes.

Theorem 6.2 [35, Corollary 4.6]
Let (M, dy),(N,dy) be finite metric spaces. 1f we equip the Cartesian product M x N
with the mazimum metric, then there is an isomorphism

H, (Rips(M x N,e)) = €P H; (Rips(M,e)) @ H; (Rips(N, o))
i+j=n

for all n € Ny.

In [36, Theorem 4.1], Lim et al. gave an alternative proof of theorem 6.2. Carlsson
and Filippenko [37] studied a similar question, but they equipped the Cartesian
product with the sum metric.
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Theorem 6.3 [37, Prop. 4.3] Let (M,dyr) and (N,dy) be finite metric spaces
and n € Ng. If we equip the Cartesian product M x N with the sum metric dy; +dy,
then there is a short exact sequence

0— @ PHi(M, ln) @, PH;(N, In) = PHL(M x N, Iy + Iy) —
i+j=n
— @ Tory (PH;(M, ly), PH;_1(N, Iy)) — 0
i+j=n

which is natural with respect to distance non-increasing maps (M, dyr) — (M, dpyr)
and (N,dyn) — (N',dn+). Moreover, the sequence splits, but not naturally.

Carlsson and Filippenko used a slightly different notation. Since we will not use
this notation, we refer to the original paper [37, Section 4] for a detailed explanation.
For our purposes, it is enough to note that PHST)(M, Im) = H, (Rips(M, r)) for all
r > 0. Unfortunately, the middle term in the sequence in theorem 6.4 is in general
not isomorphic to PH, (M x N,ljyxn) , where we equip M x N with the sum metric
dar + dn. For dimension n > 2, Carlsson and Filippenko gave an upper bound for
the interleaving distance between PHY (M x N,y + In) and PH? (M x N,lprxn)-

Theorem 6.4 Let (M,dys) and (N, dyn) be finite metric spaces. Consider the Carte-
sian product M x N equipped with the sum metric dys + dy.

a) For n=0,1, there is an isomorphism

PHn(M x N,y —|—ZN) = PHn(M X N,lMxN)-

b) For every n € Ny, the interleaving distance between the persistence k-modules

(r — PH%T)(M x N,y + lN))r>o and (7“ — PH%T)(M x N, ZMXN))T>0 15 less
or equal than min ( diameter(M ), diameter(N)), where the diameter is given

by diameter(M) := max{dy;(mg, m1) | mg,m1 € M}.
Proof: Part a) is [37, Theorem 4.5.], Part b) is [37, Theorem 4.9.] |

Using a statement from [35], we will give a Kiinneth-type formula for Bregman
point clouds in the style of the result of Carlsson and Filippenko. In fact, we con-
sider an object that satisfies a Kiinneth formula, and we compute an upper bound
of the bottleneck distance between the persistence diagram of this object and the
persistence diagram of the product space.
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6.1. Bregman divergence on the product space

First, we try to find the best way to define a Bregman divergence on the product
space. During this section, F' :  — R and G : Q' — R stand for functions of
Legendre type.

One can easily show that the Cartesian product € x €’ is a nonempty open convex
set. According to proposition 3.3, the sum F + G is a function of Legendre type
on Q x Q. Using proposition 3.26, we can characterize the corresponding Bregman
divergence Dgip.

This choice seems to be natural since our main examples 3.4 have this form. But
is not clear, whether or not this is the only natural choice. That is why we consider
the following general setting.

In order to equip the product space © x Q' with a Bregman divergence using F'
and G, we need a function f :im(F) x im(G) — R such that

H = f(F(s),G()) : Q x @ = R, (z,y) — f(F(z),G(y))

is a function of Legendre type.

Proposition 6.5 im(F) x im(G) is a nonempty convez set.

Proof: 1t is enough to show that im(F') and im(G) are nonempty open convex sets.
They are clearly nonempty since F' and G are well-defined functions and Q # 0,
£ 0.

The epigraph of a convex function is a convex set. The image of a function is the
projection of the epigraph onto its codomain. Since the projection map is linear, the
image of a convex function is convex. |

In the following, we give some conditions on f, which ensures that H is a function

of Legendre type.

Proposition 6.6 If f is conver and strictly increasing in both arguments, then H
1s strictly convex.

Proof: For all (z1,y1) # (x2,y2) € Q x Q' it holds that x1 # x9 or y; # ya. We

consider the case x1 # x2. The other case follows by a similar argument.

Since F is strictly convex, we have F'(t-z1+(1—t)-x2) < tF(x1)+(1—t)F(z2) for all
t € (0,1). The convexity of G implies that G(t-y1+(1—1t)-y2) < tG(y1)+(1—t)G(y2)
for all ¢t € (0,1).

By our assumption, f is strictly increasing in both arguments. This implies that

H(t- (z1,91) + (1 —t) - (22,92)) < f(tF(z1) + (1 — ) F(22),tG(y1) + (1 — )G (y2))
= f(t- (F(x1),G(n)) + (A —t)(F(x2),G(y2))).
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Now, we can use the convexity of f to conclude that
H(t- (x1,) + (1 —1t) - (z2,92)) <tH((z1,91)) + (1 — t)H ((z2,92))- u

Proposition 6.7 If f is differentiable, then H is differentiable.

Proof: The Jacobi matrix of (F,G) : Q x Q' = R x R, (z,y) — (F(z),G(y)) at the

point (z,y) is given by (VF(;(:U) VC?(y)) e R2X(+m) where O € R and Q' C R™.

The differentiability of F' and G implies that the partial derivatives of (F,G) are
continuous. From this it follows that (F,G) is differentiable. It is well-known that
the composition of differentiable functions is differentiable. |

Lemma 6.8 Let f be convezx, differentiable and strictly increasing in both arguments.
Furthermore, we assume that for every sequence ((a”’bn))neN in im(F) x im(G) it
holds that

. f . Of
lim an,by) |> 0 and nh—>Holo‘ %(an,bn) |> 0.

A, | 5a
Then H : Q x ', (z,y) — f(F(x),G(y)) is a function of Legendre type.
Proof: By proposition 6.6 and 6.7, it is enough to show, that H satisfies the condi-
tion (L3) in definition 3.1.
Using the chain rule, we can compute the gradient of H at each

point (z,y) € 2 x Q.

VH(z,y) = (% (F(2),G(y)) Y (F(z),G(y))) - <VF0(:C) VC?(y)) -

= (% (F(2),Gy)) - VF(2), % (F(2),Cly)) - VG(y))

Let ((wn,yn))neN be a sequence in Q x Q' such that (z,,y,) — (z,y) € bd(2 x Q).
As we have seen In proposition 3.3, we can assume without loss of generality that
(x,y) € bd(2) x .

Using the above identity, we have:

IV H gl = [ 92 (F (), o)) - V@) P+ 1o (Fa), Glyn)) - VG ) >

of
2| 5 (F(wn), Glyn)) 2 IV F ().
Since F is a function of Legendre type and x € bd(Q), [|[VF(x,)|? — oc.
By assumption, it holds that lim | % (F(zn), G(yn)) |*> 0.
n—o0

In conclusion, | %(F(xn), G(yn)) 2| VF(2)]? = oc. u
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Example 6.9

a) Let A\, p be positive real numbers. The function f: R xR : (z,y) — A-a+pu-b
satisfies the conditions of lemma 6.8.
Indeed, @ x Q' —= R, (x,y) = X F(x)+ p-G(y) is a function of Legendre type.

b) The function f:R xR : (a,b) — exp(a) + exp(b) is convex and differentiable.
One can easily check that for every (a,b) € R? it holds that

%(a, b) = exp(a) and %(a, b) = exp(b).

Assume that the image of F' and G are bounded from below (e.g. half the
squared Euclidean norm or conver Shannon entropy). In this case, [ satisfies
the conditons of 6.8. Indeed,

OxQ =R, (z,y) — exp(F(x)) + exp(G(y))

is a function of Legendre type.

6.2. Persistent Kiinneth formula for parametrised simplicial complexes

In this section, we recall the following statement from [35].

Theorem 6.10 Let K, and K, be parametrised simplicial complexes. For each
n € Ny there is an isomorphism of persistence k-modules

H, (Ko x K{) = P Hi(K.) ® Hj(K).
i+j=n
Befor we give a proof, we clarify what kind of product we use.

Definition 6.11 Let K and K’ be simplicial complezes. We define the
product K x K’ to be the smallest simplicial complex containing all Cartesian products
oxao foroe K and o' € K'.

One can generalize this definition to parametrised simplicial complexes.

Definition 6.12 Let Ko and K. be parametrised simplicial complezes. Their product
is defined to be the pointwise product i.e. (K¢ X K), := K, x K| and
(Ko x K[)(r <t):=Ko(r <t)x K,(r <t) for all r,t € [0,00) with r <t.

Remark 6.13 For general simplicial complezes | K x K' | and | K | x | K' | are
not isomorphic. One can find a counterezample in [35, Chapter 5].

Consider the standard 1-simplez {0,1,{0,1}} = K = K'. Then | K x K’ | is home-
omorphic to the standard geometric 3-simplex and | K | x | K" | is homeomorphic to
the unit square [0,1] x [0,1] C R?.
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6. Kiinneth-type formula

Although | K x K’ | and | K | x | K’ | are not isomorphic, they have the same
homotopy type. In order to show this, we need some more definitions.

Definition 6.14 We call a simplicial complex K an ordered simplicial complex if
there is a partial order < on Vert(K) such that each simplex in K is totally ordered
with respect to <. We denote this object by K<.

A simplicial map between ordered simplicial complexes is said to be order-preserving,
if it so between the vertex sets. We denote the resulting category by oSimp.

Obviously, there is a forgetful functor oSimp — Simp, K< — K.

Definition 6.15 Let K< and K’j, be ordered simplicial complexes.

a) The product order <* on Vert(K x K') = Vert(K) x Vert(K') is given by
(v,0") =* (w,w') of and only if v XV and w 2 W'

b) We define the product K< @ Kfj as follows: T € K< © K’j if and only if there
erist 0 € K and o’ € K’ such that T is a totally ordered subset of o X o’ with
respect to XT.

Proposition 6.16 Let K< and K’j, be ordered simplicial complexes. It holds that
a) | K< K. | is a deformation retract of | K x K'|.
b) | K< @ K% | is homeomorphic to | K | x | K’ |.
¢) | KxK'|and | K| x| K'| have the same homotopy type.

Proof: For the proof, we refer to [38, Chapter 8]. Part a) is [38, Lemma 8.11.], part
b) is [38, lemma 8.9.]. Part ¢) follows immediately from a) and b). |

With this in mind, we can understand the left-hand side of theorem 6.10. On the
right-hand side, there are sums and tensor products of persistence k-modules. We
recall these notions.

Definition 6.17 Let V, and W, be persistence k-modules.

a) The sum Vo @ W, is the persistence k-module given by (Vo ® W), :=V, & W,
and Vo @ We(r < t) :=Vo(r <t)® We(r <t) for all r,t € [0,00)
such that r < t.

b) The tensor product Vo @ Wy is given by (Vo @ We), :=V, @k W, and
Ve @ We(r < t) :=Va(r <t) @k We(r < t) for all [0,00) such that r < t.

Proposition 6.18 Let 1; and 1 be interval modules. It holds that 1; 157 = 17n5.
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Proof: 1t follows from the definition of interval modules 2.9 and definition 6.17 using
that k ®x 0 = 0. [

At the end of this section, we give a proof of theorem 6.10.

Proof of Theorem 6.10:
By the topological Kiinneth formula 6.1, there is a natural isomorphism for
each r € [0, 00)

H, (| K| x|K.|)= @ (H( K, |)exH( K. |)
i+j=n

By proposition 6.16 ¢), | K, x K. | and | K, | X | K/ | have the same homotopy
type, this implies that Hy, (| K, x K. | ) @ Ho(| K, | x | K. |).

It is a well known fact that the simplicial homology of a simplicial complex and the
singular homology of its geometric realization are isomorphic. In conclusion,there is
a natural isomorphism for each r € [0, 00)

H, (K, x K)) = @@ (Hi(K,) @ Hj(K))).
it+j=n
Using naturality, this yields an isomorphism as claimed. |

6.3. Kiinneth approximation for decomposable Bregman point clouds

In this section, we present our result. Our Kiinneth-type formula is only an approx-
imation. We show that there is a In(2)-interleaving between the claimed persistence
module and the persistence homology of the product space if indezed logarithmically.

In section 6.1, we studied, which is the best way to define a Bregman divergence
on the product space. We can conclude that the best way to do this to take the
sum as we did in chapter 3. Therefore we will only consider here such functions. We
recall a definition from [39].

Definition 6.19 We call a function H : Q" — R decomposable if there exist func-
tions F: Q — R and G : Q' — R such that Q" =Q x Q' and H=F +G.

If F:Q — Rand G : Q — R are functions of Legendre type, then for all
(z,a),(y,b) € Q x Q' it holds that Dpyg((x,a)|/(y,b)) = Dp(z|y) + Da(allb) by
proposition 3.26.

Lemma 6.20 Let (X, F), (Y,G) be two Bregman point clouds. For all r € [0,00) it
holds that

Cechpyq(X x Y,r) C Cechp(X,r) x Cechg(Y,r) C Cechpyg(X xY,2r).
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6. Kiinneth-type formula

Proof: If 7 € Cechpyq(X x Y,r), then there is a (w1, ws) € Q x € such that
Dpic((z,a)||(wi,ws)) < rfor all (z,a) € 7. Using proposition 3.26 and the posi-
tivity of Bregman divergences (lemma 3.22), we see that

Dp(x||wi) <rfor all x € prx(r) and
D¢ (a|lwz) < r for all a € pry (7).

Indeed, prx(r) € Cechp(X,r) and pry(r) € Cechg(Y,r). Thus by definition 6.11,
7 € Cechp(X,r) x Cechg (Y, 7).

Conversely, let 7 € Cechp(X,r) x Cechg(Y,r) By definition 6.11, there are some
o € Cechp(X,r) and o’ € Cechg(Y, ) such that 7 C o x ¢’. From this follows that,
there are some z; € Q and z9 € ' such that

for all (z,a) € 7. Adding up these two inequalities, from proposition 3.26 it follows
that Dpyc((@,a)]/(21, 22)) < 2r for all (z,a) € 7, which implies that
T € Cechpyg(X XY, 2r). [

Now, we clarify what we mean by logarithmically indezing.

Definition 6.21 The logarithm functor In : Simp™+ — Simp® is defined for ob-
jects Ko € Simp™* by In(K,); = K. and In(K,)(t < t') := K(e! <€), for
morphisms 1 : K¢ — K it is defined by In(n)s := ng.

One can easily modify the definition of e-interleaving 5.3 to objects in Simp®.

Definition 6.22 Let K, and K, be two objects in Simp® and e > 0. An e-interleaving
between Ko and K is given by two families of simplicial maps {¢¢ : Ky — K[| }ter
and {¢y : K| = Kiicher such that the following diagrams commute for every
6t R witht <t

Ky Ky Kite Ky
Y‘ o V' V
Kt K. K K

K ” Kt+2e Kt+e
N >N
K£+6 Ké Ké-&-?e
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Remark 6.23 Since H,, is a functor, an e-interleaving between objects Ko and K|
in Simp® induces an e-interleaving between the persistence k-modules H, (K,) and
H, (K}) for every n € Ny.

Lemma 6.24 Let K, and K, be two objects in Simp™+ such that the maps K, — K
and K| — K are inclusions for every r,s € Ry with r < s. Furthermore, we assume
that K, C K| C Ky, for all r € Ry. In this case, there is an ln(2)-interleaving
between In(K,) and In(K}).

Proof: By our assumption, it holds for all » € Ry that K, C K| C Kj,. Using
2. et = ettn(2) we can conclude that

In(K,); C In(K,); C In(Ke)pyim(2) (2)

for all t € R.

For each ¢t € R let ¢ : In(K); — In(K{);qm(2) be the first inclusion in (2) con-
catenated with the map In(K,); = In(K,); 1m(2)- The second inclusion in (2) gives
us a simplicial map ¢y : In(K,); — In(Ke);qin(2). Since all the morphism are inclu-
sions, one can check that the diagrams like in definition 6.22 commute. |

Example 6.25 Let (M,dy) be a metric space. It is a well known result that
Cech(M,r) C Rips(M,r) C Cech(M,2r) (see e.g. [1]). By the above-introduced
terminology, one can say that the interleaving distance between In(Cech(M, o)) and
In(Rips(M, e)) is smaller or equal than In(2) or with other words, the interleaving
distance between the Cech and the Vietoris-Rips complex is less or equal than In(2)
if indexed logarithmically.

It turns out that lemma 6.24 is also useful for Bregman point clouds.
Corollary 6.26 Let (X, F) and (Y,G) be Bregman point clouds. We have
& (Hn (ln(CechF+G(X XY, .))),Hn (1n( Cechp(X, o) x Cechg(Y, .)))) < In(2)
for every n € Ny.

Proof: From lemma 6.20 and lemma 6.24 it follows that there is an In(2)-interleaving
between In(Cechpig(X x Y, o)) and In( Cechp(X, o) x Cech(Y, o)) . The claimed
inequality follows from remark 6.23. ]

Lemma 6.27 For every n € Ny there is an isomorphism of persistence k-modules

H, (Cechp(X,e) x Cech(Y,e)) = @ H; (CechF(X, ¢)) ® H; (Cechg(Y, o))
i+j=n

Proof: 1t is a special case of theorem 6.10. |
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6. Kiinneth-type formula

Corollary 6.28 Let (X, F) and (Y,G) be Bregman point clouds, it holds for every
n € Ny that

dgm ((H, (Cechp(X,e) x Cech(Y;9))) =
- U {(max{a, ¢}, min{b, d})’(a, b) € dgm (HZ (CechF(X, o))),

i+j=n
(c,d) € dgm (Hj (Cechg (Y, o))) }

Proof: 1t follows from lemma 6.27 and proposition 6.18. |

Using this corollary, one can easily compute dgm (Hn (Cechp(X,e)xCech(Y, o)))

in terms of dgm (H* (CeChF(X, o))) and dgm (H* (Cechg(lf, o)))

From corollary 6.26 and the isometry theorem 5.5, it follows that the bottleneck
distance between dgm (Hn (Cechp (X, o) x Cech(Y, 0))> and

dgm (Hn (Cechp (X xY, o))) is less or equal than In(2) if indexed logarithmically.

Indeed, if we allow a computational error less or equal than In(2), we can use
corollary 6.28 for computations. Thus, we get an approximative Kiinneth formula.
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Appendix A Matlab code

A.1 CircumBall

function [q,r,Front] = CircumBall(P,F)
%Compute the smallest dual circumball of a Bregman
%point cloud

HINPUTS:

% P --> a matrix, each row represents a point

yA F --> a function of Legendre type

%OUTPUTS :

A q --> the center of the smallest dual circumball of P
yA r --> the radius of the smallest dual circumball of P
yA Front --> row indices of the vertices contained in

A the front face of P, this output is optional

global optTol

options = optimoptions(@fminunc,...
'"OptimalityTolerance',
optTol,'StepTolerance',optTol);

a0 = P(1,:);

A = P(2:end,:);

[k,”]= size(A);
lambdastart = zeros(1l,k);

%Solve the unconstrained convex optimization problem

[lambda,fval] = fminunc(@(lambda) (
(F((1-sum(lambda))*aO+sum(lambda'.*A,1))
- (1-sum(lambda))*F(a0)-dot (lambda,Frow(A))) ),...
lambdastart ,options);

lambda0 = 1 - sum(lambda) ;

q = lambdaO*aO+sum(lambda'.*A,1);

r = -fval;

%Compute the front face, if it is requested
if nargout > 2
Front = [];
if lambdaO > O
Front = 1;
end
for j = 1:k
if lambda(j) > 0
Front = [Front, j+1 1;
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end
end
end

function B = Frow(A)
%Apply the function F for each row of a matrix
[k,”]= size(A);
B = zeros(1,k);
for j = 1:k

B(j) = F(A(j,:));

end

end

end

A.2 CechRadiusFunction

function complex = CechRadiusFunction (X,F,DF)
%Build the filtered Cech-complex of a Bregman point cloud
HINPUTS:

h X --> a matrix, each row represents a point

h F --> a function of Legendre type

h DF --> to F corresponding Bregman divergence
%0UTPUTS :

h complex --> a structure array,

h It represents the full simplicial complex
h of X. Each simplex is represented as the
h row indices of its vertices. The fields

h 'center ' and 'radius' show the center and
h the radius of the smallest including dual
h ball of each simplex.

%To make the computation easier, we consider only the
%d-skeleton of the full simplicial complex

global d;

%tolerance for the radii

global rTol;

%cardinality of X

n = size(X,1);

%the case d > n-1 is irrelevant, since the full
%simplicial complex of X has dimension n-1

d = min(d,n-1);
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%#Build the simplicial complex

combi = 1:n;

num0fAllComb = sum(arrayfun(@(k) nchoosek(n,k),...
1:(d+1)));

%Set up an empty structure array

complex (num0fAl1Comb) = struct('vertices',6[],...
'dimension',NaN,...
'center',NalN,...
'radius',NalN) ;

m = 1; Jcounter variable

for k = 1:(d+1)
%sub contains all the simplicies of dimension k-1
sub = nchoosek (combi ,k);

for j=1:size(sub,1)
%0-simplicies are easy to handle

if (k-1) == 0
complex(m) .vertices = sub(j,:);
complex (m).center = X(sub(j,:),:);
complex(m) .dimension = k-1;
complex(m) .radius = 0;
m = m+1;

continue;
end

%#Check if the simplex sub(j,:) is unmarked
unmarked = true;
for s = 1:(m-1)
if isequal(complex(s).vertices ,...
sub(j,:) )
unmarked = false;
break;
end
end

%#If sub(j,:) is unmarked, then it is a lower
%bound of on interval
if unmarked
%Compute the smallest dual circumball
[z,rho] = CircumBall(X(sub(j,:),:),...
Q(x) F(x));
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complex(m) .vertices = sub(j,:);

complex(m).center = z;

complex(m).radius rho;

complex(m) .dimension =
size(complex(m) .vertices ,2) -1;

m = m+1;

%hCompute the upper bound of the interval
hi.e. collect the points in X, which are
%in the smallest dual circumball
hof sub(j,:)
Upp = sub(j,:);
XwithoutSubj = combi;
XwithoutSubj (Upp) = [J;
for j2 = XwithoutSubj

if DF( X(j2,:) , z ) <= rho

Upp = [Upp,j2];

end

end

%MarkTheInterval
Low = sub(j,:);
UppwithoutLow = setdiff (Upp, Low );
for k2 = 1:size(UppwithoutLow,2)
sub2 = nchoosek (UppwithoutLow ,k2);
for j3 = 1:size(sub2,1)
complex(m) .vertices =...
sort ([sub2(j3,:),Low]);
complex(m).center = z;
complex(m) .radius rho;
complex(m) .dimension =
size(complex(m) .vertices ,2) -1;
m = m+1;

end
end
end
end
end

%To compute persistent homology, we use the function
%'api.Plexd4.createExplicitSimplexStream' from the
hJavaplex package. This function can not handle with
hsmall computational errors. To avoid difficulties
%later on, we make almost equal radius equal.
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%Sort the table by radius
[,idx]=sort ([complex.radius]);
complex = complex(idx);

for j = 2:num0fAllComb
if abs(complex(j).radius-complex(j-1).radius)<...

rTol
complex(j).radius = complex(j-1).radius;
end
end
end
A.3 CechPersistenceDiagram
function [intervals] = CechPersistenceDiagram(X,F,DF)

%Compute the persistence diagram of a Bregman point cloud

%using Cech complex construction

hINPUTS:

% X --> a matrix, each row represents a point

yA F --> a function of Legendre type

yA DF --> to F corresponding Bregman divergence
%0UTPUTS :

% intervals --> object produced by the JavaPlex package

smaximum dimension of a simplex

global 4d;

hcharacteristic of the coefficient field
global p;

complex =
CechRadiusFunction(X,0(x) F(x),0(x,y) DF(x,y));

import edu.stanford.math.plex4.x*;
stream = api.Plex4.createExplicitSimplexStream(max(...
[complex.radius]) +1);

[",m] = size(complex);
for Q = 1:m
if complex(Q).dimension == 0
stream.addVertex(complex(Q).vertices ,0);
else

stream.addElement (complex(Q).vertices, ...
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complex (Q) .radius);
end
end
stream.finalizeStream() ;

persistence =...
api.Plex4.getModularSimplicialAlgorithm(d,p);
intervals = persistence.computelntervals(stream);

end

A.4  WeightedDelTriangulation

function complex = WeightedDelTriangulation(X,w)
%Compute the weighted Delaunay triangulation
HINPUTS:

% X --> matrix, each row represents a point

b W --> vector containing the weights

%»0UTPUTS :

% complex --> structure array, each simplex 1is
% represented as the row indices of
h its vertices.

%Lift the points to R~ (dim+1)
[n, dim] = size(X);
lifted = zeros(n,dim+1);
for i=1:n
x = X(i,:);
lifted(i,:) = [x, x*x' - w(i)];
end

%Compute the indices of facets of the lower hull

C = convhulln(lifted); Yerror, if n < dim +2
[m, k] = size(C);

center = mean(lifted,1);

for j=1:m

v = null(bsxfun(@minus, lifted(C(j,1),:),...
lifted(C(j,2:end),:)))";

[mm, kk] = size(v);
if mm > 1

V(j,:) = NalN;

error ('nullspace error')

% possibility of degenerate null vectors
else

V(j,:) = v;
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end
mid(j,:) = mean(lifted(C(j,:),:),1);
end
dot = sum(bsxfun(@minus, center, mid) .*V, 2);
outer = dot < O;
V(outer,:) = -1+«V(outer,:);

ind = V(:,k) > 0;
Del = C(ind, :);

%Add each face to the Delaunay triangulation

m = 1; %counter variable

complex (1) = struct('vertices',[],'dimension',NaN,...
'"center',NaN, 'radius',NaN) ;

for j = 1:size(Del,1)
%Add the faces of 'Del(j,:)' to 'complex'
for k = 1:size(Del(j,:),2)
%'sub' contains all the subsets of
%'Del(j,:)"' of cardinality k
sub = nchoosek(Del(j,:) ,k);
for jj=1:size(sub,1)
%Check, if the face is already in 'complex
notcollected = true;
for s = 1:(m-1)
sort (sub(jj,:));
if isequal(complex(s).vertices,...
sort (sub(jj,:)) )
notcollected = false;
break;
end
end

if notcollected
complex(m) .vertices = sort(sub(jj,:));
complex(m) .dimension = ’
size(sub(jj,:),2)-1;

complex(m).center = Nal;
complex(m) .radius = Nal;
m = m+1;

end
end
end
end
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hSort 'complex' by dimension in decreasing order
[T,idx]=sort ([complex.dimension], 'descend');
complex = complex(idx);

end

A.5 DelaunayRadiusFunction

function complex = DelaunayRadiusFunction(X,F)
%Build a filtered Delaunay complex from a Bregman
hpoint cloud

HINPUTS:

% X --> matrix, each row represents a point

% F --> a function of Legendre type

%0UTPUTS :

h complex --> a structure array. Each simplex is

% represented as the row indices of

% its vertices. The fields 'center' and

% 'radius ' show the center and the radius
% of the smallest empty dual circumball

h of each simplex.

“tolerance for the radii
global rTol;

weights = (l:size(X,1))"';
for j = 1:size(X,1)

weights(j) = norm(X(j,:))"2 - 2 * F(X(j,:));
end

complex = WeightedDelTriangulation(X,weights);

%Compute the values of the Delaunay radius function
for j = 1:size(complex,2)
if complex(j).dimension == 0
complex(j).radius 0;
complex(j).center X(complex(j).vertices,:);
end

if isnan(complex(j).center)
[z,rho,Front] = CircumBall(...
X(complex(j).vertices,:) ,0(x) F(x));
complex(j).center = z;
complex(j).radius = rho;
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%MarkTheInterval

Low = complex(j).vertices(Front);
Upp = complex(j).vertices;
UppwithoutLow = setdiff (Upp, Low );

%Mark the lower bound
%before 'complex(j) are only simplicies with
%higher or equal dimension

for j2 = j:size(complex,2)
if isequal(complex(j2).vertices , Low)
complex(j2).center = z;
complex(j2).radius = rho;
break;
end
end

%Mark the simplicies between the lower and
%the upper bound
for k2 = 1:(size(UppwithoutLow ,2)-1)
sub2 = nchoosek (UppwithoutLow ,bk2);
for j3 = 1l:size(sub2,1)
new = sort([sub2(j3,:),Low]);

%#Find ‘'mew' in 'complex.vertices'
hbefore 'complex(j) are only
%simplicies with higher or
%equal dimension.
for j4= j:size(complex,2)
if isequal(...
complex(j4) .vertices ,new)

complex(j4).center = z;
complex(j4).radius = rho;
break;

end

end
end
end

%To compute persistent homology we use the function
%'api.Plex4.createExplicitSimplexStream' from the

% Javaplex package. This function can not handle with
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hsmall computational errors. To avoid difficulties
hlater on, we make almost equal radius equal.

sSort the table by radius
[7,idx]=sort([complex.radius]);

complex = complex(idx);
for j = 2:size(complex,2)
if abs(complex(j).radius-complex(j-1).radius)<...
rTol
complex(j).radius = complex(j-1).radius;
end
end

end

A.6 DelaunayPersistenceDiagram

function intervals = DelaunayPersistenceDiagram(X,F)
%Compute the persistence diagram of a Bregman point cloud
husing Delaunay complex construction

%HINPUTS:

% X --> matrix, each row represents a point
% F --> function of Legendre type

%0UTPUTS :

% intervals --> object produced by the JavaPlex package

%the homology will be computed in all dimensions
hstrictly less than d

global d

hcharacteristic of the coefficient field

global p;

complex = DelaunayRadiusFunction(X,0@(x) F(x));

import edu.stanford.math.plex4.x*;
stream = api.Plex4.createExplicitSimplexStream(.
max ([complex. rad1us])+1)

[“,m] = size(complex);
for Q = 1:m
if complex(Q).dimension == 0
stream.addVertex (complex(Q).vertices ,0);
else

stream.addElement (complex(Q).vertices, ...

88



A.7. ExperimentPerformance

complex(Q).radius);
end
end
stream.finalizeStream() ;

persistence =
api.Plex4.getModularSimplicialAlgorithm(d,p);
intervals = persistence.computelntervals(stream);
end

A.7 ExperimentPerformance

function ExperimentPerformance (NumOfPoints,...
DimOfContSpace ,Divergence ,F,DF)

%Compare the Cech and Delaunay radius function algorithms

hINPUTS:

yA NumOfPoints --> a vector containing the cardinality of
yA the Bregman point clouds

yA DimOfContSpace --> an integer, the dimension of

% the containing space

% Divergence --> a string array (for plotting)

yA F --> a function of Legendre type

yA DF --> the corresponding Bregman divergence

%»OUTPUTS :

yA A plot that shows the average running time for

A several cardinality

global optTol rTol d p;

assert (DimOfContSpace + 1 < min(NumOfPoints),...
'To get the DelaunayPersistenceDiagram function
work we need DimOfContSpace + 1 < min(
NumOfpoints) ')

hMeasure the running time

hof 'CechPersistenceDiagram' and
%'DelaunayPersistenceDiagram'. The functions
%are called 'k' times for the same data, then
sthe mean of the running times will be taken.
k = 10;

tCech = zeros(k,1)';

tDel = zeros(k,1)';

AvgtCech = zeros(size(NumOfPoints,2),1)"';
AvgtDel = zeros(size(NumOfPoints ,2),1)"';
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for s = 1:size(NumOfPoints ,b2)
n = NumOfPoints(s);
1 + (100-1) .*rand(n,Dim0fContSpace) ;

>
I

for j = 1:k
tic;
CechPersistenceDiagram(X,...
@(x) F(x),0(x,y) DF(x,y));
tCech(j) = toc;

tic;
DelaunayPersistenceDiagram(X,Q(x) F(x));
tDel(j) = toc;
end
AvgtCech(s) = mean(tCech);
AvgtDel(s) = mean(tDel);
end

%Plot the average running times
plot (NumOfPoints ,AvgtCech,'r-0');
hold on;
plot (NumOfPoints ,AvgtDel, 'g-0');
xlabel ([ 'number of points in a ',...
num2str (Dim0fContSpace),' dimensional space']);
ylabel ('running time in seconds');
title(Divergence) ;
legend({'Cech complex','Delaunay complex'},...
'Location', 'northwest');
hold off;
saveas (gcf,['ExpPerf-',...
'Dim' ,num2str(Dim0fContSpace),...
'-',Divergencel, 'jpg');
end

A.8 BottleneckDistance

function D = BottleneckDistance(intervalsA,intervalsB)
%hCompute the bottleneck distance between
hpersistence diagrams

hINPUTS:
% intervalsA ,intervalsB --> objects created by the
% function 'persistence.computelIntervals ()
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yA 'from JavaPlex package

%0UTPUTS

yA D --> array containing the bottleneck distances in
h each dimension

import edu.stanford.math.plex4.x*;

MaxDeg = max(numel(intervalsA.getBettiSequence),...
numel (intervalsB.getBettiSequence));
for k = 1:MaxDeg
intervalsA_dimk =...
intervalsA.getIntervalsAtDimension(k-1);
intervalsB_dimk =...
intervalsB.getIntervalsAtDimension(k-1);
D(k) = edu.stanford.math.plex4.bottleneck.
BottleneckDistance.computeBottleneckDistance (..
intervalsA_dimk ,intervalsB_dimk) ;
end
end

A.9 ExperimentStability

function ExperimentStability (NumOfPoints,...
DimOfContSpace ,ItSteps ,Divergence ,F,DF)

%Test the stability of persistence diagrams

% using synthetic datasets

%INPUT:

yA NumOfPoints --> cardinality of the Bregman point cloud
% DimOfContSpace --> dimension of the space where the

yA Bregman point cloud come from

A ItSteps --> number it iteration steps

% Divergence --> a string array (for plotting)

yA F --> a function of Legendre type

yA DF --> to F corresponding Bregman divergence

global optTol rTol d p;

hGenerate a synthetic dataset
X =1+ (70-1) .*xrand (Num0OfPoints ,Dim0fContSpace) ;

harrays for the bottleneck distances

bd0 = zeros(1l,ItSteps);
bdl = zeros(l,ItSteps);
bd2 = zeros(l,ItSteps);
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harray for Hausdorff distances
hd = [1;

for k = 1:ItSteps
%Create a Bregman point cloud that converges to X
Y =X + 0.01*x(1/k)*rand (NumOfPoints,...
DimOfContSpace);
hd (k) = HausdorffDist(X,Y);

intervalsX = CechPersistenceDiagram(X,...
@(x) F(x),0(x,y) DF(x,y));

intervalsY = CechPersistenceDiagram(Y,...
@(x) F(x),0(x,y) DF(x,y));

botDist = BottleneckDistance (intervalsX,...

intervalsY);
bd0 (k) = botDist (1);

if size(botDist ,2) > 2
bd1 (k) = botDist (2);
bd2(k) = botDist (3);
elseif size(botDist ,2) > 1
bd1 (k) = botDist (2);

bd2 (k) = 0;
else

bd1l (k) = 0;

bd2 (k) = 0;

end
end

%Plot the results

yyaxis left

hdplot = plot(hd,"b--s8");

set (gca, 'Ycolor','b');

xlabel ([num2str (NumOfPoints),' points in a ',...
num2str (Dim0OfContSpace), ' dimensional space']);

ylabel ('Hausdorff distance')

yyaxis right

bdOplot = plot(bd0,"r-o");
set(gca, 'Ycolor','r');
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if any(bd1l)
hold on;
bdlplot = plot(bdl);
bdiplot.Color = [0.9290 0.6940 0.1250];

bdiplot.Marker = "o";
bdlplot.LineStyle = "-";
end
if any(bd2)
hold on;
bd2plot = plot(bd2,"m-0");
end
hold off;

ylabel ('bottleneck distance')

if any(bd2)

legend ([bdOplot ,bdliplot ,bd2plot],...

{'dim 0','dim 1','dim 2'});

elseif any(bdl)

legend ([bdOplot ,bdiplot],{'dim 0','dim 1'});
else

legend ([bdOplot],{'dim 0'3});
end

title (Divergence);

saveas (gcf ,['ExpStab-',num2str (NumOfPoints),...
'points-',num2str (Dim0fContSpace),...
"dimSpace-',Divergencel], 'jpg')
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