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Abstract

In so-called information age many big data sets have the form of graphs. Using a meaningful
embedding into a matching geometric space, it is possible to infer information about the graph from
its structure within the embedding space. Due to the natural connection of hierarchical structure
and spaces of negative sectional curvature, embedding in hyperbolic space has recently received
much attention. Since a graph very often also possesses non-hierarchical structure at the same time,
it is promising to consider embedding spaces of non-constant sectional curvature. For this purpose
symmetric spaces of higher rank come into one’s mind.
In the first part of this thesis an introduction to symmetric spaces is given. As simple cases
of symmetric spaces with non-constant sectional curvature, Cartesian products are examined
thoroughly with respect to their sectional curvature and totally geodesic submanifolds.
By means of Siegel’s upper half-space, the consideration of symmetric spaces is motivated with the
versatility of totally geodesic submanifolds contained therein. An implementation of the Riemann
gradient descent method is developed.
In the second part, different variants of this optimization algorithm are examined and evaluated
using test graphs. Since previous embedding algorithms have considered working with a preprocessed
embedding, but have not yet implemented that, this procedure is investigated experimentally.

In order to be interpretable, it is essential that the embedding maintains the structure of the graph.
Since current optimization methods are not (yet) able to point out this structure reliably, it is
suggested that the “entanglement” of the embedded graph is addressed at first such that further
optimization can be successful.
Finally, with regard to these results, suggestions are made for a further improvement of these al-
gorithms in order to enable a future implementation of a structure-preserving algorithm to embed
graphs in general symmetric spaces.



Zusammenfassung

Im sogenannten Informationszeitalter liegen große Datensätze in Form von Graphen vor. Durch
eine gute Einbettung in einen passenden geometrischen Raum ist es möglich, aus der Struktur des
Graphen in diesem Raum Informationen über den Graphen selbst zu erhalten. Da ein natürlicher
Zusammenhang zwischen hierarchischen Strukturen und Räumen negativer Schnittkrümmung
besteht, wird insbesondere der Einbettung in den hyperbolischen Raum in jüngster Zeit viel Beach-
tung geschenkt. Da ein Graph sehr häufig auch nicht-hierarchische Strukturen enthält, erscheint es
vielversprechend, als Einbettungsraum Räume nicht-konstanter Schnittkrümmung zu betrachten.
Dafür bieten sich symmetrische Räume höheren Rangs an.
Im ersten Teil dieser Arbeit wird daher eine Einführung in die Theorie der symmetrischen Räume
gegeben. Als einfacher Fall symmetrischer Räume mit nicht-konstanter Schnittkrümmung werden
ausführlich Cartesische Produkträume hinsichtlich der Schnittkrümmung und enthaltenen total-
geodätischen Untermannigfaltigkeiten untersucht.
Anhand des Siegel’schen Halbraums wird die Betrachtung symmetrischer Räume mit der Vielseit-
igkeit der darin enthaltenen total-geodätischer Unterräume motiviert und eine Implementierung des
Riemannschen gradient descent Verfahrens erarbeitet.
Im zweiten Teil werden anhand von Testgraphen unterschiedliche Varianten dieses Optimierungsalgo-
rithmus‘ untersucht und bewertet. Da bisherige Einbettungsalgorithmen eine Starteinbettung zwar in
Betracht gezogen, jedoch noch nicht umgesetzt haben, wird dieses Vorgehen experimentell untersucht.

Um eine Interpretierbarkeit der Einbettung zu ermöglichen, ist die Erhaltung der Struktur des
Graphen essenziell. Da aktuelle Optimierungsmethoden (noch) nicht in der Lage sind, diese Struk-
tur zuverlässig herauszuarbeiten, wird vorgeschlagen, die “Verknäuelung” des eingebetteten Graphen
zunächst anzugehen, damit eine weitere Optimierung erfolgreich sein kann.
Abschließend werden hinsichtlich dieser Resultate Vorschläge für eine weitere Verbesserung der Al-
gorithmen gemacht, um eine zukünftige Implementierung eines strukturerhaltenden Algorithmus’ zur
Einbettung von Graphen in allgemeine symmetrische Räume zu ermöglichen.
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1 Introduction

Learning representations of graphs into embedding spaces has become a crucial task of modern data science. Ap-
plications include classical graph operations such as community detection, link prediction or finding the shortest
path within the network:
A meaningful embedding mirrors similarity between objects by their distance in the embedding space: As a
small distance in the embedding space shows that these data points are related, it is promising to consider
link prediction and community detection within the embedding space. Furthermore, embedding a network into
space transforms combinatorial problems to geometrical problems: The shortest path between two nodes in a
graph can in principle only be found by means of combinatorics, whereas a particular embedding enables the
application of a greedy algorithm based on the vertex positions in the embedding space.

Additionally, a representation of a graph can also deliver valuable information about the data itself. This idea
dates back at least 60 years to the idea of multidimensional scaling introduced by [Torgerson, 1952].
Due to the growing power of machine-learning, representation learning has gained lots of attention in the past
years. A prominent example is natural language processing performing similarity tasks, e.g. inferring the
sentimental context of words.
The machine-learning community has also become interested in the topic, since a meaningful representation of
data in the latent space improves the explainability of neural networks.
For a long time, the default embedding space has been Euclidean space. To capture properties of the graph
more closely, one has to adapt the geometry of the embedding space to the problem, i.e. embed graphs into
curved spaces.

Figure 1: Illustration of the correspondence between a graph and its natural curved embedding space. On the
left, a hierarchical structure is embedded on a negatively curved surface. In the middle, a grid-like structure is
embedded on a flat surface. On the right, a graph with loops is embedded on a surface of positive curvature.

Choosing a curved embedding space can be motivated by the following observation: The number of vertices in
a tree graph grows exponentially with the depth of that tree. Moreover, circles in hyperbolic space also grow
exponentially with their radius. This connection between tree-like structures and hyperbolic space has been
investigated by mathematicians for a long time - most notably by Gromov in [Gromov, 1987]. Theoretical work
(such as [Kleinberg, 2007]) introduced that concept to the data science community and suggested to choose hy-
perbolic space as representation space for tree-like structures. In particular, an embedding in hyperbolic space
can preserve the distances within nodes of a tree very well [Sarkar, 2011]. This idea has led to great success of
embedding real world networks.
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The reason for that great success is that lots of real world networks are essentially scale-free1 networks [Adcock
et al., 2013]. These graphs posses an underlying hierarchical structure [Ravasz and Barabási, 2003] and are
hence well-suited to hyperbolic space. The connection between scale-free networks and hyperbolic space has
also been shown by proving that randomly connected nodes in hyperbolic space naturally form scale-free graphs
[Gugelmann et al., 2012].

Figure 2: Illustration of a graph which does not fit per-
fectly in hyperbolic space due to its loops. Every ver-
tex belongs to two structures at the same time, namely
the hierarchical order (indicated by black edges) and the
cyclical order (indicated by blue edges).

Despite the great success of embeddings into hyper-
bolic space, there are graph properties which cannot
be represented accurately in hyperbolic space:
Hierarchical data need not be belonging to one hier-

archy only. There can be different hierarchies at once
to which a node might belong. An example in terms
of a social network could be the president of the fire
department who is at the same time just an ordinary
member of a bowling club without special responsibil-
ity. The underlying space should therefore be able to
embed different hierarchies at once, i.e. it should pos-
sess independent hyperbolic subspaces. Additionally,
a network does not have to be only hierarchical. In
particular there are networks which are known to fit
best into flat spaces - such as grids. Of course, one
should also not be constrained to flat and hyperbolic
spaces only: A three-dimensional tilting vector for ex-
ample can be represented best on a two-dimensional
spherical subspace.
Rather than again improving the methods how to em-
bed networks in hyperbolic space, the idea leading to
this work is to take the next logical step and to fur-
ther adapt the geometry of the embedding space to
the problem. This should done by choosing a differ-
ent, more general manifold from the class of symmetric spaces.

Symmetric spaces can have subspaces of different curvature at the same time which addresses the problems
stated above. Additionally, these spaces are as smooth manifolds usable for operations within the embedding
space.
Embedding into a symmetric space can be a very powerful tool, because a unified embedding in differently
curved subspaces simplifies the interpretation of the network significantly: A promising application of network
interpretability is a network in the latent space of a neural network. This Euclidean space of high dimension
could be transformed to a symmetric space of fewer dimensions, such that the curvature of the subspaces
provides information about the meaning of features. For instance, one might think about image recognition:
The orientation of an object could be represented in a spherical subspace, the position in an Euclidean subspace
and the size (i.e. the amount of the picture the object occupies) in a hyperbolic subspace.

1A scale-free network is defined as network whose degree distribution follows a power law: P (k) ∼ k−γ . Scale-free networks
possess so-called “hub nodes” which dominate the graph structure due to their enormous amount of edges. They serve as hubs for
travelling within the graph and illustrate the hierarchical structure of the network.
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Outline of the thesis

This thesis is split in two parts:

1. A general treatment of symmetric spaces

2. An experimental examination of graph embedding in curved manifolds.

Both parts can be read independently from each other. However, they are conceptually related: The survey on
symmetric spaces focuses on sectional curvature and totally geodesic submanifolds. These concepts are impor-
tant for network embedding.
The embedding part points out the connection between graphs and their natural embedding space.

Symmetric spaces (in their full generality) have not received much attention from data science yet. This justifies
the introduction to symmetric spaces aiming at a broad readership and hence trying to give an intuitive approach.
For this reason, details which might hamper intuition are omitted while being sufficiently mathematically sound.
To simplify reading, table 1 serves as an index of notation.

The second part gives a short introduction to network embedding. The prevalent embedding procedure -using
the so-called gradient descent algorithm- is revisited. Starting from the implementation [Nickel and Kiela, 2017]
improvements are proposed and examined using own experimental results.
An outlook to further research is given. This in particular includes using algorithms developed in the first part
about symmetric spaces.

3



An Introduction to Symmetric Spaces

What makes a space a symmetric space?

A symmetric space is a Riemannian manifold M which possesses for every point p ∈ M an isometric map sp
-called symmetry- with special property of being equivalent to the geodesic2 reflection at p. A geodesic reflection
at p is basically the ”normal” point reflection at p: Every geodesic γ with γ(0) = p is mapped by sp such that
for a neighbourhood of p sp(γ(t)) = γ(−t) holds.
A geodesic reflection exists in any Riemannian manifold, but in general it is not an isometry, i.e. it does not
leave distances and angles invariant.
To simplify visualization of the following concepts, the well-known symmetric spaces Rn, Sn and Hn are
revisited in section 3.

2 Getting a feel for curvature

Curvature is going to play an important role for the study of symmetric spaces. For this reason, a summary of
important tools and their application is given with emphasis on their illustration. This is covered in much more
detail by the great illustrative source [Nakahara, 2003, Chapter 7]. Readers familiar with these notions may skip
this section.

2.1 Tangent vectors

Since we are familiar with Euclidean space Rn -which is a vector space- one might be sloppy in differentiating
vectors from points, since their correspondence is obvious. However, a manifold is in principle only a set of
points which looks like Rm in a very tiny neighbourhood of an arbitrary point.
For every point we can define the tangent space as an ordinary flat vector space Rn. The tangent space represents
the local flatness of M . At a point p the tangent space of the manifold M is written TpM . Since this tangent
space is a vector space, one can find a basis for it. A vector v can hence be expressed as:

v =

dim(M)
∑

α

vαe(p)α, v ∈ TpM. (1)

The basis vectors ei are dependent on the point to which the space is tangent, as the tangent spaces of different
points are different spaces.
The following will use the abstract index notation instead of the notation above, which is used in differential
geometry and Physics. It makes use of the Einstein sum convention, i.e. the same indices up and down are
implicitly summed over.3 If the components of a vector have superscripts, the vector belongs to the tangent
space, a vector with subscript on its components belongs to the cotangent space4. The basis vectors of the
tangent space are denoted by ∂i which is shorthand for ∂xi . This basis vector is pointing in the direction of the
coordinate xi 5. The notation for a vector v becomes:

v = vα∂α :=

dim(M)
∑

α

vα∂α. (2)

2A geodesic is a path on a manifold which is a path whose velocity vector does not change along the path. It is the generalization
of a straight path in a curved space. More details below in section 2.6.

3The superscript must not be confused with an exponent. To avoid ambiguity brackets are imposed if necessary.
4the dual space of the tangent space, see section 2.3
5A vector acts as a directional derivative at its base point. Magnitude and direction of that vector determine its action on a

smooth scalar function on that manifold.
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So, for each point there is a Euclidean vector space Rm with m corresponding to the dimension of M . Although
the vector spaces at p and q are isomorphic, it does not make sense to compare vectors from TpM and TqM to
each other, since the coordinates of the tangent vector spaces need not fit together. The set of all tangent spaces
at M is called TM . It is of dimension 2 dim(M), since it consists of pairs (p, v), p ∈ M, v ∈ TpM which are
both of dimension dim(M) = m.

Figure 3: Two tangent spaces TpM and TqM with vectors v and w on a manifold M . The two tangent spaces
are each isomorphic to R2, but since they are located at different points, the term v + w does not make sense
because the orientation of the basis vectors (symbolized by red arrows) in general does not fit.

2.2 The metric tensor g

A Riemannian manifold (and hence also a symmetric space) possesses a metric tensor, often denoted by g. This
tensor is defined on all of the manifold and indicates the way to calculate the scalar product of two vectors. In
contrast to Euclidean space, the scalar product is in general dependent on the point p where it is evaluated.
Both vectors need to be tangent to the manifold at p. The scalar product of two vectors, the first a tangent
vector at p, the second tangent to q is not defined.
The tensor field g is the central quantity to characterize the curvature, since all curvature tensors are derived
from g.

Recap:
Let us recall the default metric on Euclidean space R3:

g(p)(·, ·) = 1 · dx⊗ dx+ 1 · dy ⊗ dy + 1 · dz ⊗ dz (3)

which means that the scalar product of two vectors v, w in e.g. R3 is calculated as:

〈v, w〉 = 〈v1∂x + v2∂y + v3∂z, w
1∂x +w2∂y +w3∂z〉 = g(p)(v, w) = 1 · v1 ·w1 +1 · v2 ·w2 +1 · v3 ·w3. (4)

Note that the Euclidean metric tensor is constant on the manifold because the coefficients in eq. 3 are
constant. The scalar product is hence not dependent on the evaluation point p. The metric tensor can
also be written as a matrix scheme, i.e. the entries correspond to the coefficients in eq. 3:

g =





1 0 0
0 1 0
0 0 1



 . (5)
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A general metric tensor field is defined as map:

g : M × TM × TM → R (6)

(p, v, w) 7→ g(p)(v, w), v, w ∈ TpM. (7)

The metric is a (0, 2)-tensor field which means that one needs to plug in zero covectors6 and two tangent vectors
to obtain a real number. A metric tensor field g̃(p) could be:

g̃(p0) =





1 2 0
2 0 0
0 0 f2(p0)



 = 1 · dx⊗ dx+ 2 · dx⊗ dy + 2 · dy ⊗ dx+ f2(p0) · dz ⊗ dz (8)

with
g̃(p0)(v, w) = 1 · v1 · w1 + 2 · v1 · w2 + 2 · v2 · w1 + f2(p) · v3 · w3, because dxi∂xj = δij . (9)

The metric is written in index notation as:
g = gαβdx

αdxβ . (10)

The two lower indices on gαβ indicate that it is a (0, 2)-tensor. By convention, the tensor product sign “⊗” as
in eq. 8 is dropped. The values of gαβ can be read off from the matrix form as e.g. in eq. 8. The differentials
dxi are basis vectors of the cotangent space T ∗

pM introduced below.
In index notation, the scalar product has the form:

g(p)(v, w) = gαβdx
αdxβvµ∂µw

ν∂nu = gαβv
µwν(dxα∂µ)(dx

β∂nu) = gαβv
µwνδαµδ

ν
β = gαβv

αwβ . (11)

with usual Kronecker delta and the dependence on p dropped for simplicity.

2.3 Covectors

As each of the tangent vector spaces of a manifold of dimension m is isomorphic to the vector space Rm, linear
algebra states that there is a dual vector space of dimension m. The dual vector space is the space of linear
maps sending a vector to a scalar. If we consider the space TpM as vector space, its dual space is written
T ∗
pM

∼= LinMaps(TpM ;R). In abstract index notation, a covector w is written:

w = wαdx
α :=

dim(M)
∑

α

wαdx
α. (12)

The covector’s coefficient has a lower index, in contrast to the upper index of a vector as in eq. 2.
An intuitive understanding of a covector is given in the figure below:

6See section 2.3 below.
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Figure 4: The concept of a covector v∗ can be understood as planes with normal vector v. The density of those
planes corresponds to the magnitude of the covector v∗ living in T ∗

pM . The product of a covector with a vector
determines “how many” planes the vector intersects. In fact, since a covector is a linear map from TpM to R,
their product is a real number. In this sense, one should understand the planes as densities, since the result
does not have to be a natural number.

2.4 The duality of tangent space and cotangent space

Since (T ∗
pM)∗ ∼= TpM , the spaces are closely related to each other. In fact, the metric tensor provides the

natural map between them: Recall that the metric tensor g maps two vectors to a scalar. This allows to map a
vector v ∈ TpM to its dual v∗ ∈ T ∗

pM :

♭ : TpM → T ∗
pM = LinMaps(TpM ;R)

v 7→ g(v, ·) =: v∗.

In coordinate form: vα∂α 7→ gαβv
αdxβ =: vβdx

β .

(13)

In fact, v∗ 7 is a covector, since ♭(v) = g(v, ·) linearly maps a vector to a scalar. In index notation:

vβdx
βwγ∂γ = vβw

γδβγ = vβw
β = g(v, w) = wβv

β . (14)

The inverse metric tensor g−1 maps two covectors to a scalar. Using this, the inverse operation of ♭ is also
possible:

♯ : T ∗
pM → TpM = LinMaps(T ∗

pM ;R)

v 7→ g−1(v, ·)
in coordinate form: vαdx

α 7→ gαβvα∂β =: vβ∂β .
8

(15)

In fact, since g−1(v, ·) ∈ LinMaps(T ∗
pM ;R), ♯(v) is a vector.

7To avoid confusion with complex conjugate numbers, we will not use the “∗” symbol. Instead, we use the index notation with
lower index on the component and upper index on the basis covector.

8Note that gαβ is the inverse metric tensor g−1(·, ·), since it is a (2, 0)-tensor, whereas gαβ is a (0, 2)-tensor.
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Cotangent space in the language of Physics:
The function of the metric tensor becomes clearer in “bra/ket” notation: Let us use a vector space V
and its dual V ∗: A regular vector is a ket element and a covector is a bra element. The metric tensor
then has the form:

g(|v〉 , |w〉) = 〈v| |w〉 = 〈v, w〉 and g−1(〈v| , 〈w|) = 〈v| |w〉 = 〈v, w〉. (16)

The metric tensor thus sends a vector to its covector by:

NV ∋ |v〉 7→ g(|v〉 , ·) = 〈v| ∈ V ∗ which is a covector. (17)

The opposite direction is also possible via:

V ∗ ∋ 〈v| 7→ g−1(〈v| , ·) = |v〉 ∈ V which is a regular vector. (18)

2.5 The covariant derivative

The covariant derivative is a directional derivative sending functions to functions and tensors to tensors. It is
the natural generalization of the directional derivative from Euclidean space. It takes into account that not only
the components of a tensor may change, but also that the basis vectors change because of the curvature of the
manifold and thus can be understood as total derivative.
The direction of this derivative follows a vector. Since a vector v is always located at one point (e.g. the point
p), the covariant derivative measures the change of a quantity in the direction of v at point p.
The covariant derivative of a vector field X along a vector field V is thus:

∇V X = (V α∂βX
β)∂α +XαV βΓγ

αβ∂γ (19)

which is implicitly dependent on the evaluation point p at which both V and X must be defined. The first part
corresponds to the derivative of the components of X, the second part corresponds to the derivative of the basis
vectors ∂i. In Euclidean space, the second part vanishes. The symbol Γ is called Christoffel symbol and keeps
track of the derivative of the basis vectors. The Christoffel symbols are also a field, i.e. they are dependent on
the evaluation point.

2.6 Parallel transport

Using the covariant derivative, we can introduce the concept of parallel transport along a curve. Pictorially,
a vector field X is said to be parallel along a curve C(t), if its magnitude and the angle between X and the
velocitiy vector of the curve are constant at every point of the curve. This is the case, if the covariant derivative
with respect to the velocity vector of the vector X is zero. More formally, consider a curve C

C : R → M

t 7→ C(t) (20)

and its velocity vector field9

C∗ : R → TM

t 7→ (∂tCi(t))∂i =: Ċ, Ċ ∈ TC(t)M.
(21)

One searches a vector field, which is parallel, i.e.

∇ĊX = 0, (22)

9Note that this vector field is only defined at the image of C, since the other points of M are not reached by the curve. Thus
one cannot define a velocity vector at every point of M .
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which is an ordinary differential equation. If one wants to parallel transport a vector v ∈ TpM to the point q
along a curve γ, one solves the above equation uniquely with the initial condition X(p) = v. The vector X(γ(t1))
with γ(t1) = q is then the parallel tranported vector at q.
Note that the outcome of the parallel transport is dependent on the curve. In particular, this dependency will
be used to determine the curvature of a manifold in section 2.8.

2.7 Geodesics and the Riemann exponential map

The notion of parallel transport allows to define a geodesic curve as “straightest possible” path. More formally,
the velocity vector of a geodesic curve is parallel along that very curve, i.e.

∇Ċ Ċ = 0. (23)

Translating this equation to coordinates as in eq. 19 with V = X = Ċ yields:

(

d2Cγ

dt2
+

dCα

dt2
dCβ

dt
Γγ
αβ

)

∂γ (24)

This differential equation can (locally) be solved uniquely with initial conditions for a starting point and a
starting velocity vector as a result of the Picard-Lindelöf-theorem for ordinary differential equations.
The Riemann exponential map is defined implicitly using the solution to the geodesic equation eq. 24:

exp : M × TM → M

(p, v) 7→ expp(v) = γv(t = 1).
(25)

where γv is defined as the unique geodesic starting at p with initial tangent vector v. As a consequence from eq.
24, the Riemann exponential map is in principle difficult to compute explicitly.

2.8 The Riemann curvature tensor

Note that the parallel transport in flat space is trivial, i.e. path independent. The dependency of parallel
transport on the chosen path thus serves as indicator of the intrinsic curvature of the manifold. To determine
the curvature at a point p, one has to parallel transport a vector along a path following the first vector field and
then following the second vector field and vice versa.
The Riemann curvature tensor maps three vector fields to another vector field and is hence a (1, 3)-tensor:

R : X (M)×X (M)×X (M) → X (M)

(X,Y, Z) 7→ (∇X∇Y −∇Y ∇X −∇[X,Y ])Z =: R(X,Y )Z

with X (M) the space of smooth vector fields on M .

(26)

The Riemann curvature tensor has in the order of 1
12n

4 independent entries for dim(M) = n and is thus a very
general concept of curvature. More specific curvature quantities are e.g. the sectional curvature or the Ricci
scalar. The latter indicates volume growth averaged over all directions, the former is defined below.
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Figure 5: Illustration of infinitesimal parallel transports along a tiny rectangle. The horizontal and vertical pieces
of the paths are induced by the flow of X and Y , respectively. The blue vector v at p is parallel transported
along the curves C1 and C2. The difference between the resulting vectors vC1

and vC2
is proportional to the

Riemann curvature tensor. Infinitesimally, it corresponds to the curvature tensor at p.

10



2.9 The sectional curvature

Instead of having a notion of the curvature in all directions at once, sectional curvature gives the scalar value of
the curvature of a two-dimensional subspace spanned by two vectors emanating from the same point. Imagining
a 2-dimensional surface in 3-dimensional space, the sectional curvature corresponds to the size of spheres or
saddles which snuggle to the surface. It becomes apparent that this quantity is dependent on the evaluation
point:

Figure 6: Illustration of the sectional curvature of the surface from fig. 3. Reddish color indicates positive
curvature, blueish color indicates negative curvature. Positive curvature means that the surface in a small area
looks like a sphere, negative curvature corresponds to saddle-shape of the neighbourhood. The absolute values
of the curvature depend on the scale of the surface, e.g. the sectional curvature of a sphere of smaller radius is
bigger than the one of big spheres.

The sectional curvature K can be computed using the Riemann curvature tensor as:

K(p, V,W ) =
gp(Rp(Vp,Wp)Wp, Vp)

gp(Vp, Vp)gp(Wp,Wp)− gp(Vp,Wp)2
, V,W ∈ X (M) (27)

where g and R are dependent on p. At a point p with two tangent vectors at p, this boils down to:

K(v, w) =
g(R(v, w)w, v)

g(v, v)g(w,w)− g(v, w)2
, v, w ∈ TpM (28)

where g and R are implicitly evaluated at p. The quantity K is independent of the two vectors v and w due to
the normalization, as long as they are linearly independent.
Euclidean space, spheres and hyperbolic space well-known spaces of constant sectional curvature. However, sym-
metric spaces in general do not have constant sectional curvature while maintaining a high degree of symmetry
and hence conceptual simplicity.

What does the sectional curvature mean?

Sectional curvature of a space can be understood as the relation between the volume of a circle and its radius.

This ratio is πr2

r for the flat space R2, 4π sinh2 r
r in negatively curved space H2 and 2π(1−cos r)

r for the positively
curved sphere S2. Notice that volume of a disk grows faster in hyperbolic space H2 than in Euclidean space.
Analogously, volume growth in spherical space S2 is slower than in Euclidean space. Essentially, this is what the
Ricci scalar signifies. The sectional curvature is in a way a restriction of the Ricci scalar to the two-dimensional
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space which is spanned by the two vectors from eq. 28. The sectional curvature is hence more specific than the
Ricci scalar curvature.

Figure 7: A curved surface and two projections with respective osculating circles at the touching point. These
osculating circles have their midpoint on different sides of the surface. The curvature is hence defined to have
negative sign; the surface looks like a saddle. The size of the osculating circles is an inverse measure of the
magnitude of curvature. Small osculating circles result in a curvature of high magnitude. The depicted surface
has overall negative sectional curvature, its magnitude is dependent on the evaluation point.

3 Euclidean, spherical and hyperbolic space

3.1 Euclidean space Rn

Euclidean space is well-known to be a flat space. Due to its vector space structure, one can easily find the
symmetries at any point p:

sp : M → M

y = p+ w 7→ p− w, p, v, w ∈ Rn.
(29)

If one chooses p to be the origin, it becomes apparent that for every point p, sp is a point reflection at p. Being
slightly sloppy, from now on the notion of a point reflection and a geodesic symmetry should be considered
identical.
The default metric on Euclidean space corresponds to the identity matrix as pointed out before. The Riemann
curvature tensor of Euclidean space vanishes everywhere. It follows that the sectional curvature is also zero
everywhere.

3.2 Spherical space Sn

The sphere is a space of positive curvature, it is hence bending inwards. The sphere of radius R can be embedded

in Rn+1 as Sn
R = {x ∈ Rn+1| ‖x‖2 = R2} with S2

1 =: S2. This is the best-know embedding, but keep in mind
that the sphere can also be embedded in Rn ∪ {∞} via the stereographic projection as in fig. 8. Although the
former embedding is much more common, both embeddings are equally well suited and have their advantages.
Both models will be denoted by Sn, as they represent the same space.
The common “sphere”-embedding however simplifies finding the symmetries because it enables to use the inner
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product space structure of the ambient space Rn+1 to construct the symmetries at a point p:

sp(y) = p〈y, p〉 − (y − p〈y, p〉) = −y + 2p〈y, p〉. (30)

Considering p and y as vectors, the first term is the component in direction of p, the second term is the remaining
part perpendicular to p. This term is subtracted, i.e. reversed.

Figure 8: Two symmetries, namely sp and sq on the sphere S2. On the left in the embedding in R3, on the right
in the stereographic projection in R2. The blue circles help to orientate in the models. The green and yellow
arrows emphasize the vector space structure of the embedding space R3 as used in eq. 30. The red geodesics in
both models need not be straight in the Euclidean embedding spaces R3 and R2, respectively.
The point reflection is independent of a particular model; eq. 30 is hence just a realization of the symmetry
with respect to the left 3-dimensional embedding. This equation does hence not hold for the right 2-dimensional
embedding.

Distortion of the embedding

Note that the distance between two points in Sn is not equivalent to the distance between these points in
the embedding manifold. Consider (0, 0, 1)T and (0, 0,−1)T in S2 ⊂ R3: The true distance is π, namely half
the circumference. The embedding distance however is 2. Yet, the intrinsic length of an arc within S2 in the
embedding manifold R3 is identical to the length of that arc measured within R3. This embedding can be
thought of as a non-distorting embedding. In fact, the sphere inherits its metric tensor from the Euclidean
metric tensor in R3.
In contrast, the stereographic projection is a distorting embedding: The distance between two points measured
with the metric of the embedding manifold is different from the intrinsic distance between two points of S2.
This can be taken care of by introducing a metric tensor (for n ≥ 2):

g(x) =
4

(1 + r2)2

n
∑

i

dxi ⊗ dxi, with r =

√

√

√

√

n
∑

i

(xi)2. (31)

This metric tensor is obviously not inherited from the embedding space R2, hence this is a distorting model
increasing with r corresponding to approaching the north pole of the sphere.

The sectional curvature

The sectional curvature K of a sphere of radius R can be computed via eq. 28:

KR(p) =
1

R2
(32)

which is independent of the evaluation point p and supports the intuition of small spheres to be curved more
strongly.
Scaling the metric tensor in the picture of the stereographic projection by a factor λ can be understood as
multiplying all distances by λ. The stereographic projection hence represents a sphere of radius R′ = λR. Its
sectional curvature thus behaves as:

g 7→ g′ = λg → K ′ =
1

λ
K. (33)
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3.3 Hyperbolic space Hn

Hyperbolic space is space of constant negative curvature. Because Euclidean space has curvature zero, and a
sphere has positive curvature, hyperbolic space completes the trio due to its negative curvature. One can imagine
it as being bent inwards and outwards at the same time in different directions like a saddle. Analogous to the
sphere, hyperbolic space can be embedded in Rn+1 as Hn = {x ∈ Rn+1| ‖x‖M = −R2}. Note that the norm is

taken with respect to the Minkowski scalar product: 〈x, y〉M = (
∑n−1

i=1 xi · yi)− xn · yn. Just as the sphere, this
hyperboloid can also be embedded in Rn, e.g. as the Poincaré ball (in 2 dimensions also called Poincaré disk).
One can again make use of the embedding to find the symmetries at an arbitrary point p:

sp(y) = p〈y, p〉M − (y − p〈y, p〉M ) = −y + 2p〈y, p〉M . (34)

Figure 9: Two symmetries, namely sp and sq in hyperbolic space H2. On the left in the embedding in R3 as
hyperboloid, on the right as Poincaré disk projection in R2. The geodesics within the manifold need not be
straight in the embedding. Note that the symmetry sp at point p in eq. 34 corresponds to the embedding in
R3 using the vector space structure of the embedding space. Hyperbolic space is infinte, i.e. the hyperboloid
extends to infinty in z-direction. The Poincaré disk is an open disk, the further upwards the points are in the
hyperboloid model, the closer they are to the boundary of the disk.

Distortion of the embedding

The hyperboloid embedding is a non-distorting embedding in the sense that the metric on the hyperboloid is
induced by the Minkowski metric of the embedding manifold Rn+1. It is just the restriction of the Minkowski
scalar product to the tangent space of the hyperboloid. This is analogous to the case of Sn ⊂ Rn+1.
For the Poincaré disk model, one introduces a metric tensor g which carries the information about the distortion
between the true hyperbolic space and the Euclidean disk it lives in. This tensor is then dependent on the
coordinates of the embedding. The metric tensor for the Poincaré disk can be computed as pullback tensor via
the transformation and reads:

g(x) =
4

(1− r2)2

∑

i

dxi ⊗ dxi, with r =

√

∑

i

(xi)2 (35)

Note the similarity between this metric tensor and eq. 31. Since the disk is bounded, the metric has to capture
that hyperbolic space is infinite as it diverges to infinity as r → 1.

The sectional curvature

The sectional curvature K of a hyperboloid of radius R can be computed via eq. 28:

KR(p) = − 1

R2
(36)

which is again independent of the evaluation point p. The sharper and more cone-like the hyperboloid, the more
negatively it is curved.
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Models of hyperbolic space
Aside from the hyperboloid model and the Poincaré disk model which have been introduced in section
3.3, there are even more models of hyperbolic space such as the upper half plane embedding or the
Beltrami-Klein model. The upper half-space model will be useful for the Siegel space in section 14.
All models of hyperbolic space will be denoted by Hn, it is however clear from context, which model is
used.
Recall the models of hyperbolic space which we have encountered so far:

❼ The hyperboloid model:
Hn = {x ∈ Rn+1| ‖x‖M = 1} with metric tensor g(x) =

∑n
i dx

i ⊗ dxi − dxn+1 ⊗ dxn+1

❼ The Poincaré ball model:
Hn = {x ∈ Rn| ‖x‖2 < 1} with metric tensor g(x) = 4

(1−‖xn‖2
2)

2

∑n
i dx

i ⊗ dxi

The model as upper half-space is Hn = {x ∈ Rn|xn > 0} with metric tensor g(x) = 1
(xn)2

∑n
i dx

i ⊗ dxi.

The figure below shows the two-dimensional Poincaré ball and the model as upper half-space with two
geodesic symmetries.

Figure 10: Two symmetries, namely sp and sq in hyperbolic space H2. The blue and gold circles help
orientating. On the left in the embedding as Poincaré disk, on the right as upper half-space. Note that
hyperbolic space is infinite, i.e. both the Poincaré disk and the upper half-space are open sets in R2.

Complex coordinates for H2

It is convenient to consider 2-dimensional hyperbolic space in complex coordinates. This of course
holds for the Poincaré disk and the upper half-space, since they are embedded in 2-dimensional space,
whereas the hyperboloid is embedded in 3-dimensional space and hence does not naturally fit to complex
coordinates. These models become in complex coordinates:

❼ The Poincaré disk model:
H2 = {z ∈ C| |z| < 1} with metric tensor g(z) = 4

(1−|z|2)2 dz ⊗ dz̄

❼ The upper half-space model:
H2 = {z ∈ C|ℑ(z) > 0} with metric tensor g(z) = 1

ℑ(z)2 dz ⊗ dz̄

Note that the natural analogy {z ∈ Cn| |z| < 1} ≇ Hm does not hold for any m if n > 1. Hyperbolic
space in higher dimensions is represented by the models embedded in the real numbers as above.
As both models are equivalent, there is a map called “Cayley transform” sending the points of the
half-space to the disk and vice versa:

✐ : Disk → half-space z 7→ zi+ i

−z + 1
(37)

✐−1 : half-space → Disk z 7→ z − i

z + i
. (38)

Note that these maps rotate by 90◦ as one can see in fig. 10 above.
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4 Transvections as composition of symmetries

The defining property of a symmetric space is to posses a so-called symmetry at every point p. This symmetry
is an isometry, i.e. it keeps distances and angles invariant. A priori, a symmetric space only possesses these
geodesic symmetries. One can now ask if a symmetric space also possesses other isometries aside from geodesic
symmetries like translations and rotations as in the example space R2. In fact, a combination of two geodesic
symmetries at different points is a translation. This can be motivated easily for the example space R2, but holds
for any symmetric space:

(a) Initial situation with geodesic γ and vector field X

parallel to γ

(b) Setup after the application of the first symmetry sm

(c) Setup after the application of the transvection sn ◦sm

Figure 11: Illustration of a transvection sm ◦ sn.

Consider a unit speed geodesic γ(t), t ∈ [−∞,∞] a and
a vector field X parallel to γ b as depicted in fig. 11a.
Apply a geodesic symmetry sm WLOG at its midpoint
γ(0) = m. By definition of the geodesic symmetry, the
geodesic is mapped to itself. For X at m holds:

dsmX(t)
∣

∣

∣

t=0
= −X(t)

∣

∣

∣

t=0

with X(t) := X(γ(t)).
(39)

Since sm is an isometry, the reflected vector field is again
parallel to the reflected geodesic, because angles are pre-
served. This means that eq. 39 holds for any t. The
situation is depicted in fig. 11b.
If one applies another symmetry WLOG at point n =
γ(s) lying on the geodesic, γ and X are reflected again.
X is hence pointing in the initial direction again. How-
ever, the combination of symmetries has moved points
and vectors along the geodesic:

(sn ◦ sm)(γ(t)) = γ(t+ s),

d(sn ◦ sm)γ(t)X(t) = X(t+ s).
(40)

This combination of symmetries is called a transvection

and is the same as a parallel transport along the
geodesic connecting m and n. The result can be seen in
fig. 11c. A transvection is thus a generalization of the
well-known translation in the space Rn.

aAny geodesic can be extended to infinite length, as described
in section 5

bThis means that X is parallel transported along γ; the angle
between the vector field X and the velocity vector γ̇ is constant:
∇γ̇X = 0.

The simple requirement to possess a geodesic symmetry yields another class of isometries, namely the
transvections. Naturally, rotations around a point should also be isometries, as they leave angles and dis-
tances invariant. In fact, rotations can be generated via transvections in a little more complicated way via the
Lie bracket of transvection Killing vector fields. This will be shown in detail in section 8.
Transvections, rotations, geodesic symmetries and their combinations are again isometries. They hence form a
group, the isometry group.

Further detail on rotation groups

It will become important for the section about the Lie algebra of the isometry group that the group of isometries
can have disjoint components. To motivate this, consider the example of the rotations on Rm:
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WLOG 10 choose the origin in Rm. A point reflection with respect to the origin can be written as matrix
−Idm with all entries on the diagonal equal to −1. This matrix has determinant +1 and −1 in even and odd
dimensions and belongs to the group of orthogonal matrices O(2n) and O(2n + 1), respectively. The group of
orthogonal matrices is an unconnected manifold: Since the map det : O(m) → R is continuous, a closed image
requires a closed pre-image. As {1,−1} is the closed image, O(m) splits into two closed disjoint components.
These two components are O+(m) = SO(m) and O−(m) with positive and negative determinant, respectively.
One can hence investigate if there is a path connecting the identity to the point reflection at the origin:

❼ In the case of m = 2n even dimensions a point reflection can be obtained as n rotations about n axes.
One can continuously rotate about these n axis to obtain the point reflection at the origin. Due to this
continuity there is a path within the manifold O(2n) connecting the identity Id2n to −Id2n. Hence both
Id2n and −Id2m live in the component SO(2n).

Example: The rotation group SO(4)
Consider the case m = 4. Since there is a path within SO(4) connecting Id4 to −Id4, there should be a
vector v ∈ Te

(

SO(4)
)

such that the Riemann exponential map at e = Id4 yields −Id4. The vector v is

itself a matrix. The tangent space Te

(

SO(4)
)

is denoted as ❵♦✭✹✮a. This space can be represented as the
set of all skew-symmetric (4× 4)-matrices.b

The Riemann exponential map sends the infinitesimal transformation v to the point reflection:

Te(SO(4)) = ❵♦✭✹✮ ∋ v =









0 π 0 0
−π 0 0 0
0 0 0 π
0 0 −π 0









with expe v = −Id. (41)

In this case, the exponential map is the actual matrix exponential which explains the origin of the name.
Note that a point reflection in R2n is in fact the same as a rotation. In particular, the rotation in R2 is
equivalent to a point reflection with respect to the origin:

Figure 12: On the left, a rotation by almost π of the small clock is shown. On the right, the small clock
is reflected with respect to the origin of the clock. One can see that a point reflection in R2n can be
obtained continuously by rotations.

aThe Gothic letters are used for the tangent space at the identity if the manifold is a Lie group, see section 7
bNote that an element v ∈ ❵♦✭✹✮ is not an element of SO(4), since det v = 0.

10A redefinition of coordinates can transform any point to the origin.
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❼ Now consider the case of 2n+ 1 dimensions: There is no way to obtain continuously the point reflection.
This is due to the fact that Id2n+1 has determinant +1, but the point reflection −Id2n+1 has determinant
−1. There is hence no path within O(2n + 1) connecting these two matrices, as they lie in unconnected
components of O(2n+ 1):
In the language of manifolds it is impossible to find a vector v ∈ Te

(

O(2n+ 1)
)

such that the emanating
geodesic reaches −Id2n1:

∄ v ∈ SO(2n+ 1) : expe v = −Id. (42)

Example: The rotation group SO(3)

The group SO(3) is the well-known group of orientation-preserving rotations on R3. Apply a geodesic
reflection with respect to the origin in R3. This point reflection can be represented by −Id3. There is
no orientation-preserving rotation (i.e. a rotation belonging to SO(3)) sending the basis vectors back to
the original directions. There is hence no path within O(3) connecting Id3 with −Id3 since they lie in
different components.

(a) The standard basis on R3. This is a right-handed
system.

(b) After application of a point reflection with respect
to the origin, one obtains a left-handed system.

Figure 13: In R3 one can see easily that a point reflection with respect to the origin cannot be obtained by
a rotation from SO(3), since the orientation has changed. This illustrates that O(3) has two disconnected
components, namely O(3) = O−(3) ∪ SO(3). In particular, the point reflection matrix is contained in
the component O−(3), the identity matrix is contained in SO(3).

One denotes the component of the isometries on M which is connected to the identity by I0(M) or Iso+(M).
For the case of O(m) above, this component is written as SO(m).

5 First results for symmetric spaces

The simple demand that the manifold M be a symmetric space leads to a number of interesting results (worked
out in [Eschenburg, 1997]).

❼ A symmetric space is a complete metric space, since it is geodesically complete. Any geodesic can be
extended to arbitrary length: WLOG let γ be a unit speed geodesic which is defined on [0, s) ∈ R.
The symmetry sγ(s·3/4) extends the geodesic to the interval [0, s · 3/2) but also reverses the direction of
the geodesic. A second application of the above reflection reverses the direction to the geodesic’s initial
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direction. Using transvections, any geodesic can be extended to arbitrary length. This is motivated in fig.
11.

❼ A symmetric space is a homogeneous space. This means that one cannot distinguish between any two
points of that manifold. An example of homogeneous space is the sphere S2. We can always find an
isometry which maps any arbitrary point to any other arbitrary point. If we regard the earth as S2, there
is no reason why e.g. the zeroth longitude needs to pass Greenwich. Any other choice for that longitude
would describe the geometry of earth by no means worse.
Mathematically speaking, the group of isometries on M called G̃ = I(M) acts transitively and smoothly
on M : For any two points p and q one can find an isometry which maps p to q. An example of such an
isometry is the transvection sq ◦ sγ(r), where γ(r) is the midpoint of the geodesic connecting p and q.

However, a homogeneous space is not equivalent to a space being isotropic. A space being isotropic means
that at one special point p, one cannot find a distinct orientation. This becomes apparent when standing
on top of a mountain. One may look around and see no differences whatsoever. This point is the only
point of isotropy. Yet, this setting is not homogeneous, since every hiker can agree that there is a distinct
point (namely the top of the mountain).
Mathematically speaking, a space M is isotropic at p if for any two unit tangent vectors v, w at p there is
an isometry ϕ with ϕ(p) = p and Dϕ(v) = w. This is basically a rotation around p mapping the direction
of v to the direction of w.
The notions of homogeneity and isotropy are confused often, but their distinction is important for our
purpose, as a symmetric space can be isotropic (such as S2), but does not have to be isotropic (such as
S2 × R2).
According to the situation of isotropy at the top of the mountain, there is the reversed situation of
homogeneity without istropy anywhere: A swimmer in the ocean feels the wind coming from one direction
and can hence determine a distinct direction to which every other swimmer can agree. No swimmer is
located at a special position, so this setting is homogeneous but not isotropic.

❼ A symmetric space has vanishing derivative of the curvature tensor (∇R = 0). One might be tempted
to think that the curvature then has to be constant everywhere and the manifold then has to have either
positive, negative or vanishing curvature everywhere, such as the sphere S2, hyperbolic space H2 or the
flat Euclidean space Rn. This is not the case, because the covariant derivative is a directional derivative.
Since a symmetric space is homogeneous but need not be isotropic, there can be different subspaces of
different curvature at the same time. When starting at point p and following one geodesic path γ1, one
will not measure a change of the curvature tensor, choosing a different geodesic path γ2 however leads
to a different, but also constant curvature tensor. This will become clearer with the examples in section
13later, in particular H2 × R and S2 × R.

6 The algebraic approach to symmetric spaces

A symmetric space is closely related to its isometry group. This can be motivated:
Consider M = S2 ⊂ R3 as manifold and its isometry group G = SO(3) of all distance-preserving rotations in
R3. Since all SO(3)-rotations map the sphere to itself, it is promising to study the relation between a manifold
M and its isometry group G := I0(M)11. Because the isometry group G = SO(3) is three-dimensional, but
M = S2 is only two-dimensional, the correspondence between M and G is a little more complex:

11Strictly speaking, the full isometry group is the group O(3). The positive component G := I0(M) is the set of orientation-
preserving isometries. In order to being able to reach every element of G via a path starting at the identity which is contained in
G, one chooses only the component I0(M). The geometry of the underlying manifold is not changed by any means.
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Definition: Group action on a manifold
Let G be a group and M be a manifold. G is said to act on M via the map θ if every g ∈ G induces a map
M → M . That is θ : G → Maps(M ;M). The map θ thus sends every element of G to a transformation
on M in such a way that for gi ∈ G hold:

θ(g1 · g2) = θ(g1) ◦ θ(g2). (43)

The symbol ‘·’ stands for the group operation within G, the symbol ‘◦’ for the composition of two maps.
G acting on M is written as G y M . Note that θ(g)(p), p ∈ M is often written as gp and the action θ
is suppressed.
Example:
The group SO(3) acts on S2 as the usual matrix vector product:

θ
(





a1 a2 a3
a4 a5 a6
a7 a8 a9





)





p1
p2
p3



 =





a1 a2 a3
a4 a5 a6
a7 a8 a9



 ·





p1
p2
p3



 . (44)

In fact: θ(g) ∈ Maps(S2;S2), g ∈ SO(3). Example:
The group PSL(2,R) = SL(2,R)

/

{±Id}a acts on the upper half plane H2 = {z ∈ C| ℑ(z) > 0} b as
Möbius transformations:

θ
(

(

a b
c d

)

)

(

ℜ(z)
ℑ(z)

)

=
a(ℜ(z) + ℑ(z) · i) + b

c(ℜ(z) + ℑ(z) · i) + d
as complex division. (45)

Explicitly, interpreting g ∈ SL(2,R) as matrix vector product gives a different result, e.g.:

(

cos(π2 ) − sin(π2 )
sin(π2 ) cos(π2 )

)

y (0, 1)T =
cos(π2 ) · i− sin(π2 )

i · sin(π2 ) + cos(π2 )
= i interpreted as Möbius transformation (46)

but:

(

cos(π2 ) − sin(π2 )
sin(π2 ) cos(π2 )

)

· (0, 1)T = (−1, 0)T → −1 + 0 · i, interpreted as matrix vector product. (47)

aNote that θ(g) = θ(−g) for g ∈ SL(2,R). One hence only considers the corresponding equivalence class of M .
bMore details about the action on the upper half-space model can be found in the box in section 14.

Remember that G := I0(M) is the path-connected component connected to the identity of the isometry group.
Since a symmetric space is homogeneous, we can choose any point p as base point. Consider the isotropy group
Gp := {g ∈ G|θ(g)p = p} which is a closed subgroup of G. We can now identify M with the coset space G

/

Gp

because every point of the manifold can be obtained by letting a distinct g ∈ G
/

Gp act on p.
Gp is often written as K, since the choice of the point p is suppressed because it is arbitrary.
The projection map π maps g ∈ G to its equivalence class [g] = gK where K stands for any arbitrary element
of K. Any two elements g1 and g2 are considered equal in G

/

K if there is a k ∈ K with g1 · k = g2. It follows:

g1(g2K) = (g1g2)K (48)

which the following commuting diagram illustrates:

G G
/

K

G G
/

K

π

LG LG

π

, with LG as left group multiplication in G.
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M then can be identified with G
/

K, i.e. M ∼= G
/

K. The diffeomorphism

G
/

K → M,

gK 7→ θ(g)p
(49)

makes this correspondence explicit. It follows:

dim(M) = dim(G)− dim(K) (50)

The concept of a symmetric space as coset space will become clear with the examples:

Example: R2 as coset space
The isometry group for Euclidean space R2 is the so-called Euclidean group E(2) =: G which consists
of both translations and rotations. WLOG one can choose the origin as base point p. Obviously, the
isotropy group K is the group of all rotations around the origin - namely O(2) - because only the origin
is fixed under the action of K.
One can obtain any other point q in R2 from p since there exists a g ∈ G such that θ(g)p = q. However,
identifying the point q with the transformation g is not unique, because there are several transformations
{gk1, gk2, ...}, ki ∈ K which map the origin p to the point q: If θ(g) maps the origin p to q, so does θ(gk),
since θ(gk) = θ(g) ◦ θ(k) and θ(k) does not move the origin. One therefore introduces the projection π:

π : G → G
/

K

g 7→ gK.
(51)

The Euclidean plane can thus be identified with E(2)
/

O(2) which corresponds to G
/

K.

Example: S2 as coset space
The isometry group G for the sphere S2 is SO(3) - as mentioned before. The isotropy group K is SO(2)
which is the group of those rotations which leave one axis invariant. If we choose p = (0, 0, 1)T , the
isotropy group consists of rotations around the z-axis which can be described as SO(2). Every point
q ∈ S2 can be obtained via a transformation from G. Again, if θ(g)(p) = q, then θ(gk)(p) = q for
k ∈ K. To make the correspondence unique, we use the projection π which maps every rotation g to the
equivalence class gK which is the set of transformations which at first apply an arbitrary element of K
and after that apply g.

Example: H2 as coset space
The isometry group G of hyperbolic space H2 in the hyperboloid model is SO(2, 1,R). These isometries
correspond to translations and rotations in hyperbolic space leaving the hyperboloid shown in fig. 9
invariant. We can again choose an arbitrary but fixed point p ∈ H2 and investigate its isotropy group.
We may choose the bottom point p = (0, 0, 1)T for convenience. The subgroup K ⊂ G which leaves p
invariant is SO(2): These are the rotations around the z-axis. Now one can consider the correspondence
between a mapping g ∈ G and a point q of manifold by θ(g)p = q. Applying any rotation k ∈ K before
applying θ(g) on p yields the same point θ(gk)p = q. To make the correspondence unique, we apply the
projection π and obtain a one-to-one correspondence between M and G

/

K as in eq. 49.
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7 Lie algebra of the isometry group as set of Killing vector fields

Due to a theorem by Myers and Steenrod [Myers and Steenrod, 1939] the isometry group G of a complete
Riemannian manifold is a Lie group.12 Since the isotropy group K is a closed subgroup, it is also a Lie group,
proving that the space G

/

K is actually a homogeneous space. The Lie group G is in general a curved manifold.
Instead of working with this curved object, many results also follow by just considering its Lie algebra which is
just a flat vector space and hence often much easier to deal with.
Recap: Lie algebra
The Lie algebra ❣ of the Lie group G is a distinct vector space of the same dimension as G. Any Lie group is
equipped with this vector space ❣ of dimension dim ❣ = dimG. This vector space can be regarded as the tangent
space at the identity element e, i.e. ❣ ∼= TeG ∼= R(dimG). The tangent space is a Euclidean vector space and
hence easy to deal with. Although the curved Lie group G is in general difficult to study, its Lie algebra ❣ carries
lots of information about G itself. This correspondence can be made explicit with the Riemann exponential map
which was introduced in section 2.7. This exponential map is a map into the Lie group G (which is a manifold):

exp : TeG = ❣ → G

v 7→ expe(v) = γv(1)

with γv(0) = e and γ̇v(0) = v ∈ TeG.

(52)

This map can be understood as a differential equation in G since both initial value γv(0) and its derivative at 0
are given.

Further detail

There is another definition of the Lie algebra in terms of left-invariant13 vector fields. For this definition one
needs the notion of a push-forward on a manifold M :
Let p, q ∈ M and φ : M → M . One can send a vector v at p to a vector φ∗(v) at q using the push-forward of
the map φ with φ(p) = q. The map φ∗ is a linear map, sending a vector from the tangent space at p to a vector
from the tangent space at q. This map φ∗ can be understood as Jacobian matrix of φ.
Let us now consider the push-forward on a Lie group G, i.e. a manifold which also carries group structure.
Introduce the left-multiplication:

Lg : G → G

h 7→ g · h = Lg(h)

⇒ Lg(·) ∈ Maps(G;G).

(53)

Its push-forward is:

(Lg)∗ : TG → TG

v 7→ (Lg)∗v ∈ TghG with v ∈ ThG.
(54)

The so-called left-invariant vector fields are those vector fields, which fulfill
(

(Lh)∗X
)

(g) = X(hg). (55)

These vector fields are special. In fact, on a manifold which is not a Lie group, there is no natural way to define
a distinct class of vector fields.

12As a quick reminder, a Lie group is a smooth manifold with an additional group structure, i.e. points of the manifold can be
multiplied using the group operation. An example is the Lie group SO(2,R):

SO(2,R) =

(

cos(φ) − sin(φ)
sin(φ) cos(φ)

)

, φ ∈ R.

It is a smooth 1-dimensional manifold (because it has only one free parameter φ) embedded in R4. In fact, it is equivalent to the
circle S1 ⊂ R2. Obviously, SO(2,R) is also a group with matrix multiplication as group operation.

13There is also the equivalent method to choose the right-invariant vector fields, but it has become convention to consider the
left-invariant vector fields.
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The equivalence of the two definitions of the Lie algebra can be seen by noting that a vector at e induces a
left-invariant vector field on all of G:

X(h) = (Lg)∗v with g · e = h. (56)

Vice versa, every left-invariant vector field can be associated with its value at e which is a vector in TeG ∼= ❣.
The isomorphism between the tangent space at e and the space of left-invariant vector fields is denoted by ξ and
ξ−1.

The Lie bracket on ❣

The Lie algebra possesses a Lie bracket, i.e. a bilinear, anti-symmetric product on ❣ fulfilling the Jacobi-identity.
This Lie bracket is inherited from the Lie bracket of vector fields on the manifold G as:

[v1, v2] := ξ−1
(

[ξ(v1), ξ(v2)]
)

, vi ∈ TeG,X (G) ∋ ξ(vi) left-invariant. (57)

More on the Lie bracket of vector fields in section 8.
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Recap: The flow of a vector field
A vector field is a smooth section of the tangent bundle which means that to every point p an element of
the tangent space TpM is assigned. This coincides with the notion of a vector field assigning a vector to
every point of M .
This vector field induces a set of transformations on M as follows: A pair (p, v) ∈ TM determines a
differential equation with unique solution via the Riemann exponential map as in eq. 25. The solution to
any pair (p,Xp) is a geodesic with starting point p and initial velocity vector Xp := X(p). For a different
pair (q,Xq) the geodesic will of course be different. This set of geodesics induced by X is called the flow
{φt} of X. The free parameter t determines how far the starting point p will be transported along the
geodesics γ(p,Xp) with initial values (p,Xp). The flow has following properties:

φt(p) = expp(tX) (58)

φ0 = Id(M), the identity (59)

φt+s = φt ◦ φs. (60)

The flow is often referred to as one-parameter-group, since it is a group in t:

φt : R → Maps(M ;M)

t 7→ expp(tXp) ∀p ∈ M.
(61)

Figure 14: A vector field X generates the flow {φt}: X assigns to every point p a velocity vector Xp

which leads to a transformation along the geodesic γ(p,Xp). Note the group property in the variable t.

Killing vector fields
Because a vector field corresponds to a one-parameter-group of transformations on M , one can interpret a
vector field as set of maps fromM toM . One hence calls those vector fields whose induced transformations
are isometries on M “Killing vector fields”. In a coordinate frame, X is a Killing vector field, if:

(∇µX)ν = −(∇νX)µ. (62)

Example
A trivial example is the zero vector field X0 = 0 which assigns the zero vector to every point. The
induced transformation is the identity on all of M which is trivially an isometry.

Example
The Killing vector field Xtrans = ∂x on M = R2 obviously fulfills eq. 62. It corresponds to a shift in
x-direction; its flow consists of transvections.

Example
The Killing vector field Xrot = y∂x − x∂y on M = R2 also fulfills the Killing condition. It corresponds
to a rotation around the origin and hence not to a transvection.
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Since every Killing vector field generates a group of isometries on M , there is a clear correspondence between the
space of Killing vector fields and the isometry group G := I0(M): Together with a fixed t0, φt0 is an isometry.
Due to the close relation between a Lie group and its Lie algebra, it is natural to investigate the connection
between the space of Killing vector fields on M and the Lie algebra ❣ of the Lie group G:
As a Killing vector field X induces an isometric flow {φt} on M , one can associate X with the element v ∈ ❣
such that holds:

G ∋ expe(tv) = φt ∈ G ∀t. (63)

This map will be called Υ. Having found the one-to-one correspondence between the space of Killing vector
fields and the Lie algebra ❣ of the Lie group G of isometries on M , one can consider them as identical and
compute properties of Killing vector fields and hence of the manifold M just by investigating ❣:

❣× R G M

X × R

expe(tv)

Υ

θ

φt
θ◦φt

X Killing vector field on M.

Further detail

In general, not all isometries of the full isometry group can be reached via a geodesic starting at e ∈ G. That
is because the full isometry group is in general not connected14. Because of that the group G := I0(M) does in
general not contain geodesic symmetries of M ∼= G

/

K. This is remarkable, since the existence of a reflection at
every point is the defining property of a symmetric space.
An illustration of this gives the 3-dimensional sphere S3 ∼= SO(4,R)

/

SO(3,R) with north pole p = (0, 0, 0, 1)T .
The geodesic symmetry is

s(0,0,0,1)T (x
1, x2, x3, x4)T = (−x1,−x2,−x3, x4)T , (64)

but for the corresponding matrix holds: diag(−1,−1,−1, 1) /∈ SO(4,R), since it is not orientation preserving.
One can understand the coset form G

/

K of a symmetric space M as a characterization in terms of transvections
starting at one base point p. Although a symmetric space necessarily possesses a geodesic symmetry at every
point, G

/

K does not give any information how the geodesic symmetry on M looks like. In a pictoral sense, G
/

K
is the space of all orientation preserving isometries without rotations. These then boil down to transvections.

8 Cartan Decomposition

When investigating the space of Killing vector fields on M further, one notices that they and hence ❣ can be
classified:15

❦ = {x ∈ ❣ | Υ(x)p = 0} and ♣ = {x ∈ ❣ | (∇Υ(x))p = 0} with ❦ ∩ ♣ = 0 ∈ ❣. (65)

This categorization of subspaces of ❣ is called Cartan Decomposition. Examining the vector space ❦, one notices
that the corresponding flow needs to be the identity at p (for all t), as the velocity vector Xp of a geodesic
through p is zero. The space ❦ reminds us of example Killing vector field Xrot in the box above: Let us choose
p = (0, 0)T in its example setting R2. Since X does not alter p, it belongs to ❦.
Examining the vector space ♣, one notices that the corresponding flow must be uniform in magnitude but pointing
in a direction away from p because Xp is non-zero. The space ♣ however reminds us of example Xtrans above.
One may choose p = (0, 0)T in its example setting R2. Since the derivative of X vanishes at p, but X does not
vanish, it is associated with a constant shift in x-direction.
The example Killing vector field X0 above is part of both subspaces of ❣. In fact, ❣ decomposes as direct sum
❣= ♣ ⊕ ❦. The zero Killing vector field thus corresponds to the zero element in ❣.

14Recall the discussion in section 4.
15Once again, the base point p is arbitrarily chosen.
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To examine the Lie bracket on ❣, recall from above that ❣ carries its Lie bracket inherited from the Lie bracket
of vector fields on its Lie group G: The following box deals with the Lie bracket on vector fields.

Recap: Lie bracket as non-commutative flows
The Lie bracket [X,Y ] of two vector fields has a geometric meaning as composition of the flows σ and τ
which are generated by the vector fields X and Y , respectively. Consider a point x and move it a little
along the flow σ signified with a red arrow in the figure below generated by the vector field X. This point
is then moved a little along the flow τ generated by Y and vice versa. The parallelogram is not closed,
since the flows are not constant on the manifold. In particular, the difference between the two paths is
proportional to the Lie bracket [X,Y ].a Note that the green arrow is pointing in a maybe unintuitive
direction.
Algebraically, the Lie bracket has the form:

[·, ·] : X (M)×X (M) → X (M)

X,Y 7→ [X,Y ] := (Xα∂αY
β − Y α∂αX

β)∂β
⋆
= ∇XY −∇Y X

(66)

where the equality “⋆” is due to our geometry setup being torsion-free. An explicit example of the Lie
bracket is given for the sphere S2 in fig. 16.

Figure 15: Lie bracket as non-commutative flows. The arrows in the background symbolize the non-
constant vector fields X (red) and Y (blue). The parallelogram does not close due to the fact that X
and Y are not constant. Note that the green arrow would be pointing in the opposite direction for the
Lie bracket [Y,X].

aNote that the difference between two points is in general not defined on a manifold. Since the parameters ǫ and δ

are taken to be very small, the whole area falls into one tiny neighbourhood of x which can be equipped with Euclidean
coordinates.

The space ❣ and the space of Killing vector fields on M are related via the map Υ. However, it is not obvious in
which way Υ relates the Lie bracket on ❣ to the Lie bracket on the Killing vector fields. It can be shown [Sakai,
1996, chaper I, ➜2, E.8] that the map Υ is an anti-isomorphism in the sense that holds:

Υ[x, y] = −[Υx,Υy], x, y ∈ ❣. (67)

The minus sign has to be considered, when transferring results from investigating ❣ to the space of Killing vector
fields and vice versa.
It is now interesting to consider elements of ❦ and ♣ as inputs for the Lie bracket on ❣. It is shown below that:

[❦, ❦] ⊆ ❦

[♣, ♣] ⊆ ❦

[♣, ❦] ⊆ ♣

(68)
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which is to be understood element-wise, i.e. they hold for all elements from ♣ and ❦, respectively. The first two
statements are straight-forward to show:
Let v, w be in the subspace ❦ ⊂ ❣ with corresponding Killing vector fields V,W , i.e. Vp = Wp = 0. Then

[V,W ]p = (∇V W )p − (∇WV )p = 0 (69)

since the derivative along the zero vectors Vp and Wp is trivially zero. From eq. 67 follows that [❦, ❦] ⊆ ❦.

Let V,W now be Killing vector fields from ♣, i.e. (∇V )p = (∇W )p = 0. Then eq. 69 also holds by assumption,
i.e. [V,W ]p = 0. Using the anti-isomorphism eq. 67 one arrives at [♣, ♣] ⊆ ❦.

The third statement can be proven with aid of the following property of a Killing field [Eschenburg, 1997, 3.
Lemma 1]:

∇A∇V W = ∇∇AWV −R(A, V )W. (70)

Let now Υ−1(V ) ∈ ❦, Υ−1(W ) ∈ ❦. It needs to be shown that (∇A[V,W ])p = 0 for all vector fields A ∈ X (M),
dropping the subscript p for convenience:

∇A[V,W ] = ∇A∇V W −∇A∇WV

= −R(V,A)W +∇∇AWV +R(W,A)V −∇∇AV W

= R(A, V )W +R(W,A)V

= R(V,W )A

= 0

(71)

where the second equality is due to the identity eq. 70 above. The third equality follows because (∇W )p = 0,
the forth follows from the Bianchi identity. Since the equation needs to hold for any A, in particular for the case
Ap = 0, it needs to be zero. With eq. 67 one obtains:

(∇A[V,W ])p = 0 ⇒ [Υ(v), υ(w)] ⊆ Υ(♣) ⇒ −Υ[v, w] ⊆ Υ(♣) ⇒ [♣, ❦] ⊆ ♣. (72)

There is a handy way to calculate the Riemann curvature tensor at the base point p by using generators of
transvections:

Rp(V,W )U = [U, [V,W ]]p, U, V,W ∈ Υ(♣). (73)

By comparing that to the formula to compute the sectional curvature as in eq. 28 one notices that the sectional
curvature of a plane spanned by two normed vectors can be easily calculated this way. The set ♣ together with
the triple product [·, [·, ·]] forms a so-called Lie triple system, because it leaves ♣ invariant, i.e. [[♣, ♣]♣] ⊆ ♣. This
can be seen easily with eq. 68.
The equation eq. 73 above can be computed directly, for simplicity drop the base point p:

[U, [V,W ]] = ∇U [V,W ]−∇[V,W ]U

= ∇U [V,W ]

= ∇U∇V W −∇U∇WV

eq. 70
= ∇∇UV W −R(W,U)V −∇∇UV W +R(V, U)W

= −R(W,U)V +R(V, U)W

= R(V,W )U

(74)

where [V,W ] ∈ Υ(❦), hence (∇[V,W ]A)p = 0 ∀A ∈ X (M) and the last equality is due to the Bianchi identity.
�

Recall that the Lie algebra of the isometry group G is in 1 − 1 correspondence to the space of Killing vector
fields on M ∼= G

/

K. This has been pointed out extensively in section 7. To get an intuition for eq. 68, it makes
sense to consider the Lie bracket on ❣ in the picture of Killing vector fields on M as in eq. 67:
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Cartan decomposition on ❵♦✭✸✮
Let us take a look at the symmetric space S2 ∼= SO(3)

/

SO(2). The Lie algebra of the isometry group
SO(3) is ❵♦✭✸✮ and can be decomposed as ❣= ♣ ⊕ ❦. Note that ❵♦✭✸✮ can be represented of skew-symmetric
3× 3 matrices. An element of ❣ is hence no rotation matrix, since its determinant is zero.
With base point p = (0, 0, 1)T , the space ❦ corresponds to all rotations around the z-axis. The space ♣
corresponds to all rotations around axis different from the z-axis which shift p, since p does not lie on
the rotation axis and is hence not invariant. Note that this fits to the defining property of ♣ in eq. 65.
A basis of ❵♦✭✸✮ are the well-known angular momentum operators Li:

Lx =





0 0 0
0 0 −1
0 1 0



 , Ly =





0 0 1
0 0 0
−1 0 0



 , Lz =





0 −1 0
1 0 0
0 0 0



 . (75)

Because the base point is p = (0, 0, 1)T , Lz obviously generates ❦, whereas Lx and Ly generate ♣.
The commutation relations thus nicely illustrate the Lie bracket operation on a general Cartan decom-
position:

[Lz, Lz] ⊆ Lz [❦, ❦] ⊆ ❦

[Lx, Ly] = Lz [♣, ♣] ⊆ ❦

[Ly, Lz] = Lx [♣, ❦] ⊆ ♣.

(76)

To get a feel for this formula, we use the Lie bracket as measure of commutativity of flows. The figure
below illustrates [♣, ♣] ⊆ ❦ on the sphere using the generated vector fields of ♣ and ❦ via Υ.

Figure 16: Visualization of [Υ(Lx),Υ(Ly)] = −Υ(Lz) on the sphere S2 in three steps. The flows of the
vector fields are indicated by thin yellow arrows.
On the left one can see the result of firstly transporting along the flow generated by Υ(Ly) and secondly
transporting along the flow generated by Υ(Lx).
In the middle, one can see the result of the transports in opposite order.
On the right, the difference between the two results is indicated by a turquoise arrow going from right to
left. It corresponds to [Υ(Lx),Υ(Ly)]. However, the flow generated by Υ(Lz) points from left to right.
This reflects the anti-isomorphism of ❣ and the Lie algebra of Killing vector fields as in eq. 67.

Remember that the dimension of a Lie algebra is the same as of the Lie group, simply because the tangent
space is a vector space of the same dimension as the manifold. For S2 one can check that

2 = dimS2 = dim
(

SO(3)
/

SO(2)
)

= dimSO(3)− dimSO(2) = 3− 1 = dim ❣− dim ❦ = dim ♣. (77)
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9 Cartan Involution

A different way to obtain the Cartan decomposition on ❣ is by examining the eigenspaces of the derivative of a
special map, which is called Cartan involution.
Define the Cartan involution on G as:

σp : G → G

g 7→ gsp · g · gsp , with θ(gsp) = sp, gsp ∈ I(M).
(78)

It has been pointed out extensively that in general sp need not be an element of G = I0(M) but an element of
I(M). The combination of two symmetries however is again in G:
The map φ : (M,M) → I(M), (m,n) 7→ sm ◦ sn is continuous in M . 16 A smooth variation in (M,M) can
hence not reach a different unconnected component of I(M) via φ. The element (q, q) however is mapped to
the identity for all q ∈ M , since sq is self-inverse. This means that im(φ) never leaves the identity component of
I(M), namely G = I0(M).
An involution is a map which is of order two, i.e. twofold application yields the identity:

(σ)2(g) = gsp · gsp · g · gsp · gsp = Id
(

g
)

, (79)

since sp is self-inverse. The derivative of σ maps elements of the tangent space of G to itself:

σ∗ : ThG → Tσ(h)G, in particular: (80)

σ∗(v) : ❣ ∼= TeG → ❣, v ∈ TeG. (81)

Because (σ)2 = Id, σ∗ can only have eigenvalues {−1, 1}. One defines the spaces

❦ = {x ∈ ❣ | σ∗(x) = −x} and ♣ = {x ∈ ❣ | σ∗(x) = x} with ❦ ∩ ♣ = 0 ∈ ❣. (82)

Note that although the spaces are called the same way as in the transvection and rotation Killing vector fields
in eq. 65, their equivalence needs to be proven. If the different definitions on ❦ coincide, it follows that they also
coincide on ♣ just by reasons of dimension of ❣.
The illustration of fig. 17 helps to understand the nature of the Cartan involution and hence the following proof.
Consider the commuting 17 diagram:

❣ G

❣ G

exp

σ∗
σ

exp

, → expe(tσ∗x) = σ(expe(tx)) = gsp · expe(tx) · gsp (83)

Let σ∗(x) = x, it needs to be shown that Υ(x)p = 0. Using eq. 83 one obtains:

θ
(

exp(tσ∗x)
)

(p) = θ
(

gsp · exp(tx) · gsp
)

(p)

⇒ θ
(

exp(tx)
)

(p) = θ
(

gsp · exp(tx)
)

(p)

if Υ(x)p 6= 0, then the flow induced by x yields: θ
(

exp(tx)
)

(p) = q for small t

⇒ q = θ
(

gsp
)

(q) = sp(q).

which cannot hold, since sp has as only fixed point p 6= q. It hence follows that Υ(x)p = 0.
Vice versa, if Υ(x)p = 0, one needs to show that σ∗x = x:
Let q 6= p be a point close to p. There is hence a unit speed geodesic γ connecting p and q with γ(0) = p and
γ(s) = q. For the right hand side of eq. 83 follows:

θ
(

gsp · exp(tx) · gsp
)

(γ(s)) = θ
(

gsp · exp(tx)
)

(sp(γ(s)) = θ
(

gsp · exp(tx)
)

γ(−s) = sp(γ̃(−s)) = γ̃(s)

16because ϕ : M → I(M), m 7→ sm is continuous [Iozzi, 2018, Lemma 2.15].
17The commutativity of these isometries (labelling them fi, fi : ❣ → G) can be seen by noting that f1(0) = f2(0), Df1

∣

∣

0
=

Df2
∣

∣

0
⇒ f1 ≡ f2.
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since from Υ(x)p = 0 it follows that p is invariant under exp(tx), but it maps a geodesic γ isometrically to a
different (WLOG unit speed) geodesic γ̃ with γ̃(0) = p.
For the left hand side assume that σ∗x = −x:

θ
(

exp(tσ∗x)
)

(γ(s)) = θ
(

exp(−tx)
)

(γ(s)) = γ̃(−s).

The two sides together yield: γ̃(s) = γ̃(−s) which is contradictory as γ̃. It follows that the eigenvalue must
be +1. Due to reasons of dimension of ❣, this shows that the two definitions in eq. 82 and eq. 65 do in fact
coincide.
The statements from eq. 68 follow easily using φ∗[x, y] = [φ∗x, φ∗y], φ arbitrary smooth map. Choosing
the Cartan involution as map, one arrives at: σ∗[x, y] = [σ∗x, σ∗y] = (λ1 · λ2)[x, y] with λi as corresponding
eigenvalues.
We arrive at the following diagram which illustrates the correspondence between a symmetric manifold M
and its representation as coset G

/

K where G and K are subspaces of the isometry group acting on M . This
correspondence also lifts to a correspondence of their tangent spaces:

G
/

K ∼= M

❣
/

❦ ∼= TpM

exp exp with ❣
/

❦ = {x+ ❦|x ∈ ♣}. (84)

(a) Setup on the model space S2 with clock to show ori-
entation and green arrow indicating the base point p =
(0, 0, 1)T .

(b) After the application of sp, the orientation of the clock
has changed. The blue arrows represent the transvection
Killing field.

(c) After the application of θ(expe(x)), the clock has
shifted in direction of the vector field.

(d) A second application of sp reflects the clock again. It
has now shifted to the top.

Figure 17: Illustration of the Cartan involution of eq. 78. The element g ∈ G is a transvection, its corresponding
Killing vector field Υ(x), x ∈ ♣ points downwards. As one can see comparing 17a and 17d, the resulting
transformation is a shift in the opposite direction of the small vector arrows. The eigenvalue of x under σ∗ is
hence −1.
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10 Totally geodesic submanifolds

It is interesting to examine the structure of a subspace N of a symmetric space M . A very crucial property of
a submanifold is to be totally geodesic: Consider a complete submanifold N ⊆ M . This submanifold is called
totally geodesic, if for every pair (n, v), n ∈ N, v ∈ TnN the induced geodesic is contained in N . The shortest
path between two points from a totally geodesic submanifold thus lies within this submanifold. Illustrating
examples are the sphere and a plane within Euclidean space R3:

Figure 18: Visualization of the embedding of a sphere and a plane into R3.
On the left: Three points on the sphere are connected by green paths. These paths are geodesics within the
sphere, but they are not geodesics with respect to the whole manifold R3, as these geodesics are shown by red
straight paths. The sphere is hence not a totally geodesic submanifold of R3. Note however that the sphere is
nevertheless positively curved, with the Euclidean metric tensor it inherits from the embedding.
On the right: An embedding of a plane within R3. The geodesics within this submanifold are also geodesics
within the embedding space. This submanifold is thus a totally geodesic submanifold of R3.

A totally geodesic submanifold N ⊂ M is generated by a subset ♣′ ⊂ ♣ and is of the form N = θ
(

expe(♣
′)
)

(q).
The point q is any arbitrary point contained in the manifold M which is often written as: N = exp(♣′).
Pictorially speaking, travelling in N is the same as travelling in M . This can be seen easily in fig. 18 above. Note
that the Euclidean plane would not be a totally geodesic submanifold if it was embedded as plane (x, y, 1) into
H3 (in the upper half-space model) with the inherited hyperbolic metric. This is due to the fact that geodesics
in H3 are half-circles standing perpendicular on z = 0. The shortest path between two points in the embedded
Euclidean plane would hence leave the submanifold.

There is now a close correspondence between a Lie triple system and a totally geodesic submanifold. Firstly,
recall the definition of a Lie triple product as in eq. 73:

[·, [·, ·]] : ♣′ × ♣′ × ♣′ → ❣, ♣′ ⊆ ❣

(p1, p2, p3) 7→ [p1, [p2, p3]]
(85)

If the image of this map is contained in ♣’, we call ♣’ a Lie triple system. We had found out that this is the case
for both ♣ and trivially for ❦ in the normal Cartan decomposition 18 as in eq. 68. Now, one is interested in finding
a non-trivial subset ♣′ ⊂ ♣ which forms a Lie triple system to find interesting totally geodesic submanifolds which
is justified by following theorem:

18Recall that ♣ is not a subalgebra of ❣, since ♣ is not invariant under the Lie bracket. In contrast, ❦ is a subalgebra. Both ♣ and
❦ are however invariant under the triple product.
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Correspondence between Lie triple systems and totally geodesic submanifolds [Helgason,
1979, Theorem 7.2]

Let ♣′ ⊂ ♣ be a Lie triple system, i.e. [♣′, [♣′, ♣′]] ⊆ ♣′, then N = θ(exp(t · ♣′)) is a totally geodesic
submanifold of M .

Sketch of the proof:
Using that ♣′ is a Lie triple system, one obtains that ❣′ = ♣′ + [♣′, ♣′] ⊂ ❣ is a subalgebra of ❣ and determines
a symmetric submanifold N ⊂ M with transvection space ♣′. It follows that a geodesic

(

p, θ(exp(t · ♣′))
)

is
contained in N .

11 Rank of a symmetric space

The rank of a manifold is defined as the dimension of the space of parallel Jacobi vector fields and is hence a
natural number which is globally defined. It is the highest dimension of a flat totally geodesic submanifold in
M . The rank of a manifold is an important quantity of a symmetric space, because it gives a notion of the
flatness of the manifold. In particular, a manifold is flat (K = 0) if and only if dim(M) = rank(M).
Since M is a homogeneous space, every point thus lies inside a flat submanifold of dimension equal to the rank
of M .

Recap: Jacobi vector fields
A vector field X which is defined along an arbitrary geodesic γ is a Jacobi vector field, if it fulfills:

∇2
γ̇(t)X −R(γ̇(t), X)γ̇(t) = 0 (86)

with R(·, ·)(·) as Riemann curvature tensor. If one restricts the vector fields to parallel vector fields along
γ (i.e. ∇γ̇(t)X = 0), then the equation simplifies to:

R(γ̇(t), X)γ̇(t) = 0. (87)

The dimension of parallel Jacobi vector fields is at least one, since the one-dimensional space λ·V = λ·γ̇(t)
fulfills the equation. Trivially, the sectional curvature of the plane spanned by (X, γ̇) is zero along γ.
This can be seen from eq. 28:

K(X, γ̇) =
g(−R(γ̇, X)γ̇, X)

g(X,X)g(γ̇, γ̇)− g(X, γ̇)2
= 0,

with X Jacobi vector field, since the denominator is zero.
Pictorially, a vector field being parallel to a curve can be understood as having a constant angle and
magnitude with respect to that curve. Those vector fields which fulfill eq. 87 can be decomposed into
parts parallel and orthogonal to the curve. The orthogonal Jacobi fields point into those directions
orthogonal to γ̇ in which the curvature does not change. Since ∇γR holds anyway for a symmetric space,
the dimension spanned by all Jacobi vector fields represents the dimension of flat subspaces along the
geodesic γ. Since the orthogonal Jacobi vector fields run along geodesics perpendicular to γ, this flat
subspace is a totally geodesic submanifold.

It can be very cumbersome to determine the rank of M via parallel Jacobi fields. It is more elegant, to work in
the picture of the Lie algebra ❣:

Recall eq. 73
R(V1, V2)V3 = [V3, [V1, V2]], Vi ∈ Υ(♣), q.

Using that Υ is an anti-isomorphism, one obtains:

R(V1, V2)V3 = [Υ(p3), [Υ(p1),Υ(p2)]]

= [Υ(p3),−Υ([p1, p2])] = Υ([p3, [p1, p2]]), Vi = Υ(pi), pi ∈ ♣.
(88)
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Choosing a subspace ❛ ⊆ ♣ such that the Lie bracket vanishes means that algebra elements commute, i.e. the
Lie algebra ❛ needs to be abelian. It follows that the Riemann tensor vanishes on that generated subspace, it is
hence flat. This flat submanifold is also totally geodesic, since ❛ is trivially closed under the Lie triple product
as [❛, [❛, ❛]] = 0 ∈ ❛.
The dimension of the maximal abelian subalgebra ❛ ⊆ ♣ thus determines the rank of the manifold.

12 A product of symmetric spaces

In the following section properties of a Cartesian product of a symmetric space are examined. These properties
easily follow from the fact that all of the constituents are symmetric spaces. This is the reason why literature
focuses on indecomposable19 symmetric spaces.
Let (Mi, sMi

, Gi,Ki, ❣i, ♣i, ❦i, σi, (σi)∗, ❛i), i ∈ {1, 2} be symmetric spaces of dimension ni as defined before. The
meaning of those symbols is summarized:

Symbol Name Meaning
M symmetric space M Riemannian manifold with isometric geodesic symmetry
sp symmetry at base point p isometric geodesic reflection at p ∈ M
G isometry group on M identity containing group of all isometric maps acting on M
K isotropy group on M group of all isometries, which leave a base point p invariant
❣ Lie algebra of G vector space of all infinitesimal isometries on M
♣ subspace of transvections space of all infinitesimal shifts at base point p
❦ subspace of rotations space of all infinitesimal rotations at p
σ Cartan involution on G at p map sending isometry to isometry by reflecting before and afterwards
σ∗ lifted Cartan involution on ❣ Cartan involution on the space of infinitesimal isometries
❛ abelian subalgebra of ♣ subspace of ❣ which generates a flat subspace via θ(expe(❛))

Table 1: Table showing the index of notation with a short explanation

One makes following observations:

❼ M1×M2 is a symmetric space: The geodesic symmetry onM1×M2 is just (sM1
, sM2

) where the symmetries
act on the first n1 and last n2 components, respectively.

❼ For the coset formulation holds: M1 ×M2
∼= G1

/

K1 ×G2

/

K2
∼= (G1 ×G2)

/

(K1 ×K2).

❼ The isometry group G and the isotropy group K act component-wise. The dimension of G is hence
dimG1 + dimG2 as the coset formulation suggests. Analogously: dimK = dimK1 + dimK2.

❼ The Lie algebra ❣ of G consists of all infinitesimal transformations of both spaces. It decomposes as:

❣ = (g1, g2), gi ∈ ❣i, because ❣ = ❣1 ⊕ ❣2. (89)

The Cartan decomposition of ❣= ♣ ⊕ ❦ holds with ♣= (p1, p2), pi ∈ ♣i and ❦ = (k1, k2), ki ∈ ❦i. The
algebra operations on ❣ lead to eq. 68:

[

(

p1
p2

)

,

(

p̃1
p̃2

)

]

=

(

[p1, p̃1]
[p2, p̃2]

)

∈ ❦ and analogously [❦, ❦] ⊆ ❦ [♣, ❦] ⊆ ♣. (90)

❼ The elements (p1, k2) or (k1, p2) neither belong to ♣ nor to ❦. This does not contradict to ❣= ♣ ⊕ ❦.

❼ The Cartan involution σ is lifted component-wise. Its derivative σ∗ does again possess eigenvalues {−1, 1},
for ♣ and ❦, respectively. An element j = (p1, k2) however is not an eigenvector for σ∗ since:

σ∗

(

p1
k2

)

=

(

(σ1)∗p1
(σ2)∗k2

)

=

(

−p1
k2

)

. (91)

19or to be less restrictive: isotropy irreducible
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This is obvious, since j is not contained in an eigenspace of any eigenvalue. The same holds of course for
an element of (❦1, ♣2).

❼ The abelian subalgebras have the form:

(

a1
a2

)

, ai ∈ ❛i because

[

(

a1
a2

)

,

(

ã1
ã2

)

]

=

(

[a1, ã1]
[a2, ã2]

)

=

(

0
0

)

. (92)

In particular, this means that (p1, p2) is an abelian subalgebra, if both p1 and p2 are one-dimensional since
they then commute with themselves. The rank of a product manifold is rank(M1) + rank(M2) and hence
at least 2, since the rank of any symmetric space is at least 1.

❼ The metric tensor decomposes into the metric tensors of the factors. Therefore, the distance between two
points in M1 ×M2 is easily computed as:

d(p, q) =
√

d21(p1, q1) + d22(p2, q2) with respective distances di. (93)

Recall the geodesic equation:

∇γ̇ γ̇
!
= 0. (94)

The decomposition of the metric tensor ensures that geodesics can be decomposed into geodesics within
the product spaces.

∇γ̇ γ̇ = ∇γ̇1+γ̇2
(γ̇1 + γ̇2) = ∇γ̇1

γ̇2 +∇γ̇2
γ̇1 = 0, (95)

where the second equality is due to the fact that γ1 and γ2 are geodesics, the last equality holds since the
values of γi (first summand below) and the entries of the metric tensor which belong to space Mi (second
summand below) are not dependent on the coordinates of Mj and vice versa:

∇γ̇i
γ̇j = γ̇i

µ∂µγ̇j
ν∂ν + γ̇i

µγ̇j
νΓκ

µν∂κ = 0, i 6= j. (96)

❼ The Riemann tensor decomposes into its respective Riemann tensors (Ri) :

R(X,Y )Z = (R1)(X1, Y1)Z1 + (R2)(X2, Y2)Z2 (97)

with decompositions of the vector fields into their components in M1 and M2.

13 Examples of “simple” symmetric spaces

13.1 The sphere S2

In section 3.2 we have already investigated the symmetries on Sn. For the 2-sphere embedded in R3 the symmetry
at p = (0, 0, 1)T is:

sp : S2 → S2

(x, y, z)T 7→ (−x,−y, z)T .
(98)

As the sphere often served as an example space before, we know that a n-sphere has a coset structure of
SO(n)

/

SO(n− 1) which leads to S2 ∼= SO(3)
/

SO(2) and Tp

(

SO(3)
/

SO(2)
)

= ❵♦(3)
/

❵♦(2).
The Lie algebra ❵♦(3) corresponds to the set of all skew-symmetric 3× 3 matrices and hence ❵♦(2) to the set of
skew-symmetric 2× 2 matrices. Choosing p = (0, 0, 1)T the Lie algebra decomposes as:

♣ =

{





0 0 0
0 0 α
0 −α 0



+





0 0 β
0 0 0
−β 0 0





∣

∣

∣

∣

∣

α, β ∈ R

}

and ❦ =

{





0 γ 0
−γ 0 0
0 0 0





∣

∣

∣

∣

∣

γ ∈ R

}

(99)
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where the elements in expe(♣) rotate about angles α, β around x-, y- axes, respectively. Accordingly, an element
expe(k), k ∈ K is a rotation around the z-axis. Note that ❦ really consists of 2×2 matrices within a 3×3 system.
The Cartan involution follows as:

σp : SO(3) → SO(3)

g 7→





−1 0 0
0 −1 0
0 0 1



 · g ·





−1 0 0
0 −1 0
0 0 1



 .
(100)

Its derivative (σp)∗ acts on ♣ and ❦ with eigenvalues −1, 1, respectively. This has been motivated in fig. 17.
The abelian subspaces of ♣ are one-dimensional, hence trivial. The rank of S2 is hence 1. This fits to intuition.
The totally geodesic submanifolds of rank 1 are precisely the great circles S1.

13.2 The symmetric space H2

Hyperbolic 2-space has a coset structure of H2 ∼= SO(2, 1)
/

SO(2) in the hyperboloid model. 20 We may choose

the point p = (0, 0, 1)T in the hyperboloid embedding. This leads to Tp

(

SO(2, 1))
/

SO(2)
)

= ❵♦(2, 1)
/

❵♦(2).
The Lie algebra ❵♦(2, 1) corresponds to the set of matrices of the form:

❵♦(2, 1) =

{

(

A x
xT 0

)

∣

∣

∣

∣

∣

AT = −A, A ∈ M2×2(R)

}

. (101)

Again, ❵♦✭✷✮ is the set of skew-symmetric 2× 2 matrices. Choosing p = (0, 0, 1)T the Lie algebra decomposes as:

♣ =

{





0 0 0
0 0 α
0 α 0



+





0 0 β
0 0 0
β 0 0





∣

∣

∣

∣

∣

α, β ∈ R

}

and ❦ =

{





0 γ 0
−γ 0 0
0 0 0





∣

∣

∣

∣

∣

γ ∈ R

}

(102)

where the elements in expe(♣) rotate about angles α, β around x-, y- axes, respectively. Note the difference
between this Cartan decomposition and the Cartan decomposition of S2 in eq. 99: The former emerges from
rotations in Minkowski embedding space, the latter from rotations in Euclidean embedding space.
Since the geodesic symmetry at p sends (x, y, z) to (−x,−y, z), the Cartan involution follows as:

σp : SO(2, 1) → SO(2, 1)

g 7→





−1 0 0
0 −1 0
0 0 1



 · g ·





−1 0 0
0 −1 0
0 0 1



 .
(103)

The derivative (σp)∗ has eigenvalues {−1, 1} for ♣ and ❦, respectively.
The abelian subspaces of ♣ are one-dimensional, hence trivial. Thus, the rank of H2 is 1. This again fits to
intuition. The totally geodesic submanifolds of rank 1 are precisely the geodesics in H2.

13.3 The symmetric space H2 × R

As pointed out before, hyperbolic space is a symmetric space. A product M = M1 ×M2 of symmetric spaces
Mi = Gi

/

Ki is also a symmetric space. Algebraically, M is equivalent to G1

/

K1×G2

/

K2. The coset formulation

of R is just R ∼= E(1)
/

SO(1). Since SO(1) consists only of {1}, E(1) is just the one-dimensional group of

translations, as there are no rotations in 1 dimension. It follows that H2 ×R ∼= SO(2, 1)
/

SO(2)× E(1)
/

SO(1).
At a point p = (p1, p2), pi ∈ Mi the symmetry sp acts on q component-wise as sp(q) = (s1p1

(q1), s2p2
(q2)). The

metric tensor does not posess any cross terms, since H2 and R stand perpendicular on each other. Choosing the
Poincaré disk model for the H2, the metric tensor becomes:

gµν =





4
(1−r2)2 0 0

0 4
(1−r2)2 0

0 0 1



 in Cartesian coordinates (x, y, z) with r2 = x2 + y2, x, y ∈ H2. (104)

20We choose it for simplicity for this section. However, the discussion would of course also be possible in the other models.

35



13.3.1 Where are the flat subspaces?

Since a straight path within a hyperbolic space is flat in the sense that one does not observe bending of the
geodesic path when travelling along it, it thus corresponds to R. Because of the Cartesian product in H2×R, the
Cartesian product of two one-dimensional geodesics is a 2-dimensional flat Euclidean space R2. A combination
of any two geodesics from both of the hyperbolic spaces thus forms a Euclidean subspace.

This can be formulated more rigorously in terms of subspaces of the Lie algebra of the group of isometries as in eq.
92. Any abelian subalgebra of H2 commutes with the abelian subalgebra of R. The abelian subalgebra ❛H2 ⊂ ♣H2

is only one dimensional and consists of infinitesimal transvections (→ geodesics). The abelian subalgebra ❛R ⊆ ♣
R

is identical to ♣, since ♣ itself is only one-dimensional. The flat totally geodesic subspaces are thus:

expp

(

❛H2

♣
R

)

, ❛H2 denotes abelian, hence one-dimensional subalgebra of ♣H2 . (105)

13.3.2 Where are the K = −1 negatively curved subspaces?

As seen above, a plane which is spanned by two geodesics which live in different H2 spaces is equivalent to R2.
However, a plane spanned by two geodesics which both live in H2 obviously do not form a flat space, but a
negatively curved space of fixed curvature K = −1.
These spaces are totally geodesic submanifolds, as their generating subspace ♣ ⊆ ❣ forms a Lie triple system.
This makes perfect sense, because it is just the transvection space of H2. The K = −1 totally geodesic subspaces
are thus:

expp

(

♣H2

0

)

. (106)

13.3.3 Visualization of H2 × R

2-dimensional hyperbolic space can be visualized with aid of the Poincaré disk model. If one puts the Euclidean
space R perpendicular to this disk, H2 × R has the shape of a cylinder. The geodesics in H2 are the usual
geodesics in the x-y-plane with arbitrary constant z. Accordingly, the geodesics in R are straight lines in
z-direction with arbitrary x and y values within the disk.
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(a) These planes are spanned by vectors which live in H2

and R. Due to the symmetry of the disk, any plane which
can be obtained by rotation along the z-axis is also a flat
subspace.

(b) Hyperbolic subspaces with geodesics within the sub-
spaces. Of course, any other x-y-plane is also a hyperbolic
subspace of sectional curvature K = −1.

Figure 19: Special subspaces in H2 × R. Note that in the left picture the points which form the geodesics are
equidistant, i.e. along the vector ∂x the distance between two points is constant. Of course, two planes are not
parallel, i.e. the distance between points of different coloring increases and approaches infinity as r → 1.

13.3.4 Planes of non-constant sectional curvature

In the section above, we have investigated the flats and the subspaces with K = −1. It is well known that the
sectional curvature is confined to [−1, 0] for H2 × R [Gu et al., 2019, Lemma 1]. To get a feel for that, one
can choose two arbitrary vectors at an arbitrary point and calculate the sectional curvature. It is easiest for
the calculation to choose the origin as evaluation point. Since the space is homogeneous, the result holds for all
other points.
Choosing the vectors v, w ∈ Tp=(0,0,0)(H

2 × R) with mixed terms such as

v = a · ∂x + b · ∂z and w = ∂y, (107)

the vector v does not only live in the Euclidean part of the tangent space, but also in the hyperbolic part. With
aid of the scalar values a and b one can manipulate the tilting of the plane. Via eq. 28 one can calculate the
sectional curvature of the plane spanned by v, w within Tp=(0,0,0)(H

2 × R). Using the correspondence between
the Lie algebra ♣ and Killing vector fields, one can simplify the calculation with eq. 73. The result is:

K = − 4a2

4a2 + b2
. (108)

Naturally, the sectional curvature K is fixed to the interval [−1, 0] for b = 0 and a = 0, respectively.
To construct such a smooth submanifold such that at p = (0, 0, 0) the vectors v and w from eq. 107 belong to
the tangent space, one may use the map

F : H2 → H2 × R (109)

(

x
y

)

7→





x
y

f(x, y)



 (110)
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and the induced vectors v = ∂xF (x, y) and w = ∂yF (x, y). The following figure is obtained by setting f(x, y) =
fm(x) = 2 ·m · arctanh(x) and hence v = ∂x + 2m∂z and w = ∂y with v, w ∈ T(0,0,0)H

2 × R.

(a) Submanifold of non-constant negative sectional curva-
ture. This submanifold is not totally geodesic: The green
path is a geodesic within the submanifold, the red path is
a geodesic in the full embedding space. The red path is
shorter with respect to the metric.

(b) As the metric tensor tends to infinity at the disk bound-
ary, the hyperbolic part of the spanning vectors dominates
the Euclidean part. The sectional curvature thus tends to
K = −1 at the boundary. Note that the submanifold in
this figure extends to infinity in z-direction.

Figure 20: Sectional curvature of submanifolds within H2 × R indicated by coloring. On the left: Submanifold
generated by F (x, y) = (x, y, 2 · arctanh(x)) from eq. 109 with m = 1 and vectors v = ∂x + 2(1 − x2)−1∂z and
w = ∂y. At the origin p = (0, 0, 0) these vectors become v = ∂x + 2 · ∂z and w = ∂y with Kp = −0.5 from eq.
108.
On the right: Submanifold induced by F (x, y) = (x, y, 2 · 3 · arctanh(x)) with m = 3 and vectors v = (1, 0, 2 ·
3(1−x2)−1)T and w = (0, 1, 0)T . At the origin these vectors become v = ∂x+6 ·∂z and w = ∂y with Kp = −0.1.
One may have a look at fig. 9 to recall distortion of the Poincaré disk model.

Are these subspaces totally geodesic?

The spaces which are spanned by these vectors are no totally geodesic submanifolds. A geodesic connecting two
points of this submanifold is thus not necessarily contained within the submanifold which is shown explicitly:
Consider the transvection space of H2 × R written in components as:

(

♣H2

♣
R

)

. (111)

Define
{

(

α · a · px + β · py
α · b · pz

)

}

, px, py, pz forming a basis of

(

♣H2

♣
R

)

(112)

as two-dimensional linear span of the respective transvection spaces. The Greek letters are parameters which
span the linear subspace of ❣, the Latin letters determine the ratio of the respective directions within this space.
It turns out that this is not a Lie triple system:
If it were a Lie triple system, then for all a, b, αi, βi, i ∈ {1, 2, 3} there would exist α4, β4 ∈ R such that

[

(

α1 · a · px + β1 · py
α1 · b · pz

)

,
[

(

α2 · a · px + β2 · py
α2 · b · pz

)

,

(

α3 · a · px + β3 · py
α3 · b · pz

)

]

]

=

(

α4 · a · px + β4 · py
α4 · b · pz

)

(113)
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is fulfilled. However, explicit calculation yields:

[

(

α1 · a · px + β1 · py
α1 · b · pz

)

,
[

(

α2 · a · px + β2 · py
α2 · b · pz

)

,

(

α3 · a · px + β3 · py
α3 · b · pz

)

]

]

=

[

(

α1 · a · px + β1 · py
α1 · b · pz

)

,

(

[α2apx, β3py] + [β2py, α3apx]
0

)

]

=

[

(

α1 · a · px + β1 · py
α1 · b · pz

)

,

(

(aα2β3 − aα3β2)[px, py]
0

)

]

=

(

α1a(aα2β3 − aα3β2)
[

px, [px, py]
]

+ β1(aα2β3 − aα3β2)
[

py, [px, py]
]

0

)

=

(

β1(α2β3 − α3β2) · a · px + α1a(aα2β3 − aα3β2) · py
0

)

/∈
(

α4 · a · px + β4 · py
α4 · b · pz

)

(114)

which shows that the Lie triple product is not contained within itself for all αi and hence not a totally geodesic
submanifold.
In fact, the above computation shows that there are no more 2-dimensional totally geodesic submanifolds than
the flats and the space H2. This is due to the fact that the space ♣

R
is abelian. Any mixed terms in the

transvection space hence vanish in the Lie triple product.

13.3.5 Planes of constant negative sectional curvature

In sec. 13.3.4 submanifolds of non-constant curvature have been shown. It is interesting to know if and how
submanifolds of constant negative curvature K can be embedded in H2×R. This subspace is locally isomorphic
to H2√

−K−1 , but the embedding is not totally geodesic.21

Using the construction as above in eq. 109, one needs to solve for f(x, y) such that the sectional curvature is
constant:
For this one chooses cylindrical coordinates such that the metric tensor becomes:

gµν =





4
(1−r2)2 0 0

0 4
(1−r2)2 · r2 0

0 0 1



 in coordinates (r, φ, z). (115)

The map F from eq. 109 becomes:

F :

(

r
φ

)

7→





r
φ

f(r, φ)



 with resulting vectors v = (1, 0, ∂rf)
T , w = (0,

1

r
, ∂φf)

T . (116)

The solution to the equation below is in particular easy, if one chooses to set f(r, φ) = f(r). The sectional
curvature on every point q = (r, φ, z) can be calculated via eq. 28:

K(r, φ, z) =
g(R(v, w)w, v)

g(v, v)g(w,w)− g(v, w)2
=

gαβR
α
γδǫv

δwǫwγvβ

g(v, v)g(w,w)− g(v, w)2
=

Rαγδǫv
δwǫwγvα

g(v, v)g(w,w)− g(v, w)2

=
R1212 · 1 · 1

r · 1
r · 1

(

4
(1−r2)2 + (∂rf(r))2

)

4
(1−r2)2 − 0

=
−( 4

(1−r2)2 )
2 · r2 · 1

r2

(

4
(1−r2)2

)2 ·
(

1 + (1−r2)2

4 (∂rf(r))2)
)

= − 1

1 + (1−r2)2

4

(

∂rf(r)
)2 .

(117)

In order to keep K constant, one finds the solutions:

f(r) = ±2 ·m · arctanh(r) with m as free parameter to determine K via K = − 1

1 +m2
. (118)

21In fact, it is not even a smooth manifold at the cone as one can see in fig. 21.
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Note that the vectors v = (1, 0, ∂rf)
T , w = (0, 1

r , ∂φf)
T are not well-defined at r = 0. The sectional curvature at

the origin is hence also not defined. The space is hence in a strict sense not diffeomorphic to hyperbolic space
of corresponding negative curvature.22 However, except for this point, the space looks like H√

−K−1 .

The submanifold of constant sectional curvature is not a totally geodesic submanifold23 of H2 × R. After
transforming the map F to Cartesian coordinates again, the vectors v, w become:

v = (1, 0,
2x

(1− r2)2r
)T and w = (0, 1

2x

(1− r2)2r
)T . (119)

The corresponding elements of the transvection space ♣ do not induce a Lie triple product, since again [pz, pz]
vanishes as in eq. 114 before. One can also see the submanifold not being totally geodesic by looking at fig.
21a: The geodesics follow the curvature of the whole space H2 × R and hence deviate from the shortest paths
within the submanifold.

22Every complete simply connected space of constant negative curvature K is diffeomorphic to H2√
−K−1

. Since the submanifold’s

sectional curvature is not defined at r = 0, this is hence not the case.
23Disregarding the fact that it is not even a smooth manifold, hence the geodesics are not well-defined at the cone point.
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Visualization of the embedding of constant sectional curvature in H2 × R

(a) Embedding locally isomorphic toH2√
4/3

withinH2×R.

This submanifold is not totally geodesic: The green path
is a geodesic within the submanifold, but not a geodesic
within the embedding manifold as the red path. The red
path is shorter.

(b) Subspace of sectional curvature K = −0.5 after a
change of coordinates. This illustrates that the subspace
is perfectly regular everywhere except for the cone point.

(c) Sectional curvature of a submanifold with K = −0.25.
Note that the funnel surface extends to infinity in z-
direction approaching the boundary r = 1.

(d) Sectional curvature along a plane which possesses cur-
vature zero with geodesic. Note that the geodesic is a
straight line with respect to the curved metric. This sub-
manifold is totally geodesic.

Figure 21: Sectional curvature of submanifolds of constant curvature within H2×R with hyperbolic space shown
in the Poincaré model. The coloring of the surface indicates its sectional curvature. The cylindrical shape in
the background indicates the full volume of H2 × R.
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13.4 The symmetric space S2 × R

The sphere S2 is naturally embedded in R3, but recall that it is a two-dimensional surface. The space S2 × R
is hence three-dimensional and can be embedded in R3. For visualization purposes we consider S2 in the
stereographic projection model as introduced in section 3.2.
As seen in the example above, symmetries and metric tensor decompose:

sp=(0,0,0)(x, y, z)
T = (−x,−y,−z)T (120)

gµν =





4
(1+r2)2 0 0

0 4
(1+r2)2 0

0 0 1



 in coordinates x, y, z, r2 = x2 + y2, x, y ∈ S2 in stereographic proj. (121)

13.4.1 Where are the flat subspaces?

To examine the curvature of two-dimensional subspaces, one needs to investigate the geodesics on the sphere.
In the natural embedding of S2 ⊂ R3, geodesics on the sphere are great-circles, i.e. circles whose midpoint is
the origin of R3. Every geodesic resembles the circle S1 but locally it looks like R. A surface which is spanned
by a geodesic on S2 and a perpendicular geodesic in R thus locally looks like R2, but globally the surface is a
cylinder: In fact, it is just S1 × R: Travelling along the sphere, one eventually passes the starting point. This
corresponds to travelling around the cylinder. Travelling in R-direction leads into positive or negative infinity.
This corresponds to travelling upwards or downwards the cylinder. Note that the sectional curvature of the
cylinder is flat and that the cylinder locally looks like R2.
In the stereographic projection, geodesics are ellipses (or in the degenerate case straight lines through the origin).
Because R stands perpendicular to these ellipses the flat subspaces are squeezed cylinders. The squeezing arises
from the distortion of the stereographic projection.
The flat totally geodesic subspaces correspond to a vanishing Lie triple product on the generating subalgebra ❛.
Analogous to H2, the sphere S2 only posseses one-dimensional abelian subspaces of ♣S2 which are trivial. The
geodesic submanifolds have the form:

expp

(

❛S2

♣
R

)

, ❛S2 denotes abelian, hence one-dimensional subalgebra of ♣S2 . (122)

13.4.2 Where are the K = 1 positively curved subspaces?

A plane, which is spanned by two geodesics which both live in S2 is positively curved with K = 1. This is
especially easy to see for the case of the Euclidean coordinate being zero, as the spanned space is just S2. It
might hence be misleading to call this a plane since it is a closed surface due to its positive curvature.
These subspaces are totally geodesic submanifolds: They are generated by the Lie triple system ♣S2 from eq. 99,
i.e. they have the form:

expp

(

♣S2

0

)

. (123)

13.4.3 Visualization of S2 × R

Recall that the sphere can be visualized via the stereographic projection in R2, see fig.8. The space S2 ×R can
hence be visualized in R3, because the one-dimensional Euclidean space R is perpendicular to the plane of the
stereographic projection of S2. The geodesics in S2 are the geodesics within the stereographic projection, i.e.
they are ellipses or in the degenerated cases lines through the origin. The geodesics in z-direction within R are
trivial.
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(a) These planes are spanned by vectors which live in S2

and R. Locally, it looks like R2. Note that the plane is not
only infinite in positive, but also in negative r-direction,
i.e. “inwards” and “outwards”.

(b) Using the stereographic projection, it is apparent that
the flat subspaces are cylinders. Note that the cylinders
seem to be squeezed, as geodesics in the stereographic pro-
jection are ellipses.

(c) Spheres of the same radius and curvature. The spher-
ical flats are spheres of radius=1 with different value in
the coordinate associated to R. Although these spheres
seem to have different size and curvature, this is only an
artefact of the model. Note that the Euclidean direction
is perpendicular to the surface.

(d) The x-y-planes are planes of constant sectional curva-
ture K = 1. Note that they are all of the same size and
that the distance in z-direction is Euclidean.

Figure 22: Flat and spherical subspaces in S2 × R. On the left as ordinary representation of the sphere within
R3, on the right as stereographic projection.

13.4.4 Planes of non-constant sectional curvature

Analogous to the space H2 × R, we now want to examine spaces spanned by vectors with mixed terms, i.e.
vectors which do not lie only within one factor of the Cartesian product. One may choose the following vectors
living in Tp=(0,0,0)(S

2 × R):
v = a · ∂x + b · ∂z and w = ∂y.

24 (124)

24Note that the vector ∂z stands perpendicular to the sphere. The vectors ∂x and ∂y are of course chosen with respect to the
stereographic projection and its coordinate system (x, y).
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The ratio of the scalar values a and b determines the tilting of the space with respect to the R-axis. Calculating
the sectional curvature using eq. 28 and plugging eq. 99 in eq. 73 results in

K =
4a2

4a2 + b2
, (125)

which is completely analogous to the results for H2 ×R in eq. 108 and is a nice sanity check. To construct such
a smooth submanifold such that at p = (0, 0, 0) the vectors v and w from eq. 124 belong the the tangent space,
one may use the map

G : S2 → S2 × R (126)

(

x
y

)

7→





x
y

g(x, y)



 (127)

and the induced vectors v = ∂xG(x, y) and w = ∂yG(x, y). The following figure is obtained by setting g(x, y) =
gm(x) = 2 ·m · arctan(x) and hence v = ∂x + 2m∂z and w = ∂y with v, w ∈ T(0,0,0)(S

2 × R).

(a) Submanifold of non-constant positive sectional curva-
ture. This submanifold is not totally geodesic: The green
path is a geodesic within the submanifold, the red path is
a geodesic in the full embedding space. The red path is
shorter with respect to the metric.

(b) As the metric tensor tends to zero for r → ∞, the
Euclidean part of the spanning vectors dominates the Eu-
clidean part for y → ∞. The sectional curvature thus
tends to K = 0 in this direction. Note that the subman-
ifold in this figure extends to infinity in x − y-direction
but is limited in z to

(

2m arctan(−∞), 2m arctan(∞)
)

=
(

−mπ,mπ).

Figure 23: Sectional curvature of submanifolds within S2 × R indicated by coloring. On the left: Submanifold
generated by G(x, y) = (x, y, 2 · arctan(x)) from eq. 109 with m = 1 and vectors v = ∂x + 2(1 + x2)−1∂z and
w = ∂y. At the origin p = (0, 0, 0) these vectors become v = ∂x +2 · ∂z and w = ∂y with Kp = 0.5 from eq. 125.
On the right: Submanifold induced by G(x, y) = (x, y, 2 · 3 · arctan(x)) with m = 0.5 and vectors v = (1, 0, 2 ·
0.5(1 + x2)−1)T and w = (0, 1, 0)T . At the origin these vectors become v = ∂x + ∂z and w = ∂y with Kp = 0.8.
One may have a look at fig. 8 to recall distortion of the stereographic projection model.
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Are these subspaces totally geodesic?

The submanifolds which are spanned by these vectors are not totally geodesic. Define

❛ =
{

(

α · a · p1 + β · p2
α · b · p3

)

}

, p1, p2, p3 forming a basis of

(

♣S2

♣
R

)

(128)

as two-dimensional linear span (with Greek parameters) of the respective transvection spaces with ratios deter-
mined by Latin letters. Analogous to the computation for H2 ×R in eq. 114, the space ♣

R
is abelian and hence

the commutator in this component vanishes. Again, the only totally geodesic submanifolds are flat cylinder and
the space S2 itself.

13.4.5 Planes of constant positive sectional curvature

One can find planes of constant sectional curvature analogous to the procedure in section 13.3.5 above: In
cylindrical coordinates the metric tensor becomes:

gµν =





4
(1+r2)2 0 0

0 4
(1+r2)2 · r2 0

0 0 1



 in coordinates (r, φ, z). (129)

The map G from eq. 126 becomes:

(

r
φ

)

7→





r
φ

g(r, φ)



 with resulting vectors v = (1, 0, ∂rg)
T , w = (0,

1

r
, ∂φg)

T . (130)

The solution is again in particular easy, if one chooses to set g(r, φ) = g(r). The sectional curvature on every
point q = (r, φ, z) is:

K(r, φ, z) =
1

1 + (1+r2)2

4

(

∂rg(r)
)2 . (131)

In order to keep K constant, one finds the solutions:

g(r) = ±2 ·m · arctan(r) with m as free parameter to determine K via K = − 1

1 +m2
. (132)

The discussion of the space being isomorphic to S2√
K

is analogue to the discussion for H2 × R above.
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Visualization of the embedding of constant sectional curvature in S2 × R

(a) Subspace of constant curvature K = 0.75 with green
and orange geodesics on that subspace. The red geodesic
within the embedding space shows that these subspaces
are note totally geodesic. Note that geodesics intersect
each other twice.

(b) Note the different range of the axes: This funnel is
“steeper” than the funnel on the left. The tangent vectors
have a greater part in the Euclidean direction, i.e. this
funnel corresponds to the sphere of bigger radius.

(c) The sectional curvature of this funnel is close to zero.
Note that the slim part of the funnel already looks like a
cylinder.

(d) flat totally geodesic submanifold. Note that a geodesic
is only locally the shortest route. Globally, there can be
several geodesics as indicated by the green and blue paths.
Note that for two points on a sphere there are at least two
geodesic paths connecting them.

Figure 24: Subspaces of constant positive sectional curvature. These can be embedded in R3 as R2 ×R because
the stereographic projection of the sphere spans R2 and the Euclidean factor spans R perpendicular to it.
The funnel surfaces possess constant positive curvature, and are hence isomorphic to a sphere of radius ≥ 1
except for the cone point: These funnel-shaped subspaces are not smooth manifolds due to the cone point
(0, 0, 0).
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13.5 The symmetric space H2 ×H2

H2 × H2 shares some of its properties with H2 × R, because H2 × R ⊂ H2 × H2. It hence also possesses
2-dimensional flat subspaces and hyperbolic subspaces at the same time. This again shows that H2 × H2 is
not the same as H4, since H4 does not possess 2-dimensional flat subspaces, more precisely it is a manifold of
rank 1.
The same argument holds for the torus T = S1 × S1 which is of rank 2 and thus not equivalent to the sphere
S2 which is of rank 1.
Let us examine the properties of H2 ×H2:
The first two and last two components behave as pairs of two-dimensional hyperbolic space. The Cartesian
product however is the reason, why this space also has infinitely many two-dimensional flat Euclidean subspaces
as does H2 × R. Additionally, H2 × H2 space has another property which arises from the fact that it is the
product of two distinct hyperbolic spaces: These two hyperbolic spaces are independent of each other which
permits an embedding of two different hierarchies at the same time. The two factors will be enumerated with
index i as (iH

2).

13.5.1 Where are the flat subspaces?

As pointed out before, the spaces (iH
2) are independent of each other due to the Cartesian product. Let us

remind ourselves that the Euclidean space R2 is the Cartesian product R × R. Therefore we need a Cartesian
product of two one-dimensional flat spaces R. These one-dimensional flat spaces are the geodesics within H2.
The plane which is spanned by two vectors from different hyperbolic spaces is hence a flat subspace.
More formally, the one-dimensional subspaces of the respective transvection spaces i♣ are trivially abelian:

[α · p, β · p] = (α · β)[p, p] = 0, p ∈ i♣. (133)

The vectors
v = (a1 · ∂x1 + a2 · ∂y1) and w = (b1 · ∂x2 + b2 · ∂y2), ai, bi, ci ∈ R (134)

at the base point p = (0, 0, 0, 0) in the setting of a product of Poincaré disks span a 2-dimensional submanifold.
The coefficients determine the specific geodesics in each hyperbolic factor. The generated submanifold is flat
since the corresponding transvections in the Lie algebra picture are abelian. Writing the space spanned by these
vectors in rows where each row corresponds to a H2-factor of the Cartesian product, one obtains in Lie algebra
formulation

❛ :=
{

(

α · (a1 · 1px + a2 · 1py)
β · (b1 · 2px + b2 · 2py)

)

}

,

with jpx,y corresponding to transvection in xj , yj direction within the factor (jH
2).

(135)

The Lie bracket of this space vanishes, because both components are abelian subalgebras of their respective i♣,
since they are one-dimensional.
Pictorially, the entries in the components in eq. 135 each correspond to a transvection in direction of the sum
of the constituent transvections. These transvections generate geodesics in both spaces (iH

2) independently.
Together, they span R2.
There are no three-dimensional flat submanifolds since rank(H2 × H2) = 2. A combination of two one-
dimensional subspaces from the same ♣(iH2) is not an abelian Lie triple system and hence not flat. The span
of two geodesics from the same hyperbolic space does not yield a 2 dimensional flat subspace, simply because
H2 ≇ R× R.

13.5.2 Where are the K = −1 negatively curved subspaces?

Subspaces which lie in one hyperbolic product only are trivially two-dimensional subspaces of sectional curvature
K = −1. They are totally geodesic subspaces generated by:

exp

(

♣H2

0

)

p

and exp

(

0
♣H2

)

p

. (136)
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13.5.3 Planes of more interesting curvature

Analogy to H2 × R

Since H2 × R ⊂ H2 × H2, the two-dimensional negatively curved subspaces of H2 × R can be found within
H2 ×H2. The discussion of the spaces of the form

{

(

α · a · 1px + β · b · 1py
α · 1px

)

}

, jpx,y corresponding to transvection in xj , yj direction in the space (jH
2) (137)

is identical to that of paragraph 13.3.5, since the one-dimensional transvection in i♣ of (2H
2) corresponds to a

transvection in R.

Other planes within H2 ×H2

Looking at eq. 135 and eq. 137, one notices that not all two-dimensional subspaces are exhausted. Consider the
vectors:

v = a1∂x1 + a2∂x2 and w = b1∂x1 + c1∂y1 + b2∂x2 + c2∂y2 , ai, bi, ci ∈ R (138)

which is the most general form how two vectors can lie in H2 ×H2, because on can choose the coordinates of
both factors in such a way that v is pointing in x1 and x2-direction.
The space generated by these vectors is a totally geodesic submanifold. To prove that, consider that space in
the picture of transvection spaces:

{

(

α · a1 · 1px + β
(

b1 · 1px + c1 · 1py
)

α · a2 · 2px + β
(

b2 · 2px + c2 · 2py
)

)

}

,

jpx,y corresponding to transvection in xj , yj direction in the space (jH
2).

(139)

To determine whether the space induced by these vectors is totally geodesic, we investigate if the Lie triple
product is closed under the subspace of ♣ induced by the vectors. For all parameters αi, βi, ai, bi, ci there must
exist real parameters α4, β4 such that following holds:

[

[

(

α1a1 1px + β1

(

b1 1px + c1 1py
)

α1a2 2px + β1

(

b2 2px + c2 2py
)

)

,

(

α2a1 1px + β2

(

b1 1px + c1 1py
)

α2a2 2px + β2

(

b2 2px + c2 2py
)

)

]

,

(

α3a1 1px + β3

(

b1 1px + c1 1py
)

α3a2 2px + β3

(

b2 2px + c2 2py
)

)

]

!
=

(

α4a1 1px + β4

(

b1 1px + c1 1py
)

α4a2 2px + β4

(

b2 2px + c2 2py
)

)

.

(140)
Direct calculation yields for the left side:





c1a1(α1β2 − β1α2)
(

(α3a1 + β3b1)
[

[1px, 1py], 1px
]

+ β3c1
[

[1px, 1py], 1py
]

)

c2a1(α1β2 − β1α2)
(

(α3a2 + β3b2)
[

[2px, 2py], 2px
]

+ β3c2
[

[2px, 2py], 2py
]

)



 . (141)

Putting both sides together one arrives at:

β4 = a1(α3a1 + β3b1)
!
= a2(α3a2 + β3b2) (142)

α4 =
(

β3c
2
1 − α3a1b1 + β3b

2
1

) !
=
(

β3c
2
2 − α3a2b2 + β3b

2
2

)

(143)

which ultimately leads to a1 = a2, b1 = b2, c1 = ±c2,
25 since the coordinate system has been chosen to align the

two x-axes and since can eq. 140 must hold for all values αi, βi.
This space is hence only a totally geodesic submanifold, if it lies diagonally within H2 × H2. The sectional

25except for trivial cases without coupling between the two factors H2 which reduce to the spaces H2 or R2.
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curvature of this 2-dimensional space will be constant due to ∇R = 0. With the decomposition with respect to
the two underlying hyperbolic spaces follows:

K =
g1(R1(v

1, w1)w1, v1) + g2(R2(v
2, w2)w2, v2)

(g1(v1, v1) + g2(v2, v2))(g1(w1, w1) + g2(w2, w2))−
(

g1(v1, w1) + g2(v2, w2)
)2

=
−a21c

2
1 − a22c

2
2

a21c
2
1 + a21c

2
2 + a22c

2
1 + a22c

2
2

=
−2a2c2

4a2c2
= −1

2
.

(144)

In those cases in which the vectors each only lie in one hyperbolic factor only (such as a1 = b2 = c2 = 0) the
subspace is flat as in section 13.3.1. For those cases in which the vectors both lie in the same hyperbolic factor
(such as a2 = b2 = c2 = 0), the sectional curvature is −1 as in section 13.3.2. As one has seen in section 13.3,
the sectional curvature of the whole space confined to the interval [−1, 0]. In comparison to H2 × R, H2√

2
is a

totally geodesic submanifold.

13.6 More general Cartesian products of “simple” symmetric spaces

One can form a symmetric space as Cartesian product from arbitrarily many symmetric spaces. So far, we have
only investigated “simple” symmetric spaces of at most two constituents. However, Cartesian products of many
“standard” symmetric spaces as Rn, H2, Sn are interesting, because computations decompose and the space is
hence easy to deal with. Helpful information about such a product space are its rank and its totally geodesic
submanifolds.

Rank of Cartesian products

For these kinds of “simple” product spaces, the results of this chapter allow to read off rank and the maximal
dimension of negatively and positively curved subspaces: The maximal dimension of negatively curved subspaces
is the maximal dimension of a negatively curved subspace in any factor of the product, e.g. for R2 ×H3 ×H4

it is four.
Completely analogous to this, the maximal dimension of positively curved subspaces can be determined. For
R2 × S3 × S4 it is also four.
The rank of a symmetric space is a little bit more complicated to determine, since every factor adds at least
one dimension since every factor has at rank 1. This is because a one-dimensional subalgebra ♣i ⊂ ❣i of the
respective Lie algebras of every constituent is trivially abelian. As the rank of a Cartesian product is the sum
of the ranks of the constituents, the rank of H2 × S3 × R4 is 1 + 1 + 4 = 6.

Totally geodesic submanifolds of Cartesian products

It was shown in the sections about H2 × R and S2 × R that there are no totally geodesic submanifolds except
for the trivial ones. However, the example of H2 × H2 showed that a Cartesian product can have interesting
totally geodesic submanifolds. The following will investigate that a bit further:

13.6.1 S2 × S2

The space S2 ×S2 is very similar in nature to H2 ×H2 which one can read off from their similar metric tensors
eq. 31 and eq. 35.26. Carrying out the computations from above, one finds: The totally geodesic submanifolds
are the spaces S1, S1 × S1, S2 × S1 and S2. Note that the torus S1 × S1 is a flat 2-dimensional manifold.
There are additionally infinitely many spaces S2

R=
√
2
with sectional curvature K = 0.5 lying diagonally within

S2 × S2.

13.6.2 H2
r1 ×H2

r2

This is the Cartesian product of hyperbolic spaces of curvatures different from K = −1. In fact, the sectional
curvature of H2

r is −1/r2. The coset formulation of H2
r is SO(2, 1)

/

SO(2). Nevertheless, the base point in the
embedding space of the hyperboloid is not (0, 0, 1) but (0, 0, r). This means that the Lie algebra of the isometry

26In fact, S2 is dual to H2 with respect to the commutation relations on their respective Lie algebras of the isometry group.

49



group is the same as for H2
r=1. The metric tensor of H2

r in the Poincaré model is just scaled with r2.
The totally geodesic submanifolds ofH2

r1×H2
r2 are hence analogous to the caseH

2×H2 with different curvatures:
The interesting 2-dimensional submanifolds from eq. 139 have the curvature:

K =
r21g1(R1(v

1, w1)w1, v1) + r22g2(R2(v
2, w2)w2, v2)

(

r21g1(v
1, v1) + r22g2(v

2, v2)
)(

r21g1(w
1, w1) + r22g2(w

2, w2)
)

−
(

r21g1(v
1, w1) + r22g2(v

2, w2)
)2

= − r41 + r42
(

r21 + r21
)2 .

(145)

This subspace is still a totally geodesic submanifold, as the Lie algebra structures of H2
r1 and H2

r2 fit together,
as they are both hyperbolic spaces. This does not hold for the following case:

13.6.3 H2 × S2

This product space has of course the following trivial totally geodesic submanifolds:

Hr × Ss, r, s ≤ 2. (146)

This also includes the flat cylinder R × S1 (because R ⊂ H2 and S1 ⊂ S2). However, one might think that in
analogy to the case H2 ×H2 examined in detail above, there is another 2-dimensional totally geodesic subspace
which lies diagonally within H2 ×S2. This is not the case since the Lie algebras

H2♣ and S2♣ are not compatible
with each other: Solving the Lie triple product explicitly in eq. 141 is only possible if the Lie algebras of both
spaces (iH

2) are compatible in the sense that their commutation relations match.
Since the Lie algebra of S2 generates infinitesimal rotations in 3-dimensional Euclidean space, but the Lie
algebra of H2 generates infinitesimal rotations in 3-dimensional Minkowski space, their commutation relations
are different. This ultimately leads to equations analogous to eq. 142 which cannot be fulfilled:

a1(α3a1 + β3b1)
!
= −a2(α3a2 + β3b2) or (147)

(

β3c
2
1 − α3a1b1 + β3b

2
1

) !
= −

(

β3c
2
2 − α3a2b2 + β3b

2
2

)

. (148)

13.6.4 (H2)n

The flat submanifolds are Rn and hence Rm, m < n which are trivially totally geodesic. Other trivially totally
geodesic submanifolds are: (×r

i=1
H2)×Rs, r+s ≤ n. Analogous to eq. 140 for H2×H2 there are 2-dimensional

subspaces of constant curvature different from −1:
Consider the vectors

v = (a1 · ∂x1
+ ...+ an · ∂xn

) and w = (b1 · ∂x1
+ c1 · ∂y1

+ ...+ bn · ∂xn
+ cn · ∂yn

), ai, bi, ci ∈ R (149)

which is the most general setting of vectors in (H2)n, as one can orient each space H2 in such a way that
the corresponding v-components each point in respective x-direction. This can also be written in a more
comprehensive form where each line corresponds to a H2-factor in the Cartesian product:

v =







a1∂x1

...
an∂xn






, w =







b1∂x1
+ c1∂y1

...
bn∂xn

+ c1∂yn






. (150)

To be a totally geodesic submanifold, the vectors need to form a Lie triple system. Analogous to the computation
eq. 140, one arrives at:

ai = aj , bi = bj , ci = cj ∀i, j 27. (151)

As the submanifold is totally geodesic, its sectional curvature must be constant since the sectional curvature is
a scalar. This allows to compute the sectional curvature at any point:

K =
−∑n

i=1 a
2
i c

2
i

(
∑n

i=1 a
2
i

)(
∑n

i=1 b
2
i + c2i

)

−
(
∑n

i=1 a
2
i b

2
i

)2 = − n

n2
= − 1

n
. (152)

27The cases with some coefficients being zero are mentioned below as (H2)r is contained within (H2)n, r < n.
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As the spaces (H2)r r ≤ n are also contained within (H2)n, there are each infinitely many 2-dimensional totally
geodesic submanifolds of constant sectional curvature −1,− 1

2 ,− 1
3 ,− 1

4 , ...,− 1
n . Hence the spaces

H2
R=

√
1
, H2

R=
√
2
, H2

R=
√
3
, ..., H2

R=
√
n (153)

are totally geodesic submanifolds. Because the spaces H2
R=

√
2
and H2

R=
√
3
etc. do not stand perpendicular on

each other, these submanifolds do not generate further interesting totally geodesic submanifolds as in section
13.6.2.
Since H3, H4, ... etc. are not contained in (H2)n, the mentioned spaces exhaust all totally geodesic submanifolds.

13.6.5 (S2)n

For (S2)n the results are analogous to the case of (H2)n: Aside from the trivial totally geodesic submani-
folds, there are each infinitely many 2-dimensional totally geodesic submanifolds of constant sectional curvature
1, 1

2 ,
1
3 ,

1
4 , ...,

1
n which corresponds to spheres of radius 1,

√
2,
√
3, ...,

√
n.

13.6.6 S2
r1 × S2

r2

The discussion can be taken almost verbatim from the case H2
r1 × H2

r2 from section 13.6.2. The interesting
2-dimensional totally geodesic submanifolds have the sectional curvature:

K =
r41 + r42
(

r21 + r21
)2 . (154)

13.6.7 Hm × Rn and Sm × Rn

These products do not possess any totally geodesic submanifolds except for the trivial ones which are respectively:
Hr ×Rs, r ≤ m, s ≤ n and Sr ×Rs, r ≤ m, s ≤ n and of course Rn+1, as these product spaces possess rank
n+ 1.

14 The Siegel space

Introduction

The spaces which have been investigated before, are Cartesian products of spaces of constant sectional curvature.
Investigating their properties thus reduces to investigating the properties of every single factor of the Cartesian
product. The Siegel space is non-decomposable, i.e. it is not a Cartesian product of simpler spaces. For the
Siegel space, the introduction to the theory of symmetric spaces becomes powerful.
The Siegel space (also called Siegel upper half plane or Siegel upper half-space) has been introduced and thor-
oughly investigated by Carl Ludwig Siegel [Siegel, 1943]. It is a generalization of hyperbolic space in the
sense that the models and metric are similar in structure to those of hyperbolic space. Whilst points in hyper-
bolic space are represented by vectors, points in the Siegel upper half-space are represented by matrices. The
implications of the matrix product and its non-commutativity change a lot of the properties of the Siegel space
compared to “regular” hyperbolic space. To facilitate getting a feel for the Siegel space, the box below provides
a more detailed insight into the coset formulation of hyperbolic space than the introductory section 3.3 before.
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The coset formulation of hyperbolic space
The following will elaborate on the Lie group quotient picture of 2-dimensional hyperbolic space in the
introduced models. It later becomes apparent that 2-dimensional hyperbolic space is a natural subspace
of the Siegel space.

❼ Hyperbolic space in the hyperboloid model can be written as SO(2, 1,R)
/

SO(2,R). The action
isometry and isotropy groups is a regular matrix-vector multiplication in R3.

❼ The coset formulation of hyperbolic space as Poincaré disk model in complex coordinates is
SU(1, 1,C)

/

SU(1,C) with

SU(1, 1,C) =

{

(

u v
v∗ u∗

)

∣

∣

∣

∣

∣

uu∗ − vv∗ = 1, u, v ∈ C

}

, SU(1,C) =

{(

ei
φ
2 0

0 e−iφ
2

)∣

∣

∣

∣

∣

φ ∈ R

}

.

(155)
The group SU(1, 1,C) and hence SU(1,C) act as Möbius transformations on the disk:

θ
(

(

u v
v∗ u∗

)

)

z =
u · z + v

v∗ · z + u∗ as complex division. (156)

❼ The coset formulation in the upper half-space model in complex coordinates is SL(2,R)
/

SO(2,R)
with

SL(2,R) =

{

(

a b
c d

)

∣

∣

∣

∣

∣

ab− cd = 1

}

and SO(2,R) =

{

(

cos(φ) − sin(φ)
sin(φ) cos(φ)

)

∣

∣

∣

∣

∣

φ ∈ R

}

. (157)

The group SL(2,R) and hence SO(2,R) also act as Möbius transformations on the complex upper
half-space:

θ
(

(

a b
c d

)

)

z =
a · z + b

c · z + d
as complex division. (158)

Note that the actions on the Poincaré disk and the action on the upper half-space are conjugate via the
Cayley transform ✐ from eq. 37. Explicitly:

(✐−1 ◦ θ(g) ◦ ✐) = θ(g̃) g ∈ SU(1, 1,C), g̃ ∈ SL(2,R). (159)

In fact, SU(1, 1,C) and SL(2,R) are isomorphic as well as SU(1,C) and SO(2,R). This again justifies
why we focus on the model which fits best to convenience. For visualization purposes one often uses the
disk, but for computational purposes we will use the upper half-space model.

14.1 The upper half-space model of the Siegel space

The Siegel space is a generalization of hyperbolic space. In particular, the space SHn and Hn coincide for n = 1.
For higher dimensions this -of course- does not hold. Analogue to hyperbolic space, there are several equivalent
models of the Siegel space. The following model of the Siegel space is a generalization of the upper half-space.
It can be defined as:

SHn = {Z ∈ Sym(n,C)|ℑ(Z) > 0}, with Sym(n,C) symmetric n× n-matrices with entries in C.28 (160)

The similarity to the upper half-space model of hyperbolic space is evident. The restriction to matrices with
positive definite imaginary part can be understood when writing an element P ∈ SHn as P = X + iY . The
matrix Y is symmetric and has real entries. It is hence diagonalizable with positive eigenvalues by definition of
SHn.

28The capital letter Z stands for a matrix, whereas a small letter z stands for a complex number.
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Finding a coset formulation of SHn in terms of a Lie group of isometries and a corresponding subgroup induces
a Riemannian structure on SHn. In fact, the coset formulation of the Siegel space reads:

SHn = Sp(2n,R)
/

SpO(2n,R). (161)

The Symplectic group Sp(2n,R)
The group Sp(2n,R) is the group of matrices which leaves the symplectic scalar product invariant. To get
an intuition for that, recall that the group O(n,R) leaves the Euclidean scalar product 〈·, ·〉E invariant:

〈Mv,Mw〉E = (Mv)T ·Id·Mw = vTMT ·Id·Mw = vT ·Id·w = 〈v, w〉E , v, w ∈ Rn, M ∈ O(n,R). (162)

The defining property of a matrix M to be orthogonal is hence MT · Id ·M = Id.
We now define the symplectic matrices as those matrices leaving the symplectic scalar product 〈·, ·〉Sp

invariant:

〈Mv,Mw〉Sp = (Mv)T · J ·Mw = vTMT · J ·Mw = vT · J · w = 〈v, w〉Sp, v, w ∈ R2n, M ∈ Sp(2n,R).
(163)

The defining property of a matrix M to be symplectic is hence MT · J ·M = J .
The symplectic form J is a (2n× 2n)-matrix:

J =

(

0 Idn
−Idn 0

)

(164)

in block matrix notation. From this definition it becomes apparent, why the symplectic group only exists
in even dimensions. By investigating the defining property of a matrix to be symplectic, we arrive at the
block form

M =

(

A B
C D

)

, ATD − CTB = Idn, ATC and BTD symmetric matrices. (165)

It can be inferred that a symplectic matrix has determinant +1 [Freitas, 1999, Prop. 2.2.3].

Analogue to the action of SL(2n,R) y H2, the symplectic group Sp(2n,R) acts on SHn as linear fractional
transformations via the map θ : Sp(2n,R) → Maps(SHn;SHn):

θ
(

(

A B
C D

)

)

Z = (AZ +B)(CZ +D)−1 ∈ SHn. (166)

Compare this with the action SL(2,R) y H2 of eq. 158. Note that (CZ +D)−1 is the matrix analogue to the
complex division 1

cz+d . Also, note that the matrix acting on SHn is a (2n× 2n)-matrix with blocks A,B,C,D
of size n×n. The matrix Z is a complex (n×n)-matrix. It can be shown that the resulting matrix is an element
of SHn. The action Sp(2n,R) y SHn is hence well defined.

14.2 The ball model of the Siegel space

The ball model of the Siegel space is again similar to the Poincaré ball model of hyperbolic space. Explicitly:

SBn = {Z ∈ Sym(n,C)|Idn − ZZ̄ > 0}. (167)

This model is equivalent to the upper half-space model, [Siegel, 1943, II, 4] since the generalization of the Cayley
transform as in eq. 37 maps one model to the other:

✐ : Ball model → half-space model, Z 7→ i(Z + Idn)(−Z + Idn)
−1 (168)

✐−1 : half-space model → Ball model, Z 7→ (Z − iIdn)(Z + iIdn)
−1. (169)
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These maps can be expressed as generalized Möbius transformations associated with the matrices
(

Idn −Idn
Idn iIdn

)

and
1

2i

(

iIdn iIdn
−1 1

)

.29 (170)

Again, the isometry group of the ball model is conjugated to the isometry group of the half-space model and
can be written symbolically as ✐−1 ◦ Sp(2n,R) ◦ ✐ which is the set of matrices:

✐−1 ◦ Sp(2n,R) ◦ ✐ =

(

U B
B U

)

, UU† −BB† = Idn, UBT = BUT , U,B complex. (171)

This justifies working with the model which is most convenient for the purpose.

14.3 The symmetry on SHn

The symmetry at P = 0 in the ball model is easy to see: It just maps Z to −Z. In matrix form acting as a
linear fractional it reads

I0(SB
n) ∋ gsP=0

=

(

−iIdn 0
0 iIdn

)

in the ball model. (172)

This map can be lifted to the half-space model via eq. 168. This yields at P = iIdn the symmetry given by
sP : SHn → SHn, Z 7→ −Z−1 30. It also acts as linear fractional transformation and can be written in matrix
form as

I0(SH
n) ∋ gsP=iId

=

(

0 −Idn
Idn 0

)

in the half-space model. (173)

We choose as base point P = iIdn, analogue to having chosen p = i for H2.31 The Cartan involution is hence:

σ : Sp(2n,R) → Sp(2n,R) (174)
(

A B
C D

)

7→
(

−D C
B −A

)

∼=
(

D −C
−B A

)

in the half-space model. (175)

Since the elements of GP commute with gsP , i.e. σ(k) = k for all k ∈ GP , we find the isotropy group GP=Id as

SpO(2n,R) =

(

A B
−B A

)

, ATA+BTB = Idn, ATB symmetric matrices. (176)

This group is the intersection SpO(2n,R) = Sp(2n,R) ∩ O(2n,R) which is trivially a subgroup of Sp(2n,R),
since the product of orthogonal matrices is again orthogonal.

14.4 The dimension of the Siegel space

The Siegel space SHn can be embedded in Cn2

, as it consists of complex (n× n)-matrices. This corresponds to
an embedding space of real dimension 2n2. However, the intrinsic dimension of the Siegel space is only n2 + n,
since both real and imaginary part of the matrix representation as in eq. 160 are symmetric.
One can also infer this by looking at the coset formulation SHn ∼= Sp(2n,R)

/

SpO(2n,R). The dimension of
♣ of the corresponding Cartan decomposition is equal to the dimension of SHn. The Lie algebra ❵♣(2n,R) of
Sp(2n,R) reads:

❵♣(2n,R) =

(

A B
C −AT

)

, B and C symmetric matrices, A arbitrary. (177)

29The factor 1
2i

is necessary to make these matrices inverse to each other. The action has not changed since the factor cancels in

(AZ +B)(CZ +D)−1.
30Again, the symmetry at Q ∈ SHn is given by sQ = θ(g) ◦ sP ◦ θ(g−1) for θ(g)P = Q, g ∈ Sp(2n,R).
31Recall that the choice of P is arbitrary since the Siegel space is a homogeneous space. If one chose Q instead, the group of

isometries Sp(2n,R) would stay the same. Instead the formulation of the isotropy group would change. In particular, if GP is the
isotropy group at P , the isotropy group at Q is GQ = g ·GP · g−1 with θ(g)P = Q and g ∈ Sp(2n,R) since the isometry group acts
transitively on SHn. Both isotropy groups are isomorphic and one chooses the base point P = iId because the isotropy group has
a form easy to deal with.

54



Its Cartan decomposition is:

❵♣(2n,R) = ♣⊕ ❦ =

(

A B
B −A

)

⊕
(

C D
−D C

)

, A,B,D symmetric, C skew-symmetric.32 (178)

From the explicit form of ♣ one can read off the dimension of ♣ and hence SHn as 2 · n2+n
2 as both A and B

have n2+n
2 degrees of freedom.

14.5 The metric tensor

The Riemannian structure is (up to a constant) determined by the isometry group, i.e. the metric tensor g needs
to have such a form that

gQ(V,W ) = θ(h−1)∗gP (V,W ) = gP
(

θ(h−1)∗V, θ(h
−1)∗W

)

with V,W ∈ TQSH
n, h−1 ∈ Sp(2n,R), θ(h−1)Q = P

(179)

which means that the metric tensor is determined by its value at one single point P due to the transitivity of
the action of the isometry group on the manifold.
For P = iId one may choose the Euclidean metric. This does not mean that SHn is Euclidean, since the metric
only coincides with the Euclidean metric at one single point P = iId. For all other points it is given by eq. 179
which makes sure that the metric carries the non-Euclidean structure of SHn.
This is also the case for the metric on the upper half-space H2: The metric tensor 1/ℑ(z)dz⊗dz̄ coincides with
the Euclidean metric at z = i. This motivates the choice of the Euclidean metric at P = iId, as the Siegel space
SHn should coincide with hyperbolic space H2 for n = 1. 33

The Euclidean metric on Cn2

The space SHn has a representation as Sym(n,C)-matrices and is obviously a subset of Cn2

where the

matrices are “vectorized”, i.e. written as complex n2-vectors. On Cn2

, the familiar Euclidean scalar
product has the form

〈v, w〉 =
n2
∑

i=1

viw̄i, v, w complex n2-vectors. (180)

The Euclidean scalar product on Sym(n,C) is the Frobenius inner product, which is the Euclidean scalar
product above for vectorized matrices. The Frobenius inner product in matrix notation reads:

〈V,W 〉 = tr(VW ), V,W complex (n× n)-matrices. (181)

It now only remains to determine θ(h−1)∗ in eq. 179. The computation is carried out explicitly in section 14.10.1
resulting in:

θ(h−1)∗(V ) =
√

Y −1
Q · V ·

√

Y −1
Q , V ∈ TQSH

n, Q = XQ + iYQ ∈ SHn. (182)

The metric at an arbitrary point Q is hence:

gQ(V,W ) = tr(
√

Y −1
Q · V ·

√

Y −1
Q ·

√

Y −1
Q ·W ·

√

Y −1
Q ) = tr(Y −1

Q V Y −1
Q W ) (183)

using that the trace is cyclic and that YQ is a real matrix.

32Note that SpO(2n,R) in eq. 176 and ❦ = ❵✕(2n,R) = ❵♣(2n,R) ∩ ❵♦(2n,R) in eq. 178 are not the same groups because of the
additional requirements on the blocks of matrices. In particular 0 ∈ M2n×2n is an element of ❵✕(2n,R) but not of SpO(2n,R).

33One could of course scale the metric tensors of both SHn and H2 as g′ = λg to preserve both the compatibility with the
isometry groups and the generalization property. This would result in the sectional curvature to become K′ = λ−1K. It is hence
sufficient to consider the “standard” hyperbolic and Siegel spaces because all properties are just scaled by terms in λ.
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14.6 The Riemannian gradient on SHn

The gradient of a real valued function f is a vector-valued function on the manifold SHn. The Siegel manifold
can be represented as set of matrices with coordinates as in eq. 160. With respect to these coordinates one can
find the derivative of a real valued function f . However, one has to take into account that the magnitude of a
tiny displacement δXi at Q is dependent on the evaluation point Q. The metric tensor takes care of that by
scaling the Euclidean gradient according to the evaluation point. As vectors in SHn are represented by matrices,
the Riemannian gradient gradRief |Q has matrix form and lives in the tangent space of SHn at Q.
With aid of the Euclidean metric one can now find the Riemannian gradient with [Theis, 2005, Theorem 3.3]
via:

gP (V, gradRief
∣

∣

Q
) = df

∣

∣

Q
(V ) = 〈V, gradEucf

∣

∣

Q
〉 with evaluation point Q = XQ + iYQ (184)

which shows the relation between the Euclidean gradient and the Riemannian gradient. Rearranging the left
hand side yields:

gQ(V, gradRief
∣

∣

Q
) = tr(Y −1

Q V Y −1
Q gradRief

∣

∣

Q
) = tr(V Y −1

Q gradRief
∣

∣

Q
Y −1
Q ) = 〈V, Y −1

Q gradRief
∣

∣

Q
Y −1
Q 〉. (185)

Putting eq. 184 and eq. 185 together and using that the matrix Y −1
Q is a matrix with real entries one arrives at:

〈V, gradEucf
∣

∣

Q
〉 = 〈V, Y −1

Q gradRief
∣

∣

Q
Y −1
Q 〉

⇒ gradEucf
∣

∣

Q
= Y −1

Q gradRief
∣

∣

Q
Y −1
Q

⇒ gradRief
∣

∣

Q
= YQgradEucf

∣

∣

Q
YQ.

(186)

The Riemannian gradient can thus be calculated at Q from the Euclidean gradient via two simple matrix
multiplications. Note that Riemannian and Euclidean gradient coincide at P = iId since YP = Id.

14.7 The submanifold (H2)n ⊂ SHn

The subspace (H2)n can be found within SHn. Note that this does not mean that SHn is decomposable.
Clearly, the matrix











z1
z2

. . .

zn











with ℑ(zi) > 0 (187)

corresponds to a point in SHn, because it is trivially symmetric and its imaginary part is positive definite. To
explicitly see why (H2)n is a submanifold, one wants to find those isometries which only alter one H2 subspace of
(H2)n, i.e. SL(2,R)n ⊂ Sp(2n,R). The subspaces SO(2,R)n are then trivially contained in Sp(2n,R), because
SO(2,R) ⊂ SL(2,R).
We show explicitly that there are n SL(2,R)-subgroups by introducing matrices which correspond to each
subgroup: The n matrices of the block matrix form

M1 :=





































a1 b1
1

1
. . .

1
c1 d1

1
1

. . .

1





































, M2 :=





































1
a2 b2

1
. . .

1
1

c2 d2
1

. . .

1





































, ...

(188)
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with zeros everywhere else are symplectic (2n× 2n)-matrices. The matrix Mi only acts on zi in the H2 form of
eq. 187. Each action of Mi can be identified with a matrix in SL(2,R), which shows that SL(2,R)n ⊂ Sp(2n,R).
We now check that the Lie algebras which only correspond to one H2 subspace of (H2)n are contained within

the Lie algebra of Sp(2n,R), i.e.
n
⊕

i=1

❵❧(2,R) ⊂ ❵♣(2n,R).

Lie algebra of SL(2,R)
The Lie algebra of SL(2,R) is ❵❧(2,R), the vector space of traceless (2× 2)-matrices. The Lie algebra of
the subgroup SO(2,R) ⊂ SL(2,R) is ❵♦(2,R), the vector space of skew-symmetric (2× 2)-matrices. One
can find a basis of ❵❧(2,R), namely:

❵❧(2,R) = ♣ ⊕ ❦ =

〈

(

1 0
0 −1

)

,

(

0 1
1 0

)

〉

⊕
〈

(

0 1
−1 0

)

〉

(189)

where the brackets stand for the linear span. The first summand correspond to ❵❧(2,R)
/

❵♦(2,R) ∼= ♣ in
the Cartan decomposition, the second summand corresponds to ❵♦(2,R) ∼= ❦.
The elements of ♣ generate transvections via the flow of their respective corresponding Killing vector
fields. The first basis vector (which is a matrix) of ♣ from eq. 189 corresponds to the vector ∂y. The
second basis vector corresponds to the vector ∂x at p = i.
This can be seen via exponentiation of the matrix in ♣: One obtains a matrix of SL(2,R) which acts on
H2 as an isometry (a transvection) shifting the base point p = i into the direction of the Killing vector
fields, i.e. along geodesics.

Figure 25: Geodesics on the upper half-space H2 emanating from the base point p = i. On the left, the
blue geodesic points in direction ∂y, the green geodesic is obtained by γ(t) = expi t · ∂x.
On the right, these geodesics are transformed via an isometry fixing p. This isometry is an element of
the isotropy group and can hence be obtained as: expId2×2

(φ · ❦) ∈ SO(2,R), where the parameter φ
determines the rotation angle. Since the geodesics are of infinite length, they approach the boundary
x = 0, but will never reach it. This is indicated by small arrows.

The Lie algebra of Sp(2n,R)
The Lie algebra of the symplectic group is ❵♣(2n,R), the set of (2n× 2n)-matrices of the form:

❵♣(2n,R) = ♣ ⊕ ❦ =

(

A B
B −A

)

⊕
(

C D
−D C

)

, A,B,D symmetric, C skew-symmetric. (190)

It is apparent that the Siegel space SH1 of dimension 2 is just hyperbolic space H2:

Sp(2 · 1,R) = SL(2,R), ❵♣(2 · 1,R) = ❵❧(2,R). (191)

To see explicitly that the Lie algebra ❵❧(2,R) corresponding to (H2)n is contained in ❵♣(2n,R) corresponding to
SHn, consider the matrices:
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M̃1 :=





































α1 β1

0
0

. . .

0
γ1 −α1

0
0

. . .

0





































, M̃2 :=





































0
α2 β2

0
. . .

0
0

γ2 −α2

0
. . .

0





































, ...

(192)

with zeros everywhere else. These (2n×2n)-matrices are contained in the Lie algebra ❵♣(2n,R) which is immediate
to check. In fact, the small (2 × 2)-matrices within the (2n × 2n)-matrices above generated by the numbers
(αi, βi, γi) are traceless and span the (2× 2)-matrices of ❵❧(2,R) from eq. 189.

14.7.1 The subspace (H2)n as totally geodesic submanifold

In the last section it was shown that ❵❧(n,R)n ⊂ ❵♣(2n,R). Now one wants to know, whether the induced sub-
manifold (H2)n is a totally geodesic subspace of SHn. For this it is easy to verify that the transvection vectors
(♣H2)n are a Lie triple system within ♣SHn from eq. 178. For this, recall that ♣H2 is spanned by the first two
entries of the Lie algebra ❵❧(2,R) in eq. 189. Thus, (♣H2)n has the matrix form similar to the span of those
matrices of eq. 192 with γi = βi. It is then straight-forward to show:

[

[

(

Dα1 Dβ1

Dβ1 −Dα1

)

,

(

Dα2 Dβ2

Dβ2 −Dα2

)

]

,

(

Dα3 Dβ3

Dβ3 −Dα3

)

]

⊆
(

Dα4 Dβ4

Dβ4 −Dα4

)

(193)

in block matrix form with Di a real diagonal (n× n)-matrix.

Results from (H2)n being totally geodesic

Since (H2)n is a totally geodesic subspace, any geodesic within (H2)n is also a geodesic within SHn. This
simplifies finding a geodesic γ connecting two arbitrary points P and Q and calculating the distance:
Due to the transitivity of the symplectic group action, it is possible to find an isometry φ mapping P to iId and Q
to iD whereD = diag(q1, ..., qn) is a diagonal matrix.34 The isometry φ can be understood as a coordinate system
change. It is then easy to find the geodesic γ̃ connecting φ(P ) and φ(Q) as γ̃(t) = diag(i exp(q1t), ..., i exp(qnt)).
The distance between φ(P ) and φ(Q) just decomposes into the distance calculation for every subspace H2 as
shown in eq. 93.
The transformation φ−1 maps the computed geodesic γ̃ back to γ in the original coordinate system. Since φ
and thus φ−1 map geodesics to geodesics, γ is in fact a geodesic since γ̃ is a geodesic. It follows d(P,Q) =
d(φ(P ), φ(Q)).
Transforming a problem to the subspace (H2)n will turn out to be very useful for computing the distance in
section 14.11 and the exponential map in section 14.10 below.

14.8 The submanifold P (n,R) = GL(n,R)
/

O(n,R) ⊂ SHn

The space P (n,R) =: P (n) is the space of symmetric positive definite matrices with real entries. Looking at the
elements of the Siegel space, namely Z = X+ iY with Y symmetric and positive definite, one gets an impression
that P (n) is a subset of the pureley imaginary part of SHn. P (n) can be understood as the space of positive
definite scalar products, since an “ordinary” scalar product in matrix form is symmetric and positive definite.

34For explicit computation see section 14.10 about the Riemann exponential map.
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The coset formulation of P (n) is GL(n,R)
/

O(n,R) [Eschenburg, 1997, 1, E.9]. The group GL(n,R) acts as
isometries on P (n) as:

θ : GL(n,R) → Maps(P (n);P (n)) (194)

θ(g)(Q) = g ·Q · gT , Q ∈ P (n) (195)

because it preserves the inner product:

〈V,W 〉Q = tr(Q−1V Q−1), Q ∈ P (n). (196)

This inner product is the restriction of the inner product on the full space SHn because the term Y −1
Q in eq.

183 is exactly the part Q−1: P (n) can be seen as the imaginary part Y of Z = X + iY ∈ SHn.
Let us choose P = Idn as base point.35 The isotropy group of P (n) at Idn is O(n,R), since θ(k)(Idn) =
k · Idn · kT = Idn, because k is an orthogonal matrix.
To show that GL(n,R)

/

O(n,R) is a submanifold of SHn = Sp(2n,R)
/

SO(n,R), it is sufficient to show that
GL(n,R) ⊂ Sp(2n,R). Since O(n,R) ⊂ GL(n,R), it follows that O(n,R) ⊂ SpO(2n,R).
Consider the inclusion

GL(n,R) −֒→ Sp(2n,R)

G 7→
(

G 0
0 (GT )−1

)

(197)

and its corresponding inclusion in the Lie algebra of Sp(2n,R):

❣❧(n,R) −֒→ ❵♣(2n,R)

M −֒→
(

M 0
0 −M

)

, M arbitrary.
(198)

The action GL(n,R) y P (n) fits to the inherited action Sp(2n,R) y SHn : θ(G)(Z) = GZGT . One can see
that the space GL(n,R)

/

O(n,R) thus nicely fits into the coset formulation of SHn.

In fact, the framework for the GL(n,R)
/

O(n,R) lays the foundation for the following very powerful general
submanifold SL(n,R)/SO(n,R):

14.9 The submanifold SL(n,R)
/

SO(n,R)

Since GL(n,R)
/

O(n,R) is a submanifold of the Siegel space, it is straight-forward to see that SL(n,R)
/

SO(n,R)
is also a submanifold. In fact, it is also a totally geodesic submanifold: Since the transvection space ❵❧(n,R) is
the space of symmetric traceless matrices, it is closed under the Lie triple product36.

The embedding into SL(n,R)
/

SO(n,R)

The space SL(n,R)
/

SO(n,R) is incredibly versatile. In fact, one can read off one explicit submanifold already,

namely H2 ∼= SL(2,R)
/

SO(2,R). In that sense, it is a generalization of hyperbolic space. In fact, any symmetric

space of noncompact type37 can be found within SL(n,R)
/

SO(n,R) for adequate n. The natural38 metric tensor

on SL(n,R)
/

SO(n,R) fits up to a constant to the metric tensor on the starting symmetric space to be embedded.
This is a remarkable result for the Siegel space, because it shows that all negatively curved symmetric spaces
can be found as totally geodesic subspaces within it. Note that we had already explored the totally geoedesic
submanifold of (H2)n. It was found that H3 is not a submanifold of (H2)n. By this result however, Hm can be
embedded as totally geodesic submanifold. In particular, for any index set I, the product manifold

(×I
HI
)

×Rr

35Keeping in mind that P (n) is the imaginary part of SHn, this is the same reference point as iIdn in the full Siegel space.
36The commutator or two symmetric matrices is an anti-symmetric matrix, the commutator of a symmetric matrix with an

anti-symmetric matrix is a symmetric matrix. Since the trace of any commutator is zero (as the trace is cyclic) the statement
follows.

37Pictorially speaking, this means that the space is infinite in any direction.
38The metric tensor induced by the Killing form as described in section 14.12.
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can be found as totally geodesic submanifold within SL(n,R)
/

SO(n,R) for adequate n. In particular, even the

Siegel space SHn itself can be embedded into a submanifold of SL(2n2 − n,R)
/

SO(2n2 − n,R)39. A sphere

Sm ∼= SO(m + 1,R)
/

SO(m,R) however cannot be embedded in SL(n,R)
/

SO(n,R) as the isometry group

SO(m+1,R) lies in the isotropy group K of SL(n,R)
/

SO(n,R): Any transvection in Sm is in fact killed by K.

Let us state the general theorem about the embedding into SL(n,R)
/

SO(n,R) in a bit more detail:

Embedding theorem in SL(n,R)
/

SO(n,R) [Eberlein, 1996, Theorem 2.6.5]

For any symmetric space Lm, dim(Lm) = m of noncompact type there is an (essentially) isometric
diffeomorphism F sending Lm to a totally geodesic submanifold Memb of SL(n,R)

/

SO(n,R) with n =

I0(Lm) a. The metric tensor on Lm is equal to the restriction of the metric in SL(n,R)
/

SO(n,R) to the
submanifold up to a positive constant.
Let p ∈ Lm be the base point of Lm

∼= G/K, then the map F has the form:

F : Lm → SL(n,R)
/

SO(n,R) (199)

q = g(p) 7→ Ad(g) · k, k ∈ SO(n,R), g ∈ G. (200)

In particular the base point is mapped to Idn ∈ SL(n,R)
/

SO(n,R).

aNote that dim(I(Lm)) 6= dim(Lm), e.g. dim(Sj) = j 6= dim(SO(j + 1)) =
j(j+1)

2
for the j-sphere.

The metric induced on the submanifold of SL(n,R)
/

SO(n,R) by the pullback of F does not yield every metric
which one would wish for. The metric tensor is scaled with a positive constant. This is meant by the notion
of an essentially isometric map. In particular, not all hyperbolic spaces of any curvature can be found as
totally geodesic submanifolds, since the metric on SL(n,R)

/

SO(n,R) and hence on its submanifolds is fixed.
In conclusion, spaces as Hj

r cannot be embedded as totally geodesic submanifolds with correct curvature.

14.10 The Riemann exponential map on the Siegel space

The Riemann exponential map sends a vector W at an arbitrary point Q to a point Q̃ in the Siegel space. The
set (Q,W ) of starting point and vector uniquely determines a geodesic within the Siegel space. The Riemann
exponential map yields exactly that point R such that the geodesic distance between Q and R is the length of
the vector W . This map within SHn can be computed via the geodesic equation eq. 23. However, for this
procedure one needs to solve n2 + n differential equations which one tries to avoid.
Using the knowledge of symmetric spaces, one can find two40 ways to circumvent these differential equations
depicted in the diagram below:

39The dimension of the isometry group of the Siegel space is 2n2 − n as one can read off from eq. 14.4.
40There are of course other ways to do so, such as applying a coordinate transformation to move the emanating point Q and its

tangent vector into the totally geodesic submanifold P (n). The following will focus on two procedures depicted in red and orange.
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♣ Sp(2n,R)

SHnTiIdSH
nTQSH

n
SHn

T0SB
n SBn

expId2n×2n

Υ−1

expiIdn×n

θ
(

θ(g−1)
)

∗ θ(g)

expQ

(✐−1)∗

exp0

✐

Figure 26: Diagram of the setup for the exponential map in the Siegel space. The green arrow symbolizes the
solution to the differential equations. Three alternatives are depicted in red, blue and orange. They represent the
paths via the coset formulation, via the Riemann exponential in SHn and via the ball model SBn, respectively.
All three paths first send the vector at point Q to the base point P = iIdn via θ(g−1)∗ for computational
reasons. After the exponential mapping, the result is sent back via θ(g). This procedure can be understood as
a coordinate transformation.

14.10.1 Coordinate transformation

Looking at the diagram fig. 26 above, we need the maps (θ(g−1))∗ and θ(g) in order to shift the computation
of the Riemann exponential map to the base point P = iIdn. Transporting the problem to the base point
makes sense, since the Siegel space is a homogeneous space, i.e. all points can be considered as equal. Since the
symplectic group Sp(2n,R) acts transitively on SHn, one can find an isometry (an element of Sp(2n,R)) which
sends the base point P = iId to any point Q = XQ + YQ:

SHn → Sp(2n,R)

Q 7→





√

YQ XQ

√

Y −1
Q

0
√

Y −1
Q



 =: g, with θ(g)(P ) = Q.
(201)

This map can be split into two symplectic matrices:

g = gℜ · gℑ (202)




√

YQ XQ

√

Y −1
Q

0
√

Y −1
Q



 =

(

Idn XQ

0 Idn

)

·
(√

YQ 0

0
√

Y −1
Q

)

(203)

which corresponds to concatenating the mappings gℑ ∽ Z 7→
√

YQZ
√

YQ and gℜ ∽ Z 7→ Z + XQ. The
push-forward map θ(g)∗ which sends a vector V at P to a vector θ(g)∗(V ) at Q = θ(g)(P ) then boils down to:

θ(g)∗(V ) =
√

YQ · V ·
√

YQ with “·” as matrix multiplication. (204)

Now one can easily find the maps θ(g−1) and θ(g−1)∗ because of the group action property:

θ(g−1) = θ(g)−1 and hence

θ(g−1)∗(V ) =
√

Y −1
Q · V ·

√

Y −1
Q .

(205)

To conclude, the relevant maps are eq. 201 and eq. 205.
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14.10.2 The exponential map via the coset formulation

The existence of the correspondence of the coset formulation, i.e. SHn ∼= Sp(2n,R)
/

SpO(2n,R), has been
shown already in eq. 84. However, in order to use the anti-isomorphism Υ−1 from eq. 67 between the vector
spaces TiIdSH

n and ♣, this map firstly has to be found explicitly. This enables us to calculate the exponential
map within the coset formulation as matrix exponential: An element ✈ ∈ ♣ is sent via the matrix exponential
to a symplectic matrix S. This matrix corresponds to an isometry on the Siegel space. Letting S act on the
base point P = iId, one obtains the resulting point R̃ ∈ SHn. The red path in the diagram 26 above is then
explicitly shown below:

W V ✈ S R̃ R

TQSH
n TiIdSH

n ♣ Sp(2n,R) SHn SHn

Sym(n,C) Sym(n,C) M(2n,R) M(2n,R) Sym(n,C) Sym(n,C)

(

θ(g−1)
)

∗ Υ−1

(⋆)

expId2n×2n

θ
θ(g)

expQ

∈ ∈ ∈ ∈ ∈ ∈

Figure 27: Diagram of the setup for the exponential map in the Siegel space via the coset formulation. The arrow
marked by (⋆) is not trivial: The space TiIdSH

n is a vector space of real dimension (n2 − n) as is the vector
space ♣. However, TiIdSH

n consists of complex (n× n)-matrices, whereas ♣ consists of real (2n× 2n)-matrices.

Let us postpone the construction of the anti-isomorphism Υ−1 for a short time. With aid of Υ−1, any vector
in TiIdSH

n has a unique corresponding element in ♣: Any vector can be linearly decomposed into basis vectors
{Vi}, resulting in a linear combination of basis vectors {bi} in ♣. The resulting real (2n× 2n)-matrix in ❵♣(2n,R)
can be exponentiated (this is the (2n × 2n)-matrix exponentiation) which yields a symplectic matrix. Letting
this symplectic matrix act on P = iId yields the point R̃. Sending this point via θ(g) to R undoes the very first
coordinate change and is hence the result of the Riemann exponential expQ(W ) = R.

The correspondence of TiIdSH
n and ♣

The crucial part of the exponential map via the coset formulation is the connection between the tangent space
TiIdSH

n and the transvection space ♣. The following procedure will construct the anti-ismorphism Υ and hence
the needed inverse map Υ−1:

❼ Find a basis {bi}i=1,...,n2+n of the vector space ♣ in terms of (2n × 2n)-matrices. Since dim(♣) = n2 + n,
there are (n2 + n) basis matrices. We know from eq. 178:

♣ =

(

A B
B −A

)

, A,B symmetric (206)

which has (n2 + n) degrees of freedom.

❼ Parameterize the basis matrix bi by multiplying with the parameter t.

❼ Use the matrix exponential at the identity Id2n×2n of that parameterized basis matrix. This yields a real
symplectic (2n× 2n)-matrix Si(t) := exp(t · bi).

❼ Let the resulting matrix Si(t) act on Z ∈ SHn, this yields a flow φt on SHn parameterized by t.

❼ The velocity vector at t = 0 of the flow φt is the corresponding Killing vector field

( d

dt
θ(Si(t))(Z)

)∣

∣

∣

t=0
=: X(Z) ∈ X (SHn). (207)
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❼ Evaluating the Killing vector field at Z = iIdn×n yields the basis vector Vi ∈ TiIdSH
n we are searching:

X(iIdn×n) =: Vi ∈ TiIdSH
n. (208)

❼ The repetition for all basis matrices bi of ♣ yields a basis {vi}i=1,...,n2+n of TiIdSH
n. The anti-isomorphism

Υ is hence determined. Since this map is just an assignment map between {bi} and {Vi}, the inverse map
Υ−1 is automatically found.

A basis {bi}i=1,...,n2+n of the vector space ♣ can be found easily when looking at its matrix form:

♣ ∼=
(

A B
B −A

)

with A,B ∈ Sym(n,R). (209)

One can find four sets of basis vectors which correspond to:

1. the diagonal part of the block matrix A with n elements,

2. the diagonal part of the block matrix B with n elements,

3. the off-diagonal part of the block matrix A with n2−n
2 elements,

4. the off-diagonal part of the block matrix B with n2−n
2 elements.

The above mentioned procedure yields after some tedious calculations:

b1 :=









































1

0
...

0 · · · 0 · · ·
. . .

...
0

−1
... 0

· · · 0 · · · 0
...

. . .

0









































,b2 :=









































0

1
...

0 · · · 0 · · ·
. . .

...
0

0
... −1

· · · 0 · · · 0
...

. . .

0









































, ...

V1 :=

















...
· · · 0 · · ·

...

















+ i ·

















2 0

0 0
...

· · · 0 · · ·
...

















,V2 :=

















...
· · · 0 · · ·

...

















+ i ·

















0 0

0 2
...

· · · 0 · · ·
...

















, ...

Figure 28: The basis vectors {b1, ..., bn} ∈ ♣ represent the diagonal part of the block matrix A in eq. 209.
The n corresponding vectors in TiIdSH

n represent the diagonal part of the imaginary part of the vector space
TiIdSH

n ∼= Sym(n,C).
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bn+1 :=
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Vn+1 :=
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, Vn+2 :=
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, ...

Figure 29: The n basis vectors bn+1, ..., b2n ∈ ♣ represent the diagonal part of the block matrix B in eq.
209. The n corresponding vectors in TiIdSH

n represent the diagonal part of the real part of the vector space
TiIdSH

n ∼= Sym(n,C).

After having found the first 2n basis vectors, we investigate their nature, in particular which geodesics they
induce. When looking at section 14.7 about (H2)n ⊂ SHn, one easily sees that the vectors {b1, ..., b2n} generate
all geodesics within this subspace. In particular, eq. 192 shows that {b1, ..., bn} correspond to those n geodesics
which each point to i-direction of the hyperbolic upper half-space H2. In Euclidean coordinates, this direction
corresponds to the y-coordinate. The vectors {bn+1, ..., b2n} thus correspond to those n geodesics which each
point to +1-direction of the hyperbolic upper half-space, i.e. in Euclidean x-direction. The corresponding
geodesics form halfcircles:

Figure 30: On the left: Illustration of the vector V2 from the set {V1, ..., Vn}. These vectors generate transvec-
tions, i.e. geodesics in i-direction within a subspace H2. In particular, the vector V2 generates the geodesic
indicated by red color.
On the right: Illustration of the vector Vn+2 from the set {Vn+1, ..., V2n}. These n vectors generate transvections
in the real direction in the complex upper half-plane. The geodesic which is marked by red color is generated
by the vector Vn+3.
Note that the n hyperbolic spaces H2 stand perpendicularly on each other, which cannot be represented accu-
rately in three dimensions.
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b2n+1 :=
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, ..., b2n+1+k :=
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V2n+1 :=
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, ..., V2n+1+k :=
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Figure 31: The basis vectors {b2n+1, ..., bn(n+3)
2

} ∈ ♣ represent the off-diagonal part of the block matrix A in eq.

209. The n2−n
2 corresponding vectors in TiIdSH

n represent the off-diagonal part of the imaginary part of the
vector space TiIdSH

n ∼= Sym(n,C).
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vn(n+3)+2
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, ..., vn(n+3)+2k
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Figure 32: The basis vectors {bn(n+3)+2
2

, ..., bn2+n} ∈ ♣ represent the off-diagonal part of the block matrix B in

eq. 209. The n2−n
2 corresponding vectors in TiIdSH

n represent the off-diagonal part of the real part of that
vector space. Note that the combination of all vectors {bi}i=1,..,n2+n allows to control independently real and
imaginary part of the vector space TiIdSH

n ∼= Sym(n,C) which is spanned by the vectors {Vi}i=1,..,n2+n.

14.10.3 The exponential map via the Siegel ball model

The second path to calculate the exponential map in SHn is to transfer the vectors to the Siegel ball model.
The following figure examines the orange path in fig. 26 in greater detail. For the transfer to the ball model
the push-forward

(

✐−1
)

∗ is needed. In the Siegel ball model the exponential map is in general also hard to find.
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However, one can make a coordinate transformation in which the exponential map is simple. This coordinate
transformation can be found via the Takagi factorization. The ball model is particularly well-suited to this
approach, since the coordinate transformation has a very simple form due to the simple action of the isometry
group G0 on SBn.

W W̃ V R S T

TiIdSH
n T0SB

n T0SB
n SBn SBn SHn

Sym(n,C) Sym(n,C) Sym(n,C) Sym(n,C) Sym(n,C) Sym(n,C)

(

✐−1
)

∗ (TF−1)∗ (⋆) exp0 TF ✐

expiIdn×n

∈ ∈ ∈ ∈ ∈ ∈

Figure 33: Diagram of the setup for the exponential map in the Siegel space as ball model. The arrow marked
by (⋆) is trivial since the vector V corresponds to a diagonal matrix after the map TF−1 which uses the Takagi
factorization. All matrices for this exponential map have the form (n× n) with complex entries.

The push-forward
(

✐−1
)

∗

The models SHn and SBn of the Siegel space are equivalent. This also means that their corresponding tangent
bundles are closely related: As the vector space TiIdSH

n has a representation as complex matrices, so does the
vector space T0SB

n. However, the corresponding isomorphism which takes the underlying models into account
needs to be the push-forward map (✐−1)∗, which is the derivative of ✐−1.
To construct this map, one can use the decomposition of a generalized Möbius transform:

f(Z) = (AZ +B)(CZ +D)−1 =
(

f5 ◦ f4 ◦ f3 ◦ f2 ◦ f1
)

(Z) with (210)

❼ f1(Z) = CZ

❼ f2(Z) = Z +D

❼ f3(Z) = Z−1 41

❼ f4(Z) = (B −AC−1D)Z 42

❼ f5(Z) = Z +AC−1.

This decomposition is similar in spirit to the well-known decomposition of Möbius transformations. Due to the
non-commutativity of matrices, the decomposition is a little bit more complicated 43

The derivative of an action as in eq. 210 can be found via the chain rule as:

f∗
∣

∣

∣

Z
(V ) =

(

B −AC−1D
)(

− (CZ +D)−1CV (CZ +D)−1
)

. (211)

For f = ✐−1 with g✐−1 = 1
2i

(

Idn −iIdn
Idn iIdn

)

and the evaluation point Z = iId the resulting map is:

(

✐−1
)

∗

∣

∣

∣

Z=iId
: TiIdSH

n → T0SB
n (212)

V 7→ − i

2
V. (213)

41This inversion in well-defined (i.e. (CZ + D)−1 exists) because the action of Sp(2n,R) on SHn is well-defined [Siegel, 1943,
II.5].

42In general, the matrix C need not be invertible [Siegel, 1943, II,5], although the matrix (CZ +D) is invertible (for C,D block
matrices from a symplectic matrix, Z ∈ SHn). As this decomposition of a symplectic transform will be evaluated at C = Id, the
inverse of C exists in a neighbourhood of C, as the determinant is a continuous function on M(n,R).

43Note that the maps fi are no isometries.
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The Takagi factorization

The Takagi factorization (also known as Autonne-Takagi factorization due to Léon Autonne and Teji Tak-

agi) allows to decompose any complex symmetric matrix as V = UΛUT with Λ ≥ 0 real, diagonal and U unitary
matrix44.
The vector

(

✐−1
)

∗(V ) can be represented as matrix. However, the Riemann exponential map on SBn is still
difficult. If the matrix V had diagonal form, the Riemann exponential map could be easily computed as combi-
nation of the single Riemann exponential map in every entry: The jth diagonal entry represents a vector in the
jth subspace

(

H2)n ⊂ SBn.
This can be done via a coordinate change: One needs to find an isometry which fixes the origin of SBn and
whose derivative maps the vector V to a diagonal matrix. This transformation (labelled TF−1) can be found
with the Takagi factorization. Its derivative is labeled (TF−1)∗. In this coordinate system one conducts the
Riemann exponential map. After that, the resulting point is transformed back to the original coordinate system
via TF .

The isotropy group G0

Since the coordinate change can be understood as a rotation, one has to investigate those isometries,
which fix the point 0, i.e. the isotropy group at 0. Since the isotropy group at iId ∈ SHn is SpO(2n,R),
the isometry group at 0 = ✐−1(iId) is

(

✐ ◦ SpO(2n,R) ◦ ✐−1
)

. This yields the isotropy group G0 as:

G0 =

(

U 0
0 Ū

)

∼= U(n,C) with Ū as the complex conjugate of the unitary matrix U . (214)

Its action on SBn is in particular simple as

G0 : U(n,C)× SBn → SBn

(U,P ) 7→ UPUT as matrix multiplication with P ∈ SBn, U ∈ G0.
(215)

It is immediate that G0 fixes 0. Additionally, the push-forward of an isotropy group action maps a vector
V ∈ T0SB

n as follows:

(

G0

)

∗

∣

∣

∣

Z=0
: T0SB

n → T0SB
n

V 7→ UV UT as matrix multiplication.
(216)

To find the coordinate transformation, one thus has to find the Takagi factorization of the vector V as V = UΛUT

with Λ as diagonal matrix. The coordinate transformation is then its inverse, i.e.

(

TF−1
)

∗ : T0SB
n → T0SB

n

V = UΛUT 7→ U†(V
)

Ū = U†(UΛUT
)

Ū = Λ
(217)

After this coordinate transformation the Riemann exponential map is easy to perform:

44The Takagi factorization is a special case of the well-known singular value decomposition applied on a complex, symmetric
square matrix. In fact, Autonne discovered this decomposition as special case of the singular value decomposition.

67



The Riemann exponential in the ball model
The matrix Λ above is a real diagonal matrix. It is thus sufficient to consider real diagonal matrices.
As the vector Λ completely lies in the subspace

(

H2
)n ⊂ SBn, the exponential map decomposes into n

exponential maps on each subspace H2 in the Poincaré disk model.
As Λ is real, the vectors in each Poincaré disk are vectors only pointing in real direction. The Riemann
exponential map for a real vector v ∈ H2 is:

exp0(v) = tanh(v) ∈ R ⊂ H2. (218)

This yields:
exp0(Λ) = diag

(

tanh(v1), ..., tanh(vn)
)

⊂ SBn. (219)

To transform the resulting point back to the original coordinate system, one applies

TF : SBn → SBn

R 7→ URUT .
(220)

Note that the maps TF and (TF−1)∗ in principle act on different spaces, namely the Siegel space and its tangent
space. This procedure is only possible since the action of the isotropy group G0 and its push-forward coincide
as seen in eq. 215 and eq. 216.
To obtain the resulting point on the upper half-space model, one just sends the point on SBn to SHn via the
inverse of the generalized Cayley transform ✐−1 from eq. 168.

14.11 The Riemannian distance on SHn

The distance between two points in SHn is in general defined as the length of the shortest path connecting
these points. This notion is not very helpful to calculate the distance explicitly. We make use of section 14.10
which shows that it is possible to make such a coordinate change that two points Q and R both lie in the same
subspace (H2)n. Since (H2)n is a totally geodesic submanifold, the distance within this submanifold coincides
with the distance in SHn. As (H2)n is just a Cartesian product of hyperbolic spaces, it is in particular easy to
calculate the distance as:

d(H2)n(Q,R) =

√

√

√

√

n
∑

i

di(Qi, Ri)2, Qi, Ri coordinates in the space H2
i . (221)

The procedure is hence as follows: Consider Q and R in the upper half-space model of SHn. First, one applies
a transformation θ(g−1) which maps Q to the base point iIdn and R to a different point in SHn. Afterwards,
both points are mapped to the ball model via ✐−1. Q is hence mapped to the origin, while R is mapped to a
point in SBn. Finally, one applies the Takagi factorization (TF )−1 for the coordinate form of the position R
now has. This coordinate change via the Takagi factorization thus moves R to the subspace (H2)n and leaves
the origin fixed. The distance can now be calculated within (H2)n. The procedure is shown below:

Q
R

Id
θ(g−1)R

✐−1(iId) = 0

✐−1
(

θ(g−1)R
)

(TF )−1
(

✐−1(iId)
)

= 0

(TF )−1
(

✐−1
(

θ(g−1)R
))

SHn SHn SBn SBn

θ(g−1) ✐−1 (TF )−1

∈ ∈ ∈ ∈

Figure 34: Diagram to illustrate the procedure to compute the distance between the points Q and R in the
Siegel upper half-space model.

Now we want to find an explicit formula for the distance in terms of R and Q. As shown in the diagram above,
it is possible to compute the distance after the last step within the Siegel ball model, since all transformations
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applied before are isometries, i.e. do not alter the distance. Because one point (namely Q in our notation)
is mapped to the origin in SBn, we can use the following formula for the distance within the 2-dimensional
Poincaré disk:

dPoincaré(0, (r, φ)
T ) = 2 arctanh(r) = ln

(

1 + r

1− r

)

. (222)

Plugging this in eq. 221 for the space (H2)n one obtains:

d(H2)n(Q,R) =

√

√

√

√

n
∑

i

ln2
(

1 + ri
1− ri

)

(223)

with the radii ri of the coordinates in n Poincaré disks.
To use this formula, it is hence only necessary to find (TF )−1

(

✐−1
(

θ(g−1)R
))

45. This is the diagonal matrix
obtained by a coordinate change via the Takagi factorization.
To compute ✐−1

(

θ(g−1)R
)

one makes use of formula eq.201 and obtains:

✐−1 ◦ θ(g−1)(R) = θ

(

1

2i

(

Idn −iIdn
Idn iIdn

)

·
(√

Y −1
Q −

√

Y −1
Q XQ

0
√

YQ

))

(R)

= θ

(

1

2i





√

Y −1
Q −

√

Y −1
Q XQ − i

√

YQ
√

Y −1
Q −

√

Y −1
Q XQ + i

√

YQ





)

(R)

⋆
= θ

(

(

Idn −XQ − iYQ

Idn −XQ + iYQ

)

)

(R) = θ

(

(

Idn −Q
Idn −Q

)

)

(R)

= (R−Q)(R−Q)−1, Q = XQ + iYQ ∈ SHn

(224)

where the equality marked with “⋆” is because overall factors cancel in the action.
Recall that the Takagi factorization V = UΛUT is a decomposition of the matrix V into a product of matrices
with Λ = diag(

√
λ1, ...,

√
λn) with λi the eigenvalues of V V which are real and exist since V V is hermitian.

From Λ one can read off the radii of the n Poincaré disks of (H2)n as diagonal elements. It is hence sufficient
to calculate all eigenvalues of the matrix

✐−1θ(g−1)(R) · ✐−1θ(g−1)(R). (225)

Plugging the result eq. 224 into eq. 225 leads to the formula:

dSHn(Q,R) =

√

√

√

√

n
∑

i

ln2
(

1 +
√
λi

1−
√
λi

)

(226)

where λi are the eigenvalues of

(R−Q)(R−Q)−1 · (R−Q)(R−Q)−1. (227)

Distance in the coset picture

Since every point in the Siegel space corresponds in a one-to-one fashion to an equivalence class in the coset
formulation Sp(2n,R)

/

SpO(2n,R), it is sensible to consider computing the distance of two points in the Siegel
space in the coset form:
Let the Q,R be points in the Siegel space and gQ, gR ∈ Sp(2n,R) such that θ(gQ)(iId) = Q and for R
accordingly. Then one can compute the distance between Q and R as [Freitas, 1999, Corollary 2.3.2]:

d(Q,R)2 =

2n
∑

j=1

∣

∣ lnσj(g
−1
Q gR)

∣

∣

2
, σj singular values. (228)

The equivalence of the two formulations can be checked easily when considering that Q and R can always be
mapped via a coordinate change to iId and idiag(λ1, ...λn), respectively.

45Note that this term is also dependent on the original Q via θ(g−1)Q = iId.
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14.12 The sectional curvature of the Siegel space

So far, submanifolds of SHn and their sectional curvatures have been explored. The sectional curvature of
the whole space however has not yet been investigated. Instead of calculating the sectional curvature via the
Riemann curvature tensor in eq. 28, one can use the correspondence of the tangent space TiIdSH

n with the
subset ♣ ⊂ ❣ of the Lie algebra of the isometry group as pointed out in section 7. This allows to compute the
Riemann tensor via the commutator on ♣. With use of the Killing form on ❣, it is possible to compute the
sectional curvature quite easily.

The Killing form
Any Lie group G is naturally equipped with a so-called Killing form B(·, ·) on its Lie algebra ❣. The
Killing form is a symmetric bilinear form using the adjoint map:

ad : ❣× ❣ → ❣

(x, y) 7→ [x, y] =: adx(y).
(229)

Obviously, the map ad(y) = [·, y] is an element of Maps(❣, ❣) which is linear in y. Since the trace of a
linear map maps to a scalar, the Killing form

B(x, y) = tr
(

ad(x) ◦ ad(y)
)

, x, y ∈ ❣ (230)

actually is a bilinear form on ❣. Its symmetry follows from the trace being cyclic.
It is possible to calcuate the Killing form explicitly for a given Lie algebra by using the fact that ❣ is a
vector space. This enables to choose a basis of ❣ and represent the concatenation of ad-maps with respect
to that basis. For this map one can then calculate the trace. Due to the linearity of the Killing form,
this suffices since any elements x, y can be decomposed into the chosen basis. As the Riemannian metric
and the Killing form are both K-invariant, they can only differ by a factor λ.

The Killing form gives an important insight into the sectional curvature of a space, since:

gP (R(U, V )V, U) = λ−1B(υ−1([U, V ],Υ−1([U, V ]), U, V ∈ TPM. (231)

The parameter λ hence determines if the sectional curvature is nonnegative (λ < 0), nonpositive (λ > 0) or
zero (λ = 0). The left hand side of the equation above is in fact the formula for the sectional curvature eq. 28
without the denominator. However, due to the Schwarz-inequality, the denominator cannot change the sign of
λ, because it is nonnegative.
The statement above can be shown using B([x, y], z) = −B(y, [x, z]) and eq. 73:

λgP (R(U, V )V, U) = B
(

Υ−1(U),Υ−1(R(U, V )V, U)
)

= B
(

Υ−1(U),
[

Υ−1(V ), [Υ−1(U),Υ−1(V )]
])

= B
(

[Υ−1(U),Υ−1(V )], [Υ−1(U),Υ−1(V )]
)

= B
(

Υ−1([U, V ]),Υ−1([U, V ])
)

.
(232)

This can be applied for the Siegel space SHn. Its Killing form on ❵♣(2n,R) can be found as:

B(V,W ) = (2n+ 2)tr(VW ), V,W ∈ ❵♣(2m,R). (233)

Now again, the explicit anti-isomorphism Υ which has been dealt with in section 14.10 relating ♣ and the space
of Killing vector fields on SHn comes into play. To relate the two scalar products to each other, it is sufficient
to consider the tangent space at P = iId. After all, the map Υ has been computed for TiIdSH

n ∼= ♣. At iId,
the Riemann metric tensor from eq. 183 reduces to:

tr(iId · V · iId ·W ) = −tr(VW ), V,W ∈ TiIdSH
n. (234)

The relation between the Killing form on ♣ and the metric tensor on SHn is hence:

−tr(ViVj) = λ(2n+ 2)tr
(

Υ−1(Vi) ·Υ−1(Vj)
)

= λ(2n+ 2)tr(bi, bj), Vi TiIdSH
n, bi ∈ ♣. (235)
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One can compute this explicitly for all combinations bi, bj the trace of its product. This can just be read off
from the matrix relations in section 14.10. This yields:

tr(bi, bj) =
1

2
tr(Vi, Vj). (236)

Plugging this result into eq. 235 yields:

−tr(ViVj) = λ(2n+ 2)
1

2
tr(Vi, Vj)

⇒ λ =
1

n+ 1
> 0.

(237)

This ultimately shows that SHn is a space of nonpositive curvature which is called of noncompact type. Of
course, all sectional curvatures are nonpositive. SHn is diffeomorphic to Rn2+n, which means that it has the
same “shape” as Rn2+n but of course not its geometry. It just extends to infinty in n2 + n directions.

14.13 Implementation considerations for computations on the Siegel space

Graph embeddings in a manifold are mostly performed using the Riemann gradient descent method. The
structure of such an algorithm is carried out in detail in section 16, so this section is kept in a synthetic
formulation.
The Riemann gradient descent method requires the three key operations:

❼ computing the distance,

❼ computing the Riemann gradient from the Euclidean gradient,

❼ computing the Riemann exponential map.

This is why these operations have been treated explicitly above.
There is another constraint to the implementation, namely that the computation of the distance has to be
machine-differentiable. To make use of an automatic differentiation (such as autograd), all steps to compute the
distance have to be machine-differentiable (i.e. all operations need to have an implemented machine differenti-
ation).
The conversion to the Riemann gradient and the computation of the Riemann exponential map do not have to
be machine-differentiable.

The model of choice for the Siegel space is the upper half-space model as coordinates within the subspace (H2)n

are complex numbers with positive imaginary part. This comes in handy as the machine float number system
is very dense close to zero which improves precision. Additionally, the values of the coordinates in the upper
half-space model can be very large which also supports relative precision.
This section proposes an implementation procedure orientated at the off-the-shelf pytorch framework:

14.13.1 Computing the distance and Riemannian gradient

The formula eq. 226 for the distance in the Siegel space requires the computation of n eigenvalues of a complex46

(n×n)-matrix or equivalently the computation of the singular values of a complex (n×n)-matrix. In fact, calcu-
lating the eigenvalues of the full matrix eq. 227 is equivalent to computing the singular values of the first part of
eq. 227. Since it is computationally difficult to compute eigenvalues of a complex matrix machine differentiably,
it is sensible to consider computing the distance in the coset picture via eq. 228: This method requires computing
singular values of a real (2n× 2n)-matrix which is easier to implement differentiably in pytorch.
To compute the matrices gQ, gR ∈ Sp(2n,R) from eq. 228, one can make use of eq. 201 which is an explicit
formula in terms of the matrix representation of Q and R. The matrix g−1

Q gR becomes:

g−1
Q gR =





√

Y −1
Q YR

√

Y −1
Q XR

√

Y −1
R −

√

Y −1
Q XQ

√

Y −1
R

0
√

YQY
−1
R



 with Z = XZ + iYZ ∈ Sp(2n,R). (238)

46The matrix need not be real, since (X + iY )X − iY is in general not real since X and Y do not commute.
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This requires computing the inverse and the square root of real symmetric positive-definite (n × n)-matrices
which is feasible47 within the pytorch framework. As mentioned, the singular value computation of a real matrix
is a standard computation and already implemented within pytorch.
The algebraic operations as taking the square or the logarithm to finally computing the distance are straight-
forward and do not require any further discussion.
It is hence possible to compute the gradient with respect to the coordinates of a point Q ∈ SHn. This gradient
however is computed with respect to the Euclidean gradient, since the automatic differentiation is carried out
within the space R2n·2n.

The Euclidean gradient can be converted to the true Riemann gradient via formula 186. This matrix computation
is straight-forward. One does not have to take care of the implementation of the derivative as it is just a conversion
of a vector to the same manifold governed by a non-Euclidean metric.

14.13.2 Computing the Riemann exponential map

Two different procedures have been explained in detail in the section above. The computation of the Riemann
exponential map does not have to be machine-differentiable. One thus is not constrained by the implemented
pytorch framework. In fact, the action of the symplectic group on the Siegel space has to be computed with
use of a complex matrix inversion48. Additionally, the Takagi decomposition is not implemented on pytorch yet,
but there are algorithms at hand such as [Chebotarev and Teretenkov, 2014] or [Bunse-Gerstner and Gragg,
1988]. The matrix exponential which is needed for the exponential map on the Lie algebra, can be computed
with several algorithms such as those summarized in [Moler and Van Loan, 2003].
There are hence no fundamental obstacles for the implementation of the gradient descent method on the Siegel
space via pytorch.

Looking at the diagram below which shows the proposed procedures to compute the Riemann exponential map,
one may note that there are shortcuts which may facilitate the computation. It turns out however that this is
not the case:

❼ Let us have a look at the orange path first. The first shortcut does not save any computation, since the
maps

(

θ(g−1)
)

∗ (eq. 205) and (✐−1)∗ (eq. 212) are very easy to compute whereas the derivative of the
concatenation of these maps is computationally intensive.

❼ The map θ(g) is easy to compute, since θ(g)(Z) =
√

YQZ
√

YQ − XQ in the notation of eq. 201. The

square root and inverse have been computed already for the map
(

θ(g−1)
)

∗. A concatenation of the maps ✐
and θ(g) is in fact computationally more demanding as it involves more matrix multiplications. The same
holds for the shortcut in the red path via the coset formulation.

Speed and accuracy difference between these paths depend on the chosen implementations of the matrix expo-
nential and the Takagi factorization and have to be figured out experimentally.

47The machine-differentiable matrix square root computation has been added very recently.
48It is possible to transfer the complex matrix inversion to several real matrix inversions, but this is computationally more

expensive [Ehrlich, 1970].
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Figure 35: Diagram of the setup for the Riemann exponential map in the Siegel space. The paths colored in
red and orange show procedures via the Lie group quotient model and the Siegel ball model, respectively. The
“shortcuts” turn out to be computationally more difficult.

15 Data representation capabilities of symmetric spaces

A focus on representing data in spaces of mixed curvature lies on interpretability of the embedding. A faithful
embedding should hence represent the graph distance of any two vertices by the distance of the embedded ver-
tices in the embedding space.

A big advantage of spaces of mixed curvature is that subspaces of certain curvature are more suited to incorpo-
rate certain concepts (e.g. hyperbolic subspaces representing hierarchy, spherical subspaces representing loops
and clusters): Vertices which can be distinguished by a difference within one concept should be positioned in
the same subspace with different coordinates. Because the distance within that subspace should represent the
different role within that concept, it is necessary that this subspace is also totally geodesic, i.e. the distance
within the whole embedding space is equal to the distance within the subspace representing the conceptual
difference.
As illustrated in fig. 18, there are in general lots of submanifolds which are not totally geodesic. For instance,
it is not very promising to embed a spherical concept in Euclidean space, although the sphere can be embedded
within Euclidean space, because this submanifold carries the Riemannian flat structure and is hence not posi-
tively curved.
To make use of the properties of mixed-curvature spaces, it has been proposed to represent data in Cartesian
products [Gu et al., 2019]. As described in section 13.6, these spaces do indeed possess a variety of sectional cur-
vature. It should be recalled, that the sectional curvature is a local statement, i.e. only in a tiny neighbourhood,
the subspace resembles a surface of that sectional curvature. Consequently, the totally geodesic submanifolds of
product spaces are not very versatile and hence limit the embedding capability.
In contrast, with the example of the Siegel space, it has been shown that irreducible symmetric spaces can pos-
sess a variety of totally geodesic submanifolds. In particular, the aforementioned product spaces are contained
within the class of symmetric spaces.
Certainly, with the same number of dimensions, more concepts can be represented due to versatility and quantity
of totally geodesic submanifolds49. In that sense, irreducible symmetric spaces possess superior data represen-
tation capabilities.
On the downside, these spaces are in general more difficult to implement as shown in section 14.13. With the
growing computational power, it is however reasonable to expect that this disadvantage can be overcome.

49E.g. the rank of a space is the maximal dimension of a Euclidean subspace and hence the maximal dimension of grid-like
concepts which can be represented faithfully in that manifold.
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Graph embedding in symmetric spaces

Overview

A meaningful network embedding reflects properties of the network by the layout in the embedding space, i.e.
the structure of the network becomes accessible and combinatorial problems translate to geometric problems.
The idea to use curved spaces to embed into has gained attention due to analytical embeddings in hyperbolic
space as in the seminal paper [Kleinberg, 2007] or in [Sarkar, 2011]. However, these analytical embeddings are
carried out with perfect trees and can hence not be applied easily to more complicated networks.
Using a numerical approach, there are many algorithms which map networks to an Euclidean embedding space.
Notable are the Deep Walk algorithm [Perozzi et al., 2014] or the LLE algorithm [Roweis and Saul, 2000].
However, they cannot be adapted easily to embed a network in a general (curved) manifold.
It has been tried to embed a network in hyperbolic space as proposed in [Boguná et al., 2010] or [De Sa
et al., 2018]. However, this is not versatile enough for large datasets, complex graph structure and complicated
embedding space. The problem of network embedding is hence widely considered as an optimization problem
over the embedding space which can be addressed with state-of-the-art numerical algorithms.

16 The gradient descent optimization

A widely used optimization algorithm is the so-called gradient descent method. This optimization approach has
as big advantage that it can be modified easily to fit to almost any underlying manifold. It is neither the most
elegant nor it is suited best to a specific manifold, but its flexibility is a key feature. The gradient descent
algorithm has become much more powerful over the last years, mostly due to the advances in machine learning,
which extensively use the gradient descent method for all kinds of tasks. Using the machine learning framework
for this optimization thus promises a fast program execution.

Simply put, the gradient descent algorithm iteratively tries to modify the embedding of the graph in such a
way that a scalar function L is minimized. This scalar function L is called loss function and is a key part of
the algorithm. It determines the criteria according to which the embedding is optimized. There are different
objectives such as:

❼ Minimizing the stretch between the graph distance and the embedding distance as in [Gu et al., 2019]

❼ Forming clusters of the vertices in the embedding space as in [Nickel and Kiela, 2017]

❼ Finding an embedding which enables a stable routing algorithm as in [Boguná et al., 2010].

After every epoch, the gradient of the scalar function is calculated with respect to the coordinates of the vertices.
To minimize the loss function, one then slightly moves the vertices in such a way that the value of the loss function
is diminished. Since the loss function is dependent on the coordinates of the points in the embedding space, the
positive gradient shows for every point the direction in which that point has to be moved to increase the loss
function. By following the negative gradient, the value of the loss function is hence diminished.

16.1 Machine differentiability

The update of the embedding is performed using of the gradient of the loss function. The loss function is in
general an algebraic expression dependent on the mutual distances of all vertices. The gradient of this function
is hence cumbersome to compute symbolically. Additionally, the loss function may vary (as described in section
16.4) to improve computational speed. Thanks to numerical differentiation (such as autograd) the gradient can
be constructed on the fly while computing the loss function. This is in principle done by multiple application
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of the chain rule. The symbolic derivatives of each block (such as the derivative of the distance function or the
algebraic expression of the loss function) are then merged to compute the gradient with respect to the whole
embedding.
The computation of the distance thus has to be computed in such a way that it is machine-differentiable. This
is not the case by default as stressed in section 14.13.1 for the Siegel space: The distance computation via the
eigenvalues of a complex matrix is (not yet) machine differentiable.
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16.2 Gradient descent algorithm for graph embedding

(a) Initial situation. An embedding in the plane with one
(obviously) distorted vertex.

(b) Scalar loss function with respect to the distorted ver-
tex at θi.

(c) The negative gradient of the loss function is symbol-
ized by a red arrow.

(d) Embedding after the application of a step in direction
of the negative gradient.

Figure 36: Illustration of the gradient descent algo-
rithm for a graph embedding.

The gradient descent algorithm is an algorithm to step-
wise improve the existing embedding. One can assume
that there is already a (possible very bad) embedding to
start witha. This situation is depicted in fig. 36a.
The algorithm can be split in three parts: Calculating
the loss function, computing the negative gradient and
updating the embedding. The pictures on the left illus-
trate these steps with respect to one vertex onlyb.
An embedding of a graph G(V, E) with n vertices (i.e.
#V = n) can be represented as {θi,t}vi∈V where the θi,t
are d-dimensional coordinates of the embedding mani-
fold at iteration step t.
The procedure of the algorithm is:

1. The scalar loss function with respect to vertex vi is
calculated; it is denoted by Lvi

c. In the example,
the loss function depicted in fig. 36b is chosen to
yield an isometric embedding. It is minimized if
all lengths of the connecting edges are equal, i.e.
if the vertices lie on a grid.

2. Because the loss function is a scalar function, one
can compute the gradient of that function at eval-
uation point θi of the vertex vi as:

∇Lvi(θi,t). (239)

As the loss function should be minimized, revers-
ing the sign and hence the direction of the vector
yields the negative gradient. Note that the gradi-
ent is a tangent vector of the embedding manifold,
not a tangent vector of the surface formed by the
loss function. This can be seen in fig. 36c, as the
arrow is tangent to the embedding manifold, but
not tangent to the green surface.

3. The coordinates θi,t of the vertex vi are updated by
moving the coordinates in direction of the negative
gradient:

θi,t+1 = θi,t − η∇Lvi(θi,t), η ∈ R+. (240)

The parameter η is the so-called learning rate.
This scaling (usually much smaller than 1) is in-
troduced to prevent overshooting.

aIn fact, the initial embedding is often chosen to be a random
embeddings, i.e. random coordinates are assigned to every vertex.

bA so-called “batch” version of the algorithm alters the coordi-
nates of all vertices at once by parallel processing. For simplicity,
let us consider one iteration at one vertex only, since the full al-
gorithm is easy to infer.

cAn algebraic expression (usually the sum) of the set {Lvi}v∈V

is referred to as the loss function L. It is a scalar function of the
whole embedding {θi,t}vi∈V . In the example, only one term -
namely Lvi - of the complete loss function is considered.
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16.3 Adapting the algorithm to curved spaces

The gradient descent method is commonly used for Euclidean spaces of high dimension. Using this method for
a general Riemannian manifold requires some adaptations due to the underlying metric tensor of the embedding
manifold. The groundwork of these adaptations has been carried out by [Bonnabel, 2013].
The coordinates {θi,t}vi∈V are represented as “ordinary” numbers, but operations such as computing the gradient
or the addition of points are different. One can carry them out with aid of the metric tensor, which can be
thought of as measure how the true geometry differs from Euclidean geometry 50.
The ordinary gradient descent algorithm needs to be altered at three points. The resulting algorithm is called
Riemannian gradient descent:

1. Calculation of the loss function:
The loss function is dependent on the distances between embedded vertices. This distance d(θi, θj) has to
be calculated within the embedding manifold. Because of the distortion, one cannot simply compute the
norm of the difference between the coordinates assigned to the vertices as in Euclidean space. In general,
the distance is defined as the minimum of all line integral along a geodesic which connect θi and θj which
is an optimization problem on its own. One thus needs to find an expression to calculate the distance right
from their coordinates without having to find the shortest path.

2. Calculating the gradient:
The loss function Lvi is a scalar function living on a the embedding manifold, since the embedded vertices
live in that manifold. The gradient of this function is hence different from the Euclidean gradient. Since
the metric tensor g can be understood as a conversion between the Riemannian manifold and Euclidean
space, the Euclidean gradient (i.e. the standard gradient with respect to the coordinates) needs to be
scaled with the metric tensor. This yields the “true” gradient, which an observer within the manifold
would measure. In components this vector field becomes:

gradRieLvi = gαβ∂βLvi
∂α,

whereas gradEucLvi = δαβ∂βLvi∂α with δ as Kronecker delta.
(241)

3. Subtracting the gradient from the previous embedding:
In a general manifold, adding a vector to a point is not defined. This works in Euclidean space as the
parallel transport is trivial, i.e. points and vectors are basically equivalent.
The generalization of this addition/subtraction to a general manifold is the so-called Riemann exponential
map51. It can be understood as following the direction of the vector for the length of the magnitude of
this vector.

In conclusion, the formula for an update becomes:

θi,t+1 = expθi,t

(

− η gαβ∂βLvi(θi,t) ∂α

)

. (242)

16.4 Stochastic Gradient Descent and other variants

The batch gradient descent as described above computes the full loss function L with respect to all vertices at
the same time. This procedure is mathematically very sound but can become computationally very demanding
for a large graph.
One can address this by approximating the loss function L. The complete loss function is an algebraic expression
of all loss functions {Lvi}v∈V . Computing the loss function with only a small subset of {Lvi}v∈V results in a
much faster computation of the gradient of the loss function.
To improve the speed of the algorithm even further, one can approximate the constituent functions Lvi

:
As the function Lvi

is dependent on the distance to all other n − 1 vertices, the computation of the gradient
can become computationally expensive. To address that, one can compute an approximation of the complete

50More on that can be found in section 2.
51This map is introduced formally in section 2.7.
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loss function Lvi
by only considering the distances to a subset of all other n− 1 vertices. These few vertices are

chosen randomly for every iteration. The computation of the corresponding gradient can be tremendously faster.

These two approximations both increase the speed by orders of magnitude and hence easily compensate the loss
of accuracy per step by many more iterations. The algorithm is thus overall much faster as shown in [Gu et al.,
2019] or [Nickel and Kiela, 2017].
There are also lots of other variants of the gradient descent algorithm which mostly vary the updating procedure
such that the algorithm overcomes saddle points and local minima e.g. by dynamically changing the learning
rate or introducing a momentum vector which is added to the gradient vector. A comprehensive overview is
given in [Ruder, 2016].

17 Experiments

The theoretically superior data representation capabilities of symmetric spaces have been shown above. How-
ever, the interpretability of an embedding strongly depends on the algorithm’s ability to distinguish different
structures of a graph.
Before extending the embedding space to general symmetric spaces, it has to be made sure that the approach
of existing algorithms is capable of preserving the structure of the datasets, i.e. structures have to be placed
faithfully according to the curvature of the subspaces.
Otherwise, making sense of a representation which does not align graph structures according to the curvature
of the respective subspaces looses its theoretical foundation.
In particular, test data (which theoretically fits well to the chosen embedding space) should be spread out ac-
cording to the underlying curvature while preserving the overall structure. More precisely, the embedding should
display the properties of the graph in order to make a distinction of different structures even possible.

Starting from the machine-learning code from [Nickel and Kiela, 2017] and [Nickel and Kiela, 2018] experiments
are conducted whether the structure of data can be discovered by current algorithms.
To enable evaluation of experimental results, at first common measures of fidelity are revisited:

17.1 Measures of fidelity

To quantify the quality of the embedding, there are plenty of fidelity measures which capture different properties.
The following measures are widely used:

❼ The average distortion Davg displays the average stretch of the edges in the embedding spaces compared
to the weight of the graph.

❼ The worst-case distortion Dwc is the product of maximal compression and maximal expansion of edges
within the embedding space with respect to the graph metric.

❼ The mean average precision mAP indicates how well the local structure of the graph is maintained by
examining neighborhoods within the embedding space.

17.1.1 The average distortion Davg

The distortion of a pair of points u, v ∈ V for an embedding φ : G → M, v ∈ V 7→ φ(v) is

|dG(u, v)− d
(

φ(u), φ(v)
)

|
dG(u, v)

, (243)

where the distance measures dG(·, ·) and d(·, ·) are the graph distance and the distance in the embedding space
M , respectively.
The distortion relates the graph distance with the distance in the embedding space. The average distortion
Davg is defined as the average of the distortion over all pairs of all points, i.e. these points are not necessarily
connected by an edge. It is a measure which examines the embedding on all length-scales of the graph, i.e. the
distance fidelity is not only examined for small patches of the graph, but globally.
If the embedding is not distorting at all, then Davg = 0.
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17.1.2 The worst-case distortion Dwc

The worst-case distortion is defined as

Dwc =

(

max
u,v∈V,u 6=v

d
(

φ(u), φ(v)
)

dG(u, v)

)

·
(

max
u,v∈V,u 6=v

dG(u, v)

d
(

φ(u), φ(v)
)

)

(244)

=

(

max
u,v∈V,u 6=v

d
(

φ(u), φ(v)
)

dG(u, v)

)

:

(

min
u,v∈V,u 6=v

d
(

φ(u), φ(v)
)

dG(u, v)

)

. (245)

This measure gives a very broad impression on the relative distortion of the embedding: It is a measure of the
width of the distribution of relative distortion. A perfectly distance-preserving embedding yields the worst case
distortion Dwc = 1. Note that outliers (e.g. only one vertex placed extremely badly) increase Dwc tremendously.

17.1.3 The mean average precision mAP

Consider the node v ∈ V and its neighborhood Nv = {u ∈ V
∣

∣dG(v, u) = 1} which is the set of all vertices directly
connected to v. It has the size deg(v).
Now consider the analogue neighbourhood in the embedding space M , namely Bφ(v)(ǫ) which is the standard
closed ǫ-ball around φ(v). The smalles neighborhood containing the node φ(u) is labelled Bv,u.
The average precision of the embedding of the neighborhood of x is

1

deg(v)

|Nv|
∑

i

|Nv ∩Bv,vi |
|Bx,vi |

and consequently

mAP(G) = 1

|V|
∑

v∈V

1

deg(v)

|Nv|
∑

i

|Nv ∩Bv,vi |
|Bv,vi |

.

(246)

The mean average precision is a measure which examines the embedding only on small length-scales of the graph
and is hence a local fidelity measure. If the structure of the graph is preserved perfectly in the embedding space,
then mAP = 1.

17.2 Datasets

The test datasets comprise a tree with branching factor four, a two-dimensional grid graph and the subset of
mammals of the dataset wordnet . These are all unweighted graphs.
The tree and lattice graphs are artificial test data to examine if the algorithm correctly discovers the underlying
hierarchical and grid-like structure correctly. These datasets are relatively small in order to easily analyze the
properties of the embedded graph and enable visualization.
The mammals dataset however is not artificially designed to suit perfectly to an embedding manifold. It consists
of word pairs which can be connected with “is a” relations such as (blue whale, whale). Due to that ordering
it is highly hierarchical, but at the same time possesses loops such as: (white elephant, elephant), (elephant,
mammal), (white elephant, mammal). This dataset hence examines the algorithm’s capability to deal with
different structures at once.

17.3 Outline of the chapter

Subsequently, the results of modified embedding algorithms are depicted, followed by a short qualitative evalu-
ation. Quantitative results and a discussion are presented in sections 17.8 and 18.
The pictures are organized as follows: The embeddings in hyperbolic space are shown in the Poincaré ball model
indicated by a light blue half-shell. The lattice is embedded in three-dimensional Euclidean space.
The edges are drawn with color corresponding to the distortion of that edge as in eq. 243. Note that the color
bar is scaled to enable a good visualization of the distortion of all edges. On the upper right, a histogram shows
the distribution of distortion of all edges of the graph. Below that, the distortion of all (n2 −n)/2 possible pairs
is depicted.
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17.4 Unchanged embedding algorithm

In order to further improve the optimization algorithm, the properties of the starting algorithm by [Nickel and
Kiela, 2017] are revisited:
Their loss function of an embedding φ is:

L(φ) =
∑

(u,v)∈E
ln exp d

(

φ(u), φ(v)
)

− ln
(

∑

u′∈
(

N (u)
)c

exp−d
(

φ(u′), φ(v)
)

)

(247)

where the first term can be understood as moving connected points close to each other whereas the second term
drives unconnected points away from each other.
The initial embedding to optimize is random, i.e. the coordinates of all vertices assigned by values within the
domain (−0.001, 0.001), independent of the embedding space.

17.4.1 Results following [Nickel and Kiela, 2017]:

The embedding capabilities of the aforementioned algorithm can be evaluated by considering the following
figures:

Figure 37: Tree with branching factor four in 3-dimensional Poincaré ball. The tree structure of the graph is
not visible. The entanglement within the graph can be seen clearly by highly distorted edges crossing the whole
model.
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Figure 38: Lattice embedded in 3-dimensional Euclidean space. The intrinsic 2-dimensionality of the lattice can
be surmised. The structure of the lattice is not recognizable.

Figure 39: Mammals wordnet in the 3-dimensional Poincaré ball. The hierarchical structure is visible. Never-
theless, the local neighborhoods are not well preserved as visible by long crossing edges with high distortion.
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Evaluation

Keeping in mind that the datasets are small test datasets, the performance of the algorithm as proposed by
[Nickel and Kiela, 2017] is disappointing: The structure of the tree and lattice graphs is not discovered. The
Mammals wordnet is shown to be hierarchical, but the embedding is highly distorting.
The loss function eq. 247 is designed to maximize mAP measure which in particular works well in hyperbolic
space due to the exponential growth of the circumference of a circle.
Since minimizing the distortion is not considered by the algorithm, the high distortion is explainable. This
algorithm hence does not aim at making use of the property of hyperbolic space to yield very small distortion
for trees as shown by [Sarkar, 2011].

17.5 Initial embedding using the Fruchterman-Reingold algorithm

As seen in figures 37, 38, 39, the structure of the graph was not discovered by the algorithm. To address that, a
way to find a better initial embedding was considered. The initial layout can be obtained with the Fruchterman-

Reingold algorithm [Fruchterman and Reingold, 1991]. This algorithm iteratively embeds a graph in Euclidean
space: Unconnected vertices repel each other, whereas connected vertices attract each other. Repulsion and
attraction act as counterparts such that the embedding distance be equal to the graph distance. In that sense,
it can be understood as an optimization algorithm to isometrically embed data in Euclidean space.
Its complexity and hence its runtime scale as O(n2) which makes only few (in the experiments below 100)
iterations possible.
Since the Poincaré ball model is bounded within the space Rn, the embedding in Euclidean space has to be
shrunk to fit into the model. Additionally, the distances in Euclidean space and hyperbolic space are different
which drastically increases the distortion in hyperbolic space.
However, the benefit of the warm-start is telling:

Figure 40: Tree in Poincaré ball model. The structure of the tree is clearly visible. Additionally, the distortion
has decreased significantly compared to fig. 37.
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Figure 41: Lattice in Euclidean space. The structure of the graph can be seen, but the lattice is convolved and
distorted at the edges.

Figure 42: Mammals wordnet in Poincaré ball. The hierarchical structure is clearly visible with less prominent
crossing edges and less distortion than in fig. 39.
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Evaluation

The warm-start by first embedding with the Fruchterman-Reingold algorithm has clearly improved the results
in terms of structure of the embedding. This property is necessary to extract graph information from the
embedding such as levels of hierarchy or intrinsic data dimension.
Looking more closely at fig. 40, one notices that the distortion histogram does not seem to fit to the coloring of
the edges. This is due to the depth of the tree: Every visible point in the diagram in fact corresponds to another
tree layer. The distortion of their edges corresponds to the high peak in the distortion histogram.
The lattice is folded by the optimization algorithm according to eq. 247 to increase the distance between non-
adjacent vertices: The expansion can be fulfilled best by also using the third dimension, although the intrinsic
dimension is only two.
The embedding of the mammals wordnet expresses the hierarchical structure of the data well. The loops appear
to be shrunk together: High distortion edges crossing the center of the model as in fig. 39 are much less frequent.
The reason is that connected vertices have already been grouped together in the initial embedding. This can be
observed when looking at the initial embedding.

17.6 Using a distance-preserving loss function

The objective to minimize the overall distortion has already been incorporated in [Fruchterman and Reingold,
1991]. It has been suggested to also adapt the loss function for a machine learning framework to that objective
e.g. [Vidnes, 2010]. The variant of that loss function (which has been used in the following examples) reads:

L =
∑

u,v∈V

∣

∣d(u, v)− dG(u, v)
∣

∣

dG(u, v)
. (248)

The following experimental results have been obtained by randomly placing data in the embedding space and
optimizing with eq. 248.

Figure 43: Tree embedded in Poincaré ball. The tree structure is not visible. The overall distortion is smaller
than in the initial algorithm from fig. 37, but much bigger than with initial embedding as in fig. 40.
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Figure 44: Lattice embedded in Euclidean space. The intrinsic 2-dimensionality of the data can be surmised.
However, the embedding algorithm has arrived in a local minimum whose result does not reflect the structure
of the graph.

Figure 45: Mammals wordnet embedded in Poincaré ball. The hierarchical structure is not represented in the
embedding. However, the overall distortion is much smaller than in the previous figures 39 and 42.
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Evaluation

The results obtained for the tree and lattice graphs are tremendously inferior to the results obtained by the
expanding loss function with initial Fruchterman-Reingold embedding regarding the overall distortion and the
adaptation to the underlying geometry.
The results for the Mammals wordnet graph are in terms of distortion much better than the previously obtained
results. This is not surprising, since the distance-preserving loss function eq. 248 explicitly minimizes the
distortion. As this loss function does not aim at obtaining a high mAP, the hyperbolicity of the graph is not
shown as in the previous algorithms. In that sense, the hierarchical structure of the embedding is diminished by
the algorithm.

17.7 Combining Fruchterman-Reingold initial embedding with a distance-preserving

loss function

Since the results from the previous experiments have been promising, combining the updated loss function with
a warm-start using the Fruchterman-Reingold embedding is carried out:

Figure 46: Tree in Poincaré ball. Note the difference between the length of the edges from this experiment
to fig. 40: As the vertices are not driven to the boundary of the model (as for the expanding loss function),
the full depth of the tree is visible when looking closely. Naturally, the distortion of this embedding with the
length-preserving loss function is less compared to the embedding with expanding loss function shown in fig. 40.
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Figure 47: Lattice in 3-dimensional Euclidean space. The structure of the graph is very well visible with overall
low distortion.

Figure 48: Mammals wordnet in Poincaré ball. Due to the distance-preserving loss function, only the remainders
of the hierarchical structure are visible. The loops within the graph contract the graph.
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Evaluation

The results for the tree and lattice graphs of this variant of the algorithm are salient: The structure of the graph
is nicely represented by an embedding with low distortion.
The mammals graph however has not been embedded according to its hierarchical structure. The loss function
aiming at low distortion has not -at the same time- preserved the hierarchy of the graph.

17.8 Quantitative results

Now the quality of the embeddings is quantified using the fidelity measures which have been revisited in sec.
17.1:
As mentioned before, the worst-case distortion Dwc is very sensitive to outliers52. The explanatory power of
Dwc is hence very limited. To account for that, the fidelity measure RDavg as the average relative distortion of
an embedding φ is proposed as:

RDavg =
1

|V|
∑

u,v∈V

d
(

φ(u), φ(v)
)

dG(u, v)
. (249)

The results with respect to these fidelity measures are displayed in the following table:

Table 2: Experimental results comparing different optimization algorithms. Highlighted cells indicate best
results. The worst-case distortion measure is deprecated due to its high sensitivity to outliers.

fidelity expanding expanding distance-preserving distance-preserving
Dataset measure loss function loss function (FR) loss function loss function (FR)

Davg 0.455 0.092 0.143 0.039

Tree graph RDavg 1.450 0.960 0.992 0.995

mAP 0.652 0.851 0.620 0.798

Davg 0.329 0.293 0.770 0.090

Lattice graph RDavg 0.754 0.757 0.234 1.034

mAP 0.191 0.473 0.151 0.982

Davg 10.151 8.888 0.323 0.496
Wordnet subset RDavg 11.152 9.888 0.956 1.207
’Mammals’ mAP 0.970 0.973 0.017 0.018

52This can be seen explicitly when comparing the worst-case distortions from fig. 42 (Dwc = 99.12) to the worst-case distortion
from fig. 45 (Dwc = 4405.78). The overall distortion however clearly shows the opposite: The embedding in fig. 45 is much less
distorted than the embedding from fig. 42.
The worst-case distortion is hence not very informative for experimental data, although a worst-case distortion close to the ideal
value 1 implies small overall distortion.
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Evaluating the results on the mammals data set

(a) Mammals dataset optimized using the unchanged al-
gorithm and without initial embedding. The hierarchical
structure has been discovered decently.

(b) Mammals dataset with expanding loss function
starting with an initial embedding obtained by the
Fruchterman-Reingold algorithm. The mAP score of 0.973
is higher than the one obtained by [Nickel and Kiela, 2017]
in d = 5 dimensions.

(c) Mammals dataset with distance-preserving loss func-
tion without initial embedding. One can see that the high-
degree nodes have moved to the boundary of the embed-
ding. The hierarchical structure is not stable with this loss
function, as the loops compress the embedding.

(d) Mammals dataset optimized using the distance-
preserving loss function with an initial embedding ob-
tained by the Fruchterman-Reingold algorithm. The initial
hierarchical embedding is not stable, this is in particular
visible at the by far highest-degree node “Mammal”.

Figure 49: Mammals wordnet graph embedded in Poincaré ball using different algorithms. Eight high-degree
nodes are highlighted.
Real world graphs do not fit perfectly to the proposed embedding space. The mammals data set hence determines
the algorithm’s stability.
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17.9 Summary of the experimental results

In the experiments the variation of the loss function and its interplay with an initial embedding was examined.
To obtain a faithful starting embedding, the Fruchterman-Reingold algorithm has been used. It is conceptu-
ally similar to an optimization algorithm using a mixture of a distance-preserving and expanding loss function
because it has been created to visualize, i.e. stretch out graphs. It hence serves as a effective disentanglement
algorithm on small datasets.
On simple test graphs such as a tree or a lattice, the approach using a distance-preserving loss function trained
on a previously (partly) disentangled embedding yields respectable results.
It has been shown that this combination is crucial, since both loss functions could not overcome a random
starting layout even for small graph size.
A faithful embedding possesses mAP= 1 and Davg = 0. Loss functions as proposed in [Nickel and Kiela, 2017]
and [Gu et al., 2019] aim at these evaluation indicators, respectively. The respective proposed loss function
consequently yield best results for the fidelity measure they are designed for. However, approaching the op-
timization by only considering one fidelity measure does not yield overall satisfactory results. This has been
shown in the experiments using the mammals wordnet graph.

18 Discussion and outlook

The idea to step back and investigate current algorithms on spaces of constant curvature arose from unsuc-
cessful experiments in product spaces: The embeddings have not been able to represent the different structures
of graphs, i.e. structures were not arranged within the corresponding subspaces. Even the proof-of-principle
experiments by [Gu et al., 2019] do not contain examples of a structure-preserving embedding in a product space
for data sets larger than 50 vertices.
Because of that flaw of current embedding algorithms it should be a first goal to manage faithful embeddings of
artificial data sets in spaces of constant sectional curvature.
It has been pointed out that a mayor problem is initial entanglement which results in a bad local minimum of
the optimization algorithm. One might argue that choosing a high dimension of the embedding space facilitates
disentangling the graph structure. However, the reason to embed into curved spaces is to reduce the necessary
dimension of the embedding space. Although high dimensional embeddings can preserve the structure and min-
imize the distortion even in Euclidean space, this rules out the possibility to learn the intrinsic dimension of
the data and to detect structures of the graph. Nevertheless, I tried out a disentanglement in high dimensional
space followed by a projection. This approach however has not yielded presentable results, yet.

Another approach to tackle entanglement is to consecutively optimize on different length scales. Clustering algo-
rithms with respect to the graph distance could reduce the intrinsic dimensionality of the graph and hence allow
to faithfully embed the “graph of clusters”. In a subsequent step the clusters could be unfolded and embedded
without disturbing the bigger structure.

Another promising approach could be to cut the graph into small patches. Due to their small size, they can be
processed quickly by a disentangling algorithm in the spirit of the Fruchterman-Reingold algorithm. At the same
time these patches can be analyzed in terms of their intrinsic structure and could hence be placed accordingly
into the embedding space.

Additionally, even nicely preprocessed data is not sure to converge to a meaningful embedding as seen in fig. 41,
48. Both loss functions optimize with respect to a fidelity measure, in particular the mean average precision and
the average distortion. Optimizing one does not necessarily also optimize the other fidelity measure, although a
ground-truth embedding receives perfect scores in regard of both.
It is hence proposed to adapt the loss function such that it involves both fidelity measures.
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19 Conclusion

In order to familiarize with the concept of symmetric spaces, a comprehensible introduction to the theory of
symmetric spaces was given. As a low-distortion embedding of graphs stems from the suiting curvature of the
embedding space, the focus lies on examining the sectional curvature and totally geodesic submanifolds. These
determine the sub-structures which can be embedded faithfully in that manifold.
With the example of the Siegel upper half-space, the data representation capability of an irreducible symmet-
ric space was examined in terms of totally geodesic submanifolds and their sectional curvature. A machine-
differentiable implementation of the gradient descent algorithm was proposed.
It is argued that the class of symmetric spaces in general possesses superior data representation capabilities. It
is hence likely that they outperform Cartesian product spaces on data representation tasks.

In the experimental section, different variants of a gradient descent algorithm have been investigated. As the two
examined loss functions only optimize with respect to one graph feature only, it is not surprising that the results
regarding the respective other objective are less convincing. A loss function combining these graph features
could address that challenge.
It is furthermore proposed to carefully pre-process data before optimizing the algorithm using machine-learning
techniques. Although hand-crafted algorithms are often regarded as inferior to purely unsupervised optimiza-
tion algorithms, it is argued that the combination of approaches experimentally leads to promising results. In
the language of machine-learning, this corresponds to initializing the optimization problem closer to the global
minimum.

The interpretability of data representations is highly dependent on their property of being structure-preserving.
In its current state the high expectations of interpretability cannot be fulfilled, yet. It is however to be expected
that improved embedding algorithms will eventually be able to exploit the full richness of data representation
capabilities of symmetric spaces by reliably finding unified, structure-preserving embeddings.
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