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CHAPTER 1

Introduction

In this work the following theorem will be proved:

Theorem 1.1: If a Hamiltonian diffeomorphism Φ on a closed symplectically aspherical
manifold (M,ω) has only finitely many fixed points, then it has at least two of different
symplectic action.

The existence of at least one fixed point follows from the following version of the Arnold
conjecture:

Theorem 1.2 (Arnold conjecture, proved by Floer in [3]): Let H : S1×M → R be a non-
degenerate Hamiltonian function on a closed symplectically aspherical manifold (M,ω), and
let Φ1

H : M →M be the time-one-map of the corresponding flow. Then

#{fixed points of Φ1
H} ≥

dimM∑
k=0

bk(M),

where the bk := dim Hk(M,Q) are the Betti numbers of M .

A degenerate Hamiltonian can be approximated by non-gegenerate ones. However, in the
approximation process fixed points can collide, so that in general we get only one fixed
point.
Floer proved the Arnold conjecture for closed monotone symplectic manifolds (this includes
symplectically aspherical ones) in [3] in a way that many others adapted for more general
cases: He established Floer homology HF∗(H;M) for non-degenerate Hamiltonians H and
then showed that the resulting homology theory does not depend on H nor on ω and that
it coincides with singular homology. The methods involved are the study of J-holomorphic
curves and moduli spaces solutions of a PDE called the Floer equation, combining a geo-
metrical and a variational approach.
The existence of two fixed points of different action appears as a side product in an article
by Matthias Schwarz (see [13]). He proves a much more elaborate statement, using Floer
homology and the action spectrum.
The goal of this work is to give a somewhat shorter proof for the existence of at least two
fixed points of a Hamiltonian diffeomorphism which does not need Floer homology: We start
with a J-holomorphic sphere and deform it to a Floer cylinder of positive energy. This Floer
cylinder is a gradient flow line connecting different critical points of the symplectic action
functional AH on the space of contractible loops, and so there have to be at least two such
critical points, which correspond to the fixed points of the Hamiltonian diffeomorphism.
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Chapter 1 Introduction

Chapter 2 explains the basic notions which are needed to understand the statement. It also
covers certain facts about Floer cylinders that will appear in the other chapters. In chapter
3, the main theorem is stated and its proof is outlined. In chapters 4, 5, 6 and 7 we go into
the technical details of the proof.
I would like to thank my advisors for all their ideas, instructions and explanations, my
fellow students for proofreading and discussions and my husband, family and friends for
existing.
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CHAPTER 2

Preliminaries

In this first chapter we will define the basic notion that are needed to understand the main
theorem. After that we discuss some important properties of Floer cylinders.

2.1 Hamiltonian diffeomorphisms

Hamiltonian diffeomorphisms are diffeomorphisms on symplectic manifolds which arise as
flows of certain vector fields.

Definition 2.1: A time-independent Hamiltonian function on a manifold M is a
smooth map H : M → R. A 1-periodic time-dependent Hamiltonian function on M
is a smooth map H : S1 ×M → R.

Now consider a closed symplectic manifold (M,ω), that is a compact smooth manifold M
without boundary equipped with a closed non-degenerate 2-form ω.

Definition 2.2: Let H : M → R be a Hamiltonian function. The equation

ω(XH , ·) = −dH

defines a vector field XH on M which is called the Hamiltonian vector field. If the
function H : R×M → R is time-dependent, we get a time-dependent Hamiltonian vector
field XHt by the equation

ω(XHt , ·) = −dHt.

Here Ht = H(t, ·) and we sometimes also write XHt = XH(t, ·).

Recall that the flow of a (possibly time-dependent) vector field X on a manifold M is a
(−ε, ε)-family of diffeomorphisms

Φt
X : M →M

given by d
dtΦ

t
X = X(t,Φt

X) and Φ0
X = idM for some ε. If one can find an R-family with

these properties, then the flow is said to be defined for all times.

Definition 2.3: Let H be a Hamiltonian function on M (time-dependent or not) and XH

the corresponding Hamiltonian vector field. Its flow is called the Hamiltonian flow. A
diffeomorphism Φ : M → M is called Hamiltonian if it arises as Φt

H := Φt
XH

for some
t ∈ R and some (possibly time-dependent) Hamiltonian function H on M .

3



Chapter 2 Preliminaries

Since M is closed, the Hamiltonian flow is defined for all time.

Remark 2.4: Every Hamiltonian diffeomorphism is automatically a symplectomorphism,
which means that it preserves the symplectic structure:

d

dt
(Φt

H)∗ω = (Φt
H)∗LXHtω

= (Φt
H)∗(dιXHtω + ιXHtdω)

= (Φt
H)∗(−ddHt + ιXHt0) = 0

for all t. With Φ0
H = idM it follows that (Φt

H)∗ω = ω.

Lemma 2.5: For every Hamiltonian diffeomorphism Φ : M →M there is a periodic time-
dependent Hamiltonian function H : S1 ×M → R such that Φ is the time-one-map of the
corresponding flow, that is Φ = Φ1

H .

Proof. Assume that Φ = Φt0
K for some t0 ∈ R≥0 and some function K : S1 × M → R.

Choose a monotone smooth function ρ : [0, 1]→ [0, t0] with ρ ≡ 0 in a neighbourhood of 0
and ρ ≡ t0 in a neighbourhood of 1 and define

H : S1 ×M → R
H(t, x) := ρ′(t) ·K(ρ(t), x).

This is well-defined since ρ′ ≡ 0 near 0 and near 1. Now one can compute the following:

d

dt
Φρ(t)
K = ρ′(t)XKρ(t)

(
Φρ(t)
K

)
= XHt

(
Φρ(t)
K

)
Together with Φρ(0)

K = Φ0
K = idM this implies that Φρ(t)

K is the flow of XH and thus
Φρ(t)
K = Φt

H for all t, especially for t = 1.

We write P(H) :=
{
γ : S1 →M

∣∣∣∣ ∀t ∈ S1 : γ̇(t) = XHt(γ(t))
}

for the space of 1-perodic

Hamiltonian flow lines of H and observe that there is a one-to-one-correspondence

Fix Φ1
H ←→ P(H)

x 7−→
(
t 7→ Φt

H(x)
)

γ(0)←− [ γ

between fixed points of the Hamiltonian diffeomorphism Φ1
H and 1-periodic Hamiltonian

flow lines.

2.2 J-holomorphic curves

Definition 2.6: Let M be a (smooth) manifold. An almost complex structure J on
M is an endomorphism

J : TM → TM
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2.2 J-holomorphic curves

of the tangent bundle such that J2 = −idTM . In other words, J is a smooth family of
vector space isomorphisms

Jp : TpM → TpM

with J2
p = −idTpM for all points p ∈M .

Definition 2.7: Let M1,M2 be manifolds with almost complex structures J1, J2. A map
u : M1 →M2 is called (J1, J2)-holomorphic if

du ◦ J1 = J2 ◦ du, (2.1)

where du : TM1 → TM2 is the differential of u.

Remark 2.8: The differential of any function u can be written as

du = ∂(J1,J2)u+ ∂̄(J1,J2)u,

where
∂(J1,J2)u := 1

2 (du− J2 ◦ du ◦ J1)

is holomorphic and
∂̄(J1,J2)u := 1

2 (du+ J2 ◦ du ◦ J1)

is anti-holomorphic. Note that u is (J1, J2)-holomorphic if and only if the anti-holomorphic
part of its differential vanishes.

If M1 is a manifold of real dimension 2 and we are given local coordinates z = s + it ∈ C
(such that the complex structure J1 is given by multiplication with i ∈ C in this chart),
we can derive a local equation out of (2.1): The vector fields ∂

∂s and ∂
∂t form a basis of the

tangent bundle of C. We use the notation ∂su := du
(
∂
∂s

)
, ∂tu := du

(
∂
∂t

)
. Equation (2.1)

then reads as

∂tu = J(u)∂su. (2.2)

Often the almost complex structure on the domain manifold M1 is clear from the context,
while the one on the target manifold M2 is the one we are interested in. Then we mention
only the almost complex structure J on M2 and talk about J-holomorphic maps. If both
almost complex structures are clear from the context, J-holomorphic maps are also called
pseudo-holomorphic.
A J-holomorphic map on a (real) 2-dimensional domain or its image is sometimes also
referred to as a J-holomorphic curve. These curves have rigidity properties similar to the
ones of classically holomorphic maps.

Definition 2.9: Let (M,ω) be a symplectic manifold. An almost complex structure J on
M is compatible with ω if

gJ(v, w) := ω(Jv,w)

defines a Riemannian metric on M . In this case we write | · |J for the corresponding norm
on TM .

5



Chapter 2 Preliminaries

The space of compatible almost complex structures on a symplectic manifold (M,ω) is
known to be non-empty and contractibe.

Remark 2.10: The differential du of a map u : Σ → M between manifolds consists of
linear maps

du(z) : TzΣ→ Tu(z)M

for all z ∈ M ; one can call it a 1-form with values in the pullback bundle u∗TM . If jΣ
is an almost complex structure on Σ, the manifold (M,ω) is symplectic and J is an ω-
compatible almost complex structure on M we can define a norm on the space of linear
maps L : TzΣ→ Tu(z)M by

‖L‖J := |ζ|−1
√
|L(ζ)|2J + |L(jΣζ)|2J

for some 0 6= ζ ∈ TzΣ – one can show that this expression is independent of ζ.

Definition 2.11: The energy of a J-holomorphic curve u : Σ → M in a symplectic
manifold (M,ω) with compatible almost complex structure J is defined as

E(u) = 1
2

∫
Σ
‖du‖2J d volΣ.

If there are global holomorphic coordinates (s, t) on Σ, this can be written as

E(u) = 1
2

∫
Σ
|∂su|2J + |∂tu|2J dt ∧ ds

=
∫

Σ
|∂su|2J dt ∧ ds.

Sometimes we are interested in the energy of a curve over a subdomain G ∈ Σ, then we
write

E(u;G) := 1
2

∫
G
‖du‖2J d volΣ.

Lemma 2.12: For a J-holomorphic curve u : Σ→M , one has

E(u) = −
∫

Σ
u∗ω.

Proof. In local holomorphic coordinates (s, t):

|∂su|2J + |∂tu|2J dt ∧ ds = gJ(∂su, ∂su) + gJ(∂tu, ∂tu) dt ∧ ds
= ω(J(u)∂su, ∂su) + ω(J(u)∂tu, ∂tu) dt ∧ ds
= ω(∂tu, ∂su) + ω(−∂su, ∂tu) dt ∧ ds
= −ω(∂su, ∂tu)− ω(∂su, ∂tu) dt ∧ ds
= −2u∗ω

Thus the integrals are the same.
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2.3 Removal of singularities

2.3 Removal of singularities

One of the nice properties of J-holomorphic curves is the following famous theorem about
removability of singularities:

Theorem 2.13: Let (M,ω) be a closed symplectic manifold and let J be an ω-compatible
almost complex structure on M . If u : D2\{0} → M is a J-holomorphic curve of finite
energy E(u) <∞, then it extends to a J-holomorphic map D2 →M .

A proof can be found in [7], pages 76ff.

Corollary 2.14: Let (M,ω) be a closed symplectic manifold and J an ω-compatible almost
complex structure onM . If u : C→M is a J-holomorphic curve of finite energy E(u) <∞,
then it extends to a smooth map S2 = CP 1 = C ∪ {∞} →M .

Proof. We use the map

C\B1(0) −→ D2\{0}

z 7−→ 1
z

which continues to a biholomorphic identification

f : (C\B1(0)) ∪ {∞} −→ D2.

If u : C→M is J-holormophic, then so is

v := u ◦ f−1 : D2\{0} −→M

with the same energy and we can use theorem 2.13 to get a J-holomorphic continuation
v̂ : D2 →M . Define a continuation of u by

û : C ∪ {∞} −→M

û(z) =
{
u(z) if z ∈ B1(0)
v̂(f(z)) if z ∈ (C\B1(0)) ∪ {∞}

– this is well-defined and holomorphic because both components are holomorphic and they
agree on the overlap.

2.4 The symplectic action functional

It is possible to see fixed points of Hamiltonian diffeomorphisms on symplectic manifolds
as critical points of an action functional on the loop space. For this to be well-defined as a
real-valued map one has to assume something more about the manifold.

7



Chapter 2 Preliminaries

Definition 2.15: Let (M,ω) be a symplectic manifold. The pair (M,ω) is called sym-
plectically aspherical if for all smooth maps u : S2 →M one has∫

S2
u∗ω = 0.

Remark 2.16: Let Π ⊆ H2(M ;Z) be the image of the Hurewicz homomorphism

h2 : π2(M)→ H2(M ;Z)

and denote by [ω] the (de Rham) cohomology class of the symplectic form. Then [ω]
can be evaluated on elements of Π via the Kronecker pairing. In this notation, (M,ω) is
symplectically aspherical if and only if

[ω] (x) = 0

for every x ∈ Π.

Example: Let (M,ω) be a symplectic manifold with vanishing second homotopy group,
that is π2(M) = {0}. Then the image of the second Hurewicz homomorphism is trivial and
so M is symplectically aspherical.

For more examples of symplectically aspherical manifolds, see for instance [5] and [4].

Remark 2.17: The symplectic asphericity condition implies that every J-holomorphic
sphere in M has to be constant: Let u : S2 →M be J-holomorphic. Then

1
2

∫
S2
‖du‖2J d volS2 = E(u) = −

∫
S2
u∗ω = 0,

so the derivatives of u vanish and it has to be constant.

Now fix a Hamiltonian function H : S1 ×M → R on a symplectically aspherical manifold
(M,ω). By

LM = C∞contr(S1,M)

we denote the space of smooth contractible loops inM . The symplectic action functional
AH : LM → R is defined by

AH(x) :=
∫
D2
x̄∗ω −

∫ 1

0
H(t, x(t)) dt.

Here,
x̄ : D2 →M

is a capping of the loop x, that is a smooth map from the two-dimensional unit disk D2

into M that agrees with x on the boundary. When we think of the 1-sphere as S1 = R/Z
and of the disk as D2 ⊆ C, this means that x̄(eit) = x(t) for all t ∈ S1.

Lemma 2.18: The symplectic action functional AH : LM → R is well-defined.

8



2.4 The symplectic action functional

Proof. Suppose we have a loop x ∈ LM with two cappings x̄, x̂. Without loss of generality
we can assume that

x̄(reit) = x(t) = x̂(reit) for r ∈ [1− ε, 1]

for some ε > 0. Gluing D2 and −D2 (the disk with the reversed orientation) along their
boundaries yields a manifold S which is diffeomorphic to the sphere. Then

u : S −→M

z 7−→
{
x̄(z) if z ∈ D2

x̂(z) if z ∈ −D2

defines a smooth map and ∫
D2
x̄∗ω +

∫
−D2

x̂∗ω =
∫
S
u∗ω = 0.

Thus
∫
D2 x̄∗ω = −

∫
−D2 x̂∗ω =

∫
D2 x̂∗ω and hence the definition of AH does not depend on

the choice of capping.

Proposition 2.19: A loop x ∈ LM is a critical point of the symplectic action functional
if and only if it is a 1-periodic flow line of the Hamiltonian vector field given by H on M .
This means that one has

CritAH = Pcontr(H)

where Pcontr(H) ⊆ P(H) is the subset of contractible flow lines.

Proof. In order to find the critical points of AH , we have to compute its linearization

dAH(x) : TxLM −→ TAH(x)R ∼= R

at a point x ∈ LM . The tangent space

TxLM =
{
ξ : S1 → TM smooth

∣∣ ξ(t) ∈ Tx(t)M for all t ∈ S1
}

is the space of all smooth vector fields along x. We claim that

dAH(x)(ξ) =
∫ 1

0
ω
(
XHt(x(t))− ẋ(t), ξ(t)

)
dt

for ξ ∈ TxLM . To see this, consider a path

R −→ LM
s 7−→ xs

with x0 = x and d
ds

∣∣
s=0xs = ξ. As we have to compute the values of AH along the path we

also need cappings
x̄s : D2 −→M

9



Chapter 2 Preliminaries

for all xs. Write ξ̄ := d
ds

∣∣
s=0x̄s and note that this is a vector field along the disk which

agrees with ξ on the boundary of the disk. Compute:

dAH(x)(ξ) = d

ds

∣∣∣∣
s=0
AH(xs)

= d

ds

∣∣∣∣
s=0

∫
D2
x̄∗sω −

d

ds

∣∣∣∣
s=0

∫ 1

0
Ht(xs(t)) dt

=
∫
D2

d

ds

∣∣∣∣
s=0

x̄∗sω −
∫ 1

0

d

ds

∣∣∣∣
s=0

Ht(xs(t)) dt

=
∫
D2
x̄∗0(Lξ̄ω)−

∫ 1

0
dHt(x(t))(ξ(t)) dt

=
∫
D2
x̄∗0(d(ιξ̄ω) + ιξ̄(dω))−

∫ 1

0
ω
(
ξ(t), XHt(x(t))

)
dt

=
∫
D2
x̄∗0(d(ιξ̄ω))−

∫ 1

0
ω
(
ξ(t), XHt(x(t))

)
dt

=
∫
D2
d(x̄∗0(ιξ̄ω))−

∫ 1

0
ω
(
ξ(t), XHt(x(t))

)
dt

=
∫
∂D2

x̄∗0(ιξ̄ω)−
∫ 1

0
ω
(
ξ(t), XHt(x(t))

)
dt

=
∫ 1

0
x∗(ιξω)−

∫ 1

0
ω
(
ξ(t), XHt(x(t))

)
dt

=
∫ 1

0
ω
(
ξ(t), ẋ(t)

)
dt−

∫ 1

0
ω
(
ξ(t), XHt(x(t))

)
dt

=
∫ 1

0
ω
(
ξ(t), ẋ(t)−XHt(x(t))

)
dt

With this formula it is obvious that x ∈ LM is a critical point of the symplectic action
functional if and only if ẋ(t) = XHt(x(t)) for all t ∈ S1, which means that x is a Hamiltonian
flow line.

Remark 2.20: The Riemannian metrics gJ on M define a metric ĝJ on the loop space
LM by

ĝJ(ξ, η) :=
∫ 1

0
gJ(ξ(t), η(t)) dt

for ξ, η ∈ TxLM . Since we computed

dAH(x)(ξ) =
∫ 1

0
ω
(
ξ(t), ẋ(t)−XHt(x(t))

)
dt

=
∫ 1

0
ω
(
J(x(t))ξ(t), J(x(t))

(
ẋ(t)−XHt(x(t))

))
dt

=
∫ 1

0
gJ
(
ξ(t), J(x(t))

(
ẋ(t)−XHt(x(t))

))
dt

= ĝJ
(
ξ, J(x)

(
ẋ−XH(x)

))
= ĝJ

(
J(x)

(
ẋ−XH(x)

)
, ξ
)
,

10



2.5 Floer cylinders

u

M
R× S1

Figure 2.1: Sketch of u : R× S1 →M .

the gradient of AH with respect to this metric is given by

∇ĝJAH(x) = J(x)
(
ẋ−XH(x)

)
.

2.5 Floer cylinders

Floer cylinders are negative gradient flow lines of the symplectic action functional with
respect to the metric ĝJ . A negative gradient flow line of AH : LM → R is a smooth path

u : R −→ LM

such that there are x−, x+ ∈ Crit(AH) with

lim
s→±∞

u(s) = x±

and
d

ds
u+∇ĝJAH(u) = 0.

It can be interpreted as a map
u : R× S1 −→M

(sketched in figure 2.1) such that each u(s, ·) is a contractible loop, satisfying

lim
s→±∞

u(s, ·) = x±(·)

uniformly and the equation

∂su(s, t) + J(u(s, t))
(
∂tu(s, t)−XHt(u(s, t))

)
= 0 (2.3)

for all (s, t) ∈ R × S1. This partial differential equation will be called the Floer equation
and solutions will be called Floer cylinders.

Definition 2.21: The energy of a smooth function u : R× S1 →M is defined as

E(u) : = 1
2

∫ ∞
−∞

∫ 1

0
|∂su(s, t)|2J + |∂tu(s, t)−XHt(u(s, t))|2J dtds

=
∫ ∞
−∞

∫ 1

0
|∂su(s, t)|2J dtds

=
∫ ∞
−∞
‖∂tus −XH(us)‖2L2(S1,M) ds

11



Chapter 2 Preliminaries

Remark 2.22: If u : R × S1 → M is a Floer cylinder with energy E(u) = 0, then this
means that |∂su|2J vanishes everywhere and so does |∂tu−XH(u)|2J . Therefore u(s, t) does
not depend on s and ∂tu = XH(u), so each us := u(s, ·) equals x− = x+, where x± are the
limit loops as above.

Let

MF :=
{
u : R× S1 →M

∣∣∣∣ u satisfies (2.3), E(u) <∞,
each us := u(s, ·) is contractible

}
be the moduli space of all Floer cylinders.

Theorem 2.23 (Gromov compactness): The space MF is compact in the C∞loc-topology,
that is the topology of convergence with all derivatives on all compact subsets.

A proof of theorem 2.23 can be found in [2], it is theorem 6.2.1 there.

Remark 2.24: R acts from the right onMF :

MF × R −→MF

(u, σ) 7−→ u · σ,

where u · σ(s, t) := u(s+ σ, t). It is obvious that u · σ again solves the Floer equation and
that it has the same energy as u.

2.6 Convergence at the ends of the cylinder

We are interested in flow lines that come from one critical point x− ∈ CritAH and converge
to another one, x+ ∈ CritAH .

Proposition 2.25: Let u : R × S1 → M be a solution of (2.3) and suppose there are
x± ∈ CritAH such that

lim
s→±∞

u(s, ·) = x±(·)

in LM . Then
E(u) = AH(x−)−AH(x+)

– in particular, the energy of u is finite.

Proof. Write us := u(s, ·) and understand it as a loop. Such a loop is freely homotopic to
x− and x+ via u and so it is contractible. Then:

E(u) = 1
2

∫ ∞
−∞

∫ 1

0
|∂su(s, t)|2J + |∂tu(s, t)−XHt(u(s, t))|2J dtds

=
∫ ∞
−∞

∫ 1

0
|∂su(s, t)|2J dtds

=
∫ ∞
−∞

∫ 1

0
gJ
(
∂su(s, t), ∂su(s, t)

)
dtds

12



2.6 Convergence at the ends of the cylinder

=
∫ ∞
−∞

∫ 1

0
gJ
(
J(u)

(
XHt(u(s, t))− ∂tu(s, t)

)
, ∂su(s, t)

)
dtds

=
∫ ∞
−∞

ĝJ
(
J(us)

(
XH(us)− u̇s

)
, ∂sus

)
ds

= −
∫ ∞
−∞

ĝJ
(
∇ĝJAH(us), ∂sus

)
ds

= −
∫ ∞
−∞

dAH(us)(∂sus) ds

= −
∫ ∞
−∞

d

ds
(AH(us)) ds

= −
(

lim
s→∞

AH(us)− lim
s→−∞

AH(us)
)

= AH
(

lim
s→−∞

us

)
−AH

(
lim
s→∞

us
)

= AH(x−)−AH(x+)

It would be nice to have the reversed statement as well: that a solution of (2.3) with finite
energy converges to critical points ofAH at the ends. Indeed, in the case of a non-degenerate
Hamiltonian1, such maps converge to periodic Hamiltonian flow lines exponentially fast (see
[11], proposition 1.21). In general, exponential convergence cannot be hoped for, but luckily
if #P(H) < ∞ there is still some kind of convergence. In proving this, we follow Audin
and Damian ([2], chapter 6) for the rest of this section.
We start with a result about the value of the action functional on the loops us := u(s, ·) as
s tends to ±∞.

Proposition 2.26: Let u : R × S1 → M satisfy equation (2.3) and E(u) < ∞. Assume
also that every loop

us := u(s, ·)

is contractible. Then there are x± ∈ CritAH such that

lim
s→±∞

AH(us) = AH(x±).

Proof. We prove convergence for s→∞, the other case is analogous. Consider the function

R −→ R
s 7−→ AH(us).

1A Hamiltonian function H is called non-degenerate if for every P ∈M the number 1 is not an eigenvalue
of the linearized time-one-map dΦ1

H(P ) or, equivalently, if the graph of Φ1
H intersects the diagonal

transversely in M ×M .

13



Chapter 2 Preliminaries

Its derivative

d

ds
AH(us) = dAH(us)

(
d
dsus

)
= ĝJ

(
J(us)(XH(us)− u̇s), ∂sus

)
= −ĝJ(∂sus, ∂sus)
= −‖∂sus‖2J

is negative everywhere. This means that the function is decreasing and thus it is enough
to show that there is x+ ∈ CritAH and a sequence (sk)k∈N of real numbers such that
limk→∞ sk =∞ and

lim
k→∞

AH(usk) = AH(x+).

It is

∞ > E(u) =
∫ ∞
−∞

(∫ 1

0
|∂tu(s, t)−XHt(u(s, t))|2J dt

)
ds

=
∫ ∞
−∞
‖∂tus −XH(us)‖2L2(S1,M) ds

and thus there is a sequence (sk)k∈N with limk→∞ sk =∞ and

lim
k→∞

‖∂tusk −XH(usk)‖L2(S1,M) = 0.

Here, the L2-norm of a loop is derived from the norm given by J on the tangent space of
M . To simplify the situation, remember that M can be embedded in some Euclidean space
RN and that the J-norm is therefore equivalent to the restriction of the Euclidean norm
onto M . This means that we have

lim
k→∞

‖∂tusk −XH(usk)‖L2(S1,RN ) = 0.

Since XH is bounded on the compact manifold M , there must be a constant B such that

‖∂tusk‖L2(S1,RN ) < B

for all k ∈ N. For any two t0, t1 ∈ S1 = R/Z we compute the following:

‖usk(t1)− usk(t0)‖ =
∫ t1

t0
u̇sk(t) dt

≤
√
t1 − t0 · ‖u̇sk‖L2(S1,RN )

≤
√
t1 − t0 ·B

This means that (usk)k is equicontinuous. Besides that, (usk(t))k is relatively compact in
M for all t ∈ S1. By the Arzelà-Ascoli theorem we conclude that the (usk)k converge in
the C0-topology to a limit x+ : S1 →M .

14



2.6 Convergence at the ends of the cylinder

The next step is to show that this continuous limit is smooth. Again recollect that we can
work in RN and thus for t ∈ S1 the following term is defined.

x+(t)− x+(0)−
∫ t

0
XHt(x+(τ))dτ = lim

k→∞

(
usk(t)− usk(0)−

∫ t

0
XHt(x+(τ))dτ

)
= lim

k→∞

(∫ t

0
∂tusk(τ)dτ −

∫ t

0
XHt(x+(τ))dτ

)
= lim

k→∞

(∫ t

0
∂tusk(τ)−XHt(usk(τ))dτ

)
+ lim
k→∞

(∫ t

0
XHt(usk(τ))−XHt(x+(τ))dτ

)
= lim

k→∞

(∫ t

0
∂tusk(τ)−XHt(usk(τ))dτ

)
+ 0

= 0 + 0

The penultimate equality holds because x+ is the pointwise limit of the usk ; for the last
one we have to use the Cauchy-Schwarz inequality for the inner product on the L2-space:∣∣∣∣ ∫ t

0
∂tusk(τ)−XHt(usk(τ))dτ

∣∣∣∣ =
∣∣∣∣ ∫ 1

0
1[0,t](τ) (∂tusk(τ)−XHt(usk(τ))) dτ

∣∣∣∣
≤ ‖1[0,t]‖L2(S1) · ‖∂tusk −XHt(usk)‖L2(S1)

=
√
t · ‖∂tusk −XHt(usk)‖L2(S1)

This does indeed tend to zero for k →∞. But now, having established the formula

x+(t)− x+(0) =
∫ t

0
XHt(x+(τ))dτ

for all values of t ∈ S1, we can deduce from continuity that x+ is C1, from C1 that it is C2

and so on, getting on the whole that x+ is indeed of class C∞. This gives also convergence
in the C∞-topology.
As a last step it remains to show that indeed

lim
k→∞

AH(usk) = AH(x+).

It is clear that

lim
k→∞

∫ 1

0
Ht(usk(t)) dt =

∫ 1

0
Ht(x+(t)) dt,

but we need an argument why

lim
k→∞

∫
D2
ū∗skω =

∫
D2
x̄∗+ω

for cappings ūsk and x̄+ of usk and x+.
First let us see what would happen if ω = dλ was exact. Then we would compute the

15
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following:∫
D2
ū∗skω −

∫
D2
x̄∗+ω =

∫
D2
ū∗skdλ−

∫
D2
x̄∗+dλ

=
∫
∂D2

ū∗skλ−
∫
∂D2

x̄∗+λ

=
∫
S1
u∗skλ−

∫
S1
x∗+λ

=
∫
S1
λ(u̇sk(t))dt−

∫
S1
λ(ẋ+(t)) dt

=
∫
S1
λ(u̇sk(t)− ẋ+(t)) dt

=
∫
S1
λ(u̇sk(t)−XHt(usk(t))) dt+

∫
S1
λ(XHt(usk(t))− ẋ+(t)) dt

=
∫
S1
λ(u̇sk(t)−XHt(usk(t))) dt+

∫
S1
λ(XHt(usk(t))−XHt(x+(t))) dt

The second of these integrals tends to zero as k →∞ since x+ is the pointwise limit of usk .
For the first we get∣∣∣∣ ∫

S1
λ(u̇sk(t)−XHt(usk(t))) dt

∣∣∣∣ ≤ sup ‖λ‖ · ‖u̇sk −XHt(usk)‖L1(S1)

≤ const · sup ‖λ‖ · ‖u̇sk −XHt(usk)‖L2(S1)

because S1 is compact, so this integral also tends to 0.
Now we use this result for exact ω and the symplectic asphericity to prove the general result.
Choose a neighbourhood U of x+(S1) in M which is a deformation retract of x+(S1) so
that ω

∣∣
U is exact. For k big enough, usk is contained in U . Choose a homotopy from usk to

x+ which is contained in U – it can be interpreted as a map

hk : [0, 1]× S1 →M.

Glue this map with ūsk at the left boundary component and with x̄+ at the right one to a
map

D2 ∪
(
[0, 1]× S1

)
∪ (−D2)→M

in a way that it gives a smooth function

v : S2 →M.

For this function we compute

0 =
∫
S2
v∗ω =

∫
D2
ū∗skω +

∫
[0,1]×S1

h∗kω −
∫
D2
x̄∗+ω

and thus get ∫
D2
x̄∗+ω −

∫
D2
ū∗skω =

∫
[0,1]×S1

h∗kω.

All this lies in U where ω is exact, so we can use the previous computation.
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2.6 Convergence at the ends of the cylinder

As a next step, we show that the loops us accumulate as s→ ±∞.

Proposition 2.27: Again let u : R × S1 → M be a finite energy solution of the Floer
equation (2.3) such that each u(s, ·) is a contractible loop and let (sk)k∈N be a sequence of
real numbers tending to ∞ (or −∞). Then there is a subsequence still denoted by (sk)k∈N
and a critical point x+ ∈ CritAH (or x− ∈ CritAH) such that

lim
k→∞

usk = x+

(or limk→−∞ usk = x−) in the C∞-topology.

Proof. We will show the case sk →∞, the other case is analogous. Remember the R-action
onMF and define uk ∈MF for all k ∈ N by

uk := u · sk.

Since by theorem 2.23MF is compact, after the choice of a subsequence (uk)k∈N converges
to some v ∈MF .
Fix any s0 ∈ R and write v(s0, ·) =: vs0 as a loop. Then

AH(vs0) = lim
k→∞

AH(us0+sk) = lim
s→∞

AH(us),

since this last limit exists by proposition 2.26. This holds for all possible s0 ∈ R, and thus

E(v) = AH
(

lim
s0→∞

vs0

)
−AH

(
lim

s0→−∞
vs0

)
= lim

s0→∞
AH(vs0)− lim

s0→−∞
AH(vs0)

= 0.

By remark 2.22, we can think of v as of a periodic orbit x+ ∈ P(H) and from

lim
k→∞

uk(s, t) = v(s, t) = x+(t)

we get the desired result.

Proposition 2.28: Assume that #P(H) < ∞. Then for every u ∈ MF there are loops
x± ∈ CritAH such that

lim
s→±∞

u(s, ·) = x±(·)

in the C∞-topology.

Proof. Again we only show the case s→∞. On LM one has a distance function d∞ which
induces the C∞-topology. For x ∈ LM , let Bε(x) denote the open ball of radius ε around
x. Since #CritAH <∞ we can choose ε > 0 so small that all ε-balls around critical values
of AH are disjoint. Let

Uε =
⋃

x∈CritAH

Bε(s)

17
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be their union. Consider now the cylinder u ∈ MF . For ε small enough, there is sε ∈ R
such that

u
(
[sε,∞)× S1

)
⊂ Uε,

for otherwise there would be ε0 > 0 and a sequence (sk)k∈N tending to ∞ such that

usk /∈ Uε0

for all k ∈ N, which contradicts proposition 2.27. But u
(
[sε,∞)× S1) is connected and

Uε is a disjoint union of balls, so u
(
[sε,∞)× S1) must be contained in one of them, say

Bε(x+). This holds for all ε and we always get a ball around the same x+ ∈ CritAH , so

lim
s→∞

u(s, ·) = x+(·).

In fact, the derivative of a Floer cylinder in R-direction tends to 0 for s→ ±∞.

Proposition 2.29: Suppose that #P(H) <∞ and u ∈MF . Then

lim
s→±∞

∂su(s, t) = 0.

Proof. Again, we only prove the case s → +∞. Let x+ ∈ CritAH be critical points such
that lims→∞ u(s, ·) = x+(·). We first show that

lim
s→±∞

∂tu(s, ·) = ẋ+

in the C∞-topology. Assume that this is not the case. Then there is a sequence (sk)k ⊂ R
tending to ∞ such that ∂tu(sk, ·) does not tend to ẋ+. Define Floer cylinders uk by

uk(s, t) := u(sk + s, t),

then uk ∈MF for all k ∈ N and

lim
s→∞

uk(s, ·) = x+(·)

– first in the C0-topology only, but then by elliptic regularity (see corollary 5.21 in chapter
5) also in the C∞-topology. But this is a contradiction to what we assumed about the
sequence (sk)k∈N.
Now, since u is a solution of the Floer equation (2.3) we compute

lim
s→±∞

∂su(s, t) = lim
s→±∞

−J(u(s, t)) (∂tu(s, t)−XHt(u(s, t)))

= −J(x+(t)) (ẋ+(t)−XHt(x+(t)))
= 0.
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CHAPTER 3

The main theorem

In this chapter we state our main theorem and outline its proof.

Theorem 3.1: Let (M,ω) be a closed symplectically aspherical manifold. Assume that
H : S1 ×M → R is a Hamiltonian function (degenerate or not) such that #P(H) < ∞.
Then there are x, y ∈ Pcontr(H) = CritAH ⊆ Fix Φ1

H with

AH(x) 6= AH(y).

The strategy is to prove this theorem by interpolating between holomorphic spheres – about
which we know how they look like – and Floer cylinders which converge to critical points
of the action functional at the ends.

3.1 The perturbed Floer equation

For R ∈ R≥0, there is a diffeomorphism

ψR : [−R− 1, R+ 1]× S1 −→ ZR ⊂ S2

from the closed cylinder onto a subset ZR of the 2-sphere. Choose such subsets and diffeo-
morphisms for all R ∈ R≥0 in a way that the following hold:

• For r < R, Zr ⊂ ZR.
• For r < R, ψR

∣∣
[−r−1,r+1] = ψr.

•
⋃
R∈R≥0

ZR = S2\{z−, z+} for two points z−, z+ ∈ S2, that means the finite cylinders
ZR exploit S2\{z−, z+}.

On each [−R−1, R+1]×S1 we have coordinates (s, t) and the complex structure i inherited
from C = R× R. These give coordinates (s, t) and a complex structure i on ZR.
This means that on ZR we can use coordinates (s, t) and that on S2 there is a complex
structure iR that on ZR coincides with the pullback (by ψ−1

R ) of i. What is more, these
complex structures can be made to agree with each other on

⋃
R∈R≥0

ZR and can be con-
tinued onto S2: It is known that the infinite half-cylinder (−∞, 0]×S1 is biholomorphic to
the punctured disk D2\{0} ⊂ C via

(−∞, 0]× S1 −→ D2\{0}
(s, t) 7−→ e−2π(s+it),
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ψR

S2

[−R− 1, R+ 1]× S1

ZR

p−

p+

Figure 3.1: Sketch of ψR.

and removing the puncture corresponds to adding the point z− to the punctured half-sphere⋃
R∈R≥0

ZR∩{s ≤ 0}. In the same way, use that the infinite half-cylinder [0,∞)×S1 also is
biholomorphic to the punctured disk to continue the complex structure to z+. All in all, we
have cylindrical coordinates (s, t) and the usual complex structure i on S2\{z−, z+}, and it
continues to an almost-complex structure on the whole sphere S2.

Remark 3.2: Using these (s, t)-coordinates on S2\{z−, z+} for a function u : S2 →M , we
can understand each us := u(s, ·) as a loop. Such a loop is automatically contractible, and
when s tends to ±∞ the loops converge to constant loops t 7→ u(z±).

Furthermore we choose a family of smooth functions βR : R → [0, 1] smoothly varying in
R ∈ [0,∞) with
• βR(s) = 0 for s ≤ −R+ δ and for s ≥ R− δ for some δ > 0,
• βR(s) = 1 for −R+ 1 ≤ s ≤ R− 1 (this can only happen for R ≥ 1),
• β0 ≡ 0 and
• d

dsβR(s) is bounded uniformly in R and s.
Note that limR→∞ βR(s) = 1 for all s ∈ R.
For maps u : R× S1 →M we can now consider the following perturbed Floer equation:

∂su(s, t) + J(u(s, t))
(
∂tu(s, t)− βR(s)XHt(u(s, t))

)
= 0 (3.1)

Solutions u solve the usual Floer equation inside ZR−1 and they are J-holomorphic outside
ZR. This is a good start – but since in the interpolation we want to start from J-holomorphic
spheres, we need such an equation for curves u : S2 →M .

0−R −R+ 1 R− 1 R−1 1

β 1
2

β1
βR

Figure 3.2: Sketch of βR : R→ R for several values of R.
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For this, let τ be a 1-form on S2 which agrees with dt on S2\{z−, z+}, and understand each
βR as a smooth function on the sphere by setting

βR : S2 → R

βR(z) : =
{
βR(s) if z = (s, t) ∈ S2\{z−, z+}
0 if z = z±.

Equation (3.1) now extends to curves u : S2 →M as follows:(
du− τ ⊗ βRXH(u)

)(0,1)
= 0 (3.2)

Here, du− τ ⊗ βRXH(u) is a 1-form on S2 with values in the pull-back bundle u∗TM and(
du− τ ⊗ βRXH(u)

)(0,1)
:=
(
du− τ ⊗ βRXH(u)

)
+ J(u)

(
du− τ ⊗ βRXH(u)

)
◦ i

means its antiholomorphic part (with respect to i on S2 and J on M). On S2\{z−, z+},
the equations (3.1) and (3.1) coincide, while in local holomorphic coordinates (s, t) around
z− or z+ equation (3.2) reduces to equation (2.2).

Definition 3.3: The R-energy of a solution u : S2 →M of the perturbed Floer equation
(3.2) for R ∈ R≥0 is defined as

ER(u) := 1
2

∫
S2
‖du(z)− τ(z)βR(z)XH(z)(u(z))‖2J dvolS2 .

(If we write z = (s, t) in holomorphic coordinates, then H(z) only depends on t.) The norm
‖ · ‖J used here is again the one from remark 2.10.

Remark 3.4: The set {z−, z+} has measure 0, therefore

ER(u) = 1
2

∫ ∞
−∞
|∂su(s, t)|2 + |∂tu(s, t)− βR(s)XHt(u(s, t))|2 dtds

=
∫ ∞
−∞
|∂su(s, t)|2 dtds.

The first equality is true for every u : S2 →M , the second only for solutions of (3.2).

Since S2 is compact, the energy of a solution u : S2 → M will always be finite. We will
see in section 4.1 of chapter 4 that there also is a uniform bound on the energy of all such
solutions.
The definition of ER(u) depends on R ∈ R≥0. But XH is bounded and βR is bounded
uniformly in R (since M and S1 are compact). This means that a uniform bound on the
R-energy ER implies a uniform bound on the 0-energy E0.

3.2 Definition of the moduli spaces

Theorem 3.1 will be proved by analysing the space of solutions of the perturbed Floer
equation (3.2). Recall the situation of this theorem: (M,ω) is a closed symplectically
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aspherical manifold and H : S1 × M → R is a Hamiltonian function. Choose an ω-
compatible almost complex structure J on M .
For every point P ∈M define the following moduli spaces:

MR(P ) :=

u : S2 →M smooth
∣∣∣∣∣
(
du− τ ⊗ βRXH(u)

)(0,1)
= 0,

[u] = 0 ∈ π2(M), u(0, 0) = P


M̂(P ) :=

{
(R, u)

∣∣∣∣ R ∈ R≥0 and u ∈MR(P )
}

The condition about the homotopy class will be important later. For one of these moduli
spaces we can directly see that what it looks like:

Lemma 3.5: For every P ∈M ,M0(P ) consists of exactly one point, namely the constant
sphere uP through P .

Proof. Since β0 ≡ 0, every element of M0(P ) is a J-holomorphic sphere. By remark 2.17
it has to be constant. On the other hand, for every P ∈ M the constant J-holomorphic
sphere

uP (z) ≡ P for all z ∈ S2

is certainly J-holomorphic with [uP ] = 0 ∈ π2(M).

In general, M̂(P ) does not have to be a manifold. But we will see later that near the
pair (0, uP ) it really has the structure of a smooth 1-dimensional manifold with boundary
{(0, uP )} ∼=M(P ).

3.3 Outline of the proof

In chapter 4 we will prove the following result:

Proposition 3.6: Assume that #P(H) <∞ and that the Hamiltonian diffeomorphism Φ1
H

has no fixed points x, y ∈ Pcontr(H) = CritAH ⊆ Fix Φ1
H such that AH(x) 6= AH(y). Since

#P(H) < ∞ we can choose a point P ∈ M which is not a fixed point of Φ1
H . Then the

moduli space M̂(P ) is compact.

Chapter 5 explains the setup needed for chapters 6 and 7, in which we can establish the
following:

Proposition 3.7: Assume that M̂(P ) is compact for a point P ∈ M . Then there is a
compact 1-dimensional manifold M̂λ(P ) with boundary diffeomorphic toM0(P ) = {uP }.

With these results, it is now easy to prove our main theorem 3.1:

Proof of theorem 3.1. Assume that #P(H) <∞ and that the Hamiltonian diffeomorphism
Φ1
H has no fixed points x, y ∈ Pcontr(H) = CritAH ⊆ Fix Φ1

H such that AH(x) 6= AH(y).
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3.3 Outline of the proof

Choose a point P ∈ M which is not a fixed point of Φ1
H . By proposition 3.6, M̂(P ) is

compact. Therefore we can apply proposition 3.7 to get a compact 1-dimensional manifold
M̂λ(P ) with boundaryM0(P ) = {uP } consisting of exactly one point – but such manifolds
do not exist.
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CHAPTER 4

Compactness

The purpose of this chapter is to give a proof of proposition 3.6. We rephrase it in a way
that suits more the way we will prove it:

Proposition 4.1 (new formulation of proposition 3.6): For P ∈ M which is not a fixed
point of Φ1

H , the moduli space M̂(P ) is compact or there are x, y ∈ Pcontr(H) = CritAH ⊆
Fix Φ1

H with
AH(x) 6= AH(y).

The most important means for showing compactness is the theorem of Arzelà and Ascoli,
a proof of which can be found for example in [6]:

Theorem 4.2 (Arzelà-Ascoli): Let X be a compact Hausdorff space, Y a metric space, and
(fk)k∈N a sequence of continuous functions fk : X → Y . If (fk)k∈N is equicontinuous and
pointwise relatively compact, then it has a converging subsequence.

This theorem gives a limit only in the C0-topology and of course we want to have more
regularity here. This is why we will work with weak derivatives (explained in section 5.3)
and then use several elliptic regularity results from section 5.5.

4.1 An energy bound

Proposition 4.3: There is a constant C > 0 such that for all P ∈ M and all pairs
(R, u) ∈ M̂(P ) the following estimate holds:

ER(u) ≤ C

Proof. For fixed R ∈ R≥0 and s ∈ R, we define the following variation of the action
functional on the space of contractible loops of M :

AR,s : LM −→ R

AR,s(x) :=
∫
D2
u∗ω −

∫ 1

0
βR(s)Ht(x(t)) dt,

where u : D2 → M is a capping of x. Exactly as in lemma 2.18 and remark 2.20 from
chapter 2, AR,s is well defined because of the symplectic asphericity of M , and its gradient
(with respect to the metric ĝJ on the loop space) is given by

∇ĝJAR,s(x) = J(x)
(
ẋ− βR(s)XH(x)

)
.
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Now for (R, u) ∈ M̂(P ), understand each u(s, ·) =: us as a loop and compute the energy:

ER(u) = 1
2

∫ ∞
−∞

∫ 1

0
|∂su(s, t)|2J + |∂tu(s, t)− βR(s)XHt(u(s, t))|2J dtds

=
∫ ∞
−∞

∫ 1

0
|∂su(s, t)|2J dtds

=
∫ ∞
−∞

∫ 1

0
gJ
(
∂su(s, t), ∂su(s, t)

)
dtds

=
∫ ∞
−∞

∫ 1

0
gJ
(
−J(u(s, t))

(
∂tu(s, t)− βR(s)XHt(u(s, t))

)
, ∂su(s, t)

)
dtds

= −
∫ ∞
−∞

ĝJ
(
J(us)

(
u̇s − βRXH(us)

)
, ∂sus

)
ds

= −
∫ ∞
−∞

ĝJ
(
∇ĝJAR,s(us), ∂sus

)
ds

= −
∫ ∞
−∞

dAR,s(us)(∂sus) ds

= −
∫ ∞
−∞

d

ds

(
AR,s(us)

)
+
(
d

ds
AR,s

)
(us) ds

= −
(

lim
s→∞

AR,s(us)− lim
s→−∞

AR,s(us)
)

+
∫ ∞
−∞

(
d

ds
AR,s

)
(us) ds (4.1)

= −(0− 0)−
∫ ∞
−∞

∫ 1

0

(
d

ds
βR(s)

)
Ht(us(t)) dtds (4.2)

=
∫ 0

−∞

∫ 1

0

(
− d

ds
βR(s)

)
︸ ︷︷ ︸

≤0

Ht(us(t)) dtds+
∫ ∞

0

∫ 1

0

(
− d

ds
βR(s)

)
︸ ︷︷ ︸

≥0

Ht(us(t)) dtds

≤
∫ 0

−∞

∫ 1

0

(
− d

ds
βR(s)

)
minHt dtds+

∫ ∞
0

∫ 1

0

(
− d

ds
βR(s)

)
maxHt dtds

= −
(
βR(0)− lim

s→−∞
βR(s)

) ∫ 1

0
minHt dt−

(
lim
s→∞

βR(s)− βR(0)
) ∫ 1

0
maxHt dt

= −βR(0)
∫ 1

0
minHt dt+ βR(0)

∫ 1

0
maxHt dt

≤ ‖H‖Hofer

In the step from (4.1) to (4.2) we used that us converges to constant loops u+, u− for
s → ±∞ (see remark 3.2) and that the first term of the above action functional vanishes
for constant loops while the second vanishes for s→ ±∞.

Remark 4.4: The Hofer norm of a Hamiltonian function H : S1 ×M → R is defined by

‖H‖Hofer :=
∫ 1

0

(
max
M

Ht −min
M

Ht

)
dt.

4.2 The bubbling phenomenon

The Arzelà-Ascoli theorem is only applicable for sequences of functions which are equicon-
tinuous. Thus we need the first derivatives of all u ∈ M̂(P ) in all directions to be uniformly
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4.2 The bubbling phenomenon

bounded. Note that the J-norm of the periodic vector field XHt is bounded since M and
S1 are compact and that also |βR| is bounded. This means that for a function which solves
a perturbed Floer equation (

du− τ ⊗ βRXH(u)
)(0,1)

= 0

the existence of a uniform bound on directional derivatives in one direction implies the
existence of a uniform bound on directional derivatives in all directions.
The following phenomenon is known as ‘bubbling off’ of holomorphic spheres:

Proposition 4.5: Suppose there is a sequence (uk, Rk)k∈N ⊆ M̂(P ) for some P ∈M with

max
z∈S2

‖duk(z)‖J →∞

for k → ∞. Then there is a subsequence converging after reparametrization to a non-
constant J-holomorphic sphere in M .

Proof. For all k, choose zk ∈ S2 such that ‖duk(zk)‖ = maxz∈S2 ‖duk(z)‖J . Since S2 is
compact, there is a subsequence (which we again denote by (zk)k∈N) converging to a point
z∗ ∈ S2. Passing again to another subsequence, we can assume that (Rk)k∈N converges to
some R∗ ∈ R≥0 ∪ {∞}.
Choose local holomorphic coordinates (s, t) in a neighbourhood Ω of z∗ in a way that
z∗ = (0, 0). Without loss of generality we can assume that all zk are in Ω. Thus we can
write zk = (sk, tk) for all k. Write

ck := |∂suk(sk, tk)|J ∈ R,

then ck →∞ for k →∞.
Choose ε > 0 small enough that for all k ∈ N, the ball Bε(sk, tk) of radius ε is contained in
Ω. Define a reparametrized map

vk : Bε·ck(0, 0)→M

vk(s, t) = uk

(
sk + s

ck
, tk + t

ck

)
,

then one has

∂svk(s, t) = ∂suk

(
sk + s

ck
, tk + t

ck

)
· 1
ck

∂tvk(s, t) = ∂tuk

(
sk + s

ck
, tk + t

ck

)
· 1
ck
.

This gives

|∂svk(0, 0)|J = |∂suk(sk, tk)|J ·
1
ck

= 1,

max |∂svk|J = max |∂suk(s, t)|J ·
1
ck

= 1
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and (this is a case of conformal reparametrization)

ERk
(
vk;Bε·ck(0, 0)

)
=
∫

(s,t)∈Bε·ck (0,0)
|∂svk(s, t)|2J dsdt

=
∫

(s,t)∈Bε·ck (0,0)

∣∣∣∣∂suk (sk + s
ck
, tk + t

t

ck

)
· 1
ck

∣∣∣∣2
J

dsdt

=
∫

(s,t)∈Bε(sk,tk)
|∂suk(s, t)|2J dsdt

= ERk(uk;Bε(sk, tk))
≤ ERk(uk)
≤ const,

where the constant does not depend on k. The last estimate follows from proposition 4.3.
We will now see what kind of differential equation the vk satisfy. For the sake of shorter
notation, fix an integer k and write s̃ := sk + s

ck
and t̃ := tk + t

ck
for (s, t) ∈ R× S1. Since

uk satisfies (3.1) for Rk, we have

∂svk(s, t) = ∂suk(s̃, t̃) ·
1
ck

= −J(uk(s̃, t̃))
(
∂tuk(s̃, t̃)− βRk(s̃)XHt̃(uk(s̃, t̃))

)
· 1
ck

= −J(uk(s̃, t̃))∂tuk(s̃, t̃) ·
1
ck

+ J(uk(s̃, t̃))βRk(s̃)XHt̃(uk(s̃, t̃)) ·
1
ck

and thus

∂svk(s, t) + J(vk(s, t)) · ∂tvk(s, t)− J(vk(s, t)) ·
1
ck
βRk(s̃)XHt̃(vk(s, t))

= −J(uk(s̃, t̃))∂tuk(s̃, t̃) ·
1
ck

+ Juk(s̃, t̃))βRk(s̃)XHt̃(uk(s̃, t̃)) ·
1
ck

+ J(uk(s̃, t̃))∂tuk(s̃, t̃) ·
1
ck
− J(uk(s̃, t̃)) ·

1
ck
βRk(s̃)XHt̃(uk(s̃, t̃))

= 0. (4.3)

(We might not be using the cylinder coordinates here which we used to define the function
βR. But as the reader will see, the only thing we need to know about βRk(s̃) in this
computation is that its absolute value is less than or equal to 1.)
Let K ⊂ C be a compact subset. Then there is k0 ∈ N such that for all k ≥ k0 the set
K is contained in the ball Bε·ck(0, 0). The image of each Bε·ck(0, 0) lies in the compact
manifold M and since we have max |∂svk|J = 1 for all k, the sequence vk is equicontinuous.
Thus the Arzela-Ascoli theorem 4.2 says that a subsequence of

(
vk
∣∣
K

)
k≥k0

converges in the
C0-topology to a continuous limit

v
∣∣
K

: K →M.

As a continuous function on a compact domain, v
∣∣
K

is of class Lp(K,M) for every number
p and thus we can talk about weak partial derivatives ∂sv

∣∣
K

and ∂tv
∣∣
K

of v
∣∣
K
. These are

almost everywhere pointwise limits of the derivatives of the vk
∣∣
K
.
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4.2 The bubbling phenomenon

Now fix (s, t) ∈ K instead and let k tend to infinity in equation (4.3). Note that |βRk(s̃)| ≤ 1
independently of k and that XH is bounded. Hence for almost all1 (s, t) ∈ K in the limit
we get the following:

∂sv
∣∣
K

(s, t) + J
(
v
∣∣
K

(s, t)
)
· ∂tv

∣∣
K

(s, t) = 0 (4.4)

Now, by elliptic regularity (see corollary 5.21 in chapter 5), v
∣∣
K

is smooth on the interior
of K and hence

(vk
∣∣
K

)k −→ v
∣∣
K

with all derivatives.
We now define a smooth function

v : C −→M

v(s, t) := v
∣∣
K

(s, t) for some compact set K ⊂ C with (s, t) ∈ K

– it is clear that (vk)k converges to v with all derivatives on all compact subsets of C.
Moreover, by equation (4.4), v is J-holomorphic on C.
Besides, we know

|∂sv(0, 0)|J = lim
k→∞

|∂svk(0, 0)|J = 1

max |∂sv|J = lim
k→∞

max |∂svk|J = 1

and for the energy of v one computes

ER∗(v) = lim
k→∞

ERk(vk;Bε·ck(0, 0)) = lim
k→∞

ERk(uk;Bε(sk, tk)) ≤ lim
k→∞

ERk(uk) <∞.

By the removable singularity theorem (cf. corollary 2.14), v extends to a J-holomorphic
sphere

v : S2 = C ∪ {∞} →M.

Since |∂sv(0, 0)|J = 1, it is not constant.

Because of the symplectic asphericity of M , there can only be constant J-holomorphic
spheres (‘bubbles’) and thus we get the uniform bounds on the derivatives as a corollary.

Corollary 4.6: For every P ∈M there is a constant C > 0 such that for all (u,R) ∈ M̂(P )
one has

max
z∈S2

‖duk(z)‖J < C.

Proof. If not, proposition 4.5 gives a non-constant J-holomorphic sphere in M . But since
we assumed M to be symplectically aspherical, there can be no such (see remark 2.17).

Remark 4.7: In the proof of proposition 4.5 we did in no way use the point constraint
u(0, 0) = P . This means that the constant can be chosen uniformly for all P ∈M .

1Note that we do not know so far whether ∂sv
∣∣
K

and ∂tv
∣∣
K

are continuous, so they need not be pointwise
limits in all points.
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4.3 Proof of proposition 4.1

Proof of proposition 4.1. Take a sequence (Rk, uk)k∈N ⊆ M̂(P ). We have to find either a
converging subsequence or two fixed points x−, x+ of Φ1

Ht
with different symplectic action.

Case 1: (Rk)k∈N has a converging subsequence.
Without loss of generality assume that Rk → R∗ ∈ R≥0 for k →∞.
S2 is compact, and since the first derivatives of the uk are uniformly bounded we have
equicontinuity and thus we can use the Arzelà-Ascoli theorem 4.2. This tells us that there
is a subsequence (still denoted by (uk)k∈N) converging in the C0-topology to a continuous
limit

u : S2 →M.

For the derivatives of the uk we cannot use the Arzelà-Ascoli theorem again since they do
not have to be equicontinuous. But since S2 is compact and the partial derivatives ∂suk
are continuous, they are p-integrable for any chosen p ∈ [1,∞). Lp-spaces are complete.
For that reason there is a subsequence of the ∂suk converging to an Lp-function ∂su. This
Lp-function is a weak partial derivative of u : S2 → M . In exactly the same way (possibly
passing to another subsequence) we also get a weak partial derivative ∂tu.
Every uk satisfies the perturbed Floer equation for Rk:(

duk − τ ⊗ βRkXH(uk)
)(0,1)

= 0

In local cylindrical coordinates (s, t) on the cylinder ZRk this means

∂suk(s, t) + J(uk(s, t))
(
∂tuk(s, t)− βRk(s)XHt(uk(s, t))

)
= 0

for all (s, t). Now, letting k tend to infinity, we can use the weak derivatives to get an
equation which may not hold everywhere, but at least almost everywhere:

∂su(s, t) + J(u(s, t))
(
∂tu(s, t)− βR∗(s)XHt(u(s, t))

)
= 0

Hence u is a weak solution of the perturbed Floer equation for R∗. By elliptic regularity
(see proposition 5.22), u has to be smooth. Then u ∈ MR∗(P ) and (R∗, u) ∈ M̂(P ). So
the original sequence (Rk, uk)k∈N has a subsequence which converges in M̂(P ).
Case 2: (Rk)k∈N does not have a converging subsequence.
Then without loss of generality we can assume that Rk →∞ for k →∞.
For every fixed positive integer T ∈ N consider the compact cylinder

ZT = ΨT

(
[−T − 1, T + 1]× S1

)
⊂ S2

and the restricted sequence
(
uk
∣∣
ZT

)
k
. By the Arzelà-Ascoli theorem 4.2 there is a sub-

sequence (still denoted by (uk)k ) such that
(
uk
∣∣
ZT

)
k
converges in the C0-topology to a

continuous limit
uT : ZT →M.
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4.3 Proof of proposition 4.1

Since uT is a continuous function on a compact topological space, it has weak partial
derivatives. These are the Lp-limits of the partial derivatives of the uk

∣∣
ZT

. Each uk
∣∣
ZT

satisfies equation (3.1), and so for uT we get

∂suT + J(uT )
(
∂tuT −XH(uT )

)
= 0

on ZT . By elliptic regularity (see corollary 5.21), uT is smooth. We can pull it back to
[−T − 1, T + 1]× S1 with ΨT and thus get a smooth function

vT : [−T − 1, T + 1]× S1 −→M

vT = uT ◦ΨT

which is the limit of the sequence
(
uk
∣∣
ZT
◦ΨT

)
k∈N

. By choosing the subsequences of (uk)k
for all T ∈ N successively, we can assume that each is a subsequence of the previous and
thus for T1 < T2,

vT2

∣∣
ZT1

= vT1 .

This is why we can define a function v : R× S1 →M by

v(s, t) := vT (s, t) for some T > s

– surely, this function is again smooth, and since our coordinates on each ZT were chosen
to agree with those on the cylinder, v satisfies

∂sv + J(v)
(
∂tv −XH(v)

)
= 0

everywhere on R× S1. Moreover, the diagonal sequence(
uk
∣∣∣
Zk
◦Ψk : [−k − 1, k + 1]× S1 −→M

)
k∈N

converges to v in the C∞loc-topology, that is with all derivatives on all compact subsets of the
infinite cylinder R× S1.
Fix s ∈ R and consider the loop vs = v(s, ·). It is the limit of loops which come from maps
S2 →M , and as such it is contractible.
From proposition 4.3 we know that there is a constant C > 0 such that

1
2

∫ ∞
−∞
|∂suk(s, t)|2 + |∂tuk(s, t)− βRk(s)XHt(uk(s, t))|2 dtds = ERk(uk) ≤ C

for all k ∈ N. Again because of the choice of our coordinates, in the limit we get

1
2

∫ ∞
−∞
|∂sv(s, t)|2 + |∂tv(s, t)−XHt(v(s, t))|2 dtds = E∞(v) = E(v) ≤ C,

where E(v) denotes the energy of Floer cylinders as in definition 2.21, and so v ∈MF . By
proposition 2.28 there are x± ∈ CritAH such that

lim
s→±∞

v(s, ·) = x±(·).
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By proposition 2.25 it is
E(v) = AH(x−)−AH(x+).

The goal was to find x± ∈ CritAH of different symplectic action, and if E(v) 6= 0 we are
done. But if E(v) = 0, then by remark 2.22 v is constant. Because of

u(0, 0) = lim
k→∞

uk(0, 0) = lim
k→∞

P = P

this would mean that u ≡ P and thus that x± ≡ P . But this cannot be the case since we
assumed that P was not a fixed point of Φ1

H . So E(u) 6= 0 and thus

AH(x+) 6= AH(x−).

If for all possible choices of sequences (Rk, uk)k∈N ⊆ M̂(P ) we happen to stay in case 1,
M̂(P ) is compact. If case 2 happens for at least one sequence, we find two fixed points of
Φ1
H , which, understood as loops in M , have different symplectic action.
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CHAPTER 5

Analytic Setup

We obtained the moduli spaceMR(P ) as the space of all smooth maps u : S2 →M which
satisfy u(0, 0) = P , [u] = 0 and

(
du− τ ⊗ βRXH(u)

)0,1
= 0.

For a fixed function u, the expressions du, τ ⊗βRXH(u) and (du− τ ⊗ βRXH(u))0,1 denote
a collection of linear maps

TzS
2 −→ Tu(z)M

for all z ∈ S2 – this means they are 1-forms with values in the bundle u∗TM over S2. The
moduli spaceMR(P ) is the intersection of the section

u 7→
(
du− τ ⊗ βRXH(u)

)0,1

in this bundle with the zero section. In a finite-dimensional setting, the implicit function
theorem can be used to gather information about such intersection. The bundles concerned
here are infinite-dimensional. There is an infinite-dimensional version of the implicit func-
tion theorem, though, which we can use – but since it holds in a Banach setting only, there
is some more work to do.

5.1 Fredholm operators

We need the definition of a Fredholm operator and some of its properties. This and much
more can be found in [6].

Definition 5.1: Let X and Y be Banach spaces. A bounded linear operator L : X → Y
is said to have the Fredholm property (or is simply called Fredholm operator) if
• the image of L is closed in Y ,
• dim ker L <∞, and
• dim coker L = codim im L <∞.

In this case, its Fredholm index is

ind L := dim ker L− dim coker L.
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Note if the dimensions of kernel and cokernel are finite, then the image is automatically
closed. Moreover, when X and Y are of finite-dimension every linear operator L : X → Y
is automatically Fredholm, and its index is

ind(L) = dimX − dimY.

Proposition 5.2: Let X and Y be Banach spaces and let K : X → Y be a compact
operator. Then a bounded linear operator L : X → Y has the Fredholm property if and only
if L+K has, and in this case it is

ind(L) = ind(L+K).

5.2 Fredholm maps

The notion of a smooth Banach manifold is a generalization of the notion of a finite dimen-
sional smooth manifold.

Definition 5.3: A smooth Banach manifold is a topological space X with charts into a
Banach space around each point in a way that the transition functions are smooth.

Between Banach manifolds we can consider Fredholm maps.

Definition 5.4: Let X and Y be Banach manifolds. A smooth map f : X → Y is called
a Fredholm map if for all x ∈ X

df(x) : TxX −→ Tf(x)Y

is a Fredholm operator.

Remark 5.5: The set of Fredholm operators between two spaces is open in the set of all
bounded linear operators, and the Fredholm index is a continuous function from this set to
the integers – in particular, it is locally constant. Since TxX and Tf(x)Y depend on x ∈ X
continuously, also the function

x 7−→ ind df(x)

is locally constant. So if X is connected, the Fredholm index of df(x) does not depend on
the choice of x ∈ X and we can define the Fredholm index of f to be

ind f := ind df(x)

for any x ∈ X.

Definition 5.6: Let f : X → Y be a smooth map between Banach manifolds (not neces-
sarily Fredholm). A point y ∈ Y is called a regular value of f if for all x ∈ f−1({y})

df(x) : TxX −→ Tf(x)Y

is surjective and has a bounded right inverse.
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Remark 5.7: If df(x) is surjective, then surely there is a linear operator Q : Tf(x)Y → TxX
with df(x) ◦ Q = idTf(x)Y – the only question is if Q is bounded or not. If f is Fredholm
and df(x) ◦Q = idTf(x)Y , then

TxX = ker df(x)⊕ im Q,

where ker df(x) is finite-dimensional and hence im Q is closed. So

df(x)
∣∣
im Q

: im Q −→ Tf(x)Y

is a bijective bounded linear operator between Banach spaces and hence by the Bounded
Inverse theorem its inverse

Q : Tf(x)Y −→ im Q

is bounded. So if f : X → Y is a Fredholm map and y ∈ Y is a point such that for all
x ∈ f−1({y}) the differential df(x) : TxX → Tf(x)Y is surjective, then y is a regular value
of f .

Theorem 5.8 (Implicit function theorem): Let X and Y be Banach manifolds. If y ∈ Y
is a regular value of f : X → Y , then N := f−1({y}) is a smooth manifold and

TxN = ker df(X)

for all x ∈ N . In particular, if f is Fredholm and X is connected, N is a smooth manifold
of dimension dim N = ind f .

A proof can be found in [7], it is theorem A.3.3 there.
In the case of sections in a vector bundle E → B, the corresponding notions are constructed
on the vertical differential, that is the differential in fibre direction: A section s : B → E is
Fredholm if kernel and cokernel of the vertical differential

dvs(x) : TxB → Ex

(Ex denotes the fibre over x) are finite-dimensional, and 0 is a regular value if this vertical
differential is surjective and has a bounded right inverse for all x ∈ B with s(x) = (x, 0).

5.3 Sobolev spaces

Spaces of smooth maps are not complete. That is why we are going to work with Sobolev
spaces. The introduction we give here is more or less taken from the appendix of [7]; for
more details see for example [1].
Let U ⊂ Rn be a bounded open subset and choose a number p ∈ [1,∞).

Definition 5.9: • For measurable functions u : U → R,

‖u‖Lp(U) :=
(∫

x∈U
|u(x)|pdx

) 1
p

defines a seminorm which is called the Lp-norm.
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• Two measurable functions u, v : U → R are called equivalent if

‖u− v‖Lp(U) = 0.

This defines an equivalence relation. The quotient space

Lp(U) := {measurable functions u : U → R with finite Lp-norm} /equivalence

is a vector space; its elements are called Lp-functions and often thought of as func-
tions which are defined up to changes on sets of measure zero.
• For a multi-index α = (α1, . . . , αn) ∈ Nn of order |α| :=

∑n
i=1 αi, let

dαf := ∂|α|

∂xα1
1 . . . ∂xαnn

f

denote the α-th derivative of f , if existent.
• A function v ∈ Lp(U) is called the α-th weak derivative of a function u ∈ Lp(U) if∫

x∈U
v(x) · φ(x) dx =

∫
x∈U

u(x) · dαφ(x) dx

for all compactly supported test functions φ ∈ C∞c (U). (If u has a representative
which has a continuous α-th derivative dαu, then this derivative satisfies the above
equation due to integration by parts.) If such a v exists, we denote it by dαu.
• For k ∈ N define the Sobolev space

W k,p(U) :=
{
u ∈ Lp(U)

∣∣∣∣ ∀α with |α| ≤ k there is dαu ∈ Lp(U)
}

to be the space of all Lp-functions that have weak derivatives up to order k. For such
a function, the Sobolev-(k, p)-norm is defined as

‖u‖k,p := ‖u‖Wk,p(U) :=
∑
|α|≤k

(∫
x∈U
|dαu(x)|pdx

) 1
p

.

Remark 5.10: If K ⊂ U is a compact subset, then by the Hölder inequality one has

‖u‖L1(K) ≤ ‖u‖Lp(K) · ‖1‖Lq(K) for q ∈ [1,∞) with 1
p

+ 1
q

= 1,

so every Lp function has finite L1-norm over K and the integrals in the definition of weak
derivatives are finite.

There is another characterization of Sobolev spaces which does not use the notion of weak
derivatives:

Proposition 5.11: W k,p(U) is the completion of C∞(Ū) with respect to the W k,p-norm.

This characterization also implies the next theorem, which is the reason why we work with
Sobolev spaces:
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Theorem 5.12: W k,p(U) is a Banach space.

Still, in the end we are interested in functions which are smooth or at least continuous.
The famous Sobolev embedding theorems give some information about the existence of
differentiable representatives:

Theorem 5.13 (Sobolev embedding theorem): Let U ⊆ Rn be a bounded open subset and
k ∈ N, p ∈ [1,∞) numbers such that kp > n. Then there is a constant C = C(k, p, U) > 0
such that

‖u‖
Ck−1−bnp c ≤ C · ‖u‖k,p

for all u ∈ C∞(Ū). In particular, there is a continuous embedding

W k,p(U) ↪→ Ck−1−bn
p
c(U)

and moreover, this embedding is compact.

In particular this means that in the case kp > n all W k,p-functions can be represented by
continuous functions and that the following holds:

Corollary 5.14: Choose any p ∈ [1,∞). Then

C∞(U) =
∞⋂
k=1

W k,p(U).

So far we defined W k,p spaces only for functions from an open subset U of Rn into the real
numbers. It is easy to generalize it for functions u : U → Rm, m ∈ N, and from that we
can generalize to functions u : N → Rm for a smooth compact manifold N .

Definition 5.15: • Let u : U → Rm be a measurable function. Write u = (u1, . . . , um)
with u1, . . . , um : U → R. Then the W k,p-norm of u is

‖u‖k,p := ‖u‖Wk,p(U,Rm) :=
m∑
j=1
‖uj‖Wk,p(U).

(Strictly speaking, it only is a seminorm until we pass to equivalence classes.)
• Fix a finite cover of the compact manifold N by charts

φi : Ui → Bi

for i = 1, . . . , r, where Ui ⊆ N are open subsets and Bi ⊆ RdimN are open balls. Then
for u : N → Rm we can define

‖u‖k,p := ‖u‖Wk,p(N,Rm) :=
r∑
i=1
‖u ◦ φ−1

i ‖Wk,p(Bi,Rm).

• The space of Sobolev-(k, p)-functions from N to Rm is

W k,p(N,Rm) := completion of C∞(N,Rm) with respect to the W k,p-norm.
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Remark 5.16: The definition of ‖u‖Wk,p(N,Rm) depends on the choice of cover and charts.
But the norms we get for different choices are all equivalent and so the definition of
W k,p(N,Rm) does not depend on any choices.

For definingW k,p-spaces of functions from one manifold to another, one fixes an embedding
of the target manifold into some big Euclidean space. This only is well defined, though,
in the case that k · p > dimN . For our purpose it is enough to generalize for sections in a
bundle over a manifold, and for that one does not need an embedding into Euclidean space.

Definition 5.17: Let E → N be a vector bundle of rank m over a compact manifold N .
Fix a finite cover by charts

φi : Ui → Bi, i = 1, . . . , r

as before and trivializations

Bi × Rm ∼= Ui × Rm ∼= E
∣∣
Ui

for i = 1, . . . , r. Let u : N → E be a section. We can understand u ◦ φ−1
i : Bi → E as

u ◦ φ−1
i : Bi → Rm via the trivialization and then define

‖u‖k,p := ‖u‖Wk,p(N,E) :=
r∑
i=1
‖u ◦ φ−1

i ‖Wk,p(Bi,Rm).

Again, this does depend on the choice of charts and trivializations, but the norms one gets
for all these choices are equivalent and the space

W k,p(N,E) := completion of C∞(N,E) with respect to the W k,p-norm

of W k,p-sections of the bundle E → N does not depend on any choices.

Remark 5.18: As in corollary 5.14, one can use generalized versions of the Sobolev em-
bedding theorem 5.13 to show that for k · p > n every W k,p-function is continuous and
that

C∞(N,E) =
∞⋂
k=1

W k,p(N,E).

Remark 5.19: There are local versions of the Sobolev spaces: A function u : N → Rn is
an element of W k,p

loc (N,Rm) if u
∣∣
K
∈ W k,p(K,Rm) for every compact subset K ⊆ N . This

is often the space one works with, because in the case of a non-compact domain N constant
functions do not belong to W k,p(N,Rm).

5.4 Two Banach bundles

In order to be able to use the implicit function theorem 5.8 we have to describe the moduli
spacesMR(P ) and M̂(P ) as regular level sets of Fredholm maps between Banach manifolds.
Denote by

B : =
{
u ∈W 1,p(S2,M)

∣∣ [u] = 0 ∈ π2(M), u(0, 0) = P
}

=
{
u ∈ C∞(S2,M)

∣∣ [u] = 0 ∈ π2(M), u(0, 0) = P
}W 1,p
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5.4 Two Banach bundles

the Banach manifold of all W 1,p-maps from S2 to M for some fixed p > 2 which belong to
the right homotopy class and satisfy the point constraint. The value of the Sobolev function
u at the point (0, 0) ∈ S2 is to be understood as the value of the continuous representative
of u given by the Sobolev embedding theorem 5.13.
For every u ∈ B there is a Banach space

Eu : =
{
η
∣∣∣ η is a 1-form of class Lp on S2 with values in u∗TM

}
and together these form a bundle

E −→ B
η 7−→ u for η ∈ Eu

with fibre Eu over u ∈ B. The zero section in this bundle will be denoted by OE . For
R ∈ R≥0 we define a section

FR : B −→ E

u 7−→
(
du− τ ⊗ βRXH(u)

)0,1

– it is now clear thatMR(P ) ⊆ F−1
R (OE). Indeed, by elliptic regularity of FR (see propo-

sition 5.22 in the next section), we will see that in fact there is equality:

MR(P ) = F−1
R (OE)

Now write

B̂ := R≥0 × B

and consider the bundle

Ê −→ B̂
η 7−→ (R, u) for η ∈ E(R,u)

with fibre

Ê(R,u) =
{

(R, u, η)
∣∣∣∣ η is a 1-form on S2 with values in u∗TM

}
∼= Eu

over (R, u) ∈ B̂. In this bundle the zero section will be denoted by OÊ , and there is a section

F̂ : B̂ −→Ê

(R, u) 7−→
(
du− τ ⊗ βRXH(u)

)0,1
= FR(u).

Again, it is obvious that M̂(P ) ⊆ F̂−1(OÊ) and by elliptic regularity of F̂ (see proposition
5.22) we will see that in fact

M̂(P ) = F̂−1(OÊ).
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5.5 Elliptic regularity

In this section we want to see that indeed all weak solutions of the differential equation(
du− τ ⊗ βRXH(u)

)0,1
= 0

are smooth and that the W k,p-topology coincides with the C∞-topology on our moduli
spaces. Roughly speaking, this results from the fact that a function has higher regularity
(that is, ‘more derivatives’) than its derivatives. A famous example is the Laplace equation

∆u = 0

for a locally integrable function u : U → R2, where U ⊆ R2 ∼= C is an open subset and
∆ denotes the Laplace operator ∆ = ∂2

∂s2 + ∂2

∂t2 . Weyl’s lemma states that every weak
solution u of this equation is smooth and thus a strong solution. Similar results hold for
the Cauchy-Riemann operator.
In [7], McDuff and Salamon state and prove a version which also respects boundary condi-
tions and time-dependent almost complex structures. Without these, it reads as follows:

Proposition 5.20 (Proposition B.4.9 in [7]): Let Ω ⊂ R2 ∼= C be an open subset, l ∈ N>0
a positive integer and p > 2. Assume J ∈W l,p(Ω,R2n×2n) is such that J2 = −idR2n. Then
for every k ∈ {0, . . . , l} the following holds: If u ∈ Lploc(Ω,R2n) and η ∈ W k,p

loc (Ω,R2n)
satisfy

∂su+ J(u)∂tu = η (5.1)

in the weak sense, then u is an element of W k+1,p
loc (Ω,R2n).

Corollary 5.21: Weak solutions of the Cauchy-Riemann equation

∂su+ J(u)∂tu = 0

and of the Floer equation
∂su+ J(u)

(
∂tu−XH(u)

)
= 0

are smooth.

Proof. The function η ≡ 0 lies in W k,p for every k and p, so the above proposition can
be applied for every k ∈ N and smoothness follows from corollary 5.14. For the function
η := J(u)XH(u) we use a bootstrapping argument: It is the composition of smooth functions
(which are bounded and have bounded derivatives on each compact subdomain) with the
W 1,p-function u and so it is of class W 1,p. Therefore by proposition 5.20 u is of class W 2,p.
But now η also is of class W 2,p and we can use the same argument to show that u is of
class W 3,p. This bootstrapping argument shows that u is of class W k,p for every k ∈ N and
thus, by corollary 5.14, it is smooth.

Now we can use this for our special setting.
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5.5 Elliptic regularity

Proposition 5.22: It isMR = F−1
R (OE) and M̂ = F̂−1(OÊ).

Proof. We have to show that every u ∈W 1,p(S2,M) which satisfies(
du− τ ⊗ βRXH(u)

)0,1
= 0

for some R ∈ R≥0 is smooth. Since differentiability is a local property it is enough to show
this in local coordinates. So we can assume that u ∈W 1,p(Ω,M) for some Ω ⊂ R2 ∼= C and
the equation reduces to

∂su+ J(u)
(
∂tu− βRXH(u)

)
= 0,

which can be written as
∂su+ J(u)∂tu = βRJ(u)XH(u).

The vector field η := βRJ(u)XH(u) : Ω→ R2 is not smooth, but as a composition of smooth
maps (which are bounded and have bounded derivatives on the compact set Ω̄) with u it is
of class W 1,p. As above, we now start a bootstrapping argument: By proposition 5.20 we
first get that u is of class W 2,p. But then so is η and thus we use the proposition again to
get that u is of class W 3,p – and so on, which inductively means that u is of class W k,p for
every p and thus by remark 5.18 it is smooth.
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CHAPTER 6

Fredholm Analysis

It is the goal of this chapter to show that both F0 and F̂ are Fredholm sections in the
bundles E → B and Ê → B̂ respectively. For this, we need their linearizations.

6.1 The linearized operators

The tangent space of B at u ∈ B is given by all vector fields of class W k,p along u which
vanish in the point (0, 0), that is

TuB =
{
ξ : S2 → TM

∣∣∣∣ ξ is of class W 1,p,∀z ∈ S2 : ξ(z) ∈ Tu(z)M, ξ(0, 0) = 0 ∈ TPM
}
.

Again we have to say what is meant by the equation ξ(0, 0) = 0 in the case of a Sobolev
function ξ. But as in the definition of B, we know from the Sobolev emdedding theorem
5.13 that there is a continuous representative of ξ and we can demand that the equation
hold for this representative.
Since we are working with a section in a bundle, the interesting part of the linearization is
the vertical differential. Along the zero section OE , the tangent space of the total space E
at (u, 0) is a direct sum

T(u,0)E = TuB ⊕ Eu

and using the projection
πu : TuB ⊕ Eu −→ Eu

we can write the vertical differential of F0 at u ∈M0(P ) as

Du := πu ◦ dF0(u) : TuB −→ Eu.

Outside the zero section OE , one can also split

T(u,η)E = (T(u,η)E)h ⊕ (T(u,η)E)v,

into horizontal and vertical subspaces, and the vertical subspace can be canonically defined
by

(T(u,η)E)v := TηEu ∼= Eu.

The horizontal subspace, though, depends on the complement we choose. This corresponds
to the choice of a connection in the bundle E → B.
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Chapter 6 Fredholm Analysis

A connection on E → B comes from a connection on the tangent bundle TM →M . It will
be useful to work with one which preserves the almost-complex structure J , so we choose
the connection

∇̃vX := ∇vX − 1
2J(∇vJ)X

where ∇ is the Levi-Civita connection of the Riemannian metric gJ .

Lemma 6.1: For each u ∈ B, the vertical differential of F0 at u is given by

Duξ = 1
2

(
∇ξ + J(u) ◦ ∇ξ ◦ i

)
− 1

2J(u)
(
∇ξJ

)
(u)∂Ju

for ξ ∈ TuB.

Proof. For understanding this expression, first note that Duξ is meant to be a 1-form on
S2 with values in u∗TM . Inserting a vector field ζ on S2 into ∇ξ means

∇ζξ := ∇du(ζ)ξ.

Let (uα)α ⊆ B be a family of maps such that u0 = u and

d

dα

∣∣∣∣
α=0

uα = ξ.

In the following we shortly write ∇̃α := ∇̃ d
dα
uα

and ∇α := ∇ d
dα
uα
. Also note that J(uα)

anticommutes with J(uα)
(
∇αJ

)
(uα): It is

−
(
∇αJ

)
(uα) =

(
∇α − J

)
(uα)

=
(
∇αJ · J · J

)
(uα)

= −
(
∇αJ

)
(uα) + J(uα)

(
∇αJ

)
(uα)J(uα)−

(
∇αJ

)
(uα),

so (
∇αJ

)
(uα) = J(uα)

(
∇αJ

)
(uα)J(uα)

and thus

J(uα) · J(uα)
(
∇αJ

)
(uα) = −J(uα)

(
∇αJ

)
(uα) · J(uα).

Now we can compute Du as follows.

Duξ = d

dα

∣∣∣∣
α=0

(duα)0,1

= d

dα

∣∣∣∣
α=0

1
2 (duα + J(uα) ◦ duα ◦ i)

= 1
2∇̃α (duα + J(uα) ◦ duα ◦ i)

∣∣∣∣
α=0

= 1
2

(
∇̃αduα + J(uα) ◦ ∇̃αduα ◦ i

) ∣∣∣∣
α=0
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6.1 The linearized operators

= 1
2

(
∇αduα + J(uα) ◦ ∇αduα ◦ i

) ∣∣∣∣
α=0

− 1
2 ·

1
2

(
J(uα)(∇αJ)(uα)duα + J(uα)J(uα)

(
∇αJ

)
(uα)duα ◦ i

)∣∣∣∣
α=0

= 1
2

(
∇αduα + J(uα) ◦ ∇αduα ◦ i

) ∣∣∣∣
α=0

− 1
4

(
J(uα)

(
∇αJ

)
(uα)duα − J(uα)

(
∇αJ

)
(uα)J(uα)duα ◦ i

) ∣∣∣∣
α=0

= 1
2

(
∇αduα + J(uα) ◦ ∇αduα ◦ i

) ∣∣∣∣
α=0

− 1
4

(
J(uα)

(
∇αJ

)
(uα) (duα − J(uα)duα ◦ i)︸ ︷︷ ︸

=2∂Juα

) ∣∣∣∣
α=0

= 1
2

(
∇αduα + J(uα) ◦ ∇αduα ◦ i

) ∣∣∣∣
α=0
− 1

2J(u)
(
∇ξJ

)
(u)∂Ju

= 1
2

(
∇ξ + J(u) ◦ ∇ξ ◦ i

)
− 1

2J(u)
(
∇ξJ

)
(u)∂Ju

In the last step we used that the Levi-Civita connection ∇ is torsion free. More precisely,
note that for any fixed z ∈ S2 and ζ(z) ∈ TzS2 one can choose a path t 7→ z(t) such that

z(0) = z and d
dt

∣∣∣∣
t=0

z(t) = ζ(z), then one has

duα(ζ(z)) = d

dt

∣∣∣∣
t=0

uα(z(t))

and thus

(∇αduα + J(uα) ◦ ∇αduα ◦ i)
∣∣∣∣
α=0

(ζ(z))

=
(
∇ d

dα
uα
duα + J(uα) ◦ ∇ d

dα
uα
duα ◦ i

) ∣∣∣∣
α=0

(ζ(z))

=
(
∇ d

dα
uα(z(t))

d

dt
uα(z(t)) + J(uα) ◦ ∇ d

dα
uα(z(t))

d

dt
uα(z(t)) ◦ i

) ∣∣∣∣
t=0

∣∣∣∣
α=0

=
(
∇ d

dt
uα(z(t))

d

dα
uα(z(t)) + J(uα) ◦ ∇ d

dt
uα(z(t))

d

dα
uα(z(t)) ◦ i

) ∣∣∣∣
t=0

∣∣∣∣
α=0

= ∇du(ζ(z))ξ(z) + J(u) ◦ ∇du(ζ(z))ξ(z) ◦ i.

This holds for all z ∈ S2 and ζ(z) ∈ TzS2, hence

(∇αduα + J(uα) ◦ ∇αduα ◦ i)
∣∣∣∣
α=0

= ∇ξ + J(u) ◦ ∇ξ ◦ i

as 1-forms.

Since B̂ = R≥0 × B is a product, its tangent space at (R, u) ∈ B̂ equals R × TuB. For the
tangent space of Ê at the zero section again we have a splitting

T(R,u,0)Ê = T(R,u)B̂ ⊕ Eu
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which we can use to define the vertical differential

D̂(R,u) = π(R,u) ◦ dF̂(R, u) : R× TuB −→ Eu

for (R, u) ∈ M̂(P ). At points (R, u) /∈ M̂(P ), the splitting into horizontal and vertical
subspaces again depends on the choice of our connection ∇̃.

Lemma 6.2: For (R, u) ∈ B̂ = R≥0 ×B, the vertical differential of F̂ at (R, u) is given by

D̂(R,u)(r, ξ) = Duξ − r ·
(
τ ⊗ γR ·XH(u)

)0,1
+
(
τ ⊗ βR∇ξXH(u)

)0,1

+ 1
2

(
τ ⊗ J(u)∇ξJ(u)βRXH(u)

)0,1

for (r, ξ) ∈ T(R,u)B̂, where γR := ∇R̃βR̃
∣∣∣
R̃=R

is a function S2 → R with compact support
inside the cylinder ZR.

Proof. Again let (uα)α ⊆ B be a family of maps such that u0 = u and d
dα

∣∣
α=0uα = ξ, and

let (Rα) ⊆ R≥0 be numbers such that R0 = R and d
dα

∣∣
α=0Rα = r. Then:

D̂(R,u)(r, ξ) = d

dα

∣∣∣∣
α=0

(
duα − τ ⊗ βRαXH(uα)

)0,1

= d

dα

∣∣∣∣
α=0

1
2

(
duα + J(uα)duα ◦ i

)
− d

dα

∣∣∣∣
α=0

1
2

(
τ ⊗ βRαXH(uα)

)
+ J(uα)

(
τ ⊗ βRαXH(uα)

)
◦ i

= Duξ − 1
2
d

dα

∣∣∣∣
α=0

τ ⊗ βRαXH(uα) + J(uα)
(
τ ⊗ βRαXH(uα)

)
◦ i

= Duξ − 1
2∇̃ατ ⊗ βRαXH(uα)

∣∣∣
α=0
− 1

2∇̃αJ(uα)
(
τ ⊗ βRαXH(uα)

)
◦ i
∣∣∣
α=0

= Duξ − 1
2∇̃ατ ⊗ βRαXH(uα)

∣∣∣
α=0
− 1

2J(u)∇̃α
(
τ ⊗ βRαXH(uα)

)∣∣∣
α=0
◦ i

= Duξ − 1
2τ ⊗ ∇̃αβRαXH(uα)

∣∣∣
α=0
− 1

2J(u)
(
τ ⊗ ∇̃αβRαXH(uα)

∣∣∣
α=0

)
◦ i

= Duξ − 1
2τ ⊗∇αβRαXH(uα)

∣∣∣
α=0
− 1

2J(u)
(
τ ⊗∇αβRαXH(uα)

∣∣∣
α=0

)
◦ i

+ 1
4τ ⊗ J(u)

(
∇αJ

∣∣
α=0

)
(u)βRXH(u)

+ 1
4J(u)

(
τ ⊗ J(u)

(
∇αJ

∣∣
α=0

)
(u)βRXH(u)

)
◦ i

= Duξ −
(
τ ⊗∇αβRαXH(uα)

∣∣
α=0

)0,1

+ 1
2

(
τ ⊗ J(u)

(
∇αJ

∣∣
α=0

)
(u)βRXH(u)

)0,1

Here, (. . .)0,1 means taking the anti-holomorphic part with respect to i on S2 and J on M .
It is (

∇αJ
∣∣
α=0

)
(u) =

(
∇ d

dα
uα
J
∣∣
α=0

)
(u) = ∇ξJ(u)
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and

∇αβRαXH(uα)
∣∣∣
α=0

=
(
∇αβRα

∣∣∣
α=0

)
XH(u) + βR

(
∇αXH(uα)

∣∣∣
α=0

)
= r · γR ·XH(u) + βR∇ξXH(u),

where γR := ∇R̃βR̃
∣∣∣
R̃=R

is a function S2 → R. If z ∈ S2 does not belong to the cylinder
ZR, then βR̃(s) = 0 for all R̃ near R, so γR(z) = 0 in that case. All in all we get

D̂(R,u)(r, ξ) = Duξ − r ·
(
τ ⊗ γR ·XH(u)

)0,1
+
(
τ ⊗ βR∇ξXH(u)

)0,1

+ 1
2

(
τ ⊗ J(u)∇ξJ(u)βRXH(u)

)0,1
.

6.2 The Riemann-Roch theorem

In the appendix of [7], McDuff and Salamon introduce the notion of complex linear and
real linear Cauchy-Riemann operators. Such operators always have the Fredholm property.
Let E → Σ be a smooth complex vector bundle over a compact Riemannian surface Σ. De-
note by C∞(Σ, E) the space of smooth sections in this bundle and by C∞(Σ,Λ0,1T ∗Σ⊗E)
the space of smooth anti-holomorphic 1-forms on Σ with values in E. The correspond-
ing spaces of regularity W k,p will be denoted by W k,p(Σ, E) and W k,p(Σ,Λ0,1T ∗Σ ⊗ E).
Moreover, let

∂̄ : C∞(Σ,C) −→ C∞(Σ,Λ0,1T ∗Σ⊗ (Σ× C))
∂̄f = (df)0,1 = df + i ◦ df ◦ i

be the usual Cauchy-Riemann operator.

Definition 6.3: • A smooth complex linear Cauchy-Riemann operator on the
bundle E → Σ is a C-linear operator

D : C∞(Σ, E) −→ C∞(Σ,Λ0,1T ∗Σ⊗ E)

which satisfies the Leibniz rule

D(fξ) = f(Dξ) + (∂̄f)ξ

for all smooth sections ξ ∈ C∞(Σ, E) and all smooth functions f : Σ→ C.
• Let l ≥ 1 be a positive integer and p > 1 a number such that lp > 2. A real linear
Cauchy-Riemann operator of class W l−1,p on E → Σ is an operator of the form

D = D0 + α : W l,p(Σ, E) −→W l−1,p(Σ,Λ0,1T ∗Σ⊗ E)

where D0 is a smooth complex linear Cauchy-Riemann operator on E → Σ and α is
an element of W l−1,p(Σ,Λ0,1T ∗Σ⊗ EndR(E)), that is an anti-holomorphic 1-form on
Σ of class W l−1,p with values in the endomorphism bundle.
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Real linear Cauchy-Riemann operators also satisfy the Leibniz formula

D(fξ) = f(Dξ) + (∂̄f)ξ,

but only for real valued functions f : Σ→ R.
Note that if D is a smooth complex linear Cauchy-Riemann operator, then it is real linear
of every class W l−1,p.
In [7], McDuff and Salamon formulate a version of the Riemann-Roch theorem for real linear
Cauchy-Riemann operators with totally real boundary conditions. Without the boundary
conditions, it can be stated as follows:

Theorem 6.4 (Riemann-Roch theorem, theorem C.1.10 in [7]): Let E → Σ be a complex
vector bundle of rank m ∈ N over a closed Riemannian surface Σand D a real linear Cauchy-
Riemann operator of class W l−1,p on E → Σ, where l ≥ 1 is a positive integer and p > 1
is a number such that lp > 2. Then for every integer k ∈ {1, . . . , l} and every real number
q > 1 such that k − 2

q ≤ l −
2
p , the following holds:

• The operator
D : W k,q(Σ, E)→W k−1,q(Σ,Λ0,1T ∗Σ⊗ E)

has the Fredholm property. Its kernel is independent of the choice of k and q.
• The Fredholm index of D (seen as a real linear operator) is given by

ind (D) = m · χ(Σ) + 2〈c1(E), [Σ]〉,

where χ(Σ) is the Euler characteristic of Σ and c1(E) is the first Chern class of the
bundle E → Σ, so 〈c1(E), [Σ]〉 is its first Chern number.

Remark 6.5: • The case k = l and q = p is the one we are most interested in.
• Note that the index neither depends on the precise definition of the operator D nor
on its regularity classW l−1,p as long as lp > 2; the index is an invariant of the bundle.

6.3 Implications for Du

Lemma 6.6: 1. For every u ∈ B the operator

∂̄u : W 1,p(S2, u∗TM) −→W 0,p(S2,Λ0,1T ∗S2 ⊗ u∗TM) = Eu

∂̄uξ = 1
2

(
∇ξ + J(u) ◦ ∇ξ ◦ i

)
is a real linear Cauchy-Riemann operator of class W 0,p = Lp.

2. For every u ∈ B, if we understand Du as an operator

Du : W 1,p(S2, u∗TM) −→W 0,p,(0,1)(S2, u∗TM) = Eu

Duξ = 1
2

(
∇ξ + J(u) ◦ ∇ξ ◦ i

)
− 1

2J(u)
(
∇ξJ

)
(u)∂Ju

= ∂̄uξ − 1
2J(u)

(
∇ξJ

)
(u)∂Ju

on the bigger space W 1,p(S2, u∗TM) containing TuB as a subspace, then it is a real
linear Cauchy-Riemann operator of class W 0,p = Lp.
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Proof. For the first claim we have to show that ∂̄u splits into a smooth complex linear
Cauchy-Riemann operator ∂̄0

u and an anti-holomorphic 1-form α of class W 0,p = Lp with
values in the endomorphism bundle EndR(u∗TM)→ S2.
Remember that the connection ∇ on u∗TM → S2 was induced by the Levi-Civita connec-
tion on the tangent bundle TM → M , also denoted by ∇. It is a well-known fact that
the space of connections on a vector bundle is affine – a proof of this can be found for
example in [8]. Moreover, there exists a Hermitian connection on TM → M (with respect
to the Hermitian metric induced by J and ω) which induces a Hermitian connection on
u∗TM → S2. So we can write our connection ∇ on u∗TM → S2 as a sum ∇ = ∇0 +A of a
Hermitian connection ∇0 and a section A ∈ Lp(S2, T ∗S2 ⊗ EndR(u∗TM)). We write A(·)ξ
for the 1-form with values in u∗TM which results from applying this bundle endomorphism
to a vector field ξ along u.
Then we have

∂̄uξ = 1
2

(
(∇0 +A)ξ + J(u) ◦ (∇0 +A)ξ ◦ i

)
= 1

2

(
∇0ξ + J(u) ◦ ∇0ξ ◦ i

)
+ 1

2

(
A(·)ξ + J(u) ◦A(·)ξ ◦ i

)
= ∂̄0

uξ + αξ,

where ∂̄0
uξ := 1

2

(
∇0ξ + J(u) ◦ ∇0ξ ◦ i

)
and αξ := 1

2

(
A(·)ξ + J(u) ◦ A(·)ξ ◦ i

)
. It is clear

that this defines an element α ∈ Lp(S2,Λ0,1T ∗S2 ⊗ EndR(u∗TM)). We still have to verify
that ∂̄0

u is a complex linear Cauchy-Riemann operator, so let f = f1 + i · f2 : S2 → C be a
function and compute the following.

∂̄0
u(fξ) = ∂̄0

u

(
(f1 + i · f2)ξ

)
= ∂̄0

u

(
f1ξ + f2J(u)ξ

)
= 1

2

(
∇0f1ξ + J(u) ◦ ∇0f1ξ ◦ i

)
+ 1

2

(
∇0(f2J(u)ξ) + J(u) ◦ ∇0(f2J(u)ξ) ◦ i

)
= 1

2

((
df1(·)ξ + f1∇0ξ

)
+ J(u) ◦

(
df1(·)ξ + f1∇0ξ

)
◦ i
)

+ 1
2

((
df2(·)J(u)ξ + f2∇0(J(u)ξ)

)
+ J(u) ◦

(
df2(·)J(u)ξ + f2∇0(J(u)ξ)

)
◦ i
)

= 1
2

(
df1(·)ξ + J(u) ◦ df1(·)ξ ◦ i

)
+ 1

2

(
f1∇0ξ + J(u) ◦ f1∇0ξ ◦ i

)
+ 1

2

(
df2(·)J(u)ξ + J(u) ◦ df2(·)J(u)ξ ◦ i

)
+ 1

2

(
f2∇0(J(u)ξ) + f2J(u) ◦ ∇0(J(u)ξ) ◦ i

)
= ∂̄f1 · ξ + f1 · ∂̄0

uξ + ∂̄f2 · J(u)ξ

+ 1
2

(
f2∇0(J(u)ξ) + f2J(u) ◦ ∇0(J(u)ξ) ◦ i

)
= ∂̄f1 · ξ + f1 · ∂̄0

uξ + ∂̄f2 · J(u)ξ

+ 1
2

f2
( (
∇0J(u)

)︸ ︷︷ ︸
=0 since ∇0 is Hermitian

ξ + J(u)∇0ξ
)

+ f2J(u) ◦
( (
∇0J(u)

)︸ ︷︷ ︸
=0 since ∇0 is Hermitian

ξ + J(u)∇0ξ
)
◦ i


= ∂̄f1 · ξ + f1 · ∂̄0

uξ + ∂̄f2 · J(u)ξ + f2 · J(u)1
2

(
∇0ξ + J(u)∇0ξ ◦ i

)
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= ∂̄f1 · ξ + f1 · ∂̄0
uξ + ∂̄f2 · J(u)ξ + f2J(u)∂̄0

uξ

=
(
∂̄f1 + ∂̄f2 · J(u)

)
ξ +

(
f1 + f2J(u)

)
· ∂̄0

uξ

= ∂̄f · ξ + f · ∂̄0
uξ

So ∂̄0
u really is a complex linear Cauchy-Riemann operator.

The second claim is now obvious since

ξ 7−→ −1
2J(u) (∇ξJ) (u)∂Ju

is an R-linear endomorphism of u∗TM ,

−1
2J(u)(∇ξJ)(u)∂Ju

is an anti-holomorphic 1-form (since J(u) anticommutes with J(u)
(
∇J

)
(u) as we have seen

earlier in this chapter) and the assignment

S2 3 z 7−→ −1
2J(u(z))(∇J)(u(z))∂Ju(z)

is of class W 0,p = Lp.

Corollary 6.7 (of the Riemann-Roch theorem 6.4): For every u ∈ B, the operator

Du : W 1,p(S2, u∗TM) −→ Lp(S2,Λ0,1T ∗S2 ⊗ u∗TM) = Eu

is a Fredholm operator of index 2n.

Proof. The bundle u∗TM → S2 is of complex rank n because 2n is the real dimension of
M . The Euler characteristic of S2 is 2. For the Chern number we compute

〈c1(u∗TM), [S2]〉 =
∫
S2
c1(u∗TM) =

∫
S2
u∗c1(TM).

and remember that it does only depend on the homotopy class of u. This is where the
condition [u] = 0 ∈ π2(M) comes in: For constant u the computation above gives 0, and
thus for all other choices of u it also has to be 0. Now use theorem 6.4.

But we are not really interested in Du as an operator

W 1,p(S2, u∗TM)→ Lp(S2,Λ0,1T ∗S2 ⊗ u∗TM),

but as an operator TuB → Eu. The fibre Eu equals the space Lp(S2,Λ0,1T ∗S2 ⊗ u∗TM),
but TuB and W 1,p(S2, u∗TM) differ from each other by the point constraint:

TuB = {ξ ∈W 1,p(S2, u∗TM)
∣∣ξ(0, 0) = 0}

Proposition 6.8: For every P ∈M and every u ∈ B there is a vector space isomorphism

W 1,p(S2, u∗TM) ∼= TuB ⊕ TPM.
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Proof. Let P ∈ M and u ∈ B be given. Fix a neighbourhood U ⊆ M of u(0, 0) = P such
that the tangent bundle of M is trivial over U , and fix another neighbourhood V ⊂ U of
P such that the closure of V is contained in the interior of U . Moreover we fix a smooth
cut-off function

ρ : M −→ [0, 1]

ρ
∣∣∣
V
≡ 1

ρ
∣∣∣
M\U

≡ 0.

Now let ξ ∈ W 1,p(S2, u∗TM) be given. Set vξ(P ) := ξ(0, 0). Since the tanget bundle of
M is trivial over U , we can uniquely extend vξ(P ) to a constant local vector field vξ on U .
Setting wξ := ρ · vξ we can understand w as a smooth vector field on the whole manifold
M .
Now we want to understand ξ − wξ as a vector field along u via(

ξ − wξ
)
(z) := ξ(z)− wξ(u(z)) ∈ Tu(z)M

for all z ∈ S2. In particular, ξ − wξ satisfies(
ξ − wξ

)
(0, 0) = ξ(0, 0)− wξ(P ) = 0 ∈ Tu(z)M

and so it is an element of TuB.
Define a map by

Ξ : W 1,p(S2, u∗TM) −→ TuB ⊕ TPM

ξ 7−→
(
ξ − wξ, ξ(0, 0)

)
– this is well-defined since all choices were fixed before the construction of wξ. Moreover,
every step in the construction respected the vector space structures of W 1,p(S2, u∗TM),
TuB and TPM , so Ξ surely is a linear map, and it is bounded. So it remains to show that
Ξ is injective and surjective.
Let ξ ∈ W 1,p(S2, u∗TM) be such that Ξ(ξ) = (0, 0). Since ξ(0, 0) = 0, the construction of
wξ gives wξ = 0. But then from ξ − wξ = 0 it follows that ξ = 0. So Ξ is injective.
Take (ζ, v) ∈ TuB ⊕ TPM . We want to construct a preimage of (ζ, v) under Ξ. Extend the
vector v ∈ TPM to a smooth local vector field v over U and consider the smooth vector
field w := ρ · v on M . Define a vector field ζ + w along u by(

ζ + w
)
(z) := ζ(z) + w(u(z))

for all z ∈ S2. Then(
ζ + w

)
(0, 0) = ζ(0, 0) + w(u(0, 0)) = 0 + w(P ) = v,

so the second component of Ξ(ζ + w) equals v. For the first component, note that

vζ+w(P ) =
(
ζ + w

)
(0, 0) = ζ(0, 0) + w(P ) = 0 + v = v
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and that the construction of wζ+w out of vζ+w(P ) equals the one from w out of v. Now we
can compute (ζ + w)− wζ+w at a point z ∈ S2:(

(ζ + w)− wζ+w
)
(z) =

(
ζ + w

)
(z)− wζ+w(u(z))

= ζ(z) + w(u(z))− wζ−w(u(z))
= ζ(z)

Thus (ζ + w)− wζ+w = ζ and hence Ξ(ζ + w) = (ζ, v).
This completes the proof.

Now we are ready to see that Du is indeed a Fredholm operator on TuB.

Lemma 6.9: For every u ∈ B the operator

Du : TuB −→ Eu

is Fredholm of index 0.

Proof. From corollary 6.7 we know that

Du : W 1,p(S2, u∗TM) −→ Lp(S2,Λ0,1T ∗S2 ⊗ u∗TM) = Eu

is Fredholm of index 2n, and from proposition 6.8 we know that

W 1,p(S2, u∗TM) ∼= TuB ⊕ TPM.

Since TPM is of finite dimension 2n, this means that both kernel and cokernel of

Du : TuB −→ Lp(S2,Λ0,1T ∗S2 ⊗ u∗TM) = Eu

are still finite-dimensional, and so Du has the Fredholm property.
B is a connected Banach manifold, so the index of Du will be the same for all u ∈ B. We
compute it for the constant sphere uP ≡ P .
Take ξ ∈W 1,p(S2, u∗PTM). Since uP is a constant curve, ξ is just a function

ξ : S2 → TPM.

Shifting this function by a vector v ∈ TPM , we obtain another vector field ξ + v ∈
W 1,p(S2, u∗PTM) which satisfies Du(ξ + v) = Duξ. By choosing v := −ξ(0, 0) we achieve
(ξ+ v)(0, 0) = 0, so that ξ+ v is an element of TuPB with DuP (ξ+ v) = DuP ξ. This means
that

im
(
Dup : TuPB → EuP

)
= im

(
DuP : W 1,p(S2, u∗PTM)→ Lp(S2,Λ0,1T ∗S2 ⊗ u∗PTM)

)
.

Now if ξ lies in the kernel of

DuP : W 1,p(S2, u∗PTM)→ Lp(S2,Λ0,1T ∗S2 ⊗ u∗PTM),
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then so does ξ+v for any choice of v. These are 2n dimensions which get lost when passing
from W 1,p(S2, u∗PTM) to TuPB, and so we have

dim ker (DuP : TuPB → EuP )

= dim ker
(
DuP : W 1,p(S2, u∗PTM)→ Lp(S2,Λ0,1T ∗S2 ⊗ u∗PTM)

)
− 2n.

For the index we get

ind (DuP : TuPB → EuP )
= dim ker (DuP : TuPB → EuP )− dim coker (DuP : TuPB → EuP )

= dim ker
(
DuP : W 1,p(S2, u∗PTM)→ Lp(S2,Λ0,1T ∗S2 ⊗ u∗PTM)

)
− 2n

− dim coker
(
DuP : W 1,p(S2, u∗PTM)→ Lp(S2,Λ0,1T ∗S2 ⊗ u∗PTM)

)
= ind

(
DuP : W 1,p(S2, u∗PTM)→ Lp(S2,Λ0,1T ∗S2 ⊗ u∗PTM)

)
− 2n

= 0.

6.4 Implications for D̂(R,u)

The operator D̂(R,u) itself does not fit the notion of a real linear Cauchy-Riemann operator
as in definition 6.3, but we will see that it is closely related to one.

Lemma 6.10: The operator

D̂(R,u) : R× TuB −→ Eu

(r, ξ) 7−→ Duξ − r ·
(
τ ⊗ γR ·XH(u)

)0,1
+
(
τ ⊗ βR∇ξXH(u)

)0,1

+ 1
2

(
τ ⊗ J(u)∇ξJ(u)βRXH(u)

)0,1

has the Fredholm property if and only if

L(R,u) : TuB → Eu

ξ 7→ Duξ +
(
τ ⊗ βR∇ξXH(u)

)0,1

+ 1
2

(
τ ⊗ J(u)∇ξJ(u)βRXH(u)

)0,1

does, and in that case
ind

(
D̂(R,u)

)
= ind

(
L(R,u)

)
+ 1.

Proof. The operator

K(R,u) : R −→ Eu

r 7−→ −r ·
(
τ ⊗ γR ·XH(u)

)0,1
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is compact. It follows from proposition 5.2 that D̂(R,u) has the Fredholm property if and
only if

D : R× TuB −→ Eu

(r, ξ) 7−→ Duξ +
(
τ ⊗ βR∇ξXH(u)

)0,1

+ 1
2

(
τ ⊗ J(u)∇ξJ(u)βRXH(u)

)0,1

does, and in that case they have the same index. This operator D in turn does have the
Fredholm property if and only if

L(R,u) : TuB −→ Eu

ξ 7−→ Duξ +
(
τ ⊗ βR∇ξXH(u)

)0,1

+ 1
2

(
τ ⊗ J(u)∇ξJ(u)βRXH(u)

)0,1

does, and in that case

ind
(
D̂(R,u)

)
= ind (D) = ind

(
L(R,u)

)
+ 1

since the images are identical and the kernel of D has one more dimension than the kernel
of L(R,u).

This is why it is now enough to analyse L(R,u).

Lemma 6.11: Understood as an operator

L(R,u) : W 1,p(S2, u∗TM) −→ Eu

ξ 7−→ Duξ +
(
τ ⊗ βR∇ξXH(u)

)0,1

+ 1
2

(
τ ⊗ J(u)∇ξJ(u)βRXH(u)

)0,1

on the bigger space W 1,p(S2, u∗TM) containing TuB as a subspace, L(R,u) is a real linear
Cauchy-Riemann operator of class W 0,p = Lp.

Proof. Du is a real linear Cauchy-Riemann operator by lemma 6.6,

ξ 7−→
(
τ ⊗ βR∇ξXH(u)

)0,1
+ 1

2

(
τ ⊗ J(u)∇ξJ(u)βRXH(u)

)0,1

is an endomorphism of u∗TM , all terms are anti-holomorphic 1-forms and the assignment

z 7−→
(
τz ⊗ βR(z)∇XHz(u(z))

)0,1
+ 1

2

(
τz ⊗ J(u(z))∇J(u(z))βR(z)XHz(u(z))

)0,1

is of class W 0,p = Lp.

Corollary 6.12 (of the Riemann-Roch theorem 6.4): Understood as an operator

L(R,u) : W 1,p(S2, u∗TM) −→ Eu,

L(R,u) is a Fredholm operator of index 2n.
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Proof. The bundle u∗TM → S2 concerned here is still the same as in corollary 6.7, so the
index formula from the Riemann-Roch theorem gives the same number.

Now as in lemma 6.9 we have to see what happens when we add the point constraint.

Lemma 6.13: For every (R, u) ∈ R≥0 × B, the operator

L(R,u) : TuB −→ Eu

is Fredholm of index 0.

Proof. The argumentation is exactly the same as in lemma 6.9: It follows from proposi-
tion 6.8 that kernel and cokernel of L(R,u) remain finite-dimensional when we pass from
W 1,p(S2, u∗TM) to TuB. Then we compute the index for (R, u) = (0, uP ), in which case
L(R,u) equals Du and so the computation is the same and gives ind L(R,u) = 0. Since
R≥0 × B is connected, the index is then 0 for every pair (R, u).

All in all, in this chapter we have seen that the vertical differential Du of F0 at a point
u ∈ B is Fredholm of index 0 and that the vertical differential D̂(R,u) of F̂ at a point
(R, u) ∈ R≥0×B is Fredholm of index 1. This means that F0 and F̂ are Fredholm sections
of indices 0 and 1 in the bundles E → B and Ê → B̂ respectively.
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CHAPTER 7

Transversality

If we wanted to show that M̂(P ) was a manifold as in proposition 3.7, the last step now
would be to show that the section

F̂ : B̂ −→ Ê

was transverse to the zero section and then use the implicit function theorem. Unfortunately,
this does not need to be the case. But for our sake it is enough to see that a slight
perturbation of M̂(P ) is a manifold with the contradictory properties stated in proposition
3.7. For this we will construct a perturbation F̂λ of the section F̂ which is transverse to
the zero section. In order for the resulting manifold to have the required properties, the
perturbed section F̂λ must satisfy the following:
• F̂λ is a Fredholm section.
• ind(F̂λ) = ind(F̂) = 1
• The zero set of F̂λ is compact.
• The boundary of the zero set of F̂λ is diffeomorphic toM0(P ).

The most important instrument of this chapter is an infinite-dimensional version of the
theorem of Sard which he first stated in [14]. We need the following definition.

Definition 7.1: A subset of a topological space Y is said to be of second category (or
‘residual’) in the sense of Baire if it contains a countable intersection of subsets which are
open and dense in Y .

Theorem 7.2 (Sard-Smale, theorem A.5.1 in [7]): Let X and Y be separable Banach spaces
and U ⊂ X be an open set. Suppose that f : U → Y is a Fredholm map of class Cl, where

l ≥ max{1, ind(f) + 1}.

Then the set

Yreg(f) := {y ∈ Y
∣∣ x ∈ U, f(x) = y ⇒ im df(x) = Y }

of regular values of f is residual in the sense of Baire.

It follows from remark 5.7 that Yreg(f) with this definition is indeed the set of regular values
of f as in definition 5.6.
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7.1 At the boundary

We start with showing that the section F̂ is transverse to the zero section at the boundary
∂B̂ = {0}×B. Since for every P ∈M the moduli spaceM0(P ) consists only of the constant
sphere uP through P , this means that D̂(0,uP ) is surjective.

Proposition 7.3: For every P ∈M , the operator D̂(0,uP ) : R× TuPB → EuP is surjective.

Proof. Step 1: Reduction to DuP

It is

D̂(0,uP )(r, ξ) = DuP ξ − r ·
(
τ ⊗ γ0 ·XH(uP )

)0,1

for (r, ξ) ∈ R × TuPB, where γ0 := ∇R̃βR̃
∣∣
R̃=0. This means that it is certainly enough to

show that

DuP : TuPB −→ EuP
ξ 7−→ 1

2

(
∇ξ + J(uP ) ◦ ∇ξ ◦ i

)
− 1

2J(uP )
(
∇ξJ

)
(uP )∂JuP

is surjective.
Step 2: Using that uP is constant
Since uP is constant, the second term in the formula above vanishes and we have

DuP ξ = 1
2 (∇ξ + J(uP ) ◦ ∇ξ ◦ i) .

What is more, a vector field ξ ∈ TuPB along the constant sphere uP is just a map

ξ ∈W 1,p(S2, TPM),

and identifying (TPM,JP ) ∼= (R2n, Jst) ∼= (Cn, i) we can assume ξ ∈ W 1,p(S2,R2n). An
element η of the fibre EuP is then a 1-form of class Lp on S2 with values in R2n.
Step 3: Reduction to a local equation
Take η ∈ Lp(S2,Λ0,1T ∗S2 ⊗ R2n). We have to show that there exists ξ ∈ W 1,p(S2,R2n)
such that

1
2 (∇ξ + Jst ◦ ∇ξ ◦ i) = η.

But in fact it is enough to show this equation locally: Cover S2 by charts and write η as
the sum of 1-forms supported in the chart domains. If every such local form has a preimage
under the operator DuP , then the sum of these preimages is a preimage of η.
For any vector field ξ ∈W 1,p(S2,R2n), in local coordinates (s, t) ∈ U ⊂ R2n we have

Duξ
(
d
ds

)
= ∇ d

ds
ξ + J(u)∇ d

dt
ξ

= ∂sξ + J(u)∂tξ
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and

Duξ
(
d
dt

)
= ∇ d

dt
ξ + J(u)∇

− d
ds
ξ

= ∂tξ − J(u)∂sξ
= −J(u) (∂sξ + J(u0)∂tξ)

= −J(u)Duξ
(
d
ds

)
.

Since η is an anti-holomorphic 1-form,

η
(
d
dt

)
= −J(u)η

(
d
ds

)
.

So the vector field ξ ∈W 1,p(R2,R2n) only has to satisfy

∂sξ + Jst∂tξ = η
(
d
ds

)
on U .
Step 4: Local construction
The local construction can be done with the fundamental solution of the Cauchy-Riemann
operator. Write ξ as

ξ = (ξ1, . . . , ξn)

with functions ξk : U → R2n ∼= C which are of class W 1,p and

η
(
d
ds

)
= (ζ1, . . . , ζn)

with functions ζk : U → R2n ∼= C of class Lp. Then we have to solve the equation

∂sξk + i · ∂tξk = ζk

on U for k = 1, . . . , n. Using the fundamental solution of the Cauchy-Riemann operator we
get solutions

ξk(z) = 1
2πi

∫
U

ζk(w)
w − z

dw dw̄

for all k.
This completes the proof.

In order to assure that the boundary of the perturbed moduli space really consists of exactly
one point, we need the following lemma.
By lemma 7.5, we know that transversality not only holds in (0, uP ), but also in a neigh-
bourhood of (0, uP ). Hence near (0, uP ), the moduli space M̂(P ) has the structure of a
smooth manifold and we can talk about its tangent space in (0, p).

Lemma 7.4: The moduli space M̂(P ) is not tangent to the boundary ∂B̂ = {0} × B.
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Chapter 7 Transversality

Proof. The intersection of M̂(P ) and {0} × B consists of one element, namely the pair
(0, uP ). Being tangential would then mean that

T(0,uP )M̂(P ) ⊆ {0} × TuPB.

But it is

T(0,uP )M̂(P ) =
{

(r, ξ) ∈ R× TuB
∣∣∣ D̂(0,uP )(r, ξ) = 0

}
and for (r, ξ) ∈ R× TuPB one has

D̂(0,uP )(r, ξ) = DuP ξ − r ·
(
τ ⊗ γ0 ·XH(uP )

)0,1

where we know from the proof of proposition 6.8 thatDuP is surjective. So for any choice
of r 6= 0 we can find ξ ∈ TuP ξ such that

DuP ξ = r ·
(
τ ⊗ γ0 ·XH(uP )

)0,1

and thus D̂(0,uP )(r, ξ) = 0. Hence T(0,uP )M̂(P ) is not contained in {0} × TuPB.

7.2 Some general considerations

In this section we will see how to deform the section F̂ : B̂ → Ê into a new section F̂λ
that is transverse to the zero section. The proof does not need any specific information
about F̂ other that than that it is a Fredholm section and its zero set is compact, so we
can formulate it in a more general setting.
The idea is that we can ‘fill the cokernel’ of a Fredholm section S0 : B → E with compact
zero set in a certain way using a function S : B × Rk·m → E for some k,m ∈ N and that
by a genericity argument there is some λ ∈ Rk·m such that Sλ := S(·, λ) has the desired
properties.
We start with two lemmas.

Lemma 7.5: Let X and Y be Banach spaces and let A : X → Y be a surjective bounded
linear operator. Then there is a ball around A in the operator metric such that all elements
of this ball are surjective.

Proof. The proof follows an argument from [6]. By the Banach-Schauder theorem, A is
open and thus maps the open ball B1(0;X) ⊂ X to an open subset of Y . This subset
contains 0 and, because it is open, there is ε > 0 with

Bε(0;Y ) ⊆ A(B1(0;X)).

By rescaling the norms we can achieve

B1(0;Y ) ⊆ A(B1(0;X))
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and by linearity it follows that

Br(0;Y ) ⊆ A(Br(0;X))

for all r > 0. Now let B1(A) be the open ball of radius 1 around A taken with respect to
the operator norm. We claim that every element C ∈ B1(A) is surjective.
Take y ∈ Y . We have to construct an element x ∈ X such that Cx = y. We define
α := ‖A − C‖ < 1 and y0 := y and without loss of generality assume that ‖y0‖ < 1. By
surjectivity of A choose x0 ∈ B1(0;X) such that Ax0 = y0. Define y1 := y0 − Cx0. Then
one has

‖y1‖ = ‖(A− C)x0‖ = ‖A− C‖ · ‖x0‖ ≤ α

and thus we can find x1 ∈ Bα(0;X) with Ax1 = y1. Define y2 := y1 − Cx1, then

‖y2‖ = ‖(A− C)x1‖ = ‖A− C‖ · ‖x1‖ ≤ α2.

Inductively, we get sequences (xn)n∈N ⊆ X, (yn)n∈N ⊆ Y which satisfy the following for all
n ∈ N:
• ‖xn‖ ≤ αn, ‖yn‖ ≤ αn

• Axn = yn

• yn+1 = yn − Cxn = (A− C)xn
The sequence

(∑N
n=0

)
N∈N

is a Cauchy sequence in X, so we can define x :=
∑∞
n=0 xn. This

element has finite norm

‖x‖ =
∞∑
n=0
‖xn‖ ≤

∞∑
n=0

αn = 1
1− α

and it satisfies

Cx =
∞∑
n=0

Cxn =
∞∑
n=0

yn − yn+1 = y0 = y.

Lemma 7.6: Let (Lt : X → Y )t∈I be a continuous family of Fredholm operators indexed
by a topological space I. Then the function

k : I −→ N
t 7−→ dim coker Lt

is upper semi-continuous (that is, it can jump down but not up).

Proof. Without loss of generality assume that the Banach spaces are real. Fix t0 ∈ I, then

Y ∼= im Lt0 ⊕ Rk(t0).

Let pim Lt0
: Y −→ im Lt0 be the projection. Surely

pim Lt0
◦ Lt0 : X −→ im Lt0
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is surjective. By the previous lemma, for t in a small neighbourhood of t0,

pim Lt0
◦ Lt : X −→ im Lt0

is still surjective. This means that

dim im Lt ≥ dim im Lt0

and so the cokernel of Lt has dimension less than or equal to k(t0).

Now we can perturb the section in the desired way.

Proposition 7.7: Let E → B be a Banach fibre bundle over a connected Banach manifold
B, and assume that S0 is a Fredholm section in this bundle such that M := S−1

0 (OE) is
compact.
Moreover, fix a closed subset B0 ⊆ B such that dvS0(u) is surjective (and thus, by remark
5.7, has a bounded right inverse) for all u ∈M∩B0.
Then there is a perturbed section Sλ : B → E which satisfies
• Sλ coincides with S0 on B0 and outside a compact neighbourhood ofM
• Sλ is Fredholm of index ind(Sλ) = ind(S0) and
• Sλ is transversal to the zero section OE.

Proof. Step 1: Definition of a universal section S

CoverM by bounded open sets over which the bundle E → B is trivial. By compactness of
M choose a finite subcovering U1, . . . , Um. Locally, we can assume that all linear operators
dvS0(u) : TuB → Eu are defined on the same Banach spaces. By lemma 7.6, around each
u ∈ B there is a neighbourhood where the dimension of the cokernel of dvS0(u) does not
jump up. SinceM is compact, finitely many of these neighbourhoods are enough to cover
it. Therefore the number

k := max
{
dim coker (dvS0(u))

∣∣u ∈M}
∈ N

is well-defined. For 1 ≤ j ≤ m, 1 ≤ i ≤ k we can choose sections sij in the bundle E → B
such that
• sij vanishes outside of Uj ,
• for each u ∈ Uj\B0, the classes of the vectors s1j(u), . . . , skj(u) generate the finite-

dimensional vector space coker (dvS0(u)) and
• sij(u) = 0 for all u ∈ B0, 1 ≤ i ≤ k, 1 ≤ j ≤ m

– this is possible because the bundle is trivial over each Uj and B0 is closed. Now we define
a smooth function

S : B × Rk·m −→ E

S(u, λ) := S0(u) +
m∑
j=1

k∑
i=1

λij · sij(u),
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where λ = (λij) 1≤i≤k
1≤j≤m

∈ Rk·m. This function respects the bundle structure – it is S(u, λ) ∈

Eu for every pair (u, λ), and so Sλ := S(·, λ) defines a section for every λ ∈ Rk·m. It is clear
from the definition of the sij that every Sλ coincides with S0 on B0 and outside

⋃m
j=1 Uj .

Now consider the linearization of S. For ξ ∈ TuB, l ∈ TλRk·m one has

dS(u, λ)(ξ, l) = dS0(u)ξ +
m∑
j=1

k∑
i=1

lij · sij(u) +
m∑
j=1

k∑
i=1

λij · dsij(u)ξ

and since we are in a bundle we work again with the vertical differential

dvS(u, λ)(ξ, l) = dvS0(u)ξ +
m∑
j=1

k∑
i=1

lij · sij(u) +
m∑
j=1

k∑
i=1

λij · dvsij(u)ξ.

We have

dvSλ(u)(ξ) = dvS(u, λ)(ξ, 0) = dvS0(u)ξ +
m∑
j=1

k∑
i=1

λij · dvsij(u)(ξ)

and the operator

ξ 7→
m∑
j=1

k∑
i=1

λij · dvsij(u)ξ

is compact. In particular, dvSλ(u) is a compact perturbation of dvS0(u). By proposition
5.2 this means that Sλ = S(·, λ) is a Fredholm section and its index is

ind(Sλ) = ind(S0).

Step 2: Transversality of the universal section S for small λ
It is

dvS(u, 0)(ξ, l) = dvS0(u)ξ +
m∑
j=1

k∑
i=1

lij · sij(u)

and so dvS(u, 0) is surjective for all u ∈
⋃m
j=1 Uj – for u ∈ B0 because of the assumption,

for u /∈ B0 by definition of the sij .
Fix u ∈

⋃m
j=1 Uj . By lemma 7.5 there is Ru > 0 such that all linear operators

C : TuB × TλRk·m −→ Eu

with
‖dvS(u, 0)− C‖ < Ru

are surjective.
We could now use lemma 7.5 for every u ∈ B to get an εu such that dvS(u, λ) is surjective
for ‖λ‖ < εu. But unfortunalely the resulting map

u 7−→ εu
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Chapter 7 Transversality

would not be continuous, so there would not be any chance to find a minimum. This is why
we have to be slightly more careful.
Locally around u pretend that B is a vector space and E is a trivial bundle, so that all
vertical differentials dvS(u, λ) : TuB → Eu have the same domain and target. Then we
have

dvS(u, 0)(ξ, l)− dvS(u2, λ)(ξ, l) = dvS0(u)ξ +
m∑
j=1

k∑
i=1

lij · sij(u)

− dvS0(u2)ξ −
m∑
j=1

k∑
i=1

lij · sij(u2)

−
m∑
j=1

k∑
i=1

λij · dvsij(u2)ξ

= (dvS0(u)− dvS0(u2)) ξ +
m∑
j=1

k∑
i=1

lij · (sij(u)− sij(u2))

−
m∑
j=1

k∑
i=1

λij · dvsij(u2)ξ

for u2 near u and so

‖dvS(u, 0)− dvS(u2, λ)‖ ≤ ‖dvS0(u)− dvS0(u2)‖+
m∑
j=1

k∑
i=1
‖sij(u)− sij(u2)‖

+
m∑
j=1

k∑
i=1
|λij | · ‖dvsij(u2)‖

≤ ‖dvS0(u)− dvS0(u2)‖+
m∑
j=1

k∑
i=1
‖sij(u)− sij(u2)‖

+ const · ‖λ‖ ·
m∑
j=1

k∑
i=1
‖dvsij(u2)‖.

This means that there are ru > 0 and εu > 0 such that if the three conditions
• ‖dvS0(u)− dvS0(u2)‖ < ru,
•
∑m
j=1

∑k
i=1 ‖sij(u)− sij(u2)‖ < ru, and

• ‖λ‖ < εu

are satisfied, then dvS(u2, λ) is surjective. The first two conditions are satisfied for all u2
which lie in a ball Br̂u(u) of some radius r̂u around u. These balls together form an open
cover of

⋃m
j=1 Uj and thus ofM:

M⊂
m⋃
j=1

Uj ⊂
⋃

u∈
⋃m

j=1 Uj

Br̂u(u)

By compactness ofM there is a finite subcover, that is some number dmax ∈ N and elements

64



7.2 Some general considerations

u1, . . . , udmax ∈M such that

M⊂
dmax⋃
d=1

Br̂ud (ud).

Choose ε := min{εu1 , . . . , εudmax}. Then for all u ∈
⋃dmax
d=1 Br̂ud (ud) and all ‖λ‖ < ε,

dvS(u, λ) : TuB × Rkm → Eu

is surjective.
Define the subset

Nε := {(u, λ)
∣∣ S(u, λ) = 0, ‖λ‖ < ε} ⊆ B × Rk·m

consisting of all zeros of all Sλ with ‖λ‖ < ε. Since every Sλ equals S0 outside
⋃m
j=1 Uj and

M is contained in
⋃m
j=1 Uj , we have

Nε ⊂
m⋃
j=1

Uj

and by possibly making ε even smaller we can achieve that

Nε ⊂
dmax⋃
i=1

Br̂ud (ud),

so that dvS(u, λ) is surjective for all (u, λ) ∈ Nε. Since we saw before that dvS(u, λ) is
a Fredholm operator, the existence of a right inverse follows which remark 5.7. So the
universal section S is transversal to the zero section.
Step 3: Selecting a regular value λ of π

∣∣
Nε

Denote by π : B ×Rk·m → Rk·m the projection. We want to show that π
∣∣
Nε

: Nε → Rkm is
a Fredholm map between manifolds. Since dvS(u, λ) is surjective and has a bounded right
inverse for (u, λ) ∈ Nε, the implicit function therorem 5.8 asserts that Nε is a manifold and
its tangent space at (u, λ) is

T(u,λ)Nε = ker
(
dvS(u, λ) : TuB × TλRk·m −→ Eu

)
and thus, being the kernel of a Fredholm operator, it is finite-dimensional. But then the
linearization of π

∣∣
Nε

at (u, λ) ∈ Nε, which is given by

dπ
∣∣
Nε

(u, λ) : T(u,λ)Nε −→ TλRkm ∼= Rkm

(ξ, l) 7−→ l,

is simply a linear map between finite-dimensional manifolds.
By the theorem of Sard, the set of regular values of π

∣∣
Nε is of second category; in particular,

its intersection with the ball of radius ε around 0 is non-empty and hence we can choose a
regular value λ ∈ Rkm with ‖λ‖ < ε.
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Step 4: Showing that dvSλ is transverse to the zero section
Let λ ∈ Rk·m be a regular value of π

∣∣
Nε

with ‖λ‖ < ε. We claim that the corresponding
section Sλ is transverse to the zero section.
Remember that

dvSλ(u)(ξ) = dvS(u, λ)(ξ, 0)

for every u ∈ B, ξ ∈ TuB.
Now fix u ∈ B with Sλ(u) = 0. Because of our assumption on the norm of λ, the pair (u, λ)
is a element of Nε. Take η ∈ Eu. We have to find a preimage of η under dvSλ(u).
Since dvS(u, λ) is surjective there is (ξ1, l) ∈ TuB × TλRkm such that

dvS(u, λ)(ξ1, l) = η

and since dπ
∣∣
Nε

(u, λ) is surjective there is ξ2 ∈ TuB with

(ξ2,−l) ∈ T(u,λ)Nε,

which means that dvS(u, λ)(ξ,−l) = 0.
Now:

dvSλ(u)(ξ1 + ξ2) = dvSλ(u)ξ1 + dvSλ(u)ξ2

= dvS(u, λ)(ξ1, 0) + dvS(u, λ)(ξ2, 0)

= dvS0(u)ξ1 +
m∑
j=1

k∑
i=1

λij · dvsij(u)ξ1

+ dvS0(u)ξ2 +
m∑
j=1

k∑
i=1

λij · dvsij(u)ξ2

= dvS0(u)ξ1 +
m∑
j=1

k∑
i=1

λij · dvsij(u)ξ1

+
m∑
j=1

k∑
i=1

lij · sij(u)−
m∑
j=1

k∑
i=1

lij · sij(u)

+ dvS0(u)ξ2 +
m∑
j=1

k∑
i=1

λij · dvsij(u)ξ2

= dvS(u, λ)(ξ1, l) + dvS(u, λ)(ξ2,−l)
= η + 0
= η

So we have seen that dvSλ(u) is surjective for every u ∈ B with Sλ(u) = 0. We already
know that Sλ is a Fredholm section, so by remark 5.7 this implies the existence of a bounded
right inverse.
This completes the proof.
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7.3 Back to the special setting

Now we can apply the results from section 7.2 to the setting of our proof.

Proposition 7.8 (Proposition 3.7 in another formulation): Assume that M̂(P ) is compact
for a point P ∈ M , and define the Banach manifold B with respect to this point P as in
section 5.4. Then there is a section F̂λ in the bundle Ê → R≥0 × B such that

M̂λ(P ) := F̂−1
λ (OÊ)

is a compact 1-dimensional manifold with boundary

∂M̂λ(P ) = ∂M̂(P ) ∼=M0(P ) = {uP }.

Proof. From the previous chapters, we know that

F̂ : R≥0 × B −→ Ê

(R, u) 7−→
(
du− τ ⊗ βRXH(u)

)0,1

is a Fredholm section, and we assumed that its intersection M̂(P ) with the zero section is
compact.
Remember that in proposition 7.3 we have seen that the vertical differential D̂(0,uP ) at the
point (0, uP ) is surjective. Then by lemma 7.5, the operator D̂(R,u) is surjective for every
(R, u) in a small neighbourhood of (0, uP ). Let C be a closed ball around (0, uP ) which is
contained in this neighbourhood.
As a closed subset of R≥0 × B we choose ({0} × B) ∪ C. Then

M̂(P ) ∩ (({0} × B) ∪ C)

consists of pairs (R, u) such that the vertical differential D̂(R,u) is surjective.

Thus we can apply proposition 7.7 to obtain a perturbed Fredholm section F̂λ : B̂ → Ê of
index

ind
(
F̂λ
)

= ind
(
F̂
)

= 1,

which is transversal to the zero section OÊ and coincides with F̂ on ({0} × B) ∪ C and
outside a compact neighbourhood of M̂(P ).
By the implicit function theorem 5.8, its zero set

M̂λ(P ) := F̂−1
λ (OÊ)

is a smooth submanifold of R≥0 × B of dimension

indF̂λ = indF̂ = 1.

Because of F̂λ(0, u) = F̂(0, u) for all u ∈ B,

M̂λ(P ) ∩ ({0} × B) ∼=M0(P ).
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Since M̂λ(P ) is a smooth submanifold of R≥0×B, which has boundary ∂(R≥0×B) = {0}×B,
its boundary is contained in {0} × B. The only possible boundary component is then

M̂λ(P ) ∩ ({0} × B) = {(0, uP )}

and it follows from lemma 7.4 and the fact that we did not perturb the original section in
a neighbourhood of (0, uP ) that (0, uP ) really is a boundary point:

∂M̂λ(P ) = {(0, uP )}

It remains to show that M̂λ(P ) is compact. Let (Rk, uk)k∈N ⊆ M̂λ(P ) be a sequence.
Since F̂λ ≡ F̂ outside a compact subset of R≥0 × B and M̂(P ) is contained in this subset,
also M̂λ(P ) is contained in it and thus the sequence (Rk)k∈N is bounded from above. This
means that there is a subsequence converging to R∗ ∈ R≥0. Exactly as in the proof of
proposition 4.1, from this it follows that there is u∗ ∈ B such that (R∗, u∗) ∈ M̂λ(P ) and

lim
k→∞

(Rk, uk) = (R∗, u∗).
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