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Abstract

In this thesis we investigate the asymptotic behavior of large random Galton-Watson (GW)
-trees. It is found that in the space of compact real trees equipped with Gromov-Hausdorff
metric a limit in distribution can be defined. This limit is a real tree coded by the normalized
excursion of Brownian motion. First, Itōs excursion measure of the Brownian motion is intro-
duced. Using the Markov property of Brownian motion the law of the normalized Brownian
excursion is specified. With this result and the methods of Le Gall and Miermont, [14], a limit
theorem of the excursion of a simple random walk towards the normalized excursion is proven.
An excursion of a simple random walk coincides with the distribution of a GW-tree’s contour
process. It is shown that similarly arbitrary continuous functions of the unit interval yield
a real tree using a rerooting isometry. Random trees can then be seen as random variables
taking values in the space of real compact trees endowed with the pointed Gromov-Hausdorff
topology. With respect to this metric, the mapping from the space of excursions to the space
of compact real trees turns out to be continuous. Using the continuous mapping theorem and
the limit theorem of excursions it follows that the sequence of rescaled GW-trees converges in
distribution towards Aldous’ Continuum Random Tree (CRT, [1]).

Zusammenfassung

In dieser Arbeit wird das asymptotische Verhalten großer zufälliger Galton-Watson (GW)
-Bäume untersucht. Es wird festgestellt, dass ein schwacher Grenzwert im Raum kompakter re-
eller Bäume mit Gromov-Hausdorff Abstand definiert werden kann und durch die normalisierte
Exkursion einer Brownschen Bewegung beschrieben wird. Zunächst wird Itōs Exkursionsmaß
der Brownschen Bewegung eingeführt. Die Markoveigenschaft der Brownschen Bewegung wird
benutzt um das Gesetz der normalisierten Brownschen Exkursion zu spezifizieren. Mit diesem
Resultat wird mit den Methoden von Le Gall und Miermont [15] ein Grenzwertsatz der Exkur-
sionen von einfachen stochastischen Irrfahrten gegen die normalisierte Brownsche Exkursion
gezeigt. Eine Exkursion einer stochastischen Irrfahrt beschreibt den Konturprozess zufälliger
GW-Bäume. Es wird gezeigt, dass beliebige stetige Funktionen auf dem Einheitsintervall reelle
Bäume kodieren indem eine Rerooting-Isometrie genutzt wird. Zufällige Bäume können dann
als Zufallsvariablen mit Werten im Raum kompakter reeller Bäume aufgefasst werden, der mit
der punktierten Gromov-Hausdorff Topologie ausgestattet ist. Bezüglich dieser Metrik ist die
Abbildung vom Raum der Exkursionen in den Raum kompakter reeller Bäume stetig. Aus dem
Grenzwertsatz des Konturprozesses von GW-Bäumen gegen die normalisierte Brownsche Ex-
kursion und dem Continuous Mapping Theorem folgt, dass die Folge reskalierter GW-Bäume
in Verteilung gegen Aldous’ Continuum Random Tree (CRT, [1]) konvergiert.





Introduction

Limit theorems are one of the most used tools in probability theory. The central limit theorem,
for example, emphasizes the central role of the normal distribution and is used frequently
in applied statistics. A very similar result is obtained in the theory of stochastic processes
for the scaling limit of a symmetric random walk and is called Donsker’s theorem. In this
case, the scaling limit is known as Brownian motion, which is a process with independent
normally distributed increments. Similar to the normal distribution, the Brownian motion has
a prominent role in probability theory and statistics due to its universal properties as a scaling
limit.

In this thesis we will prove three further limit theorems. First we will show the local central
limit theorem (Theorem 3.7), which states that the scaling limit of a simple random walk
is locally normally distributed, and the convergence towards the normal distribution happens
uniformly. From this we can establish a conditional version of Donsker’s theorem: The rescaled
excursions of a random walk converge to the later introduced normalized excursion of Brownian
motion. Although this theorem reads very similarly to Donsker’s theorem, new concepts have
to be introduced to make this conclusion. The theory of this limit theorem is the topic of
chapters three and four. The final aim of this thesis is the scaling limit of random Galton-
Watson trees with geometric offspring distribution and rescaled graph distance as a sequence
of compact metric spaces. We will identify Aldous’ CRT [1] as the weak limit in the Gromov-
Hausdorff topology. (This case even gives access to a larger class of graphs by the application
of the Cori-Vauquelin-Schaeffer bijection, compare [15].)

The first chapter is devoted to a preliminary discussion of stochastic processes, in particular
Brownian motion. We introduce the relevant types of convergence of random variables and
their relation. Afterwards we discuss Markov processes and Brownian motion as the most
important example of a continuous time Markov process.

We need a definition of a normalized Brownian excursion, an object that only appears with
probability zero, and a well defined law on the subspace of normalized excursions. This can be
done using the excursion theory of Itō, which we will discuss in the second chapter. Although
this theory can be quite technical it is interesting in its own right and serves as a tool in other
areas of probability theory as well. It allows us to condition Brownian motion on the P -null
set of excursions by defining a Poisson point process attached to Brownian motion, following
the general case proven by Itō [8]. Central to the discussion will be Theorem 2.15 which
emphasises the Markovian properties of the excursion law and the connection to killed Brownian
motion. We will conclude with a probability density of the finite dimensional distributions of
the normalized Brownian excursion.

In the third chapter we will prove the limit theorem of the rescaled normalized excursions of the
simple random walk towards the normalized excursion of Brownian motion. This requires to
establish tightness of the sequence of probability laws and to prove that the finite dimensional
distributions converge to the previously derived probability density. We follow the reasoning of
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Introduction

[15] and generalize the argument which shows the convergence of one dimensional distributions
to the finite dimensional case. In this context we will also establish the local central limit
theorem (Theorem 3.7) and combinatorial tools like the cycle lemma, which are interesting by
themselves.

The second part of the thesis deals with random trees. In chapter four we introduce rooted
plain trees and a random version, the Galton-Watson (GW) tree. Rooted trees with k edges
can be uniquely identified with a contour function of length 2k or, equivalently, a Dyck word of
length 2k. We show that in the case of a random GW-tree with geometric offspring distribution
this contour function becomes the excursion of a random walk. This will allow us to relate
random trees to the previously investigated excursions.

In the final chapter we discuss compact real trees and the scaling limit of rescaled GW-trees.
Similarly to plain trees, compact real trees are geodesic compact metric spaces without loops
and can be coded by a continuous non-negative function which is zero at its endpoints, i.e.
a normalized excursion. To prove this assertion we show a Rerooting Lemma (Lemma 5.3)
which states that a real tree can be rerooted at an arbitrary point by an isometric mapping.
Secondly we introduce a metric on the set of rooted real trees, the pointed Gromov-Hausdorff
distance. The set of rooted real trees becomes a metric space and weak convergence can be
defined as usual. By proving that the mapping from the set of excursions to the set of real
trees is continuous, the scaling limit of GW-trees follows as a corollary.
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1. Preliminaries

This chapter gives an introduction to important concepts in the theory of stochastic processes
and its most prominent example, Brownian motion. For general, often measure theoretic,
statements we refer to Billingsley [4], more information on Brownian motion can be found in
Rogers, Williams [12], [13] and Revuz, Yor [24].

1.1. On convergence types in probability theory

The theorems of the first two sections were stated like this in the lecture notes [16]. We intro-
duce the convergence in distribution, convergence in probability and almost sure convergence
and discuss the relation between them.

Definition 1.1 (Random variable). Let (Ω, F , P ) be a probability space and (S, A) a measurable
space. A random variable is a F/A-measurable function X : Ω → S.

Definition 1.2 (Generated sigma-algebra). For a collection (Gi)i∈I of subsets Gi ⊆ Ω we
call the smallest σ-algebra that contains (Gi)i∈I the σ-algebra generated by (Gi)i∈I and write
σ((Gi)i∈I). Given a random variable X : (Ω, F) → (S, A), we define the sub-σ-algebra of F
generated by its preimages, i.e.

σ(X) := σ({X−1(A) | A ∈ A}) ⊆ F .

In the following we will discuss random variables (r.v.) where (S, d) is a metric space and A
the Borel-σ-algebra. The Borel-σ-algebra is the σ-algebra generated by the sets that are open
with respect to d. The key property of a random variable is its distribution, which is given by
the image measure of P under X.

Definition 1.3 (Pushforward measure). Given a random variable X on a probability space
(Ω, F , P ) we define the pushforward or image measure on A as

X∗P (A) := P (X−1(A)) for all A ∈ A .

The following alternative more common notations exist: The pushforwards measure is some-
times called the law of X and is denoted as L(X). One also writes P X := X∗P and we often
use the conventional notation

P (X ∈ A) := P ({ω | X(ω) ∈ A}) = P (X−1(A)) .

Recall that a measurable R-valued function is called integrable, iff the integral of |f | exists.
The image measure enjoys the following transformation rule for the integral:

1



1. Preliminaries

Theorem 1.4. Let g : S → R be a Borel-measurable function and X : (Ω, F , P ) → (S, A) a
random variable. It then holds for A ∈ A∫

A
g dP X =

∫
X−1(A)

g ◦ X dP

if one of the two integrals is defined.

A proof can be found in [23]. This holds not only for probability measure but for general
measures µ. Depending on the context the following notation for the integral of a Borel
function f : S → R with respect to a measure µ on S is commonly used,

µ[f ] :=
∫

S
fdµ .

The notation is especially relevant in the theory of Markov processes, where it is important
to distinguish between expectations under various measures. An integral with respect to a
probability measure is called expectation:

Definition 1.5 (Expectation). Let X : Ω → R be an integrable function. The expectation is
defined as

EX =
∫

Ω
XdP .

From the transformation rule for g = id we can write the expectation in the more familiar form
EX =

∫
R xdP X .

Definition 1.6 (Almost surely). We say that an event E ⊆ Ω happens almost surely (a.s.) if
there exists a nullset N ∈ F , i.e. P (N) = 0 such that NC ⊆ E. We write Xn

a.s.−−→ X if a
sequence (Xn)n∈N of S-valued r.v. converges to X : Ω → S almost surely.

Almost sure convergence is equivalent to the pointwise convergence almost everywhere. Infor-
mally this definition means that Xn converges to X with probability one. The definition is
stated like this since the set E may not be measurable. For example, we will later claim that
Brownian motion is continuous almost surely, although this is not a measurable event.

Definition 1.7 (Convergence in probability). A sqeuence of (S, A) valued r.v. (Xn)n∈N con-
verges to X in probability, denoted Xn

p−→ X, iff

P (d(Xn, X) > ε) → 0 .

Convergence in probability is equivalent to the convergence in measure. Finally we also have:

Definition 1.8 (Convergence in distribution). A sequence of probability measures (µn)n∈N on
(S, A) converges weakly to a probability measure µ on (S, A), denoted µn ⇀ µ, iff

lim
n→∞

∫
S

fdµn =
∫

S
fdµ

for all f ∈ Cb(S) = {g : S → R | g bounded and continuous }.
A sequence of (S, A) valued r.v. (Xn)n∈N converges to X in distribution, denoted Xn

d−→ X, iff

Xn∗P ⇀ X∗P

2



1.2. Stochastic processes

It is called convergence in distribution, because the Helly-Bray theorem relates it in the case
of real valued random variables to the pointwise convergence of distribution functions at all
continuity points, [4]. In the final chapter of the thesis we need two more fundamental results.
The first one is a generalization of Slutzky’s theorem.

Theorem 1.9 (Slutzky). For (S, A) valued sequences of random variables Xn, Yn on some
common probability space assume

Xn
d−→ X and d(Xn, Yn) p−→ 0 .

Then also
Yn

d−→ X

A proof can be found in [4, Theorem 3.1]. By Slutzky’s theorem applied to Xn = X, conver-
gence in probability implies convergence in distribution. Finally we have

Theorem 1.10 (Continuous mapping theorem). Let (S, dS) and (T, dT ) be metric spaces, g :
S → T a continuous mapping and Xn a sequence of (S, A)-valued random variables converging
in distribution to a r.v. X. Then

g(Xn) d−→ g(X) .

The theorem relies on the fact that for any f ∈ Cb(T ) the composition is continuous and
bounded as well, f ◦ g ∈ Cb(S). This theorem is important to infer new limit laws from known
ones.

1.2. Stochastic processes

We will now take a closer look at a collection of random variables indexed by ”time” and
how to fix the law of an uncountable family of random variables by Kolmogorov’s extension
theorem. An example of such a process is Brownian motion. From now on (Ω, F , P ) denotes
a probability space.

Definition 1.11 (Real valued stochastic process). Let T be some index set and (Xt)t∈T be a
family of random variables Xt : Ω → Rn, where Rn is endowed with the Borel σ-algebra B(Rn).
The collection X := (Xt)t∈T is called stochastic process. (Rn, B(Rn)) is called state space of the
process.

The index set is usually one of these cases: In the time discrete case T = N0 and sometimes
the notation Xn := (Xn)n∈N0 is used. In the time continuous case T = R≥0 or T = R>0 in
which case Xt can occasionally denote the entire process.

Definition 1.12. For every ω ∈ Ω the function X(ω) : T → Rn is called sample function or
realization of X corresponding to ω. We denote the set of all possible functions T → Rn by
(Rn)T .

The stochastic process should rather be viewed as a random variable in itself. For this consider
the family of projection maps:

πJ
I : (Rn)J → (Rn)I , (xt)t∈J 7→ (xt)t∈I

for all I ⊆ J ⊆ T .

3



1. Preliminaries

Definition 1.13. We denote B(Rn)T as the smallest σ-algebra in which πT
t is measurable for

all t ∈ T . This σ-algebra is also called the σ-algebra of σ-cylinders.

Details can be found in [12] II.25.

Lemma 1.14. A map f : (Ω, F) → ((Rn)T , B(Rn)T ) is measurable if an only if πT
t (f) is

measurable for all t ∈ T .

Proof. The σ-algebra B(Rn)T is generated by the sets (πT
t )−1(A) for A ∈ B(Rn). Consequently

we must check that
{ω | f(ω) ∈ (πT

t )−1(A)} ∈ F for all t ∈ T

but {ω | f(ω)(t) ∈ A} ∈ F by assumption. The converse direction follows directly from the
definition, since the composition of measurable maps is measurable.

Corollary 1.15. A stochastic process (Xt)t∈T is a (RnT , B(Rn)T )-valued random variable.

Fixing the law of stochastic processes

The law of the stochastic process is, as always, given by X∗P . However, this is usually a quantity
that can not be fixed easily. Usually one can only give a description of the distributions of
(Xt1 , . . . , Xtk

) for t1, . . . , tk ∈ T , and thats also the information accessible from an experiment.
As it turns out it is sufficient information to determine a unique probability law, if these
informations are consistent in the following sense:

Definition 1.16 (Projective family). A family of probability measures (PI)I⊆T finite, PI being
a measure on (RnI , B(Rn)I) for a finite subset I ⊆ T , is called a projective family iff

PI(B) = PJ(πJ
I

−1(B)) for all B(Rn)I , I ⊆ J ⊆ T finite

A stochastic process naturally gives rise to a projective family.

Definition 1.17 (Finite dimensional distributions). Let (Xt)t∈T be a stochastic process. The
family (PI)I⊆T finite with PI := P (Xt)t∈I defines a projective family called the finite dimensional
distributions (f.d.d.) of X.

The finite dimensional distributions are now in fact enough to fix the law of a stochastic
process.

Theorem 1.18 (Kolmogorov’s extension theorem). Let E ⊆ Rn be a connected closed subset.
Given a projective family (PI)I⊆T finite there exists exactly one measure Q on (ET , B(ET )) such
that for all A ∈ B(E)I , I ⊆ T finite, it holds

PI(A) = Q((πT
I )−1(A)) .

In particular, given a stochastic process and its finite dimensional distributions there exists a
unique law of the stochastic process whose projections are its finite dimensional distributions.

For a proof see [3, page 482]. This theorem will ensure the existence of Brownian motion later
on. The fact that the description of a stochastic process only depends on its finite dimensional
distributions, which are measures on (RnI , BnI), is important for many proofs on stochastic
processes.
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1.3. Independence, Conditional expectations and Filtrations

1.3. Independence, Conditional expectations and Filtrations

The time arrow of a stochastic process is modeled using filtrations. In our case these are
especially important for the theory of Markov processes and mostly appear in conditional
expectations. These terms will be defined in this section. For a source of definitions and
statements see [12, II].

Definition 1.19 (Independence). We say that sub-σ-algebras G1, G2, · · · ⊆ F are independent
iff for all Gi ∈ Gi, i ∈ N and for i1, i2, . . . , in ∈ N

P (Gi1 ∩ Gi2 ∩ · · · ∩ Gin) =
n∏

k=1
P (Gik

) .

Random variables are called independent, iff they generate independent sub-σ-algebras, i.e. for
X1, X2, . . . the σ-algebras σ(X1), σ(X2), . . . are independent.

The first definitions are taken from [16] and given in similar way in [12]. The next definition
is one of the most important ones for the second chapter of this text.

Definition 1.20 (Conditional expectation). Consider an integrable real-valued random variable
X on a probability space (Ω, F , P ) and a σ-algebra G ⊆ F . A random variable E[X|G] is called
conditional expectation of X with respect to G, iff

1. E[X|G] is G measurable

2.
∫

G E[X|G]dP =
∫

G XdP for all G ∈ G

If G = σ(Y ) denotes the σ-algebra generated by a random variable Y we also write E[X|Y ].

One can show that such an object exists and is unique P a.s.( [3]). Conditional expectations
are of great importance in the theory of stochastic processes. They give our best prediction
of the expected values of X given that we possess the ”information” contained in G about X.
For example, if G = {∅, Ω}, which means that we have no non trivial information about X,
then E[X|G] = E[X]. In the theory of Markov processes the following more general non trivial
statements are needed.

Lemma 1.21. Consider random variables X, Y and σ-algebra G. We have

1. If X and G are independent, then E[X|G] = E[X].

2. E[XY |G] = XE[Y |G] if X is G measurable.

3. For G1 ⊆ G2 we have E[E[X|G2]|G1] = E[X|G1].

For proofs see [3].

Definition 1.22 (Conditional probability). Consider a random variable X : (Ω, F) → (S, A)
and A ∈ A. In this case 1A is a measurable function and we define

P (X ∈ A | G) = E[1A(X) | G]

The gain of information with time is now conveniently described using filtrations.

5



1. Preliminaries

Definition 1.23 (Filtration). A filtration is a family of σ-algebras (Ft)t∈T with Ft ⊆ F such
that Fs ⊆ Ft for all s ≤ t, s ∈ T .

Example 1.24. Given a stochastic process (Xt)t∈T the filtration FX
t := σ(Xs, s ≤ t, s ∈ T ) is

called natural filtration.

Definition 1.25 (Adapted process). A process (Xt)t∈T is called adapted to (Ft)t∈T , iff Xt is
Ft-measurable for every t ∈ T .

Stopping times are real valued random variables which usually correspond to the time that
some random event occurs.

Definition 1.26 (Stopping-time). A (Ft)t≥0-stopping time S is a real valued random variable
such that

{S ≤ t} ∈ Ft for all t ∈ T .

This definition means that at any given time we posses enough information to tell whether the
stopping time has passed already.

1.4. Markov processes

In this section we give a general definition of a homogeneous Markov process. For a Markov
process the evolution after a fixed time is independent of the history of the process up to this
time. When the process starts at some point in time and space, its evolution between any two
times is given by a transition function. Transition functions are a special type of kernel, which
we will define first:

Definition 1.27 (Kernel). Let (E, E) be a measurable space. A kernel N on E is a map from
E × E into R+ ∪ {∞} such that

1. For all x ∈ E N(x, ·) is a measure on E

2. For all A ∈ E the map N(·, A) is E-measurable

For two kernels N, M we define a product

MN(x, A) :=
∫

E
N(y, A)M(x, dy) , (1.1)

which again is a kernel, and on Borel measurable functions f : E → R we set

Nf(x) =
∫

E
f(y)N(x, dy)

A kernel N is called transition probability, if N(x, E) = 1 for all x ∈ E.

Transition functions are a special family of kernels.

Definition 1.28 (Transition function). A homogeneous transition function on (E, E) is a
family (Pt)t∈R of transition probabilities that satisfy the Chapman-Kolmogorov equations

Pt+s(x, A) = PtPs(x, A)

where the product to the right hand side has to be understood in the sense of (1.1).

6



1.4. Markov processes

Intuitively the transition function Pt(x, A) describes the probability that a stochastic process
starting at x lies in A at time t. We are especially interested in processes that can ”die”. In
this case a process starting at some point might not live long enough to hit anything at a later
time, which means that in general our transition functions will fulfill Pt(x, E) < 1. On the
other hand such processes may still fulfill the Markov property at long as the process lives. In
order to include such cases explicitly in the definition we add a ”coffin” state δ. This makes the
definition of a Markov process more complicated than in the conventional case but simplifies
technicalities. The following definitions are taken from Blumenthal and Getoor [18].

Definition 1.29 (Markov process). Consider the space Eδ = E ∪ {δ} endowed with the
σ-Algebra Eδ = σ(E , {δ}), where δ is often called coffin state of the process. Consider a
tuple (Ω, F , (Ft)t∈T , X, θt, P x) where

1. (Ω, F , (Ft)t∈T ) is a sufficiently rich filtered measurable space.

2. X is an (Ft)-adapted process with values in Eδ.

3. The time shift operators θt : Ω → Ω fulfill

Xt ◦ θs = Xt+s

for all s, t ∈ R≥0.

4. (P x)x∈Eδ
is a family of probability measures on (Ω, F) with P δ(X0 = δ) = 1

In this setup X (or respectively the tuple) is called homogeneous (Ft)t≥0-Markov process iff

1. x 7→ P x(Xt ∈ B) is measurable for each t ∈ R≥0 and B ∈ E .

2. The Markov property holds in the sense that

P x(Xt+s ∈ B|Ft) = P Xt(Xs ∈ B)

for all x ∈ Eδ, B ∈ Eδ and t, s ∈ R≥0.

The measures P x should be understood as measures under which the Markov process starts at
x, i.e. X0 = x P x-a.s.. The Markov property means that the process at time t+s is independent
of the process up to time t. It only depends on the value of X at t and its evolution after this
time. We will denote Ex as the expectation with respect to P x. By constructing a canonical
probability space we will be able to find a sufficiently rich space Ω. For the quantities we just
defined it can be observed that

Pt(x, A) = P x(Xt ∈ A)

defines a transition function. Compare with [18, Proposition 3.5]. This transition function is
entirely determined by its values on (E, E). We have for A ∈ E and x ∈ E:

Pt(x, A ∪ {δ}) = Pt(x, A) + Pt(x, {δ}) = Pt(x, A) + 1 − Pt(x, E)

We define Qt(x, A) = Pt(x, A) for A ∈ E for the (possibly) submarkovian transition function
restricted on (E, E). More details about the last points can be found in [18]. The in some sense
more general notion allows us to define killed Markov processes. We now relate this definition
back to the more applicable ones.

7



1. Preliminaries

Theorem 1.30. A process X is a homogenous Markov process on a probability space (Ω, F , P )
with respect to its canonical filtration FX

t with transition function (Pt) if one of the following
equivalent conditions hold:

1. for any bounded Borel-measurable function f : (Eδ, Eδ) → R and s < t

E[f(Xt)|FX
s ] = Pt−sf(Xs) P a.s.

2. for all 0 < t1 < t2 < · · · < tk and fi : E → R, i = 0, . . . , k Borel-measurable and bounded
it holds that there exists a Borel-measure ν such that

E

[
k∏

i=1
fi(Xti

)
]

=
∫

E
ν(dx)

∫
E

Pt1(x, dx1)f1(x1)
∫

E
· · ·

∫
E

Ptk−tk−1(xk−1, dxk)fk(xk)

= E

[
k−1∏
i=1

fi(Xti
)Ptk−tk−1fk(Xtk−1)

]

where ν(A) = P (X0 ∈ A) is called the initial measure.

3. If Z is a bounded random variable on (Ω, FX
∞, P ), then for every t > 0 we have

E[Z ◦ θt | FX
t ] = EXt [Z] P -a.s.

where EXt is defined through 2. in the case of ν = δXt

A proof can be found in [18]. The first property is the most known formulation of a Markov
process. We will use it in the following chapter. The second property tells us that the law
of the Markov process starting at x with probability ν is entirely defined by the transition
function (Pt)t≥0, since these fix the finite dimensional distributions. We can obtain the family
of measures (P x)x∈E from the second property by setting ν = δx, i.e. the unit mass at x. In
this case all above expectations may also be indexed with an x to make this explicit. The third
way of stating the property nicely admits the generalization to the strong Markov property.
In general we are interested in the behaviour of Markov processes at stopping times, and we
would like to have the Markov property also in this case.

Definition 1.31 (Strong Markov property). A process X on (Ω, FX
∞, FX

t , P ) is said to possess
the strong Markov property, iff for all stopping times S on (Ω, FX

∞, FX
t , P ) and random variables

Z on (Ω, FX
∞, P ):

E[Z ◦ θS | FX
S ] = EXS

[Z] P -as . (1.2)

Next we define killed Markov processes.

Definition 1.32. Let ζ : (Ω, F , Ft) → R be a stopping time with respect to the filtration Ft.
We define for a Markov process X the killed Markov process as

X̂t =
{

Xt for t < ζ
δ for t ≥ ζ

The random variable ζ is usually taken with a known distribution, for example an exponential
distribution with parameter λ. In this case the parameter λ is also called death rate of the
process. The random variable ζ(ω) = inf{t ≥ 0 | Xt(ω) = δ} is called life time of the process.
In the following we will have ζ = inf{t ≥ 0 | Xt = 0} for a real valued process X.
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1.5. Brownian motion

1.5. Brownian motion

In this section we want to introduce Brownian motion, a stochastic process with great impor-
tance for probability theory and statistics, and with similarities and connections to the scaling
limit of random trees. We will heavily rely on its properties in chapter two, where we will infer
the law of Brownian excursions from the transition function of Brownian motion. For the next
definition compare with [16].

Definition 1.33 (Brownian motion). A stochastic process B = (Bt)t≥0 of real valued random
variables is called Brownian motion iff

1. B0 = 0 a.s.

2. The increments Bt1 , Bt2 − Bt1 , . . . , Btk
− Btk−1 are independent for all 0 < t1 < · · · < tk

for k ∈ N.

3. Increments follow a centered normal distribution with variance of the time increment,
L(Bt − Bs) = N(0, t − s) for 0 ≤ s < t

4. t 7→ Bt is continuous almost surely .

The first three properties fix the finite dimensional distributions of B. For details see [16]. By
Kolmogorov’s extension theorem there exists a unique probability measure P B on (R[0,∞), B[0,∞))
such that the finite dimensional distributions coincide with above conditions. The difficult part
is the fourth condition. Assume that a stochastic process X has law P B. We can only guarantee
continuity for a so called modification of X.

Definition 1.34 (Modifications). Two processes X, Y on the same probability space (Ω, F , P )
with identical state space and index set T are said to be modifications of each other iff

P (Xt = Yt) = 1 ∀t ∈ T .

The continuity of Brownian motion is ensured by Kolmogorov’s continuity criterion.

Theorem 1.35 (Kolmogorov’s continuity criterion). Let X be a real valued process with index
set T ⊆ R satisfying

E[|Xt − Xs|α] ≤ C|t − s|β

for all s, t ∈ T and for α, C > 0, β > 1. Then X has a modification Y of X which is almost
surely continuous.

For a proof see [24] Chapter I, Section 2. One can show that a process that fulfills the first to
third condition of Definition 1.33 also fulfills Kolmogorov’s continuity criterion, and thus we
can conclude:

Theorem 1.36. There exists a modification of a process that fulfills Definition 1.33, 1. to 3.
which is almost surely continuous. This modification is called Brownian motion.

Proof. In the case of Brownian motion we can use the fourth moment of the normal distribution,
E[|Bt − Bs|4] = 3(t − s)2 and the conditions of Kolmogorov’s continuity criterion 1.35 are
fulfilled.

9



1. Preliminaries

Since Brownian motion is almost surely continuous we can pass to the space W := C(R≥0, R)
as an underlying probability space. In the following we define Brownian motion as a random
variable

B : (W, F , P ) → (W, F), w 7→ B(w) = w ,

where F is the Borel-σ-Algebra of uniform convergence and P is the so called Wiener measure,
under which B is distributed like Brownian motion, i.e. B fulfills 1. to 3. in Definition
1.33. A detailed description of the construction of Wiener space, its σ-Algebra and the Wiener
measure is given in the appendix. One important detail for the following chapter is the fact
that the Wiener space contains all continuous functions, also those with w(0) 6= 0. However
the Brownian motion starts at zero a.s.,

P ({w ∈ W | w(0) = 0}) = 1 .

The advantage of not restricting the space to functions starting at zero lies in the existence of
(time) shift operators.

Definition 1.37. We define the for t > 0 the shift operator θt : W → W such that

Bs(θt(w)) = Bt+s(w) = w(t + s) for all s ∈ R≥0

With these we have

Proposition 1.38. Brownian motion is a strong Markov process under P with transition
function

Pt(x, A) =
∫

A
pt(x, y)dy , with pt(x, y) = 1√

2πt
e−(x−y)2/2t

In particular for P x defined on W by

P x(w(t1) ∈ A1, . . . , w(tk) ∈ Ak) =
∫

A1
Pt1(x, dx1)

∫
A2

Pt2−t1(x1, dx2)· · ·
∫

Ak

Ptk−tk−1(xk−1, dxk)

we have P x(B0) = x a.s. and the process (Bt)t≥0 under P x is called the Brownian motion
starting at x.

For a proof see [12, Theorem 12.1]. Due to the Markov property, Brownian motion has addi-
tional properties which are handy for explicit calculations.

Lemma 1.39 (Reflection principle of Brownian motion). Let T be an FB
t -stopping time, then

the process

B̃(t) =
{

B(t) for t ≤ T

2B(T ) − B(t) for t > T

is a Brownian motion.

A proof can be found in [12, Theorem 13.1].
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1.6. Excursions of Brownian motion and killed Brownian motion

1.6. Excursions of Brownian motion and killed Brownian
motion

In this section we define the killed Brownian motion and derive its distribution. This distri-
bution is a crucial ingredient to specify the law of the normalized Brownian excursion. Before
we define the killed process we fix some notation. Excursions of Brownian motion are special
functions in Wiener space which leave the zero line for a positive but finite time and stay
constant at zero once they hit zero again. The notion of an excursion will be delved in the
next chapter.

Definition 1.40 (Space of excursions). We define the space of excursions of Brownian motion
U to be the subspace

U := {w ∈ C(R≥0, R) | 0 < ζ(w) < ∞ and w(t) = 0 for t ≥ ζ(w)} ⊆ W

equipped with the metric

dU(u1, u2) = sup
t≥0

|u1(t) − u2(t)| + |ζ(u1) − ζ(u2)|

for u1, u2 ∈ U .

We define U = B(U) as the σ-algebra on U . U decomposes into positive (U+) and negative (U−)
excursions and we all the corresponding σ-algebras U+ and U−. Additionally U decomposes into
excursions of length r denoted as Ur. Due to Theorem B.4, the Borel-σ-algebra on Ur coincides
with the σ-algebra induced by coordinate mappings. Again we do not fix the excursion to
start at zero which enables us to define time shift operators θt on U . Furthermore we define
Uδ = U ∪ δ and Uδ = σ{U , δ}, where δ is again an arbitrary ”coffin state”.

Corollary 1.41. ζ is continous on U , in particular, ζ defines a random variable on U .

Proof. This follows directly from the definition of dU .

Definition 1.42 (First Hitting Time). For any x ∈ R define

Tx = inf{t > 0 | Bt = x}

as the first hitting time of x. We always use the convention inf(∅) = ∞. These random
variables are all stopping times ( [24] I, Prop 4.5).

In the following we will consider a process which is killed once it is zero. In the special case
of x = 0 we also write ζ := T0, which is a commonly used notation for the lifetime of a killed
process.

Proposition 1.43 (Killed Brownian motion). We introduce the Brownian motion which is
killed when it hits 0, which is a random variable on the Wiener space

B̂ : W → Uδ, w 7→

t 7→ B̂t(w) =

w(t) for t < ζ(w)
δ for t ≥ ζ(w)


Under the measure P x associated with the transition group of Brownian motion Pt, where P x

describes the law under which Brownian motion starts at x, B̂ is a strong Markov process with
submarkovian transition semi group (Qt)t≥0.

11
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The semigroup Qt on Uδ induces a measure Qx on W , characterized by its finite dimensional
distributions:

Qx(w(t1) ∈ A1, . . . , w(tk) ∈ Ak) =
∫

A1
Qt1(x, dx1)

∫
A2

Qt2−t1(x1, dx2)· · ·
∫

Ak

Qtk−tk−1(xk−1, dxk)

Using Qx we in particular have by definition for Γ ∈ U :

E[1Γ(B̂ ◦ θT )|FT ] = EB̂T
[1Γ(B̂)] = QBT

(Γ) (1.3)

which will be used later on.

Lemma 1.44 (Taboo transition density). The transition semi group of Brownian motion killed
at 0 is given by Qt(x, dy) = qt(x, y)dy with

qt(x, y) = pt(x, y) − pt(x, −y)

and
pt(x, y) = 1√

2πt
e−(x−y)2/2t

Proof. The following proof can be found in Rogers Vol. 1 I.13. [12]. The most important tool
will be the reflection principle. We define the running supremum of Brownian motion given by
St = sup{Bs | s ≤ t}. We then have for a, y > 0

P (St ≥ a, Bt ≤ a − y) = P (St ≥ a, Bt ≥ a + y) = P (Bt ≥ a + y) ,

where the reflection principle was applied at time Ta. Recall the law of Brownian motion
starting at x ∈ R, P x. The common law is then for a, x, y > 0 given by

P x(Bt ≥ y, T0 ≤ t) = P (Bt ≥ y − x, T−x ≤ t)
= P (Bt ≤ x − y, Tx ≤ t)
= P (Bt ≤ x − y, St ≥ x)
= P (Bt ≥ x + y) = P x(Bt ≤ −y)

This gives

P x(Bt ≥ y, T0 > t) = P x(Bt ≥ y) − P x(Bt ≥ y, T0 ≤ t)
= P (Bt ≥ y − x) − P (Bt ≤ −y − x)

Using pt(x, y) = ∂yP (Bt ≤ y − x) we obtain

qt(x, y) = −∂yP x(Bt ≥ y, T0 > t) = pt(x, y) − pt(x, −y)

Finally we know that by the definition of transition functions of a Markov process Qt(x, A) =
P x(B̂t ∈ A) = P x(Bt ∈ A, T0 > t) since the killed process coincides with Brownian motion
until it hits zero, which proves the statement.
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1.7. Random walks

1.7. Random walks

As an example of a time discrete Markov process which is important for this thesis we look at
the simple random walk. It describes a process which after each step of unit time changes by
±1 with equal probability.

Definition 1.45 (Random walk). Let (Xi)i∈N be independent random variables homogeneously
distributed variables on {−1, 1}. We define the symmetric simple random walk (Sn)n∈N as the
partial sum process

Sn = S0 +
n∑

i=1
Xi

with S0 = 0 P - almost surely. We denote Pl as the law under which the random walk starts at
l, i.e. S0 = l Pl-a.s..

In the following we discuss some properties of random walks which we will makes use of later.
The first two moments are given by

E[Sn] =
n∑

i=1
E[Xi] = 0 (1.4)

E[S2
n] =

n∑
i=1

E[X2
i ] =

n∑
i=1

(1 · 1/2 + 1 · 1/2) = n

since all mixed terms E[XiXj] for i 6= j vanish due to (1.4). The random walk has some
particularly benefitial properties which are inherited by Brownian motion as a ”limit” of a
random walk.

Theorem 1.46 (Markov property). The random walk process obeys the Markov property, i.e.
for j1 < · · · < jk < n

P (Sn = l|Sj1 = m1, . . . , Sjk
= mk) = P (Sn−jk

= l − mk)

Proof. We have

P (Sn = l|Sj1 = m1, . . . , Sjk
= mk) = P (Sjk

+
n∑

i=jk+1
Xi = l|Sj1 = m1, . . . , Sjk

= mk)

=
P (mk +∑n

i=jk+1 Xi = l, Sj1 = m1, . . . , Sjk
= mk)

P (Sj1 = m1, . . . , Sjk
= mk)

= P (
n∑

i=jk+1
Xi = l − mk) = P (Sn−jk

= l − mk)

where the third equality follows from ∑n
i=jk+1 Xi being independent of all Sj1 , . . . , Sjk

.

Lemma 1.47 (Reflection principle of the random walk). For n ∈ N it holds that Sn
d= −Sn,

and more generally for k ∈ N and n ≥ k

P (Sk = l1, Sn = l1 + l2) = P (Sk = l1, Sn = l1 − l2) ,

i.e. the process reflected at l1 for n ≥ k has the same law as Sn.
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Proof. By the definition of the random walk it is clear that Sn
d= −Sn. Consider without loss

of generality n > k. It then holds due to the independence of the increments of the random
walk:

P (Sk = l1, Sn = l1 + l2) = P (Sk = l1)P (Sn − Sk = l2)
= P (Sk = l1)P (Sn − Sk = −l2) = P (Sk = l1, Sn = l1 − l2)

Lemma 1.48 (Time reversal). Let a, b ∈ Z and k < n ∈ N0. It holds that

P (Sk = a, Sn = b) = Pb(Sn−k = a) ,

where Pb is the probability measure such that S0 = b Pb-a.s..

Proof. For any set x1, x2, . . . , xn−k ∈ {−1, 1} with a + ∑n−k
i=1 xi = b it holds due to Xi being

i.i.d. that

P (S0 = 0, Xk+1 = x1, . . . , Xn = xn−k) = P b(S0 = b, X1 = −x1, . . . , Xn−k = −xn−k)

and by summing over all such tupels we directly obtain the assertion.

We can also consider the random walk as a process of continuous time. There are two ways to
do this. We can either interpolate the points Si, which yields a Lipschitz continuous process,
or we define a piecewise constant process with increments of ±1. More precisely we define,
motivated by the following discussion in chapter three and five,

s̃k
t : = 1√

2k
Sb2ktc = 1√

2k

∑
1≤i≤b2ktc

Xi

sk
t : = 1√

2k

(
Sb2ktc + (2kt − b2ktc)Xb2ktc+1

)
.

As it turns out there is no notable difference in the limit as k → ∞.

P

(
sup

0≤t≤1
|s̃k

t − sk
t | > ε

)
= P

(
sup

0≤t≤1

2kt − b2ktc√
2k

> ε

)
≤ P ((2k)−1/2 > ε) k→∞−−−→ 0
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2. Itō excursion theory

A point a is called recurrent, if it is visited by a stochastic process starting at a a.s. in finite
time. For a Markov process and a recurrent point the time axis can be decomposed into the
intervals between the visit times. The sample paths of the stochastic process on these intervals
are then called excursions of the Markov process. The Japanese mathematician Kiyoshi Itō
established in his paper [8] in 1972 that a probability theory of excursions attached to Markov
processes can be described using the characteristic measure of a Poisson point process (PPP). In
the special case of Brownian motion it is possible to deduce an explicit density of a normalized
excursions which is the ultimate aim of this chapter.

2.1. Poisson point processes

A point process is a stochastic process which takes countably many values in the state space.
Such a point process is called Poisson point process, if the number of points that appear
in a chosen set and time are Poisson distributed. This kind of stochastic processes will be
topic of the first section. The following description is inspired by [22] and [21] and also taken
from [24].

Definition 2.1 (Point function). Let (U, U) be a measurable space with σ-algebra U . We add
a point to U : Uδ = U ∪ {δ} and name the corresponding σ algebra Uδ = σ(U , {δ}). A point
function p is a measurable mapping which sends a countable set D ⊆ (0, ∞) into U and the
complement of D to δ:

p :D → U, l 7→ p(l) ∈ U

Dc → {δ}

The point function defines a counting measure Np(ds, du) on (0, ∞)×U with σ-field B(0, ∞)⊗U
via

Np((s, t] × A) =
∑

l∈D, s<l≤t

1A(p(l)), for t > 0, A ∈ U (2.1)

= #{s < l ≤ t | p(l) ∈ A}

The counting measure simply counts the number of points in time which are mapped into a
measurable subset of U . In principle, we would not need to restrict ourselves to rectangles
(s, t] × A but it is sufficient in our case. A point process is a point function where the set D is
taken at random.

Definition 2.2 (Point process). A process e = {et, t > 0} is said to be a point process on
(Ω, F , P ) taking values in (Uδ, Uδ) iff
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2. Itō excursion theory

1. e is B((0, ∞)) ⊗ F / U- measurable

2. Dω = {l | el(ω) 6= δ} is a.s. countable

In other words e· is a.s. a point function. We simplify the notation of the (random) counting
measure and set

Definition 2.3. For the counting measure defined as in (2.1) we denote for ω ∈ Ω

NA
(s,t](ω) := Ne·(ω)((s, t] × A)

and ommit in the notation s in the case of s = 0, i.e. NA
t := NA

(0,t] and we may ommit A in
the notation in the case of A = U . Similarly we define eA as the point process into A with

eA
t (ω) = et(ω) if et(ω) ∈ A

eA
t (ω) = δ otherwise

Definition 2.4. A point process e is said to be σ discrete, if there exists a sequence (Un) ⊂ U ,
Un ↑ U such that

NUn
t < ∞ a.s.

for all t ∈ R>0 and n ∈ N

We now give the definition of a Poisson Point process as in [24].

Definition 2.5 (Poisson Point process). A σ-discrete point process e is said to be (Ft)-Poisson
point process with respect to the filtration (Ft) if there exists a σ-finite measure n on U such
that for any s, t > 0 and Γ ∈ U with n(Γ) < ∞ it holds

P (NΓ
(s,s+t] = k | Fs) = tkn(Γ)k

k! exp(−tn(Γ)) (2.2)

The existence of such a process follows from Kolmogorovs extension theorem and the fact that
(2.2) fixes the finite dimensional distributions of the process. The expectation of NΓ

t is tn(Γ),
which follows from the Poisson law of NΓ

t . The measure n is called characteristic measure or
intensity measure of the Poisson point process.

2.2. Characteristic measure of a Poisson point process

The characteristic measure has great properties to study the probabilistic properties of the
Poisson point process. The connection between the Poisson process and the characteristic
measure is discussed in this section, most importantly by Lemma 2.8. We follow the description
of [24] chapter XII.

Definition 2.6 (Characteristic measure). Let e be a (Ft)t>0 Poisson point process with counting
measure N . The σ-finite measure n on Uδ defined by

n(Γ) = 1
t
E(NΓ

t )

for Γ ∈ U with E(NΓ
t ) < ∞ and continued to Uδ by n({δ}) = 0 is called characteristic measure

of the Poisson point process.
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2.2. Characteristic measure of a Poisson point process

Since NΓ is Poisson-distributed, n(Γ) is independent of t. This measure uniquely determines
the point process and is the fundamental object in Itō excursion theory. To understand its
importance we first observe that the first jump times are exponentially distributed.
Lemma 2.7. Define for any Γ ∈ U with n(Γ) < ∞ the first jump time in Γ as

TΓ = inf{t > 0 | NΓ
t = 1} .

Then TΓ is an exponentially distributed random variable with parameter n(Γ).

Proof. Since NΓ
t is (Ft)-adapted, TΓ is a (Ft)-stopping time. We then have with (2.2)

P (TΓ > t) = P (NΓ
t = 0) = exp(−n(Γ)t)

because of the Poisson distribution of NΓ
t . This shows that TΓ is exponentially distributed.

The next lemma is crucial for the meaning of the characteristic measure. It allows us to define
a probability measure on subsets of U on which n is finite:
Lemma 2.8. For Λ ∈ U with n(Λ) < ∞ consider the first jump time TΛ = inf{t > 0 | NΛ

t > 0}.
In this case, TΛ, eTΛ are independent random variables and for Γ ∈ U we have

P (eTΛ ∈ Γ) = n(Γ ∩ Λ)
n(Λ) (2.3)

Proof. The statement and proof is taken from [24]. We distinguish three cases. If Γ ∩ Λ = ∅
then any excursion eTΛ will not lie in Γ and we plainly have

P (eTΛ ∈ Γ) = 0 .

If Γ ⊆ Λ we consider the Poisson processes NΓ
· and NΓc∩Λ

· . Let’s denote the first jump times
of NΓ

t by TΓ and of NΓc∩Λ
t by TΓc∩Λ. Since Γ ⊆ Λ we always have TΛ ≤ TΓ. On the other hand

eTΛ ∈ Γ implies TΓ ≤ TΛ ≤ TΓc∩Λ. Thus, using the exponential distribution of the first jump
times we have:

P (TΛ > t, eTΛ ∈ Γ) = P (t < TΓ < TΓc∩Λ)

=
∫ ∞

t
n(Γ)e−n(Γ)s

∫ ∞

s
n(Γc ∩ Λ)e−n(Γc∩Λ)s′ds′ds

=
∫ ∞

t
n(Γ)e−n(Γ)se−n(Γc∩Λ)sds

= n(Γ)
n(Γ) + n(Γc ∩ Λ)e−n(Γ)t−n(Γc∩Λ)t = n(Γ)

n(Λ)e−n(Λ)t

and we obtain the lemma from n(Γ) + n(Γc ∩ Λ) = n(Λ) from the σ-additivity of measures.
Finally, in the general case we have

P (t < TΛ, eTΛ ∈ Γ) = P (t < TΛ, eTΛ ∈ Γ ∩ Λ) + P (t < TΛ, eTΛ ∈ Γ \ Λ)

= n(Γ ∩ Λ)
n(Λ) e−n(Λ)t + 0

According to the previous lemma TΛ is exponentially distributed with parameter n(Λ), and
thus TΛ, eTΛ are independent random variables and eTΛ has the conjectured probability.

This probability measure can be seen as a conditional version of the excursion measure, so

P (eTΛ ∈ Γ) =: n(Γ | Λ)
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2. Itō excursion theory

2.3. Local time and the space of excursions

The following section applies in very similar manner to general Markov processes, see [8].
However, we will focus on the case of Brownian motion, which is a Markov process with zero
as one recurrent point. The canonical probability space for Brownian motion is the Wiener
space W = C(R≥0, R) of continuous functions on the non negative real line endowed with the
Borel σ-algebra induced by uniform convergence and the Wiener measure P . We will view all
random variables as random variables on W , in particular for w ∈ W we write Bt(w) = w(t)
and have shift operators θt(w)(·) = w(t + ·). We first define the length of the first excursion of
Brownian motion,

ζ(w) = inf{t > 0 | w(t) = 0} .

Excursions are elements of W with 0 < ζ(w) < ∞ and w(t) = 0 ∀t > ζ(w). Out aim in this
section is the construction of a space of excursions as a subset of Wiener space and to define
a meaningful measure on it. However, it holds that ζ(w) = 0 a.s., so elements of the Wiener
space with such properties are null sets with respect to the Wiener measure. We will use local
time to decompose the time axis into its excursion intervals.

Definition 2.9 (Local time). The local time (L0
t )t≥0 of reflected Brownian motion |Bt| at level

0 is a stochastic process defined by the approximation

L0
t := lim

ε→0

1
2ε

∫ t

0
1[0,ε](|Bs|)ds . (2.4)

Compare [24, page 227]. The fact that this process is a.s. non trivial can be derived with the
Itō integration formula, see for example [10]. This is not a trivial statement, as the set of zeroes
of Brownian motion has very unintuitive properties.

Theorem 2.10. The set of zeroes of Brownian motion Z = {t | Bt = 0} is a.s. a closed set of
Lebesgue measure zero without isolated points.

For a proof of this statement see [24, Proposition 3.12]. Consequently it is hard to imagine
how this set looks like, or how local time behaves for a given Brownian motion. Nevertheless
this theorem allows us to define a meaningful rightinverse of local time.

Lemma 2.11. The time change of local time

τl = inf{t ≥ 0 | L0
t > l} .

is a right continuous monotone function with existing left limits. In particular, the set of
discontinuity times l is countable. We will denote the left limit of τ at l as

τl− = inf{t ≥ 0 | L0
t ≥ l} = lim

l′↑ l
τl′ .

I do not want to delve this discussion here but give an intuition why the set of discontinuity
times is countable. Consider the random set O(w) = ⋃

l(τl−(w), τl(w)). The intervals are
empty except at discontinuity times D = {l | τl 6= τl−}, where they correspond precisely to the
excursion intervals (τl−, τl) for l ∈ D. Now one can show, as was done in [24] VI, proposition
2.5 that Z(w) = O(w)C a.s.. Z(w) is a closed set and thus O(w) is open in R. This means
that O(w) is a countable union of open disjoint intervals a.s.. This discussion implies that a
Brownian motion can be decomposed into countably many excursions.
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2.4. Itō excursion measure of Brownian motion

2.4. Itō excursion measure of Brownian motion

In the following we use the previously introduced notation

U := {w ∈ C(R≥0, R) | 0 < ζ(w) < ∞ and w(t) = 0 for t ≥ ζ(w)} ⊆ W

and equip it for now with the σ-algebra generated by the coordinate mappings, denoted by
U . For later purposes we want to construct a probability law of the excursion of Brownian
motion. As mentioned before the difficulty of ζ being zero almost surely arises. To solve this
we aim to do the following. Whenever an excursion appears in the sample path of Brownian
motion, we label it with a local discontinuity time l ∈ D. The map from such labels to the set
of excursions defines a Poisson point processes. Consequently we can define an characteristic
(excursion) measure which tells us the average number of excursions in Γ ∈ U that appear
in Brownian motion. Remarkably the characteristic measure has exactly the probabilistic
interpretation we seek, which is indicated by Theorem 2.15.

The excursion process of Brownian motion

Definition 2.12 (Excursion process). Let Dw = {l ∈ R≥0 | τl(w) 6= τl−(w)} be the random set of
discontinuities of the time change of Brownian motion, which is a.s. countable. The excursion
process of Brownian motion (el, l ∈ R+) is a random point process e : C(R+, R) × R≥0 → Uδ

with

e(w) :
{

Dw → U, l 7→ el(w)
Dc

w → {δ}
(2.5)

where
el(w)(t) = 1[τl−(w),τl(w)](τl−(w) + t)Bτl−(w)+t(w) (2.6)

We will write u(t) = el(w)(t) for the excursion element, if el(w) ∈ U .

At each discontinuity time l of τ(w) the excursion process e(w) ”cuts” out the excursion of
w which starts at time τl−(w). Note that the excursion process is indexed by local time (l),
while the excursions themselves are functions in real time (t). As usual we denote the counting
measure for Γ ∈ U by NΓ.

Theorem 2.13 (Itō). The process e is a σ-discrete (Ft)-Poisson point process

The proof for this statement can be found in a much more general case in [8] section 6, using
the fact that Bt is a strong Markov process. We will just sketch some points: To show that
the mapping (l, w) 7→ el(w) is B((0, ∞)) ⊗ F -measurable consider for arbitrary r > 0 and
el(w) 6= δ:

(l, w) 7→ el(w)(r) (2.7)

This mapping is measurable since τl, τl− and Bτl+r are measurable with respect to w. The
σ-Algebra U is in fact also the smallest σ-Algebra in which all coordinate mappings are mea-
surable. Hence (2.7) is already sufficient to prove measurability.
Secondly the set Dw = {l ∈ R+ | el(w) 6= δ} is a.s. countable. This is equivalent to say that the
set of times l at which τl(w) is discontinuous is a.s. countable, which was motivated in Lemma
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2. Itō excursion theory

2.11.
For σ-discreteness consider the sets of excursions with length greater 1/n for n ∈ N.

Un =
{

u ∈ U | ζ(u) >
1
n

}
< ∞ (2.8)

Then clearly
∞⋃

i=1
Ui = U (2.9)

and
NUn

l (w) =
∑
s≤l

1Un(es(w)) < nτl (2.10)

since each excursion of w in Un has at least length 1/n. Note that the Poisson process Nl is
indexed by local time, which corresponds to the real time less or equal τl.
It is a result of Itō [8] that NΓ

t actually defines a Poisson process. This fact does not rely on
any details of the law of Brownian motion, but only uses the fact that Brownian motion is a
Markov process. See also [24, XII Def. 1.8].

Definition 2.14 (Itō excursion measure). The excursion measure of Brownian motion is the
characteristic measure of the excursion point process, i.e. for the counting measure N induced
by the excursion process of Brownian motion e, and for Γ ∈ U with E[NΓ

t ] < ∞ we define

n(Γ) = 1
t
E[NΓ

t ] . (2.11)

Since NΓ
t is Poisson distributed, n is independent of t.

Markovian description of the excursion law

In this subsection we want to give an explicit integral formula for the finite dimensional distri-
butions of a positive excursion under n. These will indicate a relation of the excursion process
to the underlying Markov process. Let Qx be the law of a Brownian motion killed at zero,
starting at x ∈ R. Furthermore define the so called entrance law of the excursion process as a
Borel measure

λt(A) := n(u(t) ∈ A) = n(u(t) ∈ A, ζ(u) > t)
for A ∈ B(R>0). λt is called an entrance law of the transition semi group (Qt)t≥0 if it holds
that

∫
R λt(dy)Qs(y, A) = λt+s(A). The reason that we encounter an entrance law instead of

a transition function and that excursion theory is difficult generally speaking lies in the short
time behaviour of Brownian motion starting at zero. Because of this we investigate an excursion
conditioned to live up to time t and let it run ”freely” from there, governed by the transition
function of killed Brownian motion. This will be the idea of the following reasoning.

Theorem 2.15 (Itō description of the excursion law). It holds for A ∈ B(R>0) and Γ ∈ U+

n(ζ(u) > t , u(t) ∈ A , u ◦ θt ∈ Γ) =
∫

A
λt(dx)Qx(Γ) (2.12)

In particular we have for Ai ∈ B(R>0), i = 1, . . . , k and 0 < t1 < · · · < tk:

n(u(t1) ∈ A1, . . . , u(tk) ∈ Ak) =
∫

A1
λt1(dx1)

∫
A2

Qt2−t1(x1, dx2)· · ·
∫

Ak

Qtk−tk−1(xk−1, dxk)
(2.13)
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2.4. Itō excursion measure of Brownian motion

Proof. Consider a measurable set Γ ∈ U+ and A ∈ B(R>0). We have 0 < n(ζ > t) < ∞ for
t > 0 and can use lemma 2.8 with the notations

Λ = {u | ζ(u) > t}
lΛ = inf{l ≥ 0 | NΛ

l = 1 } .

The first jump time was denoted by lΛ to distinguish it as a local time from real times. We
then have:

n(u(t) ∈ A, ζ(u) > t, θt(u) ∈ Γ)
n(ζ(u) > t) = P (elΛ ∈ θ−1

t (Γ), elΛ(t) ∈ A) (2.14)

where P denotes the Wiener measure. We can write above probability with real random time
TΛ := τlΛ− + t as

P (elΛ ∈ θ−1
t (Γ), elΛ(t) ∈ A) = P ({w | BTΛ(w) ∈ A, B̂ ◦ θTΛ(w) ∈ Γ}) ,

where B̂ denotes the killed Brownian motion. Next we use the strong Markov property of B̂.
For this note that the time TΛ is a (Ft)t≥0 stopping time, which makes 1A(BTΛ) FTΛ-measurable.
This gives with the strong Markov property (1.3)

P ({w | BTΛ(w) ∈ A, B̂ ◦ θTΛ(w) ∈ Γ}) = E[1A(BTΛ)1Γ(B̂ ◦ θTΛ)] (2.15)
= E[1A(BTΛ)QBTΛ

(Γ)]

=
∫

B−1
TΛ

(A)
P (dw)QBTΛ (w)(Γ)

=
∫

A
γΛ(dx)Qx(Γ)

with the measure γΛ(dx) = P (BTΛ ∈ dx). Note that the set Λ only depends on t. Next
consider the case Γ = {u(0) ∈ C} for C ∈ B(R>0). In this case Qx(Γ) = 1C(x). We have by
the definition of the entrance law and (2.15)

λt(C) = n(ζ(u) > t, u(t) ∈ R, u ∈ θ−1
t (Γ))

= n(ζ(u) > t)γ{ζ(u)>t}(C)

which finally yields

n(ζ(u) > t , u(t) ∈ A, θt(u) ∈ Γ) = n(ζ(u) > t)
∫

A
γΛ(dx)Qx(Γ)

=
∫

A
λt(dx)Qx(Γ)

The second assertion follows in the special case of Γ = {u ∈ U | u(t2 − t1) ∈ A2, . . . , u(tk − t1) ∈
Ak}, which is a measurable set as a union of cylindersets. In this case

n(u(t1) ∈ A1, . . . , u(tk) ∈ Ak) = n(u(t1) ∈ A1, u ∈ θ−1
t1 (Γ))

=
∫

A1
λt1(dx)Qx(Γ)

=
∫

A1
λt1(dx)

∫
A2

Qt2−t1(x, dx2)· · ·
∫

Ak

Qtk−t1−tk−1+t1(xk−1, dxk)
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Implicitly we only considered positive excursions in all calculations. In many cases the restric-
tion of n to U+ is called n+. Alternatively one can use |B| as an underlying Markov process.
In this case, for example in [15], the normalization of the characteristic measure n+ changes
by a factor of two to yield the same excursion measure as we just discussed.
Corollary 2.16. For Borel-measurable functions fi : R → R and times t1, . . . , tk, i = 1, . . . , k
it holds that∫

U
n(du)

k+1∏
i=1

fi(u(ti)) =
∫

U
n(du)

k∏
i=1

fi(u(ti))
∫

Ak+1
Qtk+1−tk

(xk, dxk+1)fk+1(xk+1) (2.16)

Proof. Using the transformation rule and the measurability of the projection mappings we have∫
U

n(du)
k+1∏
i=1

fi(u(ti)) =
∫

A1
· · ·

∫
Ak+1

n(u(t1) ∈ dx1, θt1(u)(ti − t1) ∈ dxi, i = 1 . . . k + 1)
k+1∏
i=1

fi(xi)

(2.13)=
∫

A1
· · ·

∫
Ak+1

λt1(dx1)Qt2−t1(x1, dx2) . . . Qtk+1−tk
(xk, dxk+1)

k+1∏
i=1

fi(xi)

=
∫

A1
· · ·

∫
Ak

λt1(dx1)Qt2−t1(x1, dx2) . . . Qtk−tk−1(xk−1, dxk)

×
k∏

i=1
fi(xi)

∫
Ak+1

Qtk+1−tk
(xk, dxk+1)fk+1(xk+1)

=
∫

A1
· · ·

∫
Ak

n(u(t1) ∈ dx1, θt1(u)(ti − t1) ∈ dxi, i = 1 . . . n)

×
k∏

i=1
fi(xi)

∫
Ak+1

Qtk+1−tk
(xk, dxk+1)fk+1(xk+1)

=
∫

U
n(du)

k∏
i=1

fi(u(ti))
∫

Ak+1
Qtk+1−tk

(xk, dxk+1)fk+1(xk+1)

In the next step we want to determine λt, for which we need the previous result.
Corollary 2.17. λt has density

lt(y) = 1√
2πt3

|y| exp(−y2/2t)

For the proof we will need to condition the excursion law n on random events. The following
proof is taken from [24]. For this we introduce the following notation. The up and downcrossing
times before and after t:

gt = sup{s < t|Bs = 0} dt = inf{s > t|Bs = 0}

as well as the age of an excursion
At = t − gt .

We furthermore set u0(w) ∈ U as the unique elements which fulfills

u0(t) = w(t) for t < ζ(w) and u(t) = 0 for t ≥ ζ(w)

and
us(w) = u0(θs(w)) .

With this we state
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2.4. Itō excursion measure of Brownian motion

Proposition 2.18. Let TA = inf{t > 0 | u(t) ∈ A} be a F0
t stopping time. Let f be a real

valued Borel function on U . In this case we have

n[f1ζ>TA
] = E[f(ugTA

)1(0<gTA
<TA)]n(ζ > TA)

Remember that n[] denotes an integral with respect to n. The proof requires techniques which
would go beyond the scope of this text. Our proposition is a special case of the proof of
Proposition 3.5, Chapter XII in [24]. The proposition gives us the following insight: Not
every excursion lives long enough to experience a non trivial event at a stopping time T . The
excursion ugT

on the other hand always fulfills ζ(ugt) > T . We can thus interpret above formula
as the definition of a excursion measure conditioned on the random event ζ(u) > T . With this
we now have the following for our excursion law.

Proof. of corollary 2.17
It is enough to compute the law on the sets [y, ∞), y > 0, which generate the Borel σ-algebra
B(R>0). Define for y > ε > 0 the stopping time Tε = inf{t > 0|u(t) > ε}. We then have

λt([y, ∞)) = n(u(t) ∈ [y, ∞), Tε < t)
= n[1{Tε<t}1{ζ>Tε}1[y,∞)(u(t))]
2.16= n[1{Tε<t}1{ζ>Tε}Qt−Tε(u(Tε), [y, ∞))] ,

where it was used that 2.16 also holds for stopping times, [24]. Using u(Tε) = ε and the
proposition just stated this is equal to

λt([y, ∞)) = E[1{T̃ε<t}Qt−T̃ε
(ε, [y, ∞))]]n(ζ(u) > Tε)

with T̃ε(w) = Tε(ugTε
(w)) and the expectation being taken with respect to the Wiener measure.

We furthermore use that n(ζ > Tε) = 1
2ε

. Again the proof can be found in [24] chapter XII
Proposition 3.6. Then with the taboo transition density qt associated with Qt we have

λt([y, ∞)) = E

1{T̃ε<t}

∫ ∞

y

1√
2π(t − T̃ε)

e−(x−ε)2/2(t−T̃ε) − e−(x+ε)2/2(t−T̃ε)

2ε
dx


=
∫ t

0

(
Φt−s(y − ε) − Φt−s(y + ε)

2ε
+ Φ′

t−s(y) − Φ′
t−s(y)

)
P (Tε ∈ ds)

where Φt(y) =
∫∞

y pt(x, 0)dx. We then have by Taylors formula applied in y for ε small enough:
∫ t

0

∣∣∣∣∣Φt−s(y − ε) − Φt−s(y + ε)
2ε

+ Φ′
t−s(y)

∣∣∣∣∣P (T̃ε ∈ ds) =
∫ t

0

∣∣∣∣∣∣2Φ(3)
t−s(y)ε2

6 + o(ε2)

∣∣∣∣∣∣P (T̃ε ∈ ds)

≤ 1 · Cε2 ε→0−−→ 0

for a constant C > 0. Note that sups<t Φ(3)
t−s(y) < C ′ since Φ is a Schwarz function in y and

1/(t − s). It is crucial that y 6= 0, where Φt−s diverges as s → t. On the other hand Tε → 0
a.s. and thus also in distribution, such that∫ t

0
−Φ′

t−s(y)P (Tε ∈ ds) ε→0−−→
∫ t

0
−Φ′

t−s(y)δ0(ds) = pt(y, 0)

Thus the density of the entrance law becomes

lt(y) = −∂yλt([y, ∞) = −∂ypt(y, 0) = |y|√
2πt3

e−y2/2t
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2.5. Normalized Brownian excursions

In the next step we want to define the law of the normalized Brownian excursion. In order to
do this we need some more results of the theory of Brownian motion and local times. The set
of excursions of length one is an n nullset, so we need to find a way on how to condition on
this event.

Proposition 2.19 (Scaling properties of Brownian motion and local time). Define the scaling
operator for λ > 0

Φλ : (w(t))t≥0 7→ (λ1/2w(t/λ))t≥0 . (2.17)

Then
Bt

d= Φ−1
λ (Bt) = λ−1/2Bλt (2.18)

and
Lt

d= λ−1/2Lλt (2.19)

A proof can be found in many books on this subject, for example [24]. The scaling of local
time can be derived naively from the approximation formula (2.4) and the scaling of Brownian
motion (2.18). These scaling properties now translate to the excursion measure.

Proposition 2.20 (Scaling properties of the excursion law). For the excursion law it holds

n(Γ) = λ−1/2n(Φ−1
λ (Γ)) (2.20)

Proof. The idea of this proof was taken from [11]. An excursion of w starts at a real time t ∈ R≥0
iff the rescaled excursion of Φ−1

λ (w) starts at t/λ, since w(t) = w(λt/λ) = λ1/2Φ−1
λ (w)(t/λ).

This gives for any w ∈ W :

NΓ
l (w) = #{t ∈ R≥0 : Lt(w) ≤ l, eLt(w) ∈ Γ}

= #{t ∈ R≥0 : Lt(w) ≤ l, eLt/λ
◦ Φ−1

λ (w) ∈ Φ−1
λ (Γ)}

Due to the scaling property of local time and Brownian motion both applied to the event Lt ≤ l
we now have the identity in distribution:

NΓ
l

d= #{t ∈ R≥0 : λ1/2Lt/λ ◦ Φ−1
λ ≤ t, eLt/λ

◦ Φ−1
λ ∈ Φ−1

λ (Γ)}
= #{t′ ∈ R≥0 : Lt′ ◦ Φ−1

λ ≤ λ−1/2t, eLt′ ◦ Φ−1
λ ∈ Φ−1

λ (Γ)}

= N
Φ−1

λ
(Γ)

λ−1/2t
◦ Φ−1

λ
d= N

Φ−1
λ

(Γ)
λ−1/2t

where the last equality in distribution again holds due to the scaling property of Brownian
motion. Hence it follows for the expectations:

n(Γ) = 1
t
E[NΓ

t ] = λ−1/2

λ−1/2t
E[NΦ−1

λ
(Γ)

λ−1/2t
] = λ−1/2n(Φ−1

λ (Γ))
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We now prove the following corollary, which is exercise 2.13 in [24] chapter XII. We define
the space of normalized excursions U1 = {u ∈ C([0, 1], R≥0) | ζ(u) = 1}. We endow U1 with
the Borel σ-algebra of uniform convergence U1. This is consistent with our previous choice of
σ-algebra, see also Theorem B.4. The scaling operator defines a map

s1 : U+ → U1, u 7→ s1(u) = Φ−1
ζ(u)(u) (2.21)

which maps any positive excursion to an excursion of length one while preserving its shape.
Unlike Φ the map is not injective.

Corollary 2.21 (Law of the normalized Brownian excursions). Let Γ ∈ U1. The law of
normalized excursions is the probability measure

n(1)(Γ) = n(s−1
1 (Γ) ∩ {u ∈ U+ : ζ(u) ≥ c})
n({u ∈ U+ : ζ(u) ≥ c}) (2.22)

and is independent of c ∈ R>0.

Proof. The set s−1
1 (Γ) is invariant under scaling, i.e. Φ−1

c (s−1
1 (Γ))) = s−1

1 (Γ), since by definition

s1(Φc(u)) = s1(c1/2u(c ·)) = Φ−1
ζ◦Φc(u)(c

1/2u(c ·))

= Φ−1
c ζ(u)(c

1/2u(c ·)) = c−1/2ζ(u)−1/2c1/2u

(
1

cζ(u)c ·
)

= Φ−1
ζ(u)(u) = s1(u)

Thus

n(s−1
1 (Γ) ∩ {u ∈ U+ : ζ(u) ≥ c}) = n(Φ−1

c (s−1
1 (Γ) ∩ {u ∈ U+ : ζ(u) ≥ 1}))

= c1/2n(s−1
1 (Γ) ∩ {u ∈ U+ : ζ(u) ≥ 1})

Furthermore it is true that n(u ∈ U+ : ζ(u) ≥ c) = (1/(2πc))1/2. For a proof see [24] chapter
XII proposition 2.8. With this result

n(s−1
1 (Γ) ∩ {∈ U+ : ζ(u) ≥ c})
n({u ∈ U+ : ζ(u) ≥ c}) = c1/2 n(s−1

1 (Γ) ∩ {u ∈ U+ : ζ(u) ≥ 1})
n({u ∈ U+ : ζ(u) ≥ c})

= n(s−1
1 (Γ) ∩ {u ∈ U+ : ζ(u) ≥ 1})
n({u ∈ U+ : ζ(u) ≥ 1})

Furthermore one sees directly that n(1)(U1) = 1, which makes the law of normalized excursions
a probability law. We now have the tools at hands to determine the density of normalized
excursions under n(1). Consider the the family (πr)r>0 where πr is a probability measure on
U+ ∩ {ζ = r} with finite dimensional distributions for 0 < t1 < · · · < tn < r

πr(u(t1) ∈ A1, . . . , u(tn) ∈ An ∩ {ζ(u) = r})

=
∫

A1
· · ·

∫
An

2
√

2πr3lt1(x1)qt2−t1(x1, x2) . . . qtn−tn−1(xn−1, xn)lr−t1(xn)dx1 . . . dxn .
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Theorem 2.22 (Excursion law decomposed w.r.t. length). For the excursion measure it holds

n(Γ) =
∫ ∞

0
πr(Γ ∩ {ζ = r}) dr

2
√

2πr3

=
∫ ∞

0
πr(Γ ∩ {ζ = r})n(ζ ∈ dr)

Proof. The result follows by direct computation. Consider the sets Γ = ⋂
i=1...n{u(ti) ∈ Ai},

which generate the σ-algebra on U . Then the right hand side is by definition of the finite
dimensional distributions∫ ∞

0
πr(Γ ∩ {ζ = r}) dr

2
√

2πr3

=
∫ ∞

0

∫
A1

· · ·
∫

An

2
√

2πr3lt1(x1)qt2−t1(x1, x2) . . . qtn−tn−1(xn−1, xn)lr−t1(xn)dx1 . . . dxn
dr

2
√

2πr3

=
∫

A1
· · ·

∫
An

lt1(x1)qt2−t1(x1, x2) . . . qtn−tn−1(xn−1, xn)
∫ ∞

0
lr−t1(xn)drdx1 . . . dxn

=
∫

A1
· · ·

∫
An

lt1(x1)qt2−t1(x1, x2) . . . qtn−tn−1(xn−1, xn)dx1 . . . dxn = n(Γ)

where in the last but one equation it was used that lt has integral one.

The law πr is also the law of a Bessel bridge of dimension three and of length r. We now come
to the final conclusion of this chapter, which will be crucial for the next one.

Corollary 2.23 (Density of normalized excursions). The normalized excursions et ∈ U1 under
n(1) have the density π1.

Proof. We first use that

n({ζ ≥ c} ∩ U+) =
√

1
2πc

which can be either taken from [24] Chapter XII Proposition 2.8 or compute directly from
theorem 2.22, where, however, this result has been used already in the derivation. Thus for
Γ ∈ U+

n(1)(Γ) (2.22)=
∫ ∞

c
πr(s−1

1 (Γ) ∩ {ζ = r})
√

2πc
dr

2
√

2πr3

=
∫ ∞

c
πr(s−1

1 (Γ) ∩ {ζ = r})1
2

√
c

r3 dr .

This, of course, must hold independently from c such that

d
dc

n(1)(Γ) = 0 = −πc(s−1
1 (Γ) ∩ {ζ = c})/(2c) +

∫ ∞

c
πr(s−1

1 (Γ) ∩ {ζ = r})1
4

√
1

cr3

= − 1
2c

πc(s−1
1 (Γ) ∩ {ζ = c}) + 1

2c
n(1)(Γ)

In particular, in the case of c = 1 we get n(1) = π1 .
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3. Scaling limit of a random walk’s
excursion

Recall the linearly interpolated continuous process of a random walk Sn

Snt = Sbntc + (nt − bntc)Xbntc+1 .

for r ∈ [0, 1] and n ∈ N. Again the first time the simple random walk reaches −1 is denoted
by T = inf{n ≥ 0 : Sn = −1}. The excursion of the random walk with length 2kis defined
as a stochastic process Ck : Ω → C([0, 1]) which has the same distributed as the random walk
conditioned on T = 2k + 1, i.e.

L((Ck(2kt))t∈[0,1]) = L((S2kt)t∈[0,1]|T = 2k + 1) .

With these notations we state the following limit theorem

Theorem 3.1 (Limit Theorem of Excursions). In the space C([0, 1]) equipped with the topology
of uniform convergence and corresponding Borel σ-algebra, the normalized excursions of a
random walk converge in distribution to the normalized excursion of Brownian motion:(

1√
2k

Ck(2kt)
)

0≤t≤1

d−−−→
k→∞

(et)0≤t≤1

In this chapter we will proof Theorem 3.1. In the first section we give a criterion for weak
convergence, and develop tools for this task in the second section. The third and fourth section
prove the tightness of the sequence of probability measures and that their finite dimensional
distributions converge. Together these imply the weak convergence of probability measures.

3.1. Weak convergence

We want to discuss methods to establish the weak convergence of measures. Due to Kol-
mogorov’s extension theorem we can assume that we need the following:

Definition 3.2 (Convergence of finite dimensional distributions). Let (Xk)k∈N be a sequence
of R-valued stochastic processes with index set T . We say that Xk converges to a stochastic
process X in finite dimensional distributions, Xk f.d.−−→ X, iff for every (t1, . . . , tp) ⊆ T it holds

(Xk
t1 , . . . , Xk

tp
) d−→ (Xt1 , . . . , Xtp)

The convergence of finite dimensional distributions is necessary, but not sufficient. We addi-
tionally need the relatively compactness of the sequence of probability measures. Due to the
theorem of Prokhorov a sequence of probability measures is relatively compact, if and only if
it is a uniformly tight set of measures.
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3. Scaling limit of a random walk’s excursion

Definition 3.3 (Uniform tightness). The collection of probability measures P = {P 1, P 2, . . . }
is called uniformly tight, iff for every ε > 0 there exists a compact set Kε such that

P k(Kε) ≥ 1 − ε ∀k ∈ N

It is sufficient to check uniform tightness only for k ≥ k0 ∈ N because any finite collection of
probability measures on a compact set T ⊆ R is uniformly tight. See for example [16]. This
is true in general for so called Polish spaces. In the case of continuous processes we can now
make use of the following criterion.

Theorem 3.4 (Kolmogorov’s criterion of weak convergence). Let (Xk)k∈N be a sequence of
continuous real valued stochastic processes on a compact set T ⊆ R. It is equivalent:

1. The family {P X1
, P X2

, . . . } is uniformly tight.

2. There exist positive constants α, β, γ and a k0 ∈ N such that for all s, t ∈ T and every
k ≥ k0

E[|Xk
s − Xk

t |α] ≤ β|s − t|γ+1 . (3.1)

In particular we have that Xk converges weakly to a real-valued continuous stochastic process
X in C(T, R), if Xk f.d.−−→ X and (3.1) holds.

For a proof of this theorem see [24] Chapter XIII Section 1.

3.2. Tools

Before we come to the proof of tightness and convergence of finite dimensional distributions
we need two more statements, which help us to control the distribution of the excursions of
random walks. Recall that Pl denotes the law under which the random walk starts at l, i.e.
S0 = l Pl-a.s.

Pl(Sn = m) = P (Sn + l = m) .

The hitting time theorem relates the distribution of the first hitting time to the distribution
of the simple random walk.

Lemma 3.5 (Hitting time theorem). Consider the first hitting time T = inf{n ≥ 0 : Sn =
−1} < ∞ a.s.. For every l ∈ N0 and every integer n ≥ 1 we have

Pl(T = n) = l + 1
n

Pl(Sn = −1) (3.2)

We will prove this theorem using the cycle lemma of Dvoretzky and Motzkin [7] in a slightly
varied formulation. The lemma has some additional combinatorial applications, for example,
to compute the Catalans numbers which are mentioned in the next chapter.

Lemma 3.6 (Cycle Lemma). Consider a sequence (x1, . . . , xn) of integers xi ∈ {−1, 1} ∀i =
1 . . . n with ∑n

i=1 xi = −l − 1. Let the sequence consist of p positive elements and q negative
elements. Then there exist exactly q − p = l + 1 cyclic permutations π of (x1, . . . , xn) such that

k∑
i=1

xπ(i) ≥ −l for all k ∈ {1, . . . , n − 1} (3.3)
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3.2. Tools

Proof. Write the sequence as a sequence of ones and minus ones (s1, . . . , sp+q)cyc arranged in
cyclic order, i.e. s1 follows sn and is followed by s2 etc.. Any cyclic permutation corresponds
to a point in the cycle at which the summation in (3.3) starts. We want to find these starting
points. Whenever a 1 is followed by a −1 along the ordering of the sequence the pair can
be considered as zero, as when summing these two numbers the sum can not decrease below
−l. Continuing in this manner all ones are eliminated by a following −1. For this reason
the procedure yields uniquely determined negative elements s∗ = (sij

)j = (si1 , . . . siq−p). For
every element t ∈ s∗ there exists exactly one cyclic permutation π such that π(sn) = t. By
construction it then holds

k∑
i=1

xπ(i) ≥ −l ∀k ∈ {1, . . . , n − 1}

since less than l + 1 elements of s∗ are summed and the 2p other values always yield a non
negative sum. Conversely, if sπ(n) /∈ s∗, then it is either sπ(n) = 1 or there exists a m ∈ N such
that ∑m′

j=0 sπ(n−2m+j) ≥ 0 for all m′ ≤ 2m. In both cases there exists a k ≤ n − 1 such that

k∑
i=1

xπ(i) = −l − 1 .

The cycle lemma can be used as an elegant tool to prove the hitting time theorem, which we
will do now.

Proof. (Hitting time theorem) Under Pl we can write Sn = ∑n
i=1 Xi + l with independent

homogeneously distributed Xi ∈ {−1, 1}. Note that the random walk starts at l. We analyze
possible values of the vector (X1, X2, . . . , Xn) in the case that Sn = −1, which means that∑n

i=1 Xi = −l − 1. There exist n cyclic permutations of this sequence, and any cyclic permuta-
tion is a bijection on the set of possible paths from S0 = l to Sn = −1. From the cycle lemma
it follows that exactly l+1 cyclic permutations correspond to paths staying nonnegative, hence
l + 1 out of n permutations are favorable. Thus

Pl(T = n) = l + 1
n

Pl(Sn = −1) .

This formula is a special case of more general statements, see for example in [17] Section
5.1.

Next we note that the conjectured limit contains Gaussian functions. We need uniform ap-
proximations of such normal distributions by random walks. This is discussed in the following.
We will make use of the o-notation, which is described in Appendix B. We now prove two local
central limit theorems. Set X ′

i = (Xi + 1)/2 ∈ {0, 1} and define the random walk

Zn =
n∑

i=1
X ′

i = Sn + n

2 ∈ N0 . (3.4)

In this situation we have the following local central limit theorem:
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3. Scaling limit of a random walk’s excursion

Lemma 3.7 (Local central limit theorem). For the random walk Zn the following holds:

sup
m∈N

∣∣∣∣∣√nP (Zn = m) − 2√
2π

e−(m−n/2)2/(n/2)
∣∣∣∣∣ n→∞−−−→ 0 (3.5)

Proof. For n ∈ N, m ∈ N0
P (Zn = m) = E[1Zn=m]

is always positive. Since {eikx, k ∈ Z} is an orthonormal set with respect to the L2([−π, π])
inner product we can rewrite a Kronecker-δ as

δZn,m = 1Zn=m = 1
2π

∫ π

−π
eitZne−itmdt .

Applying the expectation we have

E
[ 1
2π

∫ π

−π
eitZne−itmdt

]
= 1

2π

∫ π

−π
E
[
eitZn

]
e−itmdt .

The expectation can be interchanged with the integral sign since 0 ≤ Zn ≤ n, hence the
left hand side is a finite weighted sum of integrals. All integrals exist and the integration
can be interchanged with the sum. Now we write the exponential as a product exp(itZn) =∏n

i=0 exp(itX ′
i) and use the independence of X ′

i which gives:

E
[
eitZn

]
=

n∏
i=0

E [exp(itX ′
i)] = eitnµϕ(t)n

where µ = E[X ′
i] = 1/2 and ϕ(t) = E [exp(it(X ′

i − µ))]. Up to this point the reasoning was
given by Terence Tao [20]. We now proceed in a more direct way. We plug in µ = 1/2.
The characteristic function ϕ(t) can be simply computed using yet again that the expectation
corresponds to a summation of two absolutely convergent series

ϕ(t) = E [exp(it(X ′
i − 1/2))] = E

[ ∞∑
k=0

(it(X ′
i − 1/2))k

k!

]

=
∞∑

k=0

(it)k

k! E((X ′
i − 1/2)k) .

At this point we have E((X ′
i − 1/2)2k−1) = 0 and E((X ′

i − 1/2)2k) = (1/2)2k for k ∈ N since

E((X ′
i − 1/2)k) = 1

2
k 1
2 +

(
−1

2

)k 1
2

and thus
ϕ(t) =

∞∑
k=0

(it)k

k! E((X ′
i − 1/2)k) =

∞∑
k=0

(it/2)2k

(2k)! = cos(t/2) .

We now turn back to the integral and make a change of variables by defining x by t = x/
√

n.
Thus we have

√
nP (Zn = m) =

√
n

2π

∫ π

−π
eitn/2ϕn(t)e−itm (3.6)

= 1
2π

∫ π
√

n

−π
√

n
cosn(x/(2

√
n))e−ix(m/

√
n−

√
n/2)dx .
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3.2. Tools

We now use the following Fourier identity of a Gaussian function for σ > 0 and ω ∈ R:

1
2π

∫
R

e− 1
2 t2σ2

e−iωtdt = 1√
2πσ

e− ω2
2σ2

The trick is to choose ω such that the integrand is in phase with (3.6). We read of (3.6) and
(3.5) that

ω = m/
√

n −
√

n/2
σ = 1/2

and consequently

2√
2π

e−(m−n/2)2/(n/2) = 1
2π

∫
R

e− 1
2 (1/2)2x2

e−ix(m/
√

n−
√

n/2)dx . (3.7)

Note that σ =
√

Var(X ′) = 1/2 as one would expect, which is also how one can generalize this
statement to other random walks. The identity (3.7) then reduces our problem (3.5) to show
uniform convergence to zero of∣∣∣∣√nP (Zn = m) − 1

2π

∫
R

e− 1
2 (1/2)2x2

e−ix(m/
√

n−
√

n/2)dx
∣∣∣∣

≤ 1
2π

∫
R

∣∣∣cosn(x/2
√

n)1(−π
√

n,π
√

n)(x) − e−x2/8
∣∣∣ ,

where the right hand side is independent of m! By the dominating convergence theorem it
is sufficient to prove pointwise convergence and find a integrable dominating function of the
interesting sequence

x 7→ fn(x) = cosn(x/2
√

n)1(−π
√

n,π
√

n)(x) .

The pointwise convergence can be shown by noting that for |x| < π
√

n, a series expansion of
the cos and an ∈ o(1/n2) we have

cos(x/2
√

n)n =
(

1 − x2

8n
+ an(x)

)n
n→∞−−−→ e−x2/8 . (3.8)

The higher order terms an can be neglected in the limit, which can be shown by using the
binomial theorem, and the rest is then the standard sequence converging to the exponential
function. Next we want to find a dominating integrable function of cos(x/(2

√
n))n. To do this

we rearrange (3.8)

an(x) = x2

8n

(
cos(x/2

√
n)

x2/8n
+ 1 − 1

x2/8n

)
.

The function t 7→ f(t) = cos(t)
t2 + 1 − 1

t2 is bounded, has its minimum at t = 0, and increases in
|t| on the interval (−π/2, π/2). This can be checked by computing its derivative. On the other
hand

cosn(x/2
√

n)χ[−π
√

n,π
√

n](x)

vanishes at x > π
√

n, hence in any nontrivial case t = x/2
√

n < π/2. This means that

0 < an <
x2

8n

(
1 −

( 2
π

)2)
= x2

8n
δ
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3. Scaling limit of a random walk’s excursion

with δ < 1 independent of x and n. Finally

cos(x/2
√

n)n <

(
1 − x2

8n
+ x2

8n
δ

)n

= exp
(

n log
[
1 − x2

8n
(1 − δ)

])

≤ exp
(

n
−x2

8n
(1 − δ)

)
= exp

(
−x2

8 (1 − δ)
)

which is an integrable dominating function independent of n. This shows that
1

2π

∫
R

∣∣∣cosn(x/2
√

n)1(−π
√

n,π
√

n)(x) − e−x2/8
∣∣∣ n→∞−−−→ 0 ,

which implies the theorem.

As a corollary we get the following continuous version which will be needed a lot afterwards.

Corollary 3.8 (Local central limit theorem). For any s0 > 0 and numbers r1, r2, r3 ∈ R≥0 we
have

lim
n→∞

sup
x∈R,s≥s0

∣∣∣∣∣√n + r1P (Sbns+r2c ∈ {bx
√

n + r3c, bx
√

n + r3c + 1}) − 2√
2πs

e−x2/2s

∣∣∣∣∣ = 0

Proof. Transforming back we have Xi = 2X ′
i − 1 and Sn = 2Zn − n. This means that

P (Sn ∈ {m, m + 1}) = P
(

Zn =
⌊

m + n + 1
2

⌋)
,

To simplify notation we introduce

a(n, m) :=
⌊

m + n + 1
2

⌋
f(n, m) := (m − n/2)2/(n/2)

and now write for s0 > 0 and x0 > 0:∣∣∣∣√n + r1P
(

Zbns+r2c = a(bns + r2c, bx
√

n + r3c)
)

− 2√
2πs

e−x2/2s

∣∣∣∣
≤
∣∣∣∣√n + r1 −

√
bns + r2c/s

∣∣∣∣P(Zbns+r2c = a(bns + r2c, bx
√

n + r3c)
)

+ 1√
s

∣∣∣∣√bns + r2c P
(

Zbns+r2c = a(bns + r2c, bx
√

n + r3c)
)

− 2√
2π

e−f(bns+r2c,a(bns+r2c,bx
√

n+r3c))
∣∣∣∣

+ 1√
s

∣∣∣∣∣ 2√
2π

e−f(bns+r2c,a(bns+r2c,bx
√

n+r3c)) − 2√
2π

e−x2/2s

∣∣∣∣∣ = A + B + C

Let ε > 0. In the case of the first term there exists due to Lemma 3.7 a κ ≥ 0 and K ∈ N such
that for all n ≥ K:

A ≤ (r1 + r2/s0 + 1/s0)P
(

Zbns+r2c = a(bns + r2c, bx
√

n + r3c)
)

(3.9)

≤ κ
2(r1 + r2/s0 + 1/s0)√

2πn
< ε
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uniformly in s and x. Also the second term follows directly from lemma 3.7 as

B ≤ sup
m∈N

1
√

s0

∣∣∣∣∣√bns + r2c P
(

Zbns+r2c = m
)

− 2√
2π

e−f(bns+r2c,m)
∣∣∣∣∣ < ε (3.10)

for bns + r2c ∈ N large enough. To treat term C we first truncate for an x0 > 0 ∈ R. Now take
n ∈ N large enough, such that ns0 > 1. It then exists an K(x0, s0) such that

f(bns + r2c, a(bns + r2c, bx
√

n + r3c))

=
(⌊

bx
√

n + r3c + bns + r2c + 1
2

⌋
− 1

2bns + r2c
)2

·
(

bns + r2c
2

)−1

≤
(∣∣∣∣∣x

√
n + r3 + ns + r2

2 − ns + r2

2

∣∣∣∣∣+ 3
)2 2

ns + r2 − 1

≤ x2n + 2|x|
√

n(r3 + 3) + (r3 + 3)2

2ns − 2

<
x2

2s

n

n − 1/s0
+ 2x0

√
n(r3 + 3) + (r3 + 3)2

2ns0 − 2

<
x2

2s
(1 + ε)

for all n ≥ K(x0, s0) and all s > s0, −x0 ≤ x ≤ x0. By the same arguments there exists for
any ε > 0 an integer K ′(x0, s0) such that for all n ≥ K ′(x0, s0)

f(bns + r2c, a(bns + r2c, bx
√

n + r3c))

≥
(∣∣∣∣∣x

√
n + r3 + ns + r2 + 1

2 − ns + r2

2

∣∣∣∣∣− 2
)2 2

ns + r2

≥ x2

2s

n

n + r2/s0
− 2(x0

√
n + r3 + r2 + 1)

2ns0
>

x2

2s
(1 − ε)

and all s > s0, −x0 ≤ x ≤ x0. Together we obtain:

sup
s≥s0,|x|≤x0

∣∣∣∣∣f(bns + r2c, a(bns + r2c, bx
√

n + r3c)) − x2

2s

∣∣∣∣∣ n→∞−−−→ 0

uniformly. Secondly we observe that exp(−f(bns + r2c, a(bns + r2c, bx
√

n + r3c))) x→∞−−−→ 0 for
all n ∈ N and exp(−x2/2s) x→∞−−−→ 0. Choose x0 > 0 such that for all x > x0 and all n ∈ N:

sup
s≥s0,|x|>x0

∣∣∣e−f(bns+r2c,a(bns+r2c,bx
√

n+r3c)) − e−x2/2s
∣∣∣ < ε

Due to the Lipschitz continuity of t → e−t we can then choose a K(x0, s0) ∈ N such that for
all n ≥ K

C ≤ 2√
2πs0

 sup
s≥s0,|x|>x0

∣∣∣e−f(bns+r2c,a(bns+r2c,bx
√

n+r3c)) − e−x2/2s
∣∣∣ (3.11)

+ sup
s≥s0,|x|≤x0

∣∣∣∣∣f(bns + r2c, a(bns + r2c, bx
√

n + r3c)) − x2

2s

∣∣∣∣∣
 < 2ε

So with (3.9), (3.10) and (3.11) we obtain the stated uniform convergence.
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3. Scaling limit of a random walk’s excursion

3.3. Tightness

We first come to the proof of tightness. We want to prove that the laws of(
1√
2k

Ck(2kt)
)

0≤t≤1

are tight. To do this we use Kolmogorov’s criterion for tightness, 3.4. We want to show

Proposition 3.9. There exist positive constants α, β, γ and an integer k0 ∈ N such that for
all s, t ∈ T and every k ≥ k0

E[|(Ck(2ks) − Ck(2kt))/
√

2k|α] ≤ β|s − t|γ+1 .

Consider a fixed k ∈ N. Define ck(t) := (2k)−1/2Ck(2kt) for all t ∈ [0, 1]. By the Rerooting
Lemma 5.3, which is proven later independent of this result, we can define

c′
k(t) = ck(s) + ck(s + t) − 2mck

(s, s + t) .

where s + t = s + t − bs + tc and mck
(s, t) = infr∈[s∧t,s∨t] ck(r). For notations compare with

Lemma 5.3. It is shown there that such a mapping defines a bijection on the set of continuous
functions g ∈ C([0, 1]) with g(0) = g(1) = 0. In our case we can check from the definition that
C ′

k(i) :=
√

2kc′
k(i/2k) defines again an excursion of the random walk, and thus the mapping

Ck 7→ C ′
k is a bijection on the set of excursions with length 2k. This bijection now yields that

ck and c′
k have the same law, and thus

E[ck(s) + ck(s + t) − 2mck
(s, s + t)] = E[c′

k(t)] = E[ck(t)] .

To apply the weak convergence criterion we have a closer look at

E[|ck(t) − ck(s)|4] = E[|ck(t) + ck(s) − 2ck(s)|4]
≤ E[|ck(t) + ck(s) − 2mck

(s, t)|4] = E[|ck(t − s)|4] .

Consider at first t = j/2k, s = i/2k for natural numbers 0 ≤ i < j ≤ 2k. We will use the
following:

Lemma 3.10. For the simple random walk (Si)i∈N and first hitting time of minus one, T , it
holds

P (Si = l | T = 2k + 1) = 2(2k + 1)(l + 1)2

(2k + 1 − i)(i + 1)
Pl(Si+1 = −1)Pl(S2k+1−i = −1)

P (S2k+1 = −1) , (3.12)

where again Pl denotes the law under which S0 = l a.s..

Proof. An outline of the following steps was given by [15]. We start with some manipulations
of the law of a conditioned random walk: Consider for i ∈ {1, . . . , 2k} and l ∈ N0

P (Si = l | T = 2k + 1) = P (Si = l, T = 2k + 1)
P (T = 2k + 1) .
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Instead of conditioning on T = 2k + 1 we can use Si = l as condition which yields

P (Si = l, T = 2k + 1) = P (Si = l, T = 2k + 1, T > i)
= P (T = 2k + 1 | Si = l, T > i)P (Si = l, T > i)
= Pl(T = 2k + 1 − i)P (Si = l, T > i) .

In the last equality the Markov property of the random walk was used. A random walk
conditioned on reaching l at i coincides with the law of a random walk starting at l. We
observe that

P (Si = l, T > i) = P (Si = l, Sj ≥ 0 for j ≤ i)

corresponds to all random walks starting at zero, reaching l at i and with arbitrary values past
i. By time reversal we can view this as a random walk starting at l and reaching 0 at i. Thus

P (Si = l, Sj ≥ 0 for j ≤ i) = Pl(Si = 0, Sj ≥ 0 for j ≤ i) (3.13)
= Pl(Si = 0, Sj ≥ 0 for j ≤ i, Si+1 = −1)

+ Pl(Si = 0, Sj ≥ 0 for j ≤ i, Si+1 = 1)
= 2Pl(Si = 0, Sj ≥ 0 for j ≤ i, Si+1 = −1) = 2Pl(T = i + 1)

With these computations we finally find

P (Si = l | T = 2k + 1) = 2Pl(T = i + 1)Pl(T = 2k + 1 − i)
P (T = 2k + 1)

We now use the hitting time theorem (Lemma 3.5) which yields

P (Si = l | T = 2k + 1) = 2(2k + 1)(l + 1)2

(2k + 1 − i)(i + 1)
Pl(Si+1 = −1)Pl(S2k+1−i = −1)

P (S2k+1 = −1) . (3.14)

This equation will be important again later on as well. Assume i, l have same parity, which
means in our case that i, l are either both odd or both even, and i 6= 0, since this case is always
trivial. We have

P (c(i/2k) = l/
√

2k) = P (Ck(i) = l) = P (Si = l | T = 2k + 1)

By assumption 2k + 1 − i and −l − 1 have same parity, such that

Pl(S2k+1−i = −1) = P (S2k+1−i ∈ {−l − 1, −l})

We apply corollary 3.8 and obtain:

sup
l∈Z

∣∣∣∣∣√2k + 1 − iP (S2k+1−i ∈ {−l − 1, −l}) − 2√
2π

∣∣∣∣∣ n→∞−−−→ 0

∣∣∣∣∣√2k + 1P (S2k+1 = −1) − 2√
2π

∣∣∣∣∣ n→∞−−−→ 0

from which we can see that there for any constant κ1 > 0 there exists a K ∈ N independent of
l ∈ Z such that

P (S2k+1−i ∈ {−l − 1, −l}) ≤ 2/
√

2π + κ1√
k

and P (S2k+1 = −1) ≥ 2/
√

2π − κ1√
k
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3. Scaling limit of a random walk’s excursion

for all k ≥ K. Further we may assume i ≤ k, since Ck(2k − i) has the same distribution as
Ck(i). Thus we get the estimate

P (Ck(i) = l) ≤ 2(2k + 1)(l + 1)2

(2k + 1 − i)(i + 1)
(2/

√
2π + κ1)/

√
2k

(2/
√

2π − κ1)/
√

2k
Pl(Si+1 = −1) < κ3

(l + 1)2

(i + 1) P (Si+1 = l+1)

(3.15)
with κ3 = 4(2/

√
2π + κ1)/(2/

√
2π − κ1). Hence we need to estimate the scaling of

E[|c(t − s)|4] = 1
2k

∞∑
l=−∞

l4P (C(j − i) = l)

≤ 1
2k

∞∑
l=−∞

(l + 1)4κ3
(l + 1)2

(j − i + 1)P (Sj−i+1 = l + 1) = 1
2k

κ3

j − i + 1E[S6
j−i+1] .

The sixth moment of a random walk can be computed explicitly. We need to compute the
expectation of

E[S6
i+1] = E

( i+1∑
m=1

Xm

)6
which is a sum of expressions E[X6

m] = E[X4
m1X2

m2 ] = E[X2
m1X2

m2X2
m3 ] = 1 due to the indepen-

dence of random variables Xm and E[Xm] = 0. There are now

i + 1 +
(

i + 1
2

)(
4
2

)(
2
2

)
+
(

i + 1
3

)(
6
3

)
≤ κ4(i + 1)3

such terms, κ4 > 0, where the scaling to the third power is due to the third term. This gives

E[|c(t − s)|4] ≤ κ3κ4
(j − i + 1)2

2k
= κ3κ4((t − s)2 + o(1)) .

Finally in the case of general t < s ∈ [0, 1] we have

E[|c(t − s)|4] ≤ 1
2k

E[|C(b2kt − 2ksc)|4] ∧ E[|C(d2kt − 2kse)|4]

≤ κ3κ4(t − s)2 + o(1)

Adjusting the constant prefactor once again to absorb the terms of order o(1) this now shows
Proposition 3.9.

3.4. Convergence of finite dimensional distributions

To analyze the convergence of finite dimensional distributions, remember the following nota-
tions. The density of the entrance law of the excursion process

lt = |x|√
2πt3

exp
(

−x2

2t

)
,

the Gaussian or Brownian transition density

pt(x, y) = 1√
2πt

exp
(

−(y − x)2

2t

)
,
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3.4. Convergence of finite dimensional distributions

as well as the transition density of Brownian motion killed when it hits zero.

qt(x, y) = pt(x, y) − pt(x, −y)

Note that this notation differs slightly from [15], as we used the notation as in the literature,
e.g. [24]. We realized in the introduction that in k ∈ N it holds

1√
2k

S2kt − 1√
2k

Sb2ktc
p−→ 0 .

Due to the theorem of Slutzky 1.9 the convergence of finite dimensional distributions can then
be stated as

Proposition 3.11 (Convergence of finite dimensional distributions). Consider a discretization
of the excursion interval 0 < t1 < t2 < · · · < tp < 1 for p ∈ N. The finite dimensional
distributions converge, i.e.

1√
2k

(
Sb2kt1c, . . . , Sb2ktpc | T = 2k + 1

)
d−−−→

k→∞
(e(t1), . . . , e(tp))

where for measurable sets A1, . . . Ap ∈ B(R≥0)

n(1)(e(t1) ∈ A1, . . . , e(tp) ∈ Ap) =
∫

A1
2
√

2π lt1(x1)
∫

A2
qt2−t1(x1, x2)

∫
A3

. . .

· · ·
∫

Ap

qtp−tp−1(xp−1, xp)l1−tp(xp) dx1 . . . dxp

It is sufficient to check the convergence of probability measures on closed boxes only. This will
simplify the proof significantly. Consider boxes V := A1 ×A2 ×· · ·×Ap with Ai = [ai, bi] ⊆ R≥0
for i = 1, . . . , p. These sets form a ∩ stable system which generates B(Rp

≥0) = B(R≥0)p.
(Sometimes also called generating π-system.) It is sufficient to check the the convergence only
on these sets because of the separability of R≥0, compare with Billingsley Theorem 2.3 [4]. We
then take a subdivision of the boxes into smaller and smaller cubes, i.e. for j = 1, 2, . . . , p:

aj ≤ b
√

2kajc + 1√
2k

<
b
√

2kajc + 2√
2k

< · · · <
b
√

2kbjc√
2k

≤ bj of Aj = [aj, bj]

and name the interior points for j = 1, . . . , p as x
(j)
i = (b

√
2kajc + i)/

√
2k for i ≤ nj =

b
√

2kbjc − b
√

2kajc. Next we use (3.15), which tells us that there exists a κ > 0 independent
of x and t such that

P

(
1√
2k

Sb2ktc ∈ {x
(j)
i , x

(j)
i+1} | T = 2k + 1

)
(3.16)

≤ κ
(b

√
2kajc + i)2

b2ktc
P (Sb2ktc+1 ∈ {b

√
2kajc + i, b

√
2kajc + i + 1})

Cor. 3.8
≤ κκ2

2√
4πtk

e−a2
j /2t ≤ κ3(t)√

k
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3. Scaling limit of a random walk’s excursion

where κ2, κ3 > 0. With this notation the probability becomes

P

(
1√
2k

Sb2kt1c ∈ A1, . . . ,
1√
2k

Sb2ktpc ∈ Ap

∣∣∣∣T = 2k + 1
)

=
n1∑

i1=1
P

(
1√
2k

Sb2kt1c = x
(1)
i1 ,

1√
2k

Sb2kt2c ∈ A2 . . . ,
1√
2k

Sb2ktpc ∈ Ap

∣∣∣∣T = 2k + 1
)

= 1
2 ·

 n1−1∑
i1=2

P

(
1√
2k

Sb2kt1c ∈ {x
(1)
i1 , x

(1)
i1+1}, . . . ,

1√
2k

Sb2ktpc ∈ Ap

∣∣∣∣T = 2k + 1
)

+ P

(
1√
2k

Sb2kt1c ∈ {x
(1)
1 , x(1)

n } . . . ,
1√
2k

Sb2ktpc = x
(p)
ip

∣∣∣∣T = 2k + 1
)

... proceeding inductively

= 1
2p

n1−1∑
i1=2

· · ·
np−1∑
ip=2

P

(
1√
2k

Sb2kt1c ∈ {x
(1)
i1 , x

(1)
i1+1}, . . . ,

1√
2k

Sb2ktpc ∈ {x
(p)
ip

, x
(p)
ip+1} | T = 2k + 1

)

+ Boundary terms

where the additional terms vanish since

Boundary terms ≤
p∑

j=1

κ3(tj)√
2k

k→∞−−−→ 0 ,

because of (3.16). From now on we use the shorthand notation

ft1,...,tp(x1, . . . , xp) = 2
√

2π lt1(x1)qt2−t1(x1, x2) . . . qtp−tp−1(xp−1, xp)l1−tp(xp) .

for the density of the excursion measure with respect to the Lebesgue measure. We can similarly
treat the density:

∫
A1×···×Ap

ft1,...,tp dλp =
∫

A2×···×Ap

∫ x
(1)
1

a1
ft1,...,tpdλ +

n1−1∑
i1=2

∫ x
(1)
i1+1

x
(1)
i1

ft1,...,tpdλ +
∫ b

x
(1)
n1

ft1,...,tpdλ

 dλp−1

=
∫

A2×···×Ap

n1−1∑
i1=2

1√
2k

ft1,...,tp(x(1)
i1 , x2, . . . , xp)dλp−1 + o(1)

...

= 1√
2k

p

n1−1∑
i1=2

· · ·
np−1∑
ip=2

ft1,...,tp(x(1)
i1 , . . . , x

(p)
ip

) + o(1)

where it was used that ft1,...,tp is continuous and x
(j)
ij+1 − x

(j)
ij

=
√

2k
−1. From the preceding
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3.4. Convergence of finite dimensional distributions

discussion we see∣∣∣∣∣∣2pP

(
1√
2k

Sb2kt1c ∈ A1, . . . ,
1√
2k

Sb2ktpc ∈ Ap | T = 2k + 1
)

− 2p
∫

V
ft1,...,tp(x1, . . . , xp)dx1 . . . dxp

∣∣∣∣∣∣
≤

n1−1∑
i1=2

· · ·
np−1∑
ip=2

∣∣∣∣∣∣P
(

1√
2k

Sb2kt1c ∈ {x
(1)
i1 , x

(1)
i1+1}, . . . ,

1√
2k

Sb2ktpc ∈ {x
(p)
ip

, x
(p)
ip+1} | T = 2k + 1

)

− 2p

√
2k

p ft1,...,tp(x(1)
i1 , . . . , x

(p)
ip

)

∣∣∣∣∣∣+ o(1)

≤ sup
x∈V

∣∣∣∣∣∣
√

2k
p
P
( 1√

2k
Sb2kt1c ∈ {x(1), x(1) + 2k−1/2}, . . .

. . . ,
1√
2k

Sb2kt1c ∈ {x(p), x(p) + 2k−1/2} | T = 2k + 1
)

− 2p ft1,...,tp(x(1), . . . , x(p))

∣∣∣∣∣∣+ o(1)

The result follows if we show that in the argument (x(1), . . . , x(p)) ∈ Rp uniformly on V . Con-
sequently we state the following theorem which is equivalent to the convergence of finite di-
mensional distributions:
Theorem 3.12. Let p ∈ N be arbitrary and V ⊆ Rp be a box V = A1 × · · · × Ap, where
Ai = [ai, bi]. It holds

sup
x∈V

∣∣∣∣∣∣
√

2k
p
P
( 1√

2k
Sb2kt1c ∈ {x(1), x(1) + 2k−1/2}, . . .

. . . ,
1√
2k

Sb2kt1c ∈ {x(p), x(p) + 2k−1/2} | T = 2k + 1
)

− 2p ft1,...,tp(x(1), . . . , x(p))

∣∣∣∣∣∣ k→∞−−−→ 0

Proof. In the following we generalize the argument given by [15] to the arbitrary finite dimen-
sional case. Take n ∈ N and integers 0 < i1 < · · · < in < 2k. We first do some general
manipulations of the expressions we want to take the limit of. By the definition of the condi-
tional probability:

P (Si1 = l1, . . . , Sin = ln | T = 2k + 1) = P (Si1 = l1, . . . , Sin = ln, T = 2k + 1)
P (T = 2k + 1) .

Now we have:

P (Si1 = l1, . . . , Sin = ln, T = 2k + 1) = P (T = 2k + 1|Si1 = l1, . . . , Sin = ln, T > in)
× P (Si1 = l1, . . . , Sin = ln, T > in)

= Pln(T = 2k + 1 − in)P (Si1 = l1, . . . , Sin = ln, T > in) ,

where the Markov property was used in the second line. For the second factor we observe:

P (Si1 = l1, . . . , Sin = ln, T > in) = P (Sin = ln, T > in|Si1 = l1, . . . , Sin−1 = ln−1, T > in−1)
× P (Si1 = l1, . . . , Sin−1 = ln−1, T > in−1)

= Pln−1(Sin−in−1 = ln, T > in − in−1)
× P (Si1 = l1, . . . , Sin−1 = ln−1, T > in−1)
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3. Scaling limit of a random walk’s excursion

Doing the same calculations recursively for the last factor we end up with

P (Si1 = l1, . . . , Sin = ln, T > in) =
n−1∏
j=1

[
Pln−j

(Sin−j+1−in−j
= ln−j+1, T > in−j+1 − in−j)

]
× P (Si1 = l1, T > i1)

We already showed in (3.13) that

P (Si1 = l1, T > i1) = 2Pl1(T = i1 + 1) , (3.17)

which we can use for the last factor. Let us now focus on the terms in the product. Here we
can use the reflection principle of the random walk to simplify further. For this we use the
same tricks that were used in the derivation of the Taboo transition function. First consider
for j ∈ {1, . . . , n − 1}:

Pln−j
(Sin−j+1−in−j

= ln−j+1, T < in−j+1 − in−j)
= P (Sin−j+1−in−j

= ln−j+1 − ln−j, T−ln−j
< in−j+1 − in−j)

= P (Sin−j+1−in−j
= ln−j − ln−j+1, Tln−j

< in−j+1 − in−j)
= P (Sin−j+1−in−j

= ln−j − ln−j+1, max
k≤in−j+1−in−j

Sk ≥ ln−j)

= P (Sin−j+1−in−j
= ln−j + ln−j+1, max

k≤in−j+1−in−j

Sk ≥ ln−j) = P−ln−j+1P (Sin−j+1−in−j
= ln−j)

This allows us to write

Pln−j
(Sin−j+1−in−j

= ln−j+1, T > in−j+1 − in−j)
= Pln−j

(Sin−j+1−in−j
= ln−j+1) − P−ln−j+1(Sin−j+1−in−j

= ln−j) .

Finally we use the hitting Time Theorem (3.5) to rewrite everything in terms of the random
walk

Pl1(T = i1 + 1) = l1 + 1
i1 + 1Pl1(Si1+1 = −1)

Pln(T = 2k + 1 − in) = ln + 1
2k + 1 − in

Pln(S2k+1−in = −1) .

Altogether we can infer

P (Si1 = l1, . . . , Sin = ln | T = 2k + 1)

= 2(2k + 1)(l1 + 1)(ln + 1)
(2k + 1 − in)(i1 + 1)

2Pl1(Si1+1 = −1)Pln(S2k+1−in = −1)
P (S2k+1 = −1)

×
n−1∏
j=1

[P (Sin−j+1−in−j
= ln−j+1 − ln−j) − P (Sin−j+1−in−j

= ln−j + ln−j+1)]

Take now a discretization of the normalized excursion intervall 0 < t1 < · · · < tp < 1 We will
employ the notation

p(n, m) = P (Sn ∈ {m, m + 1}) .

Define then for α ∈ {0, 1}p:

p̃α
k (ti, x(i), i = 1 . . . p) :=

√
2k

p
P
(

Sb2kt1c = b
√

2kx(1) + α(1)c, . . . (3.18)

. . . , Sb2ktpc = b
√

2kx(p) + α(p)c
∣∣∣∣T = 2k + 1

)
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3.4. Convergence of finite dimensional distributions

and the index set K(α) = {k ∈ N | p̃α
k (ti, x(i), i = 1 . . . p) > 0} ⊆ N . K(α) = {k1, k2, . . . } is

countably infinite, since P (Sn = l) > 0 if l + n is even (We will speak of same parity of n and
l). We then have, writing all terms out

p̃α
k (ti, x(i), i = 1 . . . p) =

√
2k

p 2(2k + 1)(bx(p)
√

2k + α(p)c + 1)(bx(1)
√

2k + α(1)c + 1)
(2k + 1 − b2ktpc)(b2kt1c + 1)

× 2p(b2kt1 + 1c, bx(1)
√

2k + α(1)c + 1)p(b2ktpc, bx(p)
√

2k + α(p)c + 1)
P (S2k+1 = −1)

×
p−1∏
j=1

p
(
b2k(tj+1 − tj)c, b

√
2kx(j+1)c + α(j + 1) − b

√
2kx(j)c − α(j)

)

− p
(
b2k(tj+1 − tj)c, b

√
2kx(j+1)c + α(j + 1) + b

√
2kx(j)c + α(j)

) 
Let (kl)l∈N ⊆ K(α) be the diverging list of elements in K(α). Using Corollary 3.8 again we
have directly with s = tj+1 − tj and x = x(j+1) ± x(j):

√
2klp

(
b2kl(tj+1 − tj)c, b

√
2klx

(j+1)c ± b
√

2klx
(j)c + α(j + 1) ± α(j)

)
(3.19)

l→∞−−−→ 2ptj+1−tj
(x(j+1), ±x(j))

for fixed α. Analogously we have

2
√

2klp(b2klt1 + 1c, bx(1)
√

2kl + α(1)c + 1) l→∞−−−→ 2pt1(x(1)) (3.20)√
2klp(b2kltpc, bx(p)

√
2kl + α(p)c + 1) l→∞−−−→ ptp(x(p)) .

All these convergences are uniform on V by Corollary 3.8. Additionally we have for the first
terms

2(2k + 1)(bx(p)
√

2k + α(p)c + 1)(bx(1)
√

2k + α(1)c + 1)
(2k + 1 − b2ktpc)(b2kt1c + 1)

k→∞−−−→ 2x(p)x(1)

(1 − tp)t1
(3.21)

because for large k the fraction is determined by the terms proportional to k. Also this
convergence is happening uniformly due to the boundedness of V and similar arguments as in
the ones leading to (3.11). Finally

√
2kP (S2k+1 = −1) k→∞−−−→ 2√

2π
. (3.22)

independent of x ∈ V . Note that the factors of
√

2k
p work out precisely, since p − 1 factors

are needed for the terms in the big product, one each for the limits (3.19), 2 more factors go
into the limit of (3.20), while one factor is gained since (3.22) appears in the denominator. In
total we can conclude that for any α:

p̃α
kl

(ti, x(i), i = 1 . . . p) l→∞−−−→
p−1∏
j=1

[
2ptj+1−tj

(x(j+1), x(j)) − 2ptj+1−tj
(x(j+1), −x(j))

]
(3.23)

× 2pt1(x(1))ptp(x(p)) 2x(p)x(1)

(1 − tp)t1

√
2π

2

= 2p
√

2πlt1(x(1))
p−1∏
j=1

qtj+1−tj
(x(j+1), x(j))ltp(x(p)) = 2pft1,...,tp(x(1), . . . , x(p))
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3. Scaling limit of a random walk’s excursion

uniformly on V . Now note that for each k ∈ N and each vector (x(1), . . . , x(p)) there exists
exactly one α ∈ {0, 1}p such that

p̃k(ti, x(i), i = 1 . . . p) :=
√

2k
p
P
(

Sb2kt1c ∈ {b
√

2kx(1)c, b
√

2kx(1)c + 1}, . . .

. . . , Sb2ktpc ∈ {b
√

2kx(p)c, b
√

2kx(p)c + 1}
∣∣∣∣T = 2k + 1

)
=

√
2k

p
P
(

Sb2kt1c = b
√

2kx(1) + α(1)c, . . . , Sb2ktpc = b
√

2kx(p) + α(p)c
∣∣∣∣T = 2k + 1

)

Consider now the full sequence (p̃k(ti, x(i), i = 1 . . . p))k∈N. For every subsequence (p̃kl
)l∈N ⊆

(p̃k)k∈N there exists at least one α ∈ {0, 1}p such that there is a subsequence (p̃α
klm

)m∈N ⊆
(p̃kl

)l∈N which converges to the claimed limit as in (3.23). Due to the subsequence principle also
p̃k must converge to that limit. This proves the convergence of finite dimensional distributions.
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4. Galton-Watson trees

The final goal of this thesis is to determine the scaling limit of Galton-Watson trees. In
this chapter we will define finite rooted ordered trees and what we mean by a random tree.
Main purpose of this chapter is to establish a mapping between plane trees and non negative
excursions. This will allow us to use our previously developed theory of excursions of the
random walk and Brownian motion. This chapter is mostly taken from [15].

4.1. Plane trees

We first define finite rooted ordered trees which we will just call plane trees. We define the set
of finite sequences of positive integers as

U =
∞⋃

n=0
Nn

where N denotes the set of positive natural numbers N = {1, 2, . . . } and by convention N0 = ∅.
An element of U later represents a node of the tree. For a sequence u = (u1, . . . , un) ∈ U
the number |u| = n is called the generation of u. It describes the height of the node u in
the tree. The product of two elements in U is their concatenation: For u = (u1, . . . , un), v =
(v1, . . . , vm) ∈ U we define

uv = (u1, u2, . . . , un, v1, v2, . . . , vm) .

We further define a projection

π : U → U , (u1, u2, . . . , un) 7→ (u1, u2, . . . , un−1)

with π(i) := ∅ and π(∅) = ∅. π(u) will later represent the parental node of u. With these
definitions a tree can be defined as follows:

Definition 4.1 (Plane Tree). A plane tree τ is a finite subset of U such that

1. The tree has a root: ∅ ∈ τ

2. For any node in the tree, the tree contains the entire geneology, so
π|τ : τ → τ is a welldefined mapping.

3. For any node u ∈ τ there exists a number of children ku(τ) ∈ N0 such that uj ∈ τ iff
1 ≤ j ≤ ku(τ), j ∈ N.

We further define the set of all finite plane trees as A and the set of trees with k edges as Ak.

We additionally use the notations #τ for the cardinality of τ , which is the number of nodes,
and |τ | = #τ − 1 for the number of edges. A tree can also be defined recursively, which will
become useful to extend the definition to random trees.
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4. Galton-Watson trees

Lemma 4.2. Define natural numbers indexed by U : (ku)u∈U ∈ N0. We then define a set τ
recursively by

1. ∅ ∈ τ

2. u = (u1, . . . , un) ∈ τ if and only if π(u) ∈ τ and un ≤ k(u1,...,un−1)

If τ is finite, then τ is a tree.

Proof. Obviously ∅ ∈ τ . Furthermore π(u) = (u1, . . . , un−1) ∈ τ by definition. Lastly condition
three is fulfilled since for u ∈ τ and v = uj we have that v ∈ τ iff j ≤ ku.

This lemma is helpful to promote the tree to a random variable later on. A tree can always
be associated with its contour function or so called Dyck path. Imagine traveling the tree at
one edge per time unit from left to right. This will trace out the contour function. It can be
formalized as follows.

Definition 4.3 (Contour process). Let τ be a tree. Define a mapping Φτ : {0, 1, . . . , 2|τ |+1} →
τ recursively. We set Φτ (0) := ∅ as the root of the tree and Φτ (1) = (1). For i > 1 we define

Di = {u ∈ τ | u /∈ {Φτ (0), . . . , Φτ (i − 2)}, π(u) = Φτ (i − 1)}

as the set of children of π(u), which do not lie in the image of {0, 1, . . . , i − 2} under Φτ . We
set

Φτ (i) =
{

π(Φτ (i − 1)) if Di = ∅
Φτ (i − 1)n′ else, where n′ = min{n ∈ N | Φτ (i − 1)n ∈ Di}

with the convention π(∅) = ∅. The contour function is defined by the generation of this process,
i.e. for τ ∈ A and i ∈ {0, 1, . . . , 2|τ |} we set

Ĉ|τ |(i)(τ) = |Φτ (i)| ,

which defines a mapping from trees to excursions, Ψ : τ 7→ Ĉ|τ |(·)(τ) and we write C =
Ψ(A), Ck = Ψ(Ak).

By definition, after i = |τ | every edge is visited exactly once and it holds Ĉ|τ |(0)(τ) =
Ĉ|τ |(|τ |)(τ) = 0.

Ĉk(s)(τ)

ss = 2k|τ | = k

A mapping constructed this way from Ak into the set of all contour functions of length 2k is a
bijection. It should be noted that this relies on the fact that plane trees have a fixed ordering
of vertices from left to right. For our purpose we only need that any Dyck path of length 2k of
this type yields a tree with k edges. Additionally the correspondence of Dyck paths and trees
tells us that the number of trees with size |τ | = k is given by the kth Catalan number:
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Corollary 4.4.

#Ak = 1
k + 1

(
2k

k

)

Proof. In order to show this we again use the cycle lemma. We need to count the number of
non-negative walks with length 2k. Consider xi ∈ {−1, 1} for i ∈ {1, 2, . . . , 2k + 1} with

2k+1∑
i=1

xi = −1 (4.1)

and define for j = 1, . . . 2k

C̃k(j) :=
j∑

i=1
xi . (4.2)

The sum of the first j elements with j ∈ {0, 1, 2, . . . , 2k} stays non-negative if and only if
Ĉk ∈ Ck where the function Ĉk : [0, 2k] → R is constructed by linear interpolation between
C̃k(j) and C̃k(j + 1) for j = 0, 2, . . . , 2k − 1 . In particular Ĉk(2k) = 0. If in general a sequence
(x1, . . . , x2k+1) fulfills equation 4.1, then k out of 2k + 1 elements must be equal to one. Due
to the cycle lemma there exists exactly one out of 2k + 1 cyclic permutations π such that
(xπ(1), . . . , xπ(2k+1)) fulfills equation 4.2. Hence the number of Dyck paths of lengths 2k is

#Ak = #Ck = 1
2k + 1

(
2k + 1

k

)
= 1

k + 1

(
2k

k

)

4.2. Galton-Watson trees

In this section we introduce trees whose branching is described by a Galton-Watson process.
Main result of this section is the fact that Galton-Watson trees are distributed uniformly on
Ak. Galton-Watson processes were introduced to model the inheritance and possible extinction
of surnames. A Galton-Watson process can be defined as follows:

Definition 4.5. A Galton- Watson process is a stochastic process (Zn)n∈Z≥0 which is defined
recursively by Z0 = 1 and

Zn+1 =
Zn∑
j=1

Kn
j

where {Kn
j } are a set of independent identically distributed natural valued random variables,

which describe the number of ”children” of individual j of the nth generation.

Since we want to define finite random trees the following lemma is helpful

Lemma 4.6. If the law of Kn
j (also called offspring distribution) is critical or subcritical, i.e.

E[K1
1 ] ≤ 1 then the process will go extinct with probability one:

lim
n→∞

P (Zn = 0) = 1
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4. Galton-Watson trees

A proof can be found in [19]. In this section we want to promote τ to a random variable by first
promoting the number ku to a random variable Ku. As we have seen in Lemma 4.2 we need
to choose these random variables such that the resulting tree is finite. This can be ensured by
choosing a critical or subcritical probability measure µ on Z≥0 of the number of children, i.e.

∞∑
k=0

kµ(k) ≤ 1 .

This is made precise in the following theorem.

Theorem 4.7. Let (Ku, u ∈ U) be a collection of independent random variables with critical
or subcritical law µ and define θµ recursively by

1. ∅ ∈ θµ

2. u = (u1, . . . , un) ∈ θµ if and only if π(u) ∈ θµ and un ≤ K(u1,...,un−1)

In this case (Zn, n ≥ 0) defined by Zn = #{u ∈ θµ | |u| = n} is a Galton- Watson process with
offspring distribution µ and initial value Z0 = 1. In particular θµ is a.s. a finite plane tree.

Proof. Enumerate all sequences in θµ with length n: uj, j = 1, 2, . . . , Zn. Then then the total
number of nodes of the n + 1st generation is given by

Zn+1 =
Zn∑
j=1

Kuj

Thus (Zn, n ≥ 0) is a Galton-Watson process with offspring distribution µ and in the critical
or subcritical case we have that the process goes extinct almost surely. Thus, with probability
one, θµ is a tree.

By this theorem, θµ becomes a random variable as well. Next we want to understand the
probabilistic structure of the contour function. For this we introduce the notation of a shifted
tree. If τ is a tree and u ∈ τ , the subtree of τ with root u is denoted by

Tu(τ) = {v ∈ U | uv ∈ τ}

Furthermore we have the following explicit formula for the law of θµ:

Proposition 4.8. For every τ ∈ A we have

P (θµ = τ) =
∏
u∈τ

µ(ku(τ))

If the offspring distribution is geometric, i.e.

µ0(k) = 2−k−1 ,

then θµ0 is a critical Galton-Watson tree and

P (θµ0 = τ) = 2−2|τ |−1
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Proof.
P (θµ = τ) =

∏
u∈τ

P (Ku = ku(τ)) =
∏
u∈τ

µ(ku(τ))

We can then compute under µ = µ0

P (θµ0 = τ) =
∏
u∈τ

2−ku(τ)−1 = 2
∑

u∈τ
(−ku(τ)−1)

= 2−|τ |−#τ = 2−2|τ |−1

In conclusion the measure P (θµ0 ∈ dτ | |θµ0| = k) is uniform on Ak and we can also write θk

for a random tree uniformly distributed on Ak.

4.3. Galton-Watson trees and random walks

In this section we see from Theorem 4.9 that the distribution of Galton-Watson trees with
geometric offspring distribution yields a contour function distributed according to the excursion
of a random walk. Recall the definition of the excursion of a random walk with length 2k

L((Ck(2kt))t∈[0,1]) = L((S2kt)t∈[0,1]|T = 2k + 1) .

where S is the simple random walk and T the first hitting time of minus one. We have the
following identity in distribution:

Theorem 4.9. Let θ be a A-valued random variable, i.e. a random tree, S a simple random walk
and θS a tree coded by Sn for n ≤ T −1. Then θ is a Galton-Watson tree with geometric offspring
distribution µ0 if and only if θ

d= θS or equivalently due to T = 2|θS| + 1 iff Ĉ|θ|(·)(θ) d= C|θ|.

Proof. Define θS to be the tree coded by the first excursion of a simple random walk S, which
is a.s. finite. We are going to prove that

P (ku(θS) = m | u ∈ θS) = P (k∅(Tu(θS)) = m| u ∈ θS) = P (k∅(θS)) = µ0(m) (4.3)

which shows that θS
d= θ. Let’s define the upcrossing times of the random walk from 0 to 1:

U1 = inf{n ≥ 0 | Sn = 1}, V1 = inf{n ≥ U1 | Sn = 0}
Uj = inf{n ≥ Vj−1 | Sn = 1}, Vj = inf{n ≥ Uj | Sn = 0} for j > 0

Using these upcrossing times we can count the number of children of the root. For this we
consider the random variable:

K = sup{j | Uj ≤ T}

where by convention sup ∅ = 0. In this case we have K = k∅(θS). Whenever a new subtree of
θS starts, the root and the next descendant of the root must be traveled, which corresponds to
the upcrossing times Uj. We now proof that the random walk generates the correct offspring
distribution at the root of the tree, i.e.

P (K = m) = 1
2P (K = m − 1) = (1/2)m+1 = µ0(m) .
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4. Galton-Watson trees

To do this we have

P (K > m) = P (SVm+1 = 1, Si ≥ 0 ∀i ≤ Vm)
= P (SVm+1 = −1, Si ≥ 0 ∀i ≤ Vm) = P (K = m) ,

where it was used that SVm+1 is independent of its past due to the strong Markov property.
The same holds also in the conditional case:

P (K > m − 1 | K ≥ m − 1) = P (SVm−1+1 = 1 | Si ≥ 0 ∀i ≤ Vm−1)
= P (SVm−1+1 = 1 | Si ≥ 0 ∀i ≤ Vm−1) = P (K = m − 1 | K ≥ m − 1) .

Together this shows the induction step.

2P (K = m) = P (K = m) + P (K > m) = P (K > m − 1)
= P (K > m − 1 | K ≥ m − 1)P (K ≥ m − 1)
= P (K = m − 1 | K ≥ m − 1)P (K ≥ m − 1) = P (K = m − 1) .

Finally it holds P (K = 0) = P (T < U1) = P (S1 = −1) = 1/2. This proves that

P (k∅(θS) = m) = P (K = m) = µ0(m) .

Next we generalize above equation to other nodes of the tree. For this we use the function ΦθS

defined in the last subsection and let

i = inf{j ∈ N | ΦθS
(j) = u} .

be the time at which u is traveled first and n = |u| be the generation of u. Define

S ′
m = Si+m − n for 0 ≤ m ≤ T ′

where T ′ = inf{j ∈ N | S ′
j = −1}. Clearly S ′

m is the excursion of a random walk and it holds
due to the Markov property of random walks

P (ku(θ) = m | u ∈ θ) = P (#{0 < l < T ′ : Si+l = n} = m | i < T )
= P (#{0 < l < T ′ : S ′

l = 0} = m) = P (k∅(θS) = m) .

Hence a tree coded by a random walk is a µ0 Galton-Watson tree. On the other hand due to
the bijection between Galton-Watson trees and contour functions, the contour function of any
Galton-Watson tree must be the excursion of a random walk by above proof.
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5. The Brownian tree as a scaling limit in
the Gromov-Hausdorff sense

In this chapter we want to put our previous observations together in order to establish a scaling
limit of a sequence of Galton-Watson trees. When taking the limit, the number of vertices of
the random trees grows towards infinity. Consequently we need to introduce a larger space
than the space of plane trees, the space of real trees. In the following section we describe
trees as a special kind of metric space. A distance between two metric spaces is given by the
Gromov-Hausdorff distance which is introduced in section two. With these ingredients we can
proof the desired limit theorem in section three of this chapter.

5.1. Real trees coded by normalized excursions

We take the definition of real trees from [5] and take the coding of trees by excursions from [14].
We start with the definition of a real compact tree.

Definition 5.1 (Real tree). Consider a compact metric space (T , d). (T , d) is called a real
tree if for any σ, σ′ ∈ T :

1. There exists an unique isometry fσ,σ′ : [0, d(σ, σ′)] → T such that

fσ,σ′(0) = σ and fσ,σ′(d(σ, σ′)) = σ′. (5.1)

We denote the segment between σ and σ′ as [σ, σ′] := im(fσ,σ′).

2. For η ∈ T with [σ, η] ∩ [η, σ′] = {η} it follows that

[σ, η] ∪ [η, σ′] = [σ, σ′] . (5.2)

The tree is rooted if it has a distinguished point ρ = ρ(T ). We define the space of rooted real
trees as T∗.

The first property means that any two points can be connected by a unique geodesic. The
second property implies that there exist no loops in the space. If a loop existed in T , one could
choose two different points which satisfy (5.2), giving rise to two different segments [σ, σ′]
in contradiction to the first property. The equivalence of this definition with other possible
definitions is discussed in [5]. Similar to the contour functions in the previous section, a real
tree can be coded by a continuous function. We first define the space of normalized excursions
with trivial endpoints:

U1
0 = {g ∈ C([0, 1], R≥0) | g(0) = g(1) = 0} ⊆ U1
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5. The Brownian tree as a scaling limit in the Gromov-Hausdorff sense

Proposition 5.2. Consider a continuous function g ∈ U1
0 with g 6= 0. Define for s, t ∈ [0, 1]

the minimum of the function between s and t.

mg(s, t) = inf
r∈[s∧t,s∨t]

g(r) . (5.3)

We then define the following distance function on [0, 1]:

dg(s, t) = g(s) + g(t) − 2mg(s, t) . (5.4)

The function dg defines a pseudometric on [0, 1], i.e. dg is symmetric, fulfills the triangle
inequality and dg(s, s) = 0 for all s ∈ [0, 1].

Proof. The distance function is symmetric and by definition dg(s, s) = 2g(s) − 2g(s) = 0. We
verify the triangle inequality:

dg(s, t) = g(s) + g(t) − 2mg(s, t)
= g(s) + g(r) + g(t) + g(r) − 2mg(s, t) − 2g(r)

Now if s < r < t then either mg(s, t) = mg(s, r) or mg(s, t) = mg(r, t). Assume without loss of
generality the first case. Then

−2mg(s, t) − 2g(r) ≤ −2mg(s, t) − 2mg(r, t) = −2mg(s, r) − 2mg(r, t) . (5.5)

The case mg(s, t) = mg(r, t) follows the same argument. If on the other hand s < t < r then
by definition mg(s, r) ≤ mg(s, t) and we have again the case (5.5), and if r < s < t, then
mg(r, t) ≤ mg(s, t), and we again can argue as before. Thus in all possible cases we have

dg(s, t) = g(s) + g(r) + g(t) + g(r) − 2mg(s, t) − 2g(r)
≤ g(s) + g(r) − 2mg(s, r) + g(t) + g(r) − 2mg(r, t) = dg(s, r) + dg(r, t) .

We define the relation s ∼g t iff dg(s, t) = 0. It is symmetric due to the symmetry of dg,
reflexive because dg(s, s) = g(s)+ g(s) − 2g(s) = 0 and transitive due to the triangle inequality
and the non negativity of dg. As usual we can now define the canonical projection

pg : [0, 1] → [0, 1]/ ∼g , s 7→ [s]

and the metric space induced by the pseudometric:

Tg := [0, 1]/ ∼g

d∗
g(pg(s), pg(t)) := dg(s, t)

This metric space (Tg, d∗
g) now defines a compact real tree. The tree becomes a rooted tree

by setting ρ = pg(0). Since d∗
g ◦ pg = dg only depends on the equivalence class we omit the

asterik in the notation and plainly write dg for d∗
g on the set of equivalence classes. The positive

definiteness of the metric is obtained from the definition and all other properties are inherited.
The space Tg is compact and connected as an image of the compact interval [0, 1] under the
continuous mapping pg. We now need to check that (Tg, dg) in fact defines a real tree. To prove
this statement we need an interesting theorem which holds on metric spaces defined as above.
Its intuitive meaning is that we can always reroot the ”tree” to an arbitrary other point by a
natural isometry.
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Rerooting

Lemma 5.3 (Rerooting Lemma). Let s0 ∈ [0, 1) and define for r ∈ R≥0 r̄ = r − brc or
equivalently the projection of r onto the fractional part r̄ ∈ [0, 1). We define g′[s0] ∈ U1

0 by

g′[s0](s) = dg(s0, s0 + s) for s ∈ [0, 1].

In this case (Tg′[s0], dg′[s0]) is a welldefined metric space and there exists a unique isometry
R[s0] : (Tg′[s0], dg′[s0]) → (Tg, dg) with

R[s0](pg′[s0](s)) = pg(s0 + s) .

For every s0 ∈ [0, 1) the mapping Φ[s0] : U1
0 → U1

0 , g 7→ g′[s0] is a bijection with inverse
Φ[1 − s0].

Proof. We start by proving that for s, t ∈ [0, 1]

dg′[s0](s, t) = dg(s0 + s, s0 + t) . (5.6)

We can assume without loss of generality s < t. We will distinguish several cases of mg′[s0].
From now on we fix s0 ∈ [0, 1) and write g′ for g′[s0].

First case, s, t ∈ [0, 1 − s0]: It then holds g(s0 + s) = g(s0 + s). We have two possibili-
ties.
i) Assume that the infimum is attained before s0 + s,

mg(s0 + s, s0 + t) ≥ mg(s0, s0 + s) .

It always holds for r ∈ [s, t] that mg(s0, s0 + r) ≤ mg(s0, s0 + s) such that

mg(s0, s0 + r) = mg(s0, s0 + s) (5.7)

and thus

mg′(s, t) = g(s0) + inf
r∈[s∧t,s∨t]

[g(s0 + r) − 2mg(s0, s0 + r)] (5.8)

(5.7)= g(s0) + inf
r∈[s∧t,s∨t]

g(s0 + r) − 2mg(s0, s0 + s)

Def= g(s0) + mg(s0 + s, s0 + t) − 2mg(s0, s0 + s)
(5.7)= g(s0) + mg(s0 + s, s0 + t) − mg(s0, s0 + t) − mg(s0, s0 + s)

where in the last line our assumption was used again that the minimum on the intervall [s0, s0+t]
is alsoready attained in [s0, s0 + s]. We can then compute:

dg′(s, t) =2g(s0) + g(s0 + s) + g(s0 + t) − 2mg(s0, s0 + s) − 2mg(s0, s0 + t)
− 2g(s0) + 2mg(s0, s0 + s) + 2mg(s0, s0 + t) − 2mg(s0 + s, s0 + t)

(5.8)= g(s0 + s) + g(s0 + t) − 2mg(s0 + s, s0 + t) = dg(s0 + s, s0 + t)

ii) Now consider the other case, so mg(s0 + s, s0 + t) < mg(s0, s0 + s). Because g is continuous
and mg(s0 + s, s0 + t) < mg(s0, s0 + s) there exists with the intermediate value theorem:

r̃ = inf{r ∈ [s, t] | g(s0 + r) ≤ mg(s0, s0 + s)} (5.9)
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We then have for r ∈ [r̃, t] due to r̃ ≤ r

g(s0 + r) − 2mg(s0, s0 + r) ≥ −mg(s0, s0 + r) ≥ −mg(s0, s0 + r̃) = −mg(s0, s0 + s) . (5.10)

Thus we see that the infimum of the first term in (5.10) is attained in [s, r̃]. From the definition
(5.9) on the other hand we see that g(s0 + r) ≥ g(s0 + r̃) = mg(s0, s0 + s) = mg(s0, s0 + r) for
r ∈ [s, r̃]. We then have:

inf
r∈[s,t]

[g(s0 + r) − 2mg(s0, s0 + r)] (5.10)= inf
r∈[s,r̃]

[g(s0 + r) − 2mg(s0, s0 + r)] (5.11)

(5.9)= inf
r∈[s,r̃]

[g(s0 + r)] − 2mg(s0, s0 + s)

(5.9)= −mg(s0, s0 + s)

Finally again using that the minimum on [s0, s0 + t] is attained in [s0 + s, s0 + t]:

dg′(s, t) =g(s0 + s) + g(s0 + t) − 2mg(s0, s0 + s) − 2mg(s0, s0 + t)
(5.11)
+ 2mg(s0, s0 + s)

=g(s0 + s) + g(s0 + t) − 2mg(s0, s0 + t) = g(s0 + s) + g(s0 + t) − 2mg(s0 + s, s0 + t)
=dg(s0 + s, s0 + t)

Second Case, s, t ∈ [1 − s0, 1]: In this case we have s0 + t = t − (1 − s0) = 1 − (1 − t + 1 − s0).
The complicate way of writing this operation gives the advantage to relate the second case to
the first one. We define the function which runs g in reverse as g̃, i.e. g̃(x) = g(1 − x) for
x ∈ [0, 1] as well as s̃0 = 1 − s0 and

g̃′[s̃0](x) = g̃(s̃0) + g̃(s̃0 + x) − 2mg̃(s̃0, s̃0 + x)

In this case
g̃′[s̃0](x) = g′[s0](1 − x)

and 1 − s, 1 − t ∈ [0, 1 − s̃0). The first case applies and we get

dg′[s0](s, t) = dg̃′[s̃0](1 − s, 1 − t) = dg̃(s̃0 + 1 − s, s̃0 + 1 − t)
= dg(s − (1 − s0), t − (1 − s0)) = dg(s0 + s, s0 + t) .

Third Case, s ∈ (0, 1 − s0), t ∈ (1 − s0, 1): The equation dg(s, t) = dg′(s0 + s, s0 + t) is then
equivalent to

mg(s0 + s, s0 + s) + mg(s0, s0 + t) + inf
s≤r≤t

[g(s0 + r) − 2mg(s0, s0 + r)] (5.12)

=mg(s0 + s, s0 + t) .

Note that in this case s0 + s = s0 + s ∈ (s0, 1) and s0 + t = s0 + t − 1 ∈ (0, s0). Thus we can
write

I = [ s0 + s, s0 + t ] = [s0 + t − 1, s0] ∪ [s0, s0 + s] = I1 + I2

where I1 and I2 denote the corresponding intervals. Since I is compact and g continuous, the
minimum is attained at some point and lies either in I1 or I2. Assume is is attained in I1. In
this case (5.12) reduces to

mg(s0, s0 + s) + inf
s≤r≤t

[g(s0 + r) − 2mg(s0, s0 + r)] = 0 .
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For s ≤ r ≤ 1 − s0 we have

mg(s0, s0 + r) ≤ mg(s0, s0 + s)

and for 1 − s0 ≤ r ≤ t

mg(s0, s0 + r) ≤ mg(s0 + t − 1, s0) ≤ mg(s0, s0 + s) (5.13)

where the last inequality follows from our assumption that the minimum in I is attained in I1.
Thus by using (5.13) for one term of mg(s0, s0 + r):

mg(s0, s0 + s)+ inf
s≤r≤t

[g(s0 + r) − 2mg(s0, s0 + r)]

≥ inf
s≤r≤t

[g(s0 + r) − mg(s0, s0 + r)] ≥ 0 .

On the other hand we have that g(s0 + ·) reaches the values g(s0 + 1 − s0) = 0 and g(s0 + s)
on [s, t]. Due to the continuity of g, 0 ≤ mg(s0, s0 + s) ≤ g(s0 + s) and the intermediate value
theorem there exists in particular a s̃ ∈ [s, t] such that g(s0+ s̃) = mg(s0, s0+ s̃) = mg(s0, s0+s)
and hence

mg(s0, s0 + s)+ inf
s≤r≤t

[g(s0 + r) − 2mg(s0, s0 + r)]

≤ mg(s0, s0 + s) + [g(s0 + s̃) − 2mg(s0, s0 + s̃)] = 0

This now yields the claimed result. The case in which the minimum is attained in I2 is sym-
metric to this one.

Φ defines a bijection: This follows from (5.6). We have by definition g(t) = dg(0, t). Appling
the given mapping to g′

s0 yields:

(g′[s0])′[1 − s0](t) = dg′′[1−s0](0, t) = dg′[s0](1 − s0, 1 − s0 + t)
= dg(s0 + 1 − s0, s0 + 1 − s0 + t) = dg(0, t) = g(t)

R[s0] is an isometry: Since dg is a welldefined function on Tg we have

d∗
g′(pg′(s), pg′(t)) = dg′(s, t) = dg(s0 + s, s0 + t) = d∗

g(R(pg′(s)), R(pg′(t))) .

Theorem 5.4. The metric space (Tg, dg) with root ρ = pg(0) is a real rooted tree in above
sense.

Proof. A sketch of this proof was given by [14]. Step 1, construction of the isometry fσ,σ′ :
Consider two points of the tree σ, σ′ ∈ Tg. We define partial order on Tg by

σ � σ′ ⇔ dg(σ, σ′) = dg(ρ, σ′) − dg(ρ, σ) .

Intuitively σ lies along the branch that connects the root with σ′ and in that sense is an ancestor
of σ′. We can check that � defines a partial order on Tg. The relation is clearly reflexive, σ � σ.
If further σ � σ′ and σ′ � σ then

dg(σ, σ′) = dg(ρ, σ′) − dg(ρ, σ) = −dg(σ, σ′)
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and thus dg(σ, σ′) = 0. Transitivity follows from the triangle inequality. For σ � η and η � σ′

it is

dg(σ, σ′) ≤ dg(σ, η) + dg(η, σ′) = dg(ρ, σ′) − dg(ρ, σ)
≤ dg(ρ, σ) + dg(σ, σ′) − dg(ρ, σ) = dg(σ, σ′)

Hence dg(σ, σ′) = dg(ρ, σ′)−dg(ρ, σ) and thus σ � σ′. We will make use of the following crucial
characterization of ancestry: For σ = pg(s) � σ′ = pg(t) it holds

dg(σ, σ′) = g(s) + g(t) − 2mg(s, t) = dg(ρ, σ′) − dg(ρ, σ) = g(t) − g(s)
⇒ g(s) = mg(s, t)

(5.14)

We want to construct the isometry fσ,σ′ : [0, dg(σ, σ′)] → Tg with f(0) = σ and f(dg(σ, σ′)) = σ′.
Let s0 ∈ p−1

g (σ). We apply the rerooting lemma, which for given σ, σ′ returns a metric space
(Tg′[s0], dg′[s0]) and an isometry R[s0] : Tg′[s0] → Tg with R[s0](ρ) = σ. We further define
τ = R[s0]−1(σ′) and search without loss of generality for isometries f : [0, dg′[s0](ρ, τ)] → Tg′[s0]
with f(0) = ρ and f(dg′(ρ, τ)]) = τ . If we find f we can then set

fσ,σ′ := R[s0] ◦ f ,

which fulfills all requirements. We fix s0 and write g′ for g′[s0]. Next define for s ∈ p−1
g′ (τ) and

a ∈ [0, dg′(ρ, τ)]:
sa = inf{r ∈ [0, s] | mg′(r, s) = a} .

This element exists because a ≤ dg′(ρ, τ) = g′(t). It holds that

g′(sa) = mg′(sa, s) = a .

If this was not true, i.e. g′(sa) > a, there would exist due to the intermediate value theorem
an r̃ < sa with g′(r̃) = a, in contradiction to the definition of sa. On the other hand g′(sa) ≥
mg′(sa, s) by definition. We can then construct the isometry as:

a 7→ f(a) = pg′(sa) .

By its definition, pg′(sa) � τ , so intuitively f maps the distance of a point and the root to an
ancestor of τ with that distance. f indeed defines an isometry: Clearly f(0) = pg′(0) = ρ and
f(dg′(ρ, σ))) = pg′(s) = τ . Furthermore we have for 0 ≤ a ≤ b ≤ dg′(ρ, τ)

dg′(f(a), f(b)) = g′(sa) + g′(sb) − 2mg′(sa, sb)

Since

mg′(sa, s) = a ≤ b = mg′(sb, s)
⇒ sa ≤ sb

we have
mg′(sa, sb) ≤ mg′(sb, s)

such that
mg′(sa, sb) = mg′(sa, s) = a .

We can conclude that f is an isometry, because

dg′(f(a), f(b)) = g′(sa) + g′(sb) − 2mg′(sa, sb) = a + b − 2a = b − a .

54



5.1. Real trees coded by normalized excursions

The uniqueness can be proven the following way: Suppose another isometry f̃ with f̃(0) = ρ
and f̃(dg′(ρ, τ)) = τ exists. Then

dg′(τ, f̃(a)) = dg′(f̃(dg(ρ, τ), f̃(a)))
= dg′(ρ, τ) − a = dg′(ρ, τ) − dg′(ρ, f̃(a))

which shows that any isometry only maps to ancestors of τ , i.e. f̃(a) � τ . Next we write this
point of the tree as f̃(a) = pg′(t) for t ∈ [0, dg′(ρ, τ)]. Then we have, as was noted in (5.14),
a = g′(t) = mg′(t, s)) and hence

dg′(f(a), f̃(a)) = 2a − 2mg′(sa, t) = 2a − 2a = 0

Now we define the branch that connects the two points σ, σ′ ∈ Tg as

[σ, σ′] := {τ ∈ Tg | dg(σ, σ′) = dg(σ, τ) + dg(τ, σ′)} .

Note that for any η ∈ [ρ, σ] it holds that

d(η, σ) = d(ρ, σ) − d(ρ, η) , (5.15)

and thus η � σ. This shows that the image of f is indeed the segment [ρ, τ ]. Applying R[s0]
we see that R[s0] ◦ f([0, dg(σ, σ′)]) = [σ, σ′] which justifies our notation for a segment [σ, σ′].

Step 2 Let σ, σ′, η ∈ Tg such that

[σ, η] ∩ [σ′, η] = {η} . (5.16)

We claim that [σ, η] ∪ [σ′, η] = [σ, σ′]. We write pg(s) = σ, pg(s′) = σ′. The Rerooting
Lemma yields an isometry which maps segments to segments and we can assume without loss
of generality that η = ρ is the root of the tree. Furthermore we can assume s ≤ s′. We get
from (5.16) that

g(t) = mg(s, t) = mg(s′, t) ⇔ g(t) = 0 , (5.17)

where it was used that pg(t) = τ ∈ [ρ, σ] if and only if τ � σ, which implies for the values of
g the characterization (5.14). Furthermore pg(t) = ρ iff g(t) = 0. Choose now τ ∈ [σ, σ′] and
choose a representant of pg(t) = τ . τ ∈ [σ, σ′] is equivalent to

dg(s, s′) = g(s) + g(s′) − 2mg(s, s′)
!= dg(s, t) + dg(t, s′)

= g(s) + g(t) − 2mg(s, t) + g(s′) + g(t) − 2mg(s′, t) .

After all cancelations we are left with mg(s, s′) != mg(s′, t)+mg(s, t)−g(t). We first of all have

mg(s, s′) ≥ min{mg(s′, t), mg(s, t)} . (5.18)

On the other hand there must exist an a ∈ [s, s′] in which the minimum on that interval is
attained, such that with (5.16)

g(a) = mg(s, a) = mg(a, s′) ⇒ g(a) = mg(s, s′) = 0 .
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Consequently either mg(s, t) or mg(s′, t) must vanish. We can conclude from (5.17) and (5.18)
that τ ∈ [σ, σ′] if and only if

g(t) = max
{

mg(s, t) ⇔ τ � σ
mg(s′, t) ⇔ τ � σ′

and thus τ ∈ [σ, σ′] if and only if τ ∈ [ρ, σ]∪ [ρ, σ′]. Together with the rerooting to other points,
the first step and the previously mentioned compactness this shows that (Tg, dg) is a compact
real tree.

5.2. Gromov-Hausdorff metric

As we just saw we can understand a real tree as a compact metric space. In the next step we
want to translate the convergence of excursions of the random walk to the normalized excursion
of Brownian motion to trees. The convergence described before then takes place in a space of
compact real trees. This space must be employed with a metric, the Gromov-Hausdorff metric.
This part follows [6] and [9]. The Hausdorff distance compares closed subsets of some metric
space and assigns a distance to them.

Definition 5.5 (Hausdorff distance). Consider a metric space (Z, d) and a closed subset C ⊆ Z.
We define the r neighbourhood of C with respect to d as

Ur(C) := {p ∈ Z | dist(p, C) < r} .

For closed subsets A, B ⊆ Z the Hausdorff distance in (Z, d) is defined as

dd
H(A, B) := inf{r > 0 | A ⊆ Ur(B), B ⊆ Ur(A)} .

Theorem 5.6. The set M(Z) of compact subsets of Z together with dd
H is a metric space.

Proof. The compactness ensures the finiteness of dd
H . The Hausdorff distance dd

H is non negative
and symmetric, which is evident from its definition. For the triangle inequality choose A, B, C ∈
M(Z). Define r1 := dd

H(A, B) and r2 := dd
H(B, C). Let ε > 0 be arbitrary. For any a ∈ A

there exists by definition a b ∈ B and for this b an element c ∈ C such that

d(a, c) ≤ d(a, b) + d(b, c) < r1 + r2 + 2ε ,

because the triangle inequality holds in (Z, d). Hence for all ε > 0 A ⊆ Ur1+r2+ε(C). By
exchanging the roles of A and C it is C ⊆ Ur1+r2+ε(A) and we obtain

dd
H(A, C) ≤ r1 + r2 + 2ε = dd

H(A, B) + dd
H(B, C) + 2ε .

Since ε was arbitrary this shows the triangle inequality. To see that the distance is positive
definite we assume that A, B are closed sets and A 6= B. In this case there exists an element
b ∈ B with r := dist(b, A) > 0. Such an element exists because Ac 6= ∅ is open. This implies
b /∈ Ur(A) and thus dH(A, B) ≥ r > 0.

Later we will compare trees as metric space together with an distinguished point, the root.
The Hausdorff distance can easily be extended to pointed subsets of (Z, d).
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Definition 5.7 (Pointed Hausdorff distance). Let (A, a) and (B, b) be two pointed closed subsets
of (Z, d). We define the pointed Hausdorff distance

dd
H∗((A, a), (B, b)) := dd

H(A, B) + d(a, b) , (5.19)

which is a metric as a sum of metrics.

The Gromov-Hausdorff distance measures the distance between metric spaces. The idea behind
it is to isometrically embed metric spaces into a ”larger” metric space and to compare their
distance there with help of the Hausdorff distance. One then takes the infimum over all such
embeddings.

Definition 5.8 (Pointed Gromov-Hausdorff distance). Let (X, ρx, dX) and (Y, ρy, dY ) be pointed
compact metric spaces. Consider a metric space (Z, d) and isometries fX : X → X ′ ⊆ Z,
fY : Y → Y ′ ⊆ Z and denote this as a tupel as (Z, d, fX , fY ). The pointed Gromov-Hausdorff
distance is then defined by

dGH((X, ρx, dX), (Y, ρy, dY )) := inf
(Z,d,fX ,fY )

dd
H∗((fX(X), fX(ρx)), (fY (Y ), fY (ρy))) (5.20)

The compactness of metric spaces ensures that their images under isometries are compact (since
these are in particular continuous), which means that the Hausdorff metric is always finite.
Before we check that such a definition can be made and that the Gromov-Hausdorff distance
actually defines a metric on some appropriate space, we first give an alternative description.
So far the metric space (Z, d) appears to be arbitrary, which makes it hard to work with. As
it turns out we can always choose the disjoint union X t Y := X × {1} ∪ Y × {2} for Z with
some appropriate metric. By the disjoint union we can make any two metric spaces disjoint by
redefining X ′ = X ×{1}, ρ′

x = (ρx, 1) and for x1, x2 ∈ X dX′((x1, 1), (x2, 1)) = dX(x1, x2). Thus
in the following we will just assume that X, Y being disjoint and write X for the embedding
of X into X t Y . Y is treated the same way. The way to define a metric on X t Y is to first
define points in X and Y that correspond to each other.

Definition 5.9 (Correspondence and distortion). A correspondence is a subset or relation
R ⊆ X × Y such that for any x ∈ X there exists a y ∈ Y such that (x, y) ∈ R and for every
y ∈ Y there exists an element x ∈ X with (x, y) ∈ R.
The distortion of a correspondence R is defined as

disR := sup{|dX(x, x′) − dY (y, y′)| : (x, y), (x′, y′) ∈ R} (5.21)

With this we are able to define a metric on X t Y and we will also need correspondences later
again.

Definition 5.10. Let (X, ρx, dX) and (Y, ρy, dY ) be pointed compact metric spaces. A metric
d on the disjoint union X t Y is called admissible, if d|X×X = dX and d|Y ×Y = dY and such a
metric can be always constructed.

Proof. Let R be a correspondence with positive distortion on X × Y and define

r = disR (5.22)
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Next define the admissible metric on X × Y as

d(x1, y1) = r

2 + inf{dX(x1, x′) + dY (y′, y1) | (x′, y′) ∈ R} =: d(y1, x1) .

The metric is by definition symmetric and positive definite. Further we have for x1, x2 ∈ X:

d(x1, x2) ≤ inf{dX(x1, x′) + dX(x′, x′′) + dX(x′′, x2) | x′, x′′ ∈ X}
(5.22)
≤ inf{dX(x1, x′) + dY (y′, y′′) + r + dX(x′′, x2) | (x′, y′), (x′′, y′′) ∈ R}

≤ r + inf{dX(x1, x′) + dY (y′, y1) | (x′, y′) ∈ R} + inf{dY (y1, y′′) + dX(x′′, x2) | (x′′, y′′) ∈ R}
= d(x1, y1) + d(y1, x2)

And for x1 ∈ X, y1 ∈ Y :

d(x1, y1) ≤ r

2 + inf{dX(x1, x2) + dX(x2, x′) + dY (y′, y1) | (x′, y′) ∈ R}

= d(x1, x2) + d(x2, y1) .

The other inequalities follow exchanging roles of X and Y .

We now get the following alternative description of dGH :

Lemma 5.11. The Gromov-Hausdorff distance is given by

dGH((X, dX , ρx), (Y, dY , ρy)) = inf{dd
H∗((X, ρx), (Y, ρy)) | d admissible on X t Y } (5.23)

Proof. To define an admissible metric on X t Y we only need to fix the values on X × Y . For
any metric space (Z, dZ) and isometric embeddings fX , fY we can define an admissible metric
for x ∈ X, y ∈ Y and ε > 0 by

dXtY (x, y) = ε + dZ(fX(x), fY (y)) .

This defines a metric as an inherited property from Z, since it holds for x1, x2 ∈ X, y1 ∈ Y

dXtY (x1, x2) = dZ(fX(x1), fX(x2)) ≤ dZ(fX(x1), fY (y1)) + d(fY (y1), fX(x2)) + 2ε ,

which proves the triangle inequality after similar arguments in the other cases, and the positive
definiteness holds by definition. Let r = ddZ

H∗(f(X, ρx), f(Y, ρy)). For every x ∈ X there exists
a y ∈ Y such that

dZ(fX(x), fY (y)) = dXtY (x, y) − ε < r + ε .

Conversely there exists a x ∈ X for every y ∈ Y such that dXtY (x, y) < r + 2ε. Thus the
Hausdorff distance turns out to be

ddXtY
H∗ ((X, ρx), (Y, ρy)) < ddZ

H∗(f(X, ρx), f(Y, ρy)) + 2ε

By taking the infimum over all possible tupels of metric spaces and isometries, (Z, dZ , fX , fY )
and the corresponding admissable metrics, the same inequality also holds for the Gromov-
Hausdorff distance. As ε was arbitrary it follows

inf{dd
H∗((X, ρx), (Y, ρy)) | d admissible on X t Y } ≤ dGH((X, ρx, dX), (Y, ρy, dY ))

On the other hand, for any admissible metric d, (X t Y, d) is a metric space and the canonical
embeddings ιX : X → X t Y, x 7→ (x, 1) and ιY are isometries. Thus, taking the infimum,

inf{dd
H∗((X, ρx), (Y, ρy)) | d admissible on X t Y } ≥ dGH((X, ρx, dX), (Y, ρy, dY ))
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Theorem 5.12. The Gromov-Hausdorff distance fulfills on the class of compact metric spaces
the triangle inequality, is symmetric and non negative.

Proof. Symmetry and non negativity of dGH are again clear from the definition. We want to
verify the triangle inequality. Let X, Y, Z be compact pointed metric spaces. By definition, for
any ε > 0 there exist admissible metrics dXY and dY Z such that

ddXY
H∗ ((X, ρx), (Y, ρy)) < dGH((X, ρx, dX), (Y, ρy, dY )) + ε

ddY Z
H∗ ((Y, ρy), (Z, ρz)) < dGH((Y, ρy, dY ), (Z, ρz, dZ)) + ε

Using these define
dXZ(x1, z1) = inf

y1∈Y
(dXY (x1, y1) + dY Z(y1, z1)) .

Again non negativity and symmetry are obvious from the definition. For the triangle inequality
we have

dXZ(x1, z1) + dXZ(z1, x2) = inf
y1∈Y

{dXY (x1, y1) + dY Z(y1, z1)} + inf
y2∈Y

{dXY (x2, y2) + dY Z(y2, z1)}

≥ inf
y1∈Y

inf
y2∈Y

{dXY (x1, y1) + dY (y1, y2) + dXY (x2, y2)}

≥ inf
y1∈Y

inf
y2∈Y

{dXY (x1, y2) + dXY (x2, y2)} ≥ dX(x1, x2) .

and correspondingly for reversed roles of Z and X. The other cases can be treated in a similar
way. This gives three admissible metrics dXY , dY Z and dXZ . These together define an admissible
metric dXY Z on X t Y t Z, where each of them is defined on the corresponding disjoint union,
while on X, Y, Z we still keep the metrics dX , dY , dZ . For example, for x ∈ X, y ∈ Y, z ∈ Z we
have

dXY Z(x, z) + dXY Z(z, y) = inf
y′∈Y

{dXY (x, y′) + dY Z(y′, z)) + dY Z(z, y)}

≥ inf
y′∈Y

{dXY (x, y′) + dXY (y′, y)} ≥ dXY (x, y)

We can now use the triangle inequality of the usual Hausdorff convergence. We have

dGH((X, ρx, dX), (Z, ρz, dZ)) ≤ ddXY Z
H∗ ((X, ρx), (Z, ρz)) (5.24)

≤ ddXY Z
H∗ ((X, ρx), (Y, ρy)) + ddXY Z

H∗ ((Y, ρy), (Z, ρz))
= ddXY

H∗ ((X, ρx), (Y, ρy)) + ddY Z
H∗ ((Y, ρy), (Z, ρz))

< dGH((X, ρx, dX), (Y, ρy, dY )) + dGH((Y, ρy, dY ), (Z, ρz, dZ)) + 2ε

Since ε was chosen arbitrarily we obtain the triangle inequality.

Finally we want positive definiteness of the pseudometric. For this we show that dGH(X, Y ) = 0
if and only if X and Y are isometric. Two pointed metric spaces (X, ρx, dX) and (Y, ρy, dY ) are
called isometric iff there exists an isometry f : (X, dX) → (Y, dY ) with f(ρx) = ρy.

Theorem 5.13. For compact metric spaces (X, ρx, dX) and (Y, ρy, dY ) it holds that

dGH((X, ρx, dX), (Y, ρy, dY )) = 0

if and only if the two spaces are isometric.
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Proof. If (X, ρx, dX) and (Y, ρy, dY ) are isometric there exists a map f such that f(X, ρx, dX) =
(Y, ρy, dY ). By the definition of the Hausdorff distance, ddY

H∗(f(X, ρx), (Y, ρy)) = 0, and thus in
particular the Gromov-Hausdorff distance vanishes.
We now prove the converse. Assume that dGH((X, ρx, dX), (Y, ρy, dY )) = 0 and (X, ρx, dX),
(Y, ρy, dY ) are not isometric. Since the Gromov-Hausdorff distance vanishes there exists a
sequence of admissible metrics dn on X t Y such that ddn

H∗((X, ρx), (Y, ρy)) < 1/n. The spaces
X and Y are compact and thus, in particular, seperable. Let X ′ = {x0 = ρx, x1, x2, . . . } be
a countable dense subset of X and y0 = ρy. By definition dn(x0, y0) < 1/n. There exists a
sequence (y1

n)n∈N such that dn(x1, y1
n) < 1/n for all n ∈ N. Y is compact, so there exists a

subsequence (y1
nm

)m∈N which converges to some value y1 ∈ Y . Using the triangle inequality:

dnm(x1, y1) ≤ dnm(x1, y1
nm

) + dnm(y1
nm

, y1) m→∞−−−→ 0

So by passing to the subsequence of dn and iteration of the process for i = 2, 3, . . . we obtain
by a diagonal argument a sequence of admissible metrics (dnm)m∈N on X t Y and a sequence
{y0, y1, . . . } such that dnm(xi, yi) m→∞−−−→ 0 for all i ∈ N. We now define the mapping f : X ′ →
Y, xi 7→ yi. We then have, using the triangle inequality and dnm|X = dX , dnm |Y = dY , since
dnm are admissible metrics,

dY (f(xi), f(xj)) − dX(xi, xj) = dnm(f(xi), f(xj)) − dnm(xi, xj)
≤ dnm(f(xi), xi) + dnm(xi, xj) + dnm(xj, f(xj)) − dnm(xi, xj) m→∞−−−→ 0 .

The left hand side is independent of m, so it has to be less or equal to zero. The same argument
holds for dX(xi, xj) − dY (f(xi), f(xj)). Thus we constructed an isometry f : X ′ → Y . Since f
is an isometry it is in particular uniformly continuous and can be uniquely extended to X = X

′.
This is again an isometry, since for a, b ∈ X and arbitrary ε > 0 there exist due to the density
of X ′ and continuity of f elements xi, xj ∈ X ′ such that

dY (f(a), f(b)) ≤ dY (f(a), f(xi))+dX(xi, xj)+dY (f(xj), f(b)) ≤ dX(xi, xj)+2ε ≤ dX(a, b)+4ε .

As ε was arbitrary it follows that f : X → Y is an isometry. By exchanging roles of X and Y
we can also construct an isometry from Y to X. Thus X, Y are isometric.

Define the equivalence relation: (X, ρx, dX) ∼ (Y, ρy, dY ) iff X, Y are isometric pointed metric
spaces. By the preceeding discussion we now see that the set (T∗/ ∼, dGH) of compact real
rooted trees up to isometry becomes a metric space.

5.3. Convergence of random trees in the Gromov-Hausdorff
metric

We now want to apply this newly gained knowledge to the case where we consider the conver-
gence of random Galton-Watson trees as convergence of compact pointed metric spaces. For
this we need yet another characterization of the Gromov-Hausdorff convergence. Recall the
definition of the distortion (5.21). Lemma 5.11 has the following important corollary.

Corollary 5.14. The Gromov-Hausdorff metric is given by

dGH((X, ρx, dX), (Y, ρy, dY )) = 1
2 inf

R(X,Y ),(ρx,ρy)∈R
disR
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where the infimum runs over all possible correspondences R(X, Y ) ⊆ X × Y that contain the
pair of roots.

Proof. Let first dGH((X, ρx, dX), (Y, ρy, dY )) = r/2. By definition it must exist for every ε > 0
an admissible metric d on X t Y such that dd

H((X, ρx), (Y, ρy)) < r/2 + ε. Since this means
that the distance of no point in X to Y is larger or equal to r/2 + ε and vice versa, this also
implies that for all x ∈ X there exist y ∈ Y such that d(x, y) < r/2 + ε and for all y ∈ Y there
exist x ∈ X such that d(x, y) < r/2 + ε. This implies that the relation

R = {(x, y) ∈ X × Y | d(x, y) < r/2 + ε}

is a correspondence. Note that due to dd
H((X, ρx), (Y, ρy)) < r/2 + ε also (ρx, ρy) ∈ R. Then

for all (x, y), (x′, y′) ∈ R by the triangle inequality

|d(x, x′) − d(y, y′)| ≤ d(x, y) + d(y′, x′) < r + 2ε.

and thus, taking the supremum with respect to all pairs (x, y), (x′, y′) ∈ R we get disR ≤ r +ε.
By letting ε go to zero we infer

inf
R(X,Y ),(ρx,ρy)∈R

disR ≤ 2dGH((X, ρx, dX), (Y, ρy, dY )) .

To proof the converse inequality take any correspondence R between (X, ρx, dX) and (Y, ρy, dY )
with (ρx, ρy) ∈ R and define r = disR. We can assume r 6= 0. If r = 0 the spaces (X, ρx, dX)
and (Y, ρy, dY ) are isometric. Because of Theorem 5.13 the Gromov-Hausdorff distance vanishes
as well and the claimed equality is plainly satisfied. For r 6= 0 we define the admissible metric
on X t Y

d(x1, y1) = r

2 + inf{dX(x1, x′) + dY (y′, y1) | (x′, y′) ∈ R} =: d(y1, x1)

for x1 ∈ X, y1 ∈ Y . It was already shown in Definition 5.10 that this indeed defines a metric.
Whenever (x, y) are in correspondence we have d(x, y) = r/2. Thus for any x ∈ X there exists
a y ∈ Y with d(x, y) = r/2 and for any y ∈ Y there exists a x ∈ X with d(x, y) = r/2. Thus

dGH((X, ρx, dX), (Y, ρy, dY )) ≤ dd
H∗((X, ρx), (Y, ρy)) ≤ r

2 ,

which proves our claim.

This theorem has the following crucial consequence.

Theorem 5.15. For any g, g′ continuous with g(0) = g(1) = g′(0) = g′(1) we have

dGH((Tg, dg, ρ), (Tg′ , dg′ , ρ′)) ≤ 2‖g − g′‖∞ . (5.25)

In particular the map T : (U1
0 , ‖ · ‖∞) → (T∗/ ∼, dGH), g 7→ [(Tg, ρg, dg)], where [(Tg, ρg, dg)]

denotes the equivalence class of trees isometric to (Tg, ρg, dg), is continuous with respect to the
topology of uniform convergence and Gromov-Hausdorff topology.
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5. The Brownian tree as a scaling limit in the Gromov-Hausdorff sense

Proof. For g, g′ we define the following correspondence:

R = {(a, a′) ∈ Tg × Tg′ | ∃ t ∈ [0, 1] s.t. pg(t) = a, pg′(t) = a′} .

We then have for s, t ∈ [0, 1] which project to (a, a′), (b, b′) ∈ R

|dg(a, b) − dg′(a′, b′)| = |g(s) + g(t) − 2mg(s, t) − g′(s) − g′(t) + 2mg′(s, t)|
≤ |g(s) − g′(s)| + |g(t) − g′(t)| + 2|mg(s, t) − mg′(s, t)|
≤ 4‖g − g′‖∞

By taking the supremum we obtain disR ≤ 4‖g − g′‖∞.

This now yields our final theorem

Theorem 5.16 (Convergence of random Galton-Watson trees towards the CRT). Let θk be
a homogeneously distributed random variable on Ak and dgr the graph distance. Then the
sequence of rescaled random trees converges as a sequence of metric spaces in the union of
compact real trees and plane trees (T∗ ∪ A/ ∼, dGH) in distribution to the Brownian tree(

θk, ∅,
1√
2k

dgr

)
d−→ (Te, ρe, de) . (5.26)

Proof. We know that the contour function of the random tree, Ck(θ), is the excursion of a
random walk of length 2k. Define for t ∈ [0, 1]

ck(t)(θk) = 1√
2k

Ck(2kt)(θk) .

We already know from chapter three that the rescaled excursions converge to the Brownian
normalized excursion

ck(θk) d−−−→
k→∞

e .

Since T : U1
0 → T∗/ ∼ is continuous it follows from the Continuous Mapping Theorem 1.10

that in (T∗/ ∼, dGH)
(Tck(θk), ρck(θk), dck(θk)) d−−−→

k→∞
(Te, ρe, de) .

The only difference between the metric spaces
(
θk, ∅, 1/

√
2kdgr

)
and (Tck(θk), ρck(θk), dck(θk)) is

the metric which, however, vanishes as k → ∞. To see this we recall the mapping in Definition
4.3, Φ : {0, 1, . . . , 2k} → θk and define an embedding θk → Tck(θk), Φ(i) 7→ pck(θk)(i/2k) for
suitable i ∈ {0, 1, . . . , 2k}. We then define the correspondence

R′ := {(u, σ) ∈ θk × Tck(θk) : dck(θk)(u, σ) ≤ 1/
√

2k} .

This in fact defines a correspondence: The graph distance is given for u, v ∈ θk by

dgr(u, v) = |u| + |v| − 2|u ∧ v| = Ck(θk)(i) + Ck(θk)(j) − 2mCk(θk)(i, j)
=

√
2kdck(θk)(i/2k, j/2k)

where i, j ∈ {0, 1, . . . , 2k} are chosen such that with the mapping in Definition 4.3 Φθk
(i) =

u, Φθk
(j) = v and where u ∧ v denotes the last common ancestor of u and v. Due to the

Lipschitz continuity of Ck(θk) we now have for every t ∈ [0, 1]:

dck(θk)(t, b2ktc/2k) ≤ 1/
√

2k |t − b2ktc/2k| ≤ 1/
√

2k.
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5.3. Convergence of random trees in the Gromov-Hausdorff metric

Consequently we can find for every t ∈ [0, 1] an i ≤ 2k such that pck(θk
(t) corresponds to

pck(θk
)(i) and the converse is trivial. We then have for (u, σ) = (Φθk

(i), pck(θk)(s)) ∈ R′ and
(v, σ′) = (Φθk

(j), pck(θk)(t)) ∈ R′:

|1/
√

2kdgr(u, v) − dck(θk)(σ, σ′)| ≤ dck(θk)(u, σ) + dck(θk)(v, σ′) ≤ 2/
√

2k

Using again the distortion description of the Gromov-Hausdorff distance we see that

dGH

((
Tck(θk), ρck(θk), dck(θk)

)
,
(
θk, ∅, 1/

√
2kdgr

))
≤ 1√

2k

k→∞−−−→ 0 .

In particular this convergence must hold in probability, and using Slutzky’s theorem we finally
have shown that (

θk, ∅,
1√
2k

dgr

)
d−→ (Te, ρe, de) .
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A. Notations

Measure theory

For a metric space (S, d) we denote the Borel σ-algebra generated by the open sets in X by
B(S). For the integral of a Borel-measureable function f : S → R with respect to a measure µ
in B(S) we may write

µ[f ] :=
∫

S
fdµ =

∫
S

f(x)µ(dx) .

For a random variable X : (Ω, F , P ) → S we have the following alternative notations for the
image measure P (X−1(·)) on B(S):

X∗P, P X , L(X), P (X ∈ ·)

The third notation reads as the law of X and the last notation as the probability of X being
in A. We may also write the integral with respect to the image measure as∫

S
f(x)P (X ∈ dx) :=

∫
S

f(x)dP X(x) .

P (A|B) denotes the probability of A conditioned B.

Excursions

For a stochastic process on a sufficiently rich probability space the shift operators are denoted
as θt : Ω → Ω, Xs(θt(ω)) = Xt+s(ω). The law under which X starts at x is denoted by P x,
i.e. X0 = x P x-a.s.. The corresponding expectation is denoted by Ex.
For a Markov process X the stochastic process X̂ denotes the killed process. The life time
of the process is denoted by ζ, in our case usually ζ := inf{t > 0 : Xt = 0}. The space of
excursions is defined as

U := {w ∈ C(R≥0, R) | 0 < ζ(w) < ∞ and w(t) = 0 for t ≥ ζ(w)} ⊆ W

equipped with the metric

dU(u1, u2) = sup
t≥0

|u1(t) − u2(t)| + |ζ(u1) − ζ(u2)| ,

U1 denotes the space of normalized excursions, U1
0 the space of normalized excursions with

trivial endpoints. We use by convention that inf ∅ = ∞.
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A. Notations

o-Notation and rounding

We denote the rounding operations for t ∈ R by btc := max{n ∈ Z : n ≤ t} and dte := min{n ∈
Z : n ≥ t}. We say for real valued sequences (ak)k∈N, (bk)k∈N that

ak ∈ o(bk) ⇔ lim
k→∞

ak/bk = 0 .

To simplify the notation we write ak = bk + o(ck) iff there exists a sequence (c′
k)k∈N ∈ o(ck)

such that ak = bk + c′
k. It for example holds for t ∈ (0, 1) and i ∈ N that

b2ktc + i = 2kt(1 + o(1)) .

One only needs to be careful with the equal sign, since it is not a transitive relation anymore and
has to be interpreted in above sense. Similarly we write ak ∈ O(bk) iff lim supk→∞ ak/bk < ∞.

Trees

We denote the minimum of s, t ∈ R as s∧t := min{s, t} and the maximum as s∨t := max{s, t}.
With this motivation we denote in a real tree T σ ∧ σ′ as the last common ancestor of σ, σ′

and in a plain tree τ ∈ A u ∧ v as the last common ancestor of u and v.

Distances

We denote the distance of x ∈ Z for a metric space (Z, d) to a set C ⊆ Z as dist(x, C) :=
inf{d(x, y) : y ∈ C}.
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B. Wiener space

In this chapter we want to give a short description how Wiener space can be constructed, as in
this thesis Brownian motion is always viewed as a random variable on the space of real valued
continuous functions on the positive halfline. For this we make use of Kolmogorov’s extension
theorem to exchange the probability space.

Definition B.1 (Equivalent processes). Let (Ω, F , P ) and (Ω′, F ′, P ′) be two probability spaces
and X = (Xt)t∈T a stochastic process on Ω, Y = (Yt)t∈T a stochastic process on Ω′, both with
values in (RnT , BnT ). X, Y are said to be equivalent or versions of each other iff they have the
same finite dimensional distributions.

Definition B.2 (Canonical process). Define a mapping ϕ : Ω → RT by

ϕ(ω) = X·(ω)

and coordinate mappings
Yt(w) := w(t)

for any w ∈ RT . Then Yt ◦ ϕ is measurable for each t ∈ T , and the image measure of P under
ϕ denoted by ϕ∗P = P ◦ ϕ−1 fulfills for Ai ∈ B

P (Xt1 ∈ A1, . . . , Xtn ∈ An) = ϕ∗P (Yt1 ∈ A1, . . . , Ytn ∈ An) .

The process Y is an equivalent version of X and Y is called the canonical process equivalent
to X.

We first pass to the canonical version equivalent to Brownian motion, i.e. we define a probability
space (R[0,∞), B[0,∞), P B) and a stochastic process B with Bt(w) = w(t) for w ∈ R[0,∞), which
is distributed according to the law P B = B∗P . It would be natural to change our probability
space to the continuous functions W := C(R≥0, R). However, this set is not measurable in
(R[0,∞), B[0,∞)), [24]. Instead we define the trace σ-algebra

A := B[0,∞) ∩ C(R≥0, R) .

On A we define a new measure Q as Q(A) = P B(Ā) for A ∈ A and Ā ∈ B[0,∞) with Ā ∩ W =
A.

Lemma B.3. Q is a welldefined probability measure on A

Proof. To check that Q is welldefined assume we choose for A ∈ A measurable sets Ā1, Ā2 ∈
B[0,∞) with A = Āi ∩ W . We have

(Ā1 \ Ā2 ∪ Ā2 \ Ā1) ∩ W = ∅ .

67



B. Wiener space

Since B is continuous almost surely there exists a set N with P B(N) = 0 such that NC ⊆ W ⊆
(Ā1 \ Ā2 ∪ Ā2 \ Ā1)C . Due to the monotony and subadditivity of the measure we can conclude

1 = P B(NC) ≤ P (Ā1 \ Ā2 ∪ Ā2 \ Ā1)C) ≤ 1

and thus for the complementary events

P B(Ā1 \ Ā2) = P B(Ā2 \ Ā1) = 0 .

This implies the unambiguity of Q:

P B(Ā1) = P B(Ā1 ∩ Ā2) + P B(Ā1 \ Ā2 = P B(Ā1 ∩ Ā2) + P B(Ā2 \ Ā1) = P B(Ā2)

The other properties are now clear from the definition.

In the following we will just write P instead of Q and define the Wiener-space (W, A, P ) as
probability space for Brownian motion. In this paragraph we followed a concise description of
the construction of Wiener space in [2] and [24]. The new σ-algebra A is very convenient, as
it is the Borel σ-algebra induced by uniform convergence on compact subsets.

Theorem B.4. The Borel-σ-algebra on W induced by the topology of uniform convergence
coincides with the trace-σ-algebra A.

A proof can be found in [24] Chapter XIII, 1.2.
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