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Abstract

In this thesis we will first do some classification of the elements in 𝑃𝑆𝐿(2,R).
After that we will introduce the notion of Fuchsian groups, i. e. a discrete
subgroup of 𝑃𝑆𝐿(2,R), and prove two criteria for discreteness in 𝑃𝑆𝐿(2,R).
One of them is the Jørgensen Inequality, which is the main theorem in
this thesis. Finally we look at the special case of equality in the Jørgensen
inequality.
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Chapter 1

Introduction

1.1 Goals and Structure of this thesis
Our first goal in this thesis will be the following Theorem in Chapter 2.1:

Theorem (Jørgensen Inequality). Suppose that 𝑇, 𝑆 ∈ PSL(2,R) and <
𝑇, 𝑆 > is a non-elementary Fuchsian group. Then

| tr2(𝑇 ) − 4| + | tr(𝑇𝑆𝑇 −1𝑆−1) − 2| ≥ 1. (1.1)

The lower bound is best possible.

In order to prove that, we have to distinguish between three types of
possible elements in PSL(2,R). In Chapter 1.3 we do this classification of
PSL(2,R). After that, in Chapter 1.4 we introduce the notion of Fuchsian
groups, i.e. discrete groups in PSL(2,R). We also prove some properties of
Fuchsian groups, for example Theorem 5 which gives us a complete charac-
terisation of elementary Fuchsian groups, which are Fuchsian groups with
a finite orbit when acting on the upper half-plane H. As from Chapter 2,
we will only consider non-elementary Fuchsian groups, which occur in the
Jørgensen Inequality. After that we will be able to prove our next criterion
for discreteness in PSL(2,R) in Chapter 2.2:

Theorem. A non-elementary subgroup Γ of PSL(2,R) is discrete if and
only if, for each 𝑇 and 𝑆 in Γ, the group < 𝑇, 𝑆 > is discrete.

Finally, in Chapter 2.3, we find that we have equality in (1.1) if and only
if < 𝑇, 𝑆 > is a triangle group of order (2, 3, 𝑝) with 𝑝 ∈ {7, 8, 9, ..., ∞}.

1.2 Background
We start with the Classification of Möbius transformations of H. For basic
introduction of the hyperbolic plane in the upper half-plane H := {𝑧 ∈
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1. Introduction 2

C| Im(𝑧) > 0} with boundary 𝜕H = R ∪ {∞} and the unit disk model in
the unit disk D := {𝑧 ∈ C||𝑧| < 1} with boundary 𝜕D = {𝑧 ∈ C||𝑧| = 1} see
Walkden’s script [6] or Katok’s book [4].

Definition 1. The set of fractional linear (or Möbius) transforma-
tions of H is defined as follows

PSL(2,R) = {H → H, 𝑧 → 𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑
|𝑎𝑑 − 𝑏𝑐 = 1, 𝑎, 𝑏, 𝑐, 𝑑 ∈ R}.

For 𝑇 ∈ PSL(2,R) we define the trace of T tr(𝑇 ) = |𝑎+𝑑| and set 𝑇𝑟(𝑇 ) :=
|𝑡𝑟(𝑡)|. We call 𝑧 ∈ H̃ = H ∪ 𝜕H a fixed point if 𝑇 (𝑧) = 𝑧.

1.3 Classification of Möbius transformations of H

In what follows the aim is to classify the types of behaviour that Möbius
transformations of H exhibit. We will see that there are three different classes
of Möbius transformation of H.

We start with some Möbius transformation of H called 𝑇 . Our initial
classification of Möbius transformations of H is based on how many fixed
points a given Möbius transformation of H has, and whether they lie in H
or in 𝜕H.

Clearly the identity map is a Möbius transformation of H which fixes
every point. As from now, we will assume that 𝑇 is not the identity.

Let us first consider the case when ∞ ∈ 𝜕H is a fixed point. As

𝑇 (𝑧) = 𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑
=

𝑎 + 𝑏
𝑧

𝑐 + 𝑑
𝑧

we note that as 𝑧 → ∞ we have 1
𝑧 → 0 and by that 𝑇 (∞) = 𝑎

𝑐 . Thus ∞ is
a fixed point of 𝑇 if and only if 𝑇 (∞) = ∞, and this happens if and only if
𝑐 = 0.

Suppose that ∞ is a fixed point of 𝑇 so that 𝑐 = 0. What other fixed
points 𝑧0 can 𝑇 have? Observe that now

𝑇 (𝑧0) = 𝑎

𝑑
𝑧0 + 𝑏

𝑑
.

Hence 𝑇 also has a fixed point at 𝑧0 = 𝑏
𝑑−𝑎 . Note that if 𝑎 = 𝑑 then this

point may be ∞.
Thus if ∞ ∈ 𝜕H is a fixed point for 𝑇 then 𝑇 has at most one other fixed

point, and this fixed point also lies on 𝜕H.
Now let us consider the case when ∞ is not a fixed point of 𝑇 . In this

case 𝑐 ̸= 0. Multiplying

𝑇 (𝑧0) = 𝑎𝑧0 + 𝑏

𝑐𝑧0 + 𝑑
= 𝑧0
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by 𝑐𝑧0 + 𝑑 (which is non-zero as 𝑧0 ̸= −𝑑
𝑐 ) we see that 𝑧0 is a fixed point if

and only if
𝑐𝑧2

0 + (𝑑 − 𝑎)𝑧0 − 𝑏 = 0.

This is a quadratic in 𝑧0 with real coefficients. Hence there are either one
or two real solutions, or two complex conjugate solutions. In the latter case,
only one solution lies in H ∪ 𝜕H. Thus, we have proved:

Lemma 1. Let 𝑇 be a Möbius transformation of H and suppose that 𝑇 is
not the identity. Then 𝑇 has either:

1. two fixed points in 𝜕H and none in H.
2. one fixed point in 𝜕H and none in H.
3. no fixed points in 𝜕H and one in H.

In the first case we call 𝑇 hyperbolic, in the second parabolic and in the
third elliptic.

Corollary 1. Suppose 𝑇 is a Möbius transformation of H with three or
more fixed points. Then 𝑇 is the identity (and so fixes every point).

Now we go on in our classification by looking at the absolute value Tr
of the trace of some Möbius transformation of H called 𝑇 . Suppose for
simplicity that ∞ is not a fixed point (it follows that 𝑐 ̸= 0). So we know 𝑧0
is a fixed point of 𝑇 if and only if

𝑧0 = 𝑎 − 𝑑 ±
√︀

(𝑎 − 𝑑)2 + 4𝑏𝑐

2𝑐
.

Using

𝑎𝑑 − 𝑏𝑐 = 1, (𝑎 + 𝑑)2 = Tr2(𝑇 )

it is easy to see that

(𝑎 − 𝑑)2 + 4𝑏𝑐 = Tr2(𝑇 ) − 4.

When 𝑐 = 0, we must have that ∞ is a fixed point. The other fixed point
is given by 𝑏

𝑑−𝑎 . Hence ∞ is the only fixed point if 𝑎 = 𝑑 (in which case we
must have that 𝑎 = 1, 𝑑 = 1 or 𝑎 = −1, 𝑑 = −1 as 𝑎𝑑 − 𝑏𝑐 = 𝑎𝑑 = 1); hence
Tr(𝑇 ) = | ± (1 + 1)| = 2. If 𝑎 ̸= 𝑑 then there are two fixed points on 𝜕H if
Tr(𝑇 ) > 2 and one fixed point in H if Tr(𝑇 ) < 2.

Thus, we have proved:

Lemma 2. Let 𝑇 be a Möbius transformation of H and suppose that 𝑇 is
not the identity. Then:

• T is hyperbolic if and only if Tr(𝑇 ) > 2.
• T is parabolic if and only if Tr(𝑇 ) = 2.
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• T is elliptic if and only if Tr(𝑇 ) < 2.

Definition 2. Let 𝑇1, 𝑇2 be two Möbius transformations of H. We say that
𝑇1 and 𝑇2 are conjugate if there exists another Möbius transformation of
H called 𝑆 such that 𝑇1 = 𝑆−1 ∘ 𝑇2 ∘ 𝑆.

Remark 1. • Conjugacy between Möbius transformations of H is an equiv-
alence relation.

• It is easy to see that if 𝑇1 and 𝑇2 are conjugate then they have the
same number of fixed points, hence they are of the same type of trans-
formation (elliptic, parabolic, hyperbolic).

• If 𝑇2 has matrix 𝐴2 ∈ 𝑆𝐿(2,R) and 𝑆 has matrix 𝐴 ∈ 𝑆𝐿(2,R) then
𝑇1 has matrix ±𝐴−1𝐴2𝐴.

• Geometrically, if 𝑇1 and 𝑇2 are conjugate then the action of 𝑇1 on
H∪ 𝜕H is the same as the action of 𝑇2 on 𝑆(H∪ 𝜕H). Thus conjugacy
reflects a change in coordinates of H ∪ 𝜕H.

Lemma 3. Let 𝑇 be a Möbius transformation of H and suppose that 𝑇 is
not the identity. Then the following are equivalent:

(i) 𝑇 is parabolic.
(ii) Tr(𝑇 ) = 2.

(iii) 𝑇 is conjugate to a translation, i.e. 𝑇 is conjugate to a Möbius trans-
formation of H of the form 𝑧 ↦→ 𝑧 + 𝑏 for some 𝑏 ∈ R.

(iv) 𝑇 is conjugate either to the translation 𝑧 ↦→ 𝑧 + 1 or to the translation
𝑧 ↦→ 𝑧 − 1.

(v) The matrix of 𝑇 is conjugate to
(︂

1 1
0 1

)︂
or
(︂

1 −1
0 1

)︂
.

Proof. We already know that (𝑖) and (𝑖𝑖) are equivalent. Clearly (𝑖𝑣) implies
(𝑖𝑖𝑖) and (𝑖𝑣) and (𝑣) are equivalent.

In order to prove that (𝑖𝑖𝑖) implies (𝑖𝑣) we have to choose 𝑆(𝑧) = 𝑧
𝑏 in

Definition 2 and then 𝑧 ↦→ 𝑧 + 𝑏 is conjugate to 𝑧 ↦→ 𝑧 + 1 or 𝑧 ↦→ 𝑧 − 1
if 𝑏 > 0 or 𝑏 < 0. Notice that 𝑆 actually is an element of 𝑃𝑆𝐿(2,R) since
𝑆(𝑧) = 𝑧√

𝑏·
√

𝑏
and thus 𝑎𝑑 − 𝑏𝑐 = 1√

𝑏
·
√

𝑏 − 0 = 1.
Suppose now that (𝑖𝑣) holds. Recall that 𝑧 ↦→ 𝑧 + 1 has a unique fixed

point at ∞. Hence if 𝑇 is conjugate to 𝑧 ↦→ 𝑧 + 1 then 𝑇 has a unique
fixed point in 𝜕H, and is therefore parabolic. The same argument holds for
𝑧 ↦→ 𝑧 − 1.

Finally we show that (𝑖) implies (𝑖𝑖𝑖). Suppose that 𝑇 is parabolic and
has a unique fixed point at 𝜁 ∈ 𝜕H. Let 𝑆 be a Möbius transformation of
H that maps 𝜁 to ∞. Then 𝑆𝑇𝑆−1 is a Möbius transformation of H with a
unique fixed point at ∞. We claim that 𝑆𝑇𝑆−1 is a translation. Write

𝑆𝑇𝑆−1(𝑧) = 𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑
.
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As ∞ is a fixed point of 𝑆𝑇𝑆−1, we must have that 𝑐 = 0. Hence

𝑆𝑇𝑆−1(𝑧) = 𝑎

𝑑
𝑧 + 𝑏

𝑑

and it follows that 𝑆𝑇𝑆−1 has a fixed point at 𝑏
𝑑−𝑎 . As 𝑆𝑇𝑆−1 has only

one fixed point and the fixed point is at ∞ we must have that 𝑑 = 𝑎. Thus
𝑆𝑇𝑆−1(𝑧) = 𝑧+𝑏′ for some 𝑏′ ∈ R. Hence 𝑇 is conjugate to a translation.

Lemma 4. Let 𝑇 be a Möbius transformation of H and suppose that 𝑇 is
not the identity. Then the following are equivalent:

(i) 𝑇 is hyperbolic.
(ii) Tr(𝑇 ) > 2.

(iii) 𝑇 is conjugate to a dilation, i.e. 𝑇 is conjugate to a Möbius transfor-
mation of H of the form 𝑧 ↦→ 𝑘𝑧, for some 𝑘 > 0.

(iv) The matrix of 𝑇 is conjugate to
(︂

𝑢 0
0 1

𝑢

)︂
, for some 𝑢 ∈ R.

Proof. We have already seen that (𝑖) is equivalent to (𝑖𝑖). Obviously (𝑖𝑖𝑖) is
equivalent to (𝑖𝑣) with 𝑢2 = 𝑘.

Suppose (𝑖𝑖𝑖) holds. Then 𝑇 is conjugate to a dilation which has 0 and
∞ as fixed points in 𝜕H, namely 0 and ∞. Hence 𝑇 also has exactly two
fixed points in 𝜕H. Hence (𝑖) holds.

Finally, we prove that (𝑖) implies (𝑖𝑖𝑖). We first make the remark that if
𝑇 fixes both 0 and ∞ then 𝑇 is a dilation. To see this, write

𝑇 (𝑧) = 𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑

where 𝑎𝑑 − 𝑏𝑐 = 1. As ∞ is a fixed point of 𝑇 , we must have that 𝑐 = 0.
Hence 𝑇 (𝑧) = 𝑎𝑧+𝑏

𝑑 . As 0 is fixed, we must have that 𝑏 = 0. Hence 𝑇 (𝑧) = 𝑎
𝑑𝑧

so that 𝑇 is a dilation.
Suppose that 𝑇 is a hyperbolic Möbius transformation of H. Then 𝑇 has

two fixed points in 𝜕H; denote them by 𝜁1, 𝜁2.
First suppose that 𝜁1 = ∞ and 𝜁2 ∈ R. Let 𝑆(𝑧) = 𝑧 − 𝜁2. Then the

transformation 𝑆𝑇𝑆−1 is conjugate to 𝑇 and has fixed points at 0 and ∞.
By that above remark 𝑆𝑇𝑆−1 is a dilation.

Now suppose that 𝜁1 ∈ R and 𝜁2 ∈ R. We may assume that 𝜁1 < 𝜁2. Let
𝑆 be the transformation

𝑆(𝑧) = 𝑧 − 𝜁2
𝑧 − 𝜁1

.

As −𝜁1 +𝜁2 > 0, this is a Möbius transformation of H. Moreover, as 𝑆(𝜁1) =
∞ and 𝑆(𝜁2) = 0, we see that 𝑆𝑇𝑆−1 has fixed points at 0 and ∞ and is
therefore a dilation. Hence 𝑇 is conjugate to a dilation.
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Sometimes it will be more convenient to look at elliptic Möbius trans-
formations of H in the unit disk model. We know PSL(2,R) ≃ Aut(H) =
𝑤 Aut(D)𝑤−1 where 𝑤(𝑧) = 𝑧−𝑖

𝑧+𝑖 is the map which maps H bijectively to D
and 𝜕H bijectively to 𝜕D (but 𝑤 is not a Möbius transformation of H). See
Walkden’s Script [6] for details. So the corresponding Möbius transforma-
tion of H in the unit disk model of some Möbius transformation of H called
𝛾 in the upper half plane is given by

𝑧 ↦→ 𝑤𝛾𝑤−1. (1.2)

By that, it is possible to calculate that a Möbius transformation of H in D
is a map of the form

𝑧 ↦→ 𝛼𝑧 + 𝛽

𝛽𝑧 + �̄�
, 𝛼, 𝛽 ∈ C, |𝛼|2 − |𝛽|2 = 1.

Since 𝑤 is bijective, one can classify PSL(2,R) in D exactly the same as in
H and a transformation 𝑇 of D is hyperbolic for example if and only if 𝑇
has two fixed points in 𝜕D or if and only if Tr(𝑇 ) > 2.

Lemma 5. Let 𝑇 be a Möbius transformation of H and suppose that 𝑇 is
not the identity. Then the following are equivalent:

(i) 𝑇 is elliptic.
(ii) Tr(𝑇 ) < 2.

(iii) 𝑇 is conjugate in H to a rotation 𝑧 ↦→ cos(𝜃)𝑧+sin(𝜃)
− sin(𝜃)𝑧+cos(𝜃) .

(iv) 𝑇 is conjugate in D to a rotation 𝑧 ↦→ exp(𝑖𝜃)𝑧.

(v) The matrix of 𝑇 in H is conjugate to
(︂

cos(𝜃) sin(𝜃)
− sin(𝜃) cos(𝜃)

)︂
.

(vi) The matrix of 𝑇 in D is conjugate to
(︂

𝑢 0
0 1

𝑢

)︂
with |𝑢| = 1 and 𝑢 ̸= 1.

Proof. We have already seen that (𝑖) is equivalent to (𝑖𝑖). Again it is obvious,
that (𝑖𝑖𝑖) and (𝑣) are equivalent and (𝑖𝑣) and (𝑣𝑖) are equivalent (𝑢2 =
exp(𝑖𝜃)).

(𝑖𝑖𝑖) and (𝑖𝑣) is equivalent. To see that we need again the fact (1.2). See
Theorem 8.19 of [5] for detailed calculation.

Suppose that (𝑖𝑣) holds. A rotation has a unique fixed point (at the
origin). If 𝑇 is conjugate to a rotation then it must also have a unique fixed
point, and so is elliptic.

Finally, we prove that (𝑖) implies (𝑖𝑣). Suppose that 𝑇 is elliptic and has
a unique fixed point at 𝜁 ∈ D. Let 𝑆 be a Möbius transformation of D that
maps 𝜁 to the origin 0. Then 𝑆𝑇𝑆−1 is a Möbius transformation of H that
is conjugate to 𝑇 and has a unique fixed point at 0. Suppose that

𝑆𝑇𝑆−1(𝑧) = 𝛼𝑧 + 𝛽

𝛽𝑧 − �̄�
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where |𝛼|2 − |𝛽|2 > 0. As 0 is a fixed point, we must have that 𝛽 = 0. Write
𝛼 in polar form as 𝛼 = 𝑟 exp(𝑖𝜃). Then

𝑆𝑇𝑆−1(𝑧) = 𝛼

�̄�
𝑧 = 𝑟 exp(𝑖𝜃)

𝑟 exp(−𝑖𝜃)𝑧 = exp(2𝑖𝜃)𝑧

so that 𝑇 is conjugate to a rotation.

1.4 Fuchsian Groups
Besides being a group, PSL(2,R) is also a topological space in which a
transformation 𝑧 ↦→ 𝑎𝑧+𝑏

𝑐𝑧+𝑑 can be identified with the point (𝑎, 𝑏, 𝑐, 𝑑) ∈ R4.
More precisely, as a topological space, 𝑆𝐿(2,R) can be identified with the
subset of R4

𝑋 = {(𝑎, 𝑏, 𝑐, 𝑑) ∈ R4|𝑎𝑑 − 𝑏𝑐 = 1}.

We define 𝛿 : 𝑋 → 𝑋, (𝑎, 𝑏, 𝑐, 𝑑) ↦→ (−𝑎, −𝑏, −𝑐, −𝑑) and topologize

𝑃𝑆𝐿(2,R) ≃ 𝑋/{𝑖𝑑, 𝛿}

where 𝑖𝑑, 𝛿 is a cyclic group of order 2 acting on 𝑋. One can prove that
the group multiplication and taking of inverse are actually continuous with
respect to the topology on PSL(2,R). A norm on PSL(2,R) is induced from
R4: for 𝑇 (𝑧) = 𝑎𝑧+𝑏

𝑐𝑧+𝑑 in PSL(2,R), we define

‖𝑇‖ = (𝑎2 + 𝑏2 + 𝑐2 + 𝑑2)
1
2 .

Hence PSL(2,R) is a topological group with respect to the metric 𝑑(𝑇, 𝑆) :=
‖𝑇 − 𝑆‖ for 𝑇, 𝑆 ∈ PSL(2,R).

Definition 3. A set 𝑆 in a topological space 𝑋 is called discrete if every
point 𝑥 ∈ 𝑆 has a neighbourhood 𝑈 such that 𝑆 ∩ 𝑈 = {𝑥}.

Definition 4. A discrete subgroup of PSL(2,R) is called Fuchsian group.

Examples. (i) The subgroup of integer translations {𝛾𝑛(𝑧) = 𝑧 +𝑛|𝑛 ∈ Z}
is a Fuchsian group. For example here, for 𝑛, 𝑚 ∈ Z we have

𝑑(𝛾𝑛, 𝛾𝑚) = ‖𝛾𝑛 − 𝛾𝑚‖ =
(︀
(1 − 1)2 + (𝑛 − 𝑚)2 + (0 − 0)2 + (1 − 1)2)︀ 1

2

= 𝑛 − 𝑚.

The subgroup of all translations {𝛾𝑏(𝑧) = 𝑧+𝑏|𝑏 ∈ R} is not a Fuchsian
group, as it is not discrete.

(ii) Any finite subgroup of PSL(2,R) is a Fuchsian group. This is because
any finite subset of any metric space is discrete.
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(iii) As a specific example, let

𝛾𝜃(𝑧) = cos(𝜃)𝑧 + sin(𝜃)
− sin(𝜃)𝑧 + cos(𝜃)

be a rotation around 𝑖. Let 𝑞 ∈ N. Then {𝛾 𝜋𝑗
𝑞

|0 ≤ 𝑗 ≤ 𝑞 − 1} is a finite
subgroup of PSL(2,R).

(iv) The modular group 𝑃𝑆𝐿(2,Z) is Fuchsian. This is the group given by
Möbius transformation of Hs of the form

𝛾(𝑧) = 𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑
, 𝑎, 𝑏, 𝑐, 𝑑 ∈ Z, 𝑎𝑑 − 𝑏𝑐 = 1.

(v) Let 𝑞 ∈ N. Define

Γ𝑞 = {𝛾(𝑧) = 𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑
|𝑎, 𝑏, 𝑐, 𝑑 ∈ Z, 𝑎𝑑 − 𝑏𝑐 = 1, 𝑏, 𝑐 are divisible by 𝑞}.

This is called the level q modular group which is also a Fuchsian group.

Definition 5. A group 𝐺 is called cyclic if

𝐺 =< 𝑔 >= {𝑔𝑛|𝑛 is an integer}

for some 𝑔 ∈ 𝐺.

Definition 6. Let 𝑋 be a metric space, and let 𝐺 be a group of homeomor-
phisms of 𝑋. For 𝑥 ∈ 𝑋, we call

𝐺𝑥 = {𝑔(𝑥)|𝑔 ∈ 𝐺}

the G-orbit of the point x.

Definition 7. A subgroup Γ of PSL(2,R) is called elementary if there
exists a finite Γ-orbit in H̃ := H ∪ 𝜕H.

Definition 8. Let 𝐺 be a group. The centralizer of 𝑔 ∈ 𝐺 is defined by

𝐶𝐺(𝑔) = {𝑔 ∈ 𝐺|ℎ𝑔 = 𝑔ℎ}.

Lemma 6. If 𝑆𝑇 = 𝑇𝑆 then 𝑆 maps the fixed-point set of 𝑇 to itself.

Proof. Suppose 𝑇 (𝑝) = 𝑝 for some p. Then

𝑆(𝑝) = 𝑆𝑇 (𝑝) = 𝑇𝑆(𝑝).

So 𝑇 fixes 𝑆(𝑝).

Lemma 7. (i) Any non-trivial discrete subgroup of R is infinite cyclic.
(ii) Any discrete subgroup of 𝑆1 is finite cyclic.
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Proof. (i) Let Γ be a discrete subgroup of R. We have 0 ∈ Γ and since Γ
is discrete there exists a smallest positive 𝑥 ∈ Γ. Then {𝑛𝑥|𝑛 ∈ Z} is a
subgroup of Γ. Suppose there is a 𝑦 ∈ Γ, 𝑦 ̸= 𝑛𝑥. We may assume 𝑦 > 0,
otherwise we take −𝑦 which also belongs to Γ. There exists an integer 𝑘 ≥ 0
such that 𝑘𝑥 < 𝑦 < (𝑘 + 1)𝑥. and 𝑦 − 𝑘𝑥 < 𝑥, and (𝑦 − 𝑘𝑥) ∈ Γ which
contradicts the choice of 𝑥.

(ii) Let Γ now be a discrete subgroup of 𝑆1. By discreteness there exists
𝑧 = exp𝑖𝜑0 ∈ Γ, with the smallest argument 𝜑0, and for some 𝑚 ∈ Z,
𝑚𝜑0 = 2𝜋, otherwise we get a contradiction with the choice of 𝜑0.

Theorem 1. Two non-identity elements of PSL(2,R) commute if and only
if they have the same fixed-point set.

Proof. To prove that, let us look at the centralizer of parabolic, elliptic
and hyperbolic elements in PSL(2,R). Suppose that 𝑇 (𝑧) = 𝑧 + 1. If 𝑆 ∈
𝐶PSL(2,R)(𝑇 ) then 𝑆(∞) = ∞. Therefore, 𝑆(𝑧) = 𝑎𝑧 + 𝑏. 𝑆𝑇 = 𝑇𝑆 gives us
𝑎 = 1. Hence

𝐶PSL(2,R)(𝑇 ) = {𝑧 ↦→ 𝑧 + 𝑘|𝑘 ∈ R}.

The centralizer of an elliptic transformation of the unit disk D fixing 0 (i.e.
𝑧 ↦→ exp(𝑖𝜙)𝑧) consists of all transformations of the form 𝑧 ↦→ 𝛼𝑧+𝛽

𝛽𝑧+�̄�
. fixing

0, i.e. of the form 𝑧 ↦→ exp(𝑖𝜃)𝑧 (0 ≤ 𝜃 < 2𝜋). Let 𝑇 (𝑧) = 𝜆𝑧 (𝜆 > 0, 𝜆 ̸= 1)
and 𝑆 ∈ 𝐶PSL(2,R)(𝑇 ). After some direct calculation we find out that 𝑆 is
given by a diagonal matrix and hence 𝑆(𝑧) = 𝛾𝑧 (𝛾 > 0).

Theorem 2. Let Γ be a Fuchsian group. If all non-identity elements of Γ
have the same fixed-point set, then Γ is cyclic.

Proof. Suppose all elements of Γ are hyperbolic, so they have two fixed
points in R∪{∞}. By choosing a conjugate group we may assume that each
𝑆 ∈ Γ fixes 0 and ∞. Thus Γ is a discrete subgroup of 𝐻 = {𝑧 → 𝜆𝑧|𝜆 > 0}
which is isomorphic to (R*, ·). As a topological group (R*, ·) is isomorphic
to R via 𝑥 ↦→ ln 𝑥. By Lemma 7, Γ is infinite cyclic. If Γ contains a parabolic
element, then Γ is an infinite cyclic group containing only parabolic elements.

Suppose Γ contains an elliptic element. In D, Γ is a discrete subgroup
of orientation-preserving isometries of D. Again by choosing a conjugate
group we may assume that all elements of Γ have 0 as a fixed point, and
so all elements of Γ are of the form 𝑧 ↦→ exp𝑖𝜑 𝑧. Thus Γ is isomorphic to a
subgroup of 𝑆1, and it is discrete if and only if the corresponding subgroup
of 𝑆1 is discrete. The rest follows from Lemma 7.

Theorem 3. Every Abelian Fuchsian group is cyclic.

Proof. By Theorem 1, all non-identity elements in an Abelian Fuchsian
group have the same fixed-point set. The theorem follows immediately from
Theorem 2.
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Theorem 4. Let Γ be a Fuchsian subgroup of PSL(2,R) containing besides
the identity only elliptic elements. Then all elements of Γ have the same
fixed point, and hence Γ is a cyclic group, Abelian and elementary.

Proof. We shall prove that all elliptic elements in Γ must have the same fixed
point. In the unit disk let us conjugate Γ in such a way that an element
id ̸= 𝑔 ∈ Γ fixes 0, so 𝑔 = ( 𝑢 0

0 𝑢 ). Let ℎ = ( 𝑎 𝑐
𝑐 𝑎 ) ∈ Γ, ℎ ̸= 𝑔. We have

tr[𝑔, ℎ] = tr(𝑔 ∘ ℎ ∘ 𝑔−1 ∘ ℎ−1) = 2 + 4|𝑐|2(Im(𝑢))2. Since Γ does not contain
hyperbolic elements, | tr[𝑔, ℎ]| ≤ 2. So either Im(𝑢) = 0 or 𝑐 = 0. If Im(𝑢) = 0
then 𝑢 = 𝑢 and hence 𝑔 = id, a contradiction. Hence 𝑐 = 0, and so ℎ = ( 𝑎 0

0 𝑎 )
also fixes 0. Thus all elements of Γ have the same fixed point. By Theorem
2, Γ is a cyclic group, and hence Abelian. The set {0} is a Γ-orbit, and so Γ
is elementary.

So we have the obvious

Corollary 2. Any Fuchsian group containing besides the identity only el-
liptic elements is a finite cyclic group.

We can now state a theorem which describes all elementary Fuchsian
groups.

Theorem 5. Any elementary Fuchsian group is either cyclic or is conjugate
in PSL(2,R) to a group generated by ℎ(𝑧) = −1

𝑧 and 𝑔(𝑧) = 𝑘𝑧 for some
𝑘 > 1.

Proof. Case 1. Suppose Γ fixes a single point 𝑎 ∈ H̃ = H ∪ 𝜕H. If 𝑎 ∈ H,
then all elements of Γ are elliptic; by Corollary 2, Γ is a finite cyclic group.

Suppose 𝑎 ∈ R∪{∞}.Then Γ cannot have elliptic elements. We are going
to show that hyperbolic and parabolic elements cannot have a common fixed
point. Assume the opposite, and suppose this point is ∞, and 𝑔(𝑧) = 𝜆𝑧 for
some 𝜆 > 1 and ℎ(𝑧) = 𝑧 + 𝑘 (since 𝑔 and ℎ have only one common point,
𝑘 ̸= 0). Then

𝑔−𝑛 ∘ ℎ ∘ 𝑔𝑛(𝑧) = 𝑧 + 𝜆−𝑛𝑘.

As 𝜆 > 1 the sequence ‖𝑔−𝑛 ∘ ℎ ∘ 𝑔𝑛‖ is bounded and so, {𝑔−𝑛 ∘ ℎ ∘ 𝑔𝑛}
contains a convergent subsequence of distinct terms which contradicts the
discreteness of Γ. So, Γ must contain only elements of one type. If Γ only
contains only parabolic elements, we know from Theorem 2 it is an infinite
cyclic group. Now consider the case in which Γ contains only hyperbolic ele-
ments. We are going to prove that the second fixed point of these hyperbolic
elements must also coincide, and so Γ will fix two points in R∪{∞}. Suppose
𝑓(𝑧) = 𝜆2𝑧 where 𝜆 > 1 so it fixes 0 and ∞ and suppose 𝑔(𝑧) = 𝑎𝑧+𝑏

𝑐𝑧+𝑑 which
fixes 0 but not ∞. Then 𝑏 = 0, 𝑐 ̸= 0, 𝑎 ̸= 0 and 𝑑 = 1

𝑎 . Then

[𝑓, 𝑔] = 𝑓 ∘ 𝑔 ∘ 𝑓−1 ∘ 𝑔−1 =
(︂

1 0
𝑡 1

)︂
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with 𝑡 = 𝑐
𝑎

(︀ 1
𝜆2 − 1

)︀
. Since 𝑐 ̸= 0, [𝑓, 𝑔] is a parabolic element in Γ, a contra-

diction.
Case 2. Suppose Γ has an orbit in R ∪ {∞} consisting of two points.

An element of Γ either fixes each of them or interchanges them. A parabolic
element cannot fix two points. Since each orbit (except for a single point of a
parabolic transformation) is infinite, a parabolic element cannot interchange
these points; hence Γ does not contain any parabolic elements. All hyperbolic
elements must have the same fixed point set. If Γ contains only hyperbolic
elements, then it is cyclic by Theorem 3. If it contains only elliptic elements,
it is finite cyclic by Corollary 2. If Γ contains both hyperbolic and elliptic
elements, it must contain an elliptic element of order 2 interchanging the
common fixed points of the hyperbolic elements; and then Γ is conjugate to
a group generated by 𝑔(𝑧) = 𝑘𝑧 (𝑘 > 1) and ℎ(𝑧) = −1

𝑧 .
Case 3. Suppose now Γ has an orbit in H consisting of 𝑘 = 2 points

or an orbit in H̃ consisting of 𝑘 ≥ 3 points. Γ must contain only elliptic
elements, since the parabolic and hyperbolic elements can have only either
fixed points at infinite or infinite orbits. So Γ is a finite cyclic group and it
is conjugate to a group generated by 𝑧 → exp 2𝜋𝑖

𝑘 𝑧.



Chapter 2

Jørgensen Inequality

2.1 Proof of Jørgensen Inequality
Theorem 6. A non-elementary subgroup Γ of PSL(2,R) must contain a
hyperbolic element.

Proof. Suppose Γ does not contain hyperbolic elements. If Γ contains only
elliptic elements (and id), then by Theorem 4 it is elementary. Hence Γ
contains a parabolic element, say 𝑓(𝑧) = 𝑧 + 1, which fixes ∞. Let 𝑔(𝑧) :=
𝑎𝑧+𝑏
𝑐𝑧+𝑑 be an element in Γ. Then 𝑓𝑛 ∘ 𝑔 = (𝑎+𝑛𝑐)𝑧+(𝑏+𝑛𝑑)

𝑐𝑧+𝑑 . So we have

tr2(𝑓𝑛 ∘ 𝑔) = (𝑎 + 𝑑 + 𝑛𝑐)2.

Since all elements in the group are either elliptic or parabolic, we have
0 ≤ (𝑎 + 𝑑 + 𝑛𝑐)2 ≤ 4 for all 𝑛, so 𝑐 = 0. But then 𝑔 fixes ∞ as well, so that
∞ is fixed by all elements in Γ; hence Γ is elementary, a contradiction.

Let < 𝑇, 𝑆 > be the group generated by Möbius transformations of H
called 𝑇 and 𝑆. So < 𝑇, 𝑆 >= {

∏︀𝑟
𝑛,𝑚=1 𝑇 𝑙𝑛𝑆𝑙𝑚 | 𝑙𝑛, 𝑙𝑚, 𝑟 ∈ N}.

The Jørgensen Inequality which follows now, states that if a discrete
group generated by two elements in PSL(2,R) is non-elementary, then at
least one of this elements must differ considerably from the identity.

Theorem 7 (Jørgensen Inequality). Suppose that 𝑇, 𝑆 ∈ PSL(2,R) and
< 𝑇, 𝑆 > is a discrete non-elementary group. Then

| tr2(𝑇 ) − 4| + | tr(𝑇𝑆𝑇 −1𝑆−1) − 2| ≥ 1. (2.1)

The lower bound is best possible.

Before we are able to prove that, we need three Lemmas:

Lemma 8. Suppose 𝑇, 𝑆 ∈ PSL(2,R) and 𝑇 ̸= id. Define 𝑆0 = 𝑆, 𝑆1 =
𝑆0 ∘ 𝑇 ∘ 𝑆−1

0 , ..., 𝑆𝑟 ∘ 𝑇 ∘ 𝑆−1
𝑟 , ... . If, for some 𝑛, 𝑆𝑛 = 𝑇 , then < 𝑇, 𝑆 > is

elementary and 𝑆2 = 𝑇 .

12
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Proof. Suppose the case where 𝑇 has one fixed point 𝛼, so 𝑇 is either
parabolic or elliptic. 𝑆𝑟 has one fixed point as well, since it is conjugate
to 𝑇 . Because of

𝑆𝑟+1 ∘ 𝑆𝑟(𝛼) = 𝑆𝑟 ∘ 𝑇 ∘ 𝑆−1
𝑟 ∘ 𝑆𝑟(𝛼) = 𝑆𝑟(𝛼)

we have that 𝑆𝑟+1 fixes 𝑆𝑟(𝛼). So 𝑆𝑟+1 fixes the same point as 𝑆𝑟. Now by
the fact that 𝑆𝑛(= 𝑇 ) fixes 𝛼 and that each 𝑆𝑟 has one fixed point it follows
that 𝑆𝑟 fixes 𝛼 for every 𝑟 ≥ 0.

As a consequence we know that all elements in < 𝑇, 𝑆 > fix 𝛼. We
conclude that all elements in < 𝑇, 𝑆 > are parabolic and by Theorem 6. If 𝑇
is elliptic, all elements in < 𝑇, 𝑆 > are elliptic and by Theorem 4 < 𝑇, 𝑆 >
is elementary.

Suppose now that 𝑇 has exactly two fixed points. We may assume then
that 𝑇 (𝑧) = 𝑘𝑧. With he same argument as above 𝑆1, ..., 𝑆𝑛 have exactly
two fixed points and for 0 ≤ 𝑟 ≤ 𝑛 we have {𝑆𝑟(0), 𝑆𝑟(∞)} = {0, ∞}. Since
𝑆𝑟 (𝑟 ≥ 1) is conjugate to 𝑇 , it cannot interchange two points (all orbits
of a hyperbolic transformation are infinite with the exception of two fixed
points). Thus 𝑆1, ...𝑆𝑛 fix 0 and ∞, and both 𝑆 = 𝑆0 and 𝑇 leave the set
{0, ∞} invariant. Therefore < 𝑇, 𝑆 > is elementary.

Lemma 9. If 𝑇 2 = id for some 𝑇 ∈ PSL(2,R), 𝑇 ̸= id then tr(𝑇 ) = 0

Proof. It is

𝑇 2 =
(︂

𝑎2 + 𝑏𝑐 (𝑎 + 𝑑)𝑏
(𝑎 + 𝑑)𝑐 𝑑2 + 𝑏𝑐

)︂
=
(︂

1 0
0 1

)︂
.

So either 𝑎, 𝑑 = 0 and 𝑏, 𝑐 = 1 or 𝑎, 𝑑 = 1 and 𝑏, 𝑐 = 0. The second case is
not possible since 𝑇 ̸= id. So tr(𝑇 ) = 𝑎 + 𝑑 = 0.

Lemma 10. Let 𝑇 = ( 1 1
0 1 ), 𝑆 =

(︀
𝑎 𝑏
𝑐 𝑑

)︀
be two matrices in 𝑆𝐿(2,R). Prove

that the Jørgensen inequality for 𝑇 and 𝑆 holds if and only if |𝑐| ≥ 1.

Proof.

| tr2(𝑇 ) − 4| + | tr(𝑇𝑆𝑇 −1𝑆−1) − 2| = 0 + |2(𝑎𝑑 − 𝑏𝑐) + 𝑐2 − 2| = 𝑐2

So (2.4) is hold if and only if |𝑐| ≥ 1.

Proof of Theorem 7. We know that < 𝑇, 𝑆 > is discrete and non-elementary.
Now (2.4) holds if 𝑇 is of order two (because then we know from Lemma 9,
tr2(𝑇 ) = 0) so we may assume that if 𝑇 is not of order two. We define

𝑆0 = 𝑆, 𝑆𝑛+1 = 𝑆𝑛𝑇𝑆−1
𝑛 . (2.2)

By Lemma 8 we know 𝑆𝑛 ̸= 𝑇 for any 𝑛. It remains only to show that if
(2.4) fails, then for some 𝑛 we have

𝑆𝑛 = 𝑇 (2.3)
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and we consider two cases.
Case 1. 𝑇 is parabolic.
We first assume that

𝑇 =
(︂

1 1
0 1

)︂
, 𝑆 =

(︂
𝑎 𝑏
𝑐 𝑑

)︂
where 𝑐 ̸= 0 (else < 𝑇, 𝑆 > was elementary). We are assuming that (2.4)
fails and this is by Lemma 10 the assumption that

|𝑐| < 1.

The relation (2.2) yields(︂
𝑎𝑛+1 𝑏𝑛+1
𝑐𝑛+1 𝑑𝑛+1

)︂
=
(︂

𝑎𝑛 𝑏𝑛

𝑐𝑛 𝑑𝑛

)︂(︂
1 1
0 1

)︂(︂
𝑑𝑛 −𝑏𝑛

−𝑐𝑛 𝑎𝑛

)︂
=
(︂

1 − 𝑎𝑛𝑐𝑛 𝑎2
𝑛

−𝑐2
𝑛 1 + 𝑎𝑛𝑐𝑛

)︂
So by induction 𝑐𝑛 = −(−𝑐)2𝑛 = −𝑐2𝑛 for 𝑛 > 0 and thus 𝑐𝑛 → 0 as |𝑐| < 1.
Since we have |𝑐𝑛| < 1, by induction we see that 𝑎𝑛 ≤ 𝑛 + |𝑎0|, so 𝑎𝑛𝑐𝑛 → 0
and 𝑎𝑛+1 → 1. This proves that

𝑆𝑛+1 → 𝑇

which, by discreteness, yields (2.3) for large 𝑛.
Actually we have to consider the case 𝑇 =

(︀ 1 −1
0 1

)︀
and 𝑆 =

(︀
𝑎 𝑏
𝑐 𝑑

)︀
. But

this works completely similar and yields the same result.
Case 2. 𝑇 is hyperbolic or elliptic.
Without loss of generality,

𝑇 =
(︂

𝑢 0
0 1

𝑢

)︂
.

In the hyperbolic case, 𝑇 is the matrix for the transformation in H, in the
elliptic case, 𝑇 is the matrix for the transformation in D. 𝑆 is as in Case 1
and 𝑏𝑐 ̸= 0 (else < 𝑇, 𝑆 > is elementary). The assumption that (2.4) fails is

𝜇 := | tr2(𝑇 ) − 4| + | tr(𝑇𝑆𝑇 −1𝑆−1) − 2| = (1 + |𝑏𝑐|)|𝑢 − 1
𝑢

|2 < 1.

Again we write 𝑆𝑛 =
(︁

𝑎𝑛 𝑏𝑛
𝑐𝑛 𝑑𝑛

)︁
and obtain from 𝑆𝑛+1 = 𝑆𝑛 ∘ 𝑇 ∘ 𝑆−1

𝑛(︂
𝑎𝑛+1 𝑏𝑛+1
𝑐𝑛+1 𝑑𝑛+1

)︂
=
(︂

𝑎𝑛𝑑𝑛𝑢 − 𝑏𝑛𝑐𝑛
𝑢 𝑎𝑛𝑏𝑛

(︀ 1
𝑢 − 𝑢

)︀
𝑐𝑛𝑑𝑛

(︀
𝑢 − 1

𝑢

)︀
𝑎𝑛𝑑𝑛

𝑢 − 𝑏𝑛𝑐𝑛𝑢

)︂
so 𝑏𝑛+1𝑐𝑛+1 = −𝑏𝑛𝑐𝑛(1 + 𝑏𝑛𝑐𝑛)(𝑢 − 1

𝑢)2. By induction

|𝑏𝑛𝑐𝑛| ≤ 𝜇𝑛|𝑏𝑐| ≤ |𝑏𝑐|.
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So 𝑏𝑛𝑐𝑛 → 0 and 𝑎𝑛𝑑𝑛 = 1 + 𝑏𝑛𝑐𝑛 → 1. Also, we obtain 𝑎𝑛+1 → 𝑢 and
𝑑𝑛+1 → 1

𝑢 . We have

|𝑏𝑛+1
𝑏𝑛

| = |𝑎𝑛

(︂
1
𝑢

− 𝑢

)︂
| ≤ 𝜇

1
2 |𝑢|.

Thus | 𝑏𝑛+1
𝑢𝑛+1 | < 𝜇

1
2 | 𝑏𝑛

𝑢𝑛 | for some sufficiently large 𝑛. So 𝑏𝑛
𝑢𝑛 → 0 and similarly

𝑐𝑛𝑢𝑛 → 0. So
𝑇 −𝑛𝑆2𝑛𝑇 𝑛 =

(︂
𝑎2𝑛

𝑏2𝑛
𝑢2𝑛

𝑐2𝑛𝑢2𝑛 𝑑2𝑛

)︂
Since < 𝑇, 𝑆 > is discrete, for large 𝑛 we have

𝑇 −𝑛𝑆2𝑛𝑇 𝑛 = 𝑇

and again we have 𝑆2𝑛 = 𝑇 .
Finally, we show that the lower bound (2.4) is best possible. Consider

the group generated by 𝑇 (𝑧) = 𝑧 + 1 and 𝑆(𝑧) = −1
𝑧 . It is < 𝑇, 𝑆 >=

PSL(2,Z) (see Katok [4] Chapter 3.2, Example A) which is discrete and
non-elementary. We have 𝑇 ∘ 𝑆 ∘ 𝑇 −1 ∘ 𝑆−1(𝑧) = 2𝑧+1

𝑧+1 with trace 3, and
hence the equality holds in (2.4).

Remark 2. The Jørgensen Inequality also holds for non-elementary discrete
groups in PSL(2,C).

2.2 A criterion for discreteness
In order to prove Theorem 8 we need the following two general results.

Lemma 11. If Γ is elementary, for any 𝑇, 𝑆 ∈ Γ, < 𝑇, 𝑆 > is elementary.

Proof. Conversely, suppose Γ is not elementary. By Theorem 6 it contains a
hyperbolic element 𝑇 with fixed points 𝛼 and 𝛽. Since Γ is not elementary,
there exists 𝑆 ∈ Γ which does not leave the set {𝛼, 𝛽} invariant. Hence
< 𝑇, 𝑆 > is not elementary.

Lemma 12. Any non-elementary subgroup Γ of PSL(2,R) must contain
infinitely many hyperbolic elements, no two of which have a common fixed
point.

Proof. We choose a hyperbolic element 𝑇 in Γ with fixed points {𝛼, 𝛽} and
an element 𝑆 in Γ which does not leave {𝛼, 𝛽} fixed. We can find such
𝑆 like in the proof of Lemma 11. Suppose first that the sets {𝛼, 𝛽} and
{𝑆(𝛼), 𝑆(𝛽)} do not intersect. In this case, the elements 𝑇 and 𝑇1 = 𝑆𝑇𝑆−1

both are hyperbolic and have no common fixed point (𝑆(𝛼) and 𝑆(𝛽) are the
fixed points of 𝑇1). The sequence {𝑇 𝑛𝑇1𝑇 −𝑛} consists of hyperbolic elements
with fixed points 𝑇 𝑛𝑆(𝛼) and 𝑇 𝑛𝑆(𝛽) which are pairwise different.
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If the set {𝛼, 𝛽} and {𝑆(𝛼), 𝑆(𝛽)} have one point of intersection, say 𝛼,
then we wish to show that 𝑃 = [𝑇, 𝑇1] is parabolic with 𝛼 as the only fixed
point. So we conjugate Γ so that the fixed points of 𝑇 are 0 and ∞, and the
fixed point it shares with 𝑇1 is ∞. Then

𝑇 =
(︂

𝑢 0
0 1

𝑢

)︂
, 𝑇1 =

(︂
𝑎 𝑏
𝑐 𝑑

)︂
where 𝑢 > 1 and 𝑎, 𝑏, 𝑐, 𝑑 ∈ R. If 𝑇1 is to fix ∞, then 𝑐 = 0, and since 0 is
not a fixed point, 𝑏 ̸= 0. This means 𝑇1 has the form 𝑇1 =

(︀
1 𝑏
0 1
)︀
. We can

then compute

𝑃 = [𝑇, 𝑇1] = 𝑇𝑇1𝑇 −1𝑇 −1
1 =

(︂
1 𝑏(𝑢2 − 1)
0 1

)︂
,

so that its transform is of the form 𝑇1(𝑧) = 𝑧 + 𝑡 for non-zero 𝑡, and other
than ∞, every point is fixed.

Since {𝛼} cannot be Γ-invariant there exists 𝑈 ∈ Γ not fixing 𝛼. So
𝑄 = 𝑈𝑃𝑈−1 is parabolic and does not fix 𝛼. Therefore 𝑄 and 𝑇 have no
common fixed points. Then for large n, the elements 𝑇 and 𝑄𝑛𝑇𝑄−𝑛 are
hyperbolic and have no common fixed point, and the problem is reduced to
the first case.

Theorem 8. A non-elementary subgroup Γ of PSL(2,R) is discrete if and
only if, for each 𝑇 and 𝑆 in Γ, the group < 𝑇, 𝑆 > is discrete.
Proof. If Γ is discrete, then every subgroup of it is also discrete.

Suppose now that every subgroup < 𝑇, 𝑆 > in Γ is discrete, but Γ itself
is not. So we find a sequence of distinct transformations in Γ, 𝑇1, 𝑇2, ..., such
that 𝑇𝑖 ̸= id and lim𝑛→∞ 𝑇𝑛 = id. From Lemma 9 we know that 𝑇 2 = id
implies tr(𝑇 ) = 0 and as tr is a continuous function on PSL(2,R), we may
choose a subsequence that contains no elements of order 2. For any 𝑆 ∈ Γ
we have

| tr2(𝑇𝑛) − 4| + | tr(𝑇𝑛𝑆𝑇 −1
𝑛 𝑆−1) − 2| → 0

and so by Theorem 7, there is some 𝑁 := 𝑁(𝑆) ∈ N such that for 𝑛 ≥ 𝑁 ,
the group < 𝑇𝑛, 𝑆 > is elementary. By Lemma 12 we know that Γ contains
two hyperbolic elements 𝑆1 and 𝑆2 with no common fixed points. So for
𝑛 ≥ max(𝑁(𝑆1), 𝑁(𝑆2)) both < 𝑇𝑛, 𝑆1 > and < 𝑇𝑛, 𝑆2 > are elementary,
discrete and according to Theorem 5, they leave the (distinct) fixed point
pair of 𝑆1 and that of 𝑆2 invariant. Since 𝑇𝑛 is not elliptic of order 2, it cannot
interchange a pair of points, so 𝑇𝑛 must fix four distinct points which implies
𝑇𝑛 = id which is a contradiction.

2.3 Extreme Fuchsian groups
In this section we will work with the notion of an Extreme Fuchsian group
and a triangle group. We will write down the definitions first:
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Definition 9. Suppose that 𝑇, 𝑆 ∈ PSL(2,R) and < 𝑇, 𝑆 > is a discrete
non-elementary group. Then < 𝑇, 𝑆 > is called extreme if

| tr2(𝑇 ) − 4| + | tr(𝑇𝑆𝑇 −1𝑆−1) − 2| = 1, (2.4)

so if there is equality in the Jørgensen Inequality.

Definition 10. A Fuchsian triangle group of signature (𝑛, 𝑚, 𝑝) with
𝑛, 𝑚, 𝑝 ∈ N ∪ {∞} is a subgroup of PSL(2,R) generated by three elliptic
elements 𝛿1, 𝛿2, 𝛿3 whith orders 𝑛, 𝑚, 𝑝 respectively and 1

𝑛 + 1
𝑚 + 1

𝑝 < 1.

Our last result in this thesis Theorem 9 was proved by Jørgensen himself
in [3]. We need two lemmas and the following identity for 𝑇, 𝑆 ∈ PSL(2,R)

tr2(𝑇 ) + tr2(𝑆) + tr2(𝑇𝑆) = tr(𝑇𝑆𝑇 −1𝑆−1) + tr(𝑇 ) tr(𝑆) tr(𝑇𝑆) + 2 (2.5)

which can be proven by calculation.
Lemma 13. Suppose that 𝑇, 𝑆 ∈ PSL(2,R) and < 𝑇, 𝑆 > is a discrete
non-elementary group and

| tr2(𝑇 ) − 4| + | tr(𝑇𝑆𝑇 −1𝑆−1) − 2| = 1. (2.6)

Then < 𝑇, 𝑆1 > is a discrete non-elementary group where 𝑆1 = 𝑆𝑇𝑆−1 and

| tr2(𝑇 ) − 4| + | tr(𝑇𝑆1𝑇 −1𝑆−1
1 ) − 2| = 1. (2.7)

Proof. The group generated by 𝑇 and 𝑆1 is discrete because it is a subgroup
of the discrete group generated by 𝑆 and 𝑇 .

Suppose 𝑇 is parabolic. Then the group generated by 𝑇 and 𝑆1 were
elementary if and only if the fixed point of 𝑇 where fixed by 𝑆1 and hence
by 𝑆. As the group generated by 𝑆 and 𝑇 is non-elementary, this is not so. If
tr(𝑇𝑆𝑇 −1𝑆−1) where equal to 2, then 𝑇 and 𝑆 would have a common fixed
point. This is not so, the group generated by 𝑇 and 𝑆 being non-elementary.
Thus | tr(𝑇 ) − 2| is strictly less than 1, by (2.6), and hence the order of 𝑇
exceeds 6.

Therefore assuming now 𝑇 is elliptic, if the group generated by 𝑇 and 𝑆1
were elementary, then either 𝑆1 would keep the fixed points of 𝑇 fixed or 𝑆1
would interchange the fixed points of 𝑇 . In the former case we deduce that
also 𝑆 would either keep the fixed points of 𝑇 fixed or 𝑆 would interchange
the fixed points of 𝑇 . In the latter case, 𝑆 would have to interchange the
fixed points of 𝑇 . None of the two cases can thus occur since the group
generated by 𝑇 and 𝑆 is non-elementary. We have proved that the group
< 𝑇, 𝑆1 > is non-elementary.

To verify (2.6), we apply (2.5) to 𝑇 and 𝑆−1
1 . Since the 𝑇 and 𝑆−1

1 are
conjugate we have tr(𝑇 ) = tr(𝑆1). After some elementary calculations we
find out that tr(𝑇𝑆−1

1 𝑇 −1𝑆1) = tr(𝑇𝑆1𝑇 −1𝑆−1
1 ) and

tr(𝑇𝑆1𝑇 −1𝑆−1
1 ) − 2 =

[︀
tr(𝑇𝑆𝑇 −1𝑆−1) − 2

]︀ [︀
tr(𝑇𝑆𝑇 −1𝑆−1) − tr2(𝑇 ) + 2

]︀
.

(2.8)
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Because of (2.6) and the triangle inequality, we get from (2.8)

| tr(𝑇𝑆1𝑇 −1𝑆−1
1 ) − 2| ≤ | tr(𝑇𝑆𝑇 −1𝑆−1) − 2|. (2.9)

Applying (2.6) once more, we get from (2.9)

| tr2(𝑇 ) − 4| + | tr(𝑇𝑆1𝑇 −1𝑆−1
1 ) − 2| ≤ 1.

But here equality must hold good since otherwise the Jørgensen inequality
would be violated.

Lemma 14. Suppose that 𝑇, 𝑆 ∈ PSL(2,R) and < 𝑇, 𝑆 > is a discrete
non-elementary group and

| tr2(𝑇 ) − 4| + | tr(𝑇𝑆𝑇 −1𝑆−1) − 2| = 1.

Then 𝑇 is elliptic of order at least 7 or 𝑇 is parabolic. Furthermore, if 𝑇 is
elliptic, then tr(𝑇𝑆𝑇𝑆−1) = 1.

Proof. Suppose that 𝑇 is not parabolic. Then we have tr(𝑇 ) ̸= 2. Consider
𝑆1 = 𝑆𝑇𝑆−1. As a corollary to the proof of Lemma 13, we have

| tr(𝑇𝑆𝑇 −1𝑆−1) − tr2(𝑇 ) + 2| = | tr(𝑇𝑆𝑇 −1𝑆−1) − 2| + | tr2(𝑇 ) − 4|.

this because (2.9) was seen to hold good with equality. Consequently, the
ratio between tr(𝑇𝑆𝑇 −1𝑆−1) and 4 − tr2(𝑇 ) must be a positive real num-
ber. Notice here that tr(𝑇𝑆𝑇 −1𝑆−1) ̸= 2 since 𝑇 and 𝑆 generate a non-
elementary group.

Repeating the argument, now with 𝑆2 = 𝑆1𝑇𝑆−1
1 instead of 𝑇1, we de-

duce that tr(𝑇𝑆1𝑇 −1𝑆−1
1 ) − 2 must be a positive multiple of 4 − tr2(𝑇 ).

By (2.8) we know that 4 − tr2(𝑇 ) is a positive real number. Because of
(2.6) it is less than 1. Hence, 𝑇 is elliptic of order at least 7.

Furthermore, we see that tr(𝑇𝑆𝑇 −1𝑆−1) − 2 is a positive real number.
Thus (2.6) may be written as

tr(𝑇𝑆𝑇 −1𝑆−1) − tr2(𝑇 ) + 2 = 1

and since
tr(𝑇𝑆𝑇 −1𝑆−1) + tr(𝑇𝑆𝑇𝑆−1) = tr2(𝑇 ) (2.10)

also the last assertion in Lemma 14 is proved.

Theorem 9. Suppose that 𝑇, 𝑆 ∈ PSL(2,R) and < 𝑇, 𝑆 > is a discrete
non-elementary group. Then

| tr2(𝑇 ) − 4| + | tr(𝑇𝑆𝑇 −1𝑆−1) − 2| = 1

if and only if < 𝑇, 𝑆 > is a triangle group of signature (2, 3, 𝑞) where 𝑞 ∈
{7, 8, 9, ..., ∞}.
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Proof. Consider the case in which 𝑇 is parabolic, then we get from (2.5)

tr(𝑇𝑆𝑇 −1𝑆−1) − 2 = (tr(𝑆) ± tr(𝑇𝑆))2. (2.11)

Together (2.6) and (2.11) give tr(𝑇𝑆𝑇 −1𝑆−1) = 3. Using (2.10), we have
tr(𝑇𝑆𝑇𝑆−1) = 1. So by Lemma 14, we have tr(𝑇𝑆𝑇𝑆−1) = 1 in any case,
so 𝑇𝑆𝑇𝑆−1 is elliptic of order 3. As seen from the general identities (2.5)
and (2.10), it means that

1 = tr2(𝑆) + tr2(𝑇𝑆) − tr(𝑇 ) tr(𝑆) tr(𝑇𝑆) (2.12)

or, what is easily seen to be the same

1 = tr2(𝑆) − tr(𝑇𝑆) tr(𝑆−1𝑇 ). (2.13)

Consider the subgroup < 𝑇, 𝑆1 > of < 𝑇, 𝑆 > where 𝑆1 = 𝑆𝑇𝑆−1. By
Lemma 13, we know, that

| tr(𝑇 ) − 2| + | tr(𝑇𝑆1𝑇 −1𝑆−1
1 | = 1.

We may as well take 𝑇 and 𝑆* := 𝑇𝑆1 (elliptic of order 3) as generators.
Substituting 𝑆* for 𝑆 in (2.13), we obtain

0 = tr(𝑇𝑆* tr(𝑆1)

and since tr(𝑆1) = tr(𝑇 ) ̸= 1, we see that 𝑇𝑆* is elliptic of order 2.
Example. Consider the group generated by 𝑇 (𝑧) = 𝑧+1 and 𝑆(𝑧) = −1

𝑧 as in
the proof of the Jørgensen Inequality. We already know < 𝑇, 𝑆 >= PSL(2,Z)
is an extreme Fuchsian group. One can prove that PSL(2,Z) is a triangle
group of signature (2, 3, ∞).

Since 𝑇 is either elliptic of order at least 7 or parabolic, we have proved
that < 𝑇, 𝑆1 > is one of the triangle groups spoken of in Theorems 9. This
is because being elliptic of order at least 7 means rotation of angle at least
2𝜋
7 . But such groups are maximal, that is, such groups cannot be subgroups

of strictly larger Fuchsian groups (see Greenberg [1]). Thus < 𝑇, 𝑆1 >=<
𝑇, 𝑆 >.

Finally the question arises whether the condition as stated in the Jør-
gensen Lemma is a consequence of stronger inequalities such as

| tr2(𝑇 ) + tr(𝑇𝑆𝑇 −1𝑆−1) − 6| ≥ 1

or
| tr2(𝑇 ) − tr(𝑇𝑆𝑇 −1𝑆−1) − 2| ≥ 1
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by means of "unnecessary" use of the triangle-inequality. The answer to
each of these questions is in the negative. For that look at

𝑇 =
(︃ 3√

2
1

4
√

2
2
√

2 1√
2

)︃
, 𝑆 =

(︃ 3√
2 − 1

4
√

2
−2

√
2 1√

2

)︃
.

One can prove that < 𝑇, 𝑆 > is indeed a Fuchsian group (see Jørgensen [2]).
Then, we have tr2(𝑇 ) = (2

√
2)2 = 8, tr(𝑇𝑆𝑇 −1𝑆−1) = −2 and thus

tr2(𝑇 ) + tr(𝑇𝑆𝑇 −1𝑆−1) − 6 = 0.
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