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Abstract

Using classical surface geometry, in this thesis the Blaschke conjecture for
wiedersehen surfaces and a theorem of E. Hopf about surfaces without con-
jugate points are proven.

Mittels klassischer Flächentheorie werden in dieser Abschlussarbeit die Blaschke
Vermutung für Wiedersehensflächen und ein Theorem von E. Hopf über Flächen
ohne konjugierte Punkte bewiesen.
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Chapter 1

Introduction

A wiedersehen surface is a connected two-dimensional Riemannian manifold
such that every point has exactly one conjugate point. The round sphere S2 is
a wiedersehen surface, for every point has exactly one conjugate point, namely
the antipodal point. Imagine two unit-speed geodesics starting at a point p. If
we follow these two geodesics, they will meet again at the antipodal point of p
at time π.

Figure 1.1: The red lines are the geodesics starting at the north pole N. They
meet again at the south pole S.

The same geometric property holds for wiedersehen surfaces: There exists a
time a > 0 such that any two unit speed geodesics starting at a common point p
will meet again after time a at the conjugate point of p. This behaviour explains
the name ”wiedersehen”. It is astonishing that the time a is independent of the
chosen starting point p and the two geodesics. This property is by no means
obvious from the definition. A priori the following could happen:

• There are two unit speed geodesics (the red and black one in figure 2.1)
starting at the point p and meeting again at the conjugate point Con(p)
of p after different times.
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• There exists a geodesic (the blue one in figure 2.1) starting at p that
doesn’t even hit Con(p).

Figure 1.2: Behaviour on a wiedersehen manifold that could happen a priori but
doesn’t. The red, black and blue line illustrate unit speed geodesics starting at
the point p. The red and black geodesics hit the point Con(p) after different
times. The blue geodesic doesn’t hit Con(p).

It is then a natural question to ask how many different wiedersehen surfaces
there are up to isometry. In 1921 Blaschke conjectured in the first edition of his
”Vorlesungen über Differentialgeometrie” that every wiedersehen surface in R3

is isometric to the round sphere. If we look at the conjecture in the abstract
setting of Riemannian surfaces, we see that the real projective plane, equipped
with the canonical metric is a wiedersehen surface as well. On this surface a
point is only conjugate to itself and every unit speed geodesic starting at a point
comes back after time π.

Figure 1.3: We consider the real projective plane as the quotient of the sphere
under the antipodal map. The red and blue lines are geodesics starting at the
north pole N. After time π they meet there again.

More than 40 years after Blaschke published this conjecture, Green proved
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that the sphere and real projective plane are in fact the only wiedersehen sur-
faces, i.e.

Blaschke Conjecture 1.1. A wiedersehen surface is isometric to the round
sphere or the real projective plane (with positive multiples of the canonical Rie-
mannian metric).

In order to do this, Green integrated over the unit tangent bundle, a tech-
nique used earlier by E. Hopf to prove the following

Theorem 1.2. The total curvature of a Riemannian surface without conjugate
points is non-positive. If it equals zero, then the Gaussian curvature vanishes.

In this thesis we will give proofs of the Blaschke conjecture and the theorem
of Hopf. They both have the common idea of integrating some equality (or
inequality) over the unit tangent bundle. Hence chapter 2 is devoted to the
geometry of the tangent bundle. We consider the concept of densities on a
manifold to be able to integrate over nonorientable manifolds and provide tools
from integration theory. We introduce a natural metric, called the Sasaki metric,
on the total space of the tangent bundle and the unit tangent bundle and show
that the geodesic flow is volume preserving.

In chapter 3 we present geometric properties of wiedersehen manifolds. We
will see that every two unit speed geodesics starting at the same point will meet
again after some time a, which is independent of the starting point and the
geodesics. The main result of this chapter is that simply connected wiedersehen
manifolds are diffeomorphic to the sphere, the injectivity radius and diameter
are both equal to a and all geodesics are periodic with period 2a.

In chapter 4 we prove the Blaschke conjecture for wiedersehen surfaces.
Firstly, we use convering space theory to reduce to the simply connected case.
The key for the Blaschke conjecture is then to prove the following theorem.

Theorem 1.3. Let (M, g) be a closed Riemannian surface and let there be a
time a > 0 such that along all unit speed geodesics no conjugate point appears
before time a. Then

vol(M) ≥ 2a2

π
χ(M)

and equality holds if and only if the sectional curvature is constant K = π2

a2 .
Here χ(M) denotes the Euler characteristic of M .

Motivated by this characterization for a Riemannian surface having constant
Gaussian curvature, we are then interested in the volume of simply connected
wiedersehen surfaces. Using a formula of Santalo we will then show that for a
wiedersehen surface the above inequality is indeed an equality.

Chapter 2 enables us to derive theorem 1.2 in chapter 5.
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Chapter 2

Geometry of Tangent and
Cotangent Bundle

In this chapter we mainly follow Ballmann [3]. Here we provide the technical
tools needed for the proofs of the Blaschke conjecture and the theorem of Hopf.

2.1 Splitting of the Double Tangent Bundle

Let M be a smooth m-dimensional manifold and ∇ a connection on M . We
have the projection π : TM → M . Let F : N → M be a smooth map between
smooth manifolds. We denote by F∇ the pullback connection of ∇ under F . We

write τ
F∇ for the torsion of F∇. For definitions see [4] and [5]. The differential

of F will be denoted by F∗.

Definition 2.1. Define the connection map C : TTM → TM as follows: Let
v ∈ TM and Z ∈ TvTM . Now take any smooth curve V : (−ε, ε)→ TM in the

tangent bundle such that V (0) = v and dV (t)
dt |t=0

= Z. We define

C(Z) := π◦V∇∂tV (0).

For C to be well defined one has to show that it is independent of the choice
of such a V .

Proposition 2.2. Let (x, U) be local coordinates on M and (x, y) the in-
duced local coordinates on TM . These coordinates itself induce local coordinates
(x, y, z, w) on TTM . In these coordinates we have:

π∗(x, y, z, w) = (x, z) and C(x, y, z, w) = (x,wi + zjykωijk(x))

where ω denotes the matrix of connection forms. In particular C is well defined.

Proof. Let V denote a curve in TM such that V̇ (0) = (x, y, z, w). In coordinates
we have V (s) = (x(s), y(s)) and V̇ = (x, y, ẋ, ẏ). We obtain
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π∗(x, y, z, w) = π∗ ◦ V̇ = d(π◦V (t))
dt |t=0

= (x(0), ẋ(0)) = (x, z).

For C we calculate

x∇∂tV = x∇∂tyi∂i = ẏi∂i + yi(x∇∂t(∂i ◦ x)) = ẏi∂i + yk∇ẋ∂k
= ẏi∂i + ykẋj∇∂j∂k = (ẏi + ykẋjωijk(x))∂i.

Therefore, we obtain

C(x, y, z, w) = C(V̇ (0)) = π◦V∇∂tV (0)

= (x, ẏi + ykẋjωijk(x))|t=0 = (x,wi + ykzjωijk(x)).

Since the coordinate expression of C is independent of the chosen curve V in
TM , C is well defined. C is smooth because it is smooth in coordinates.

Corollary 2.3. We have the following properties.

1. H := kerC and V := kerπ∗ are m-dimensional subbundles of TTM →
TM .

2. TTM = H
⊕
V.

3. For each v ∈ TM, π∗ : Hv → Tπ(v)M and C : Vv → Tπ(v)M are isomor-
phims.

Proof. 1. We apply the local frame criterion for subbundles of [1, Thm. 10.32].
We choose coordinates around x ∈ M as in proposition 2.2 and obtain for
(x, y) ∈ TM

(kerπ∗)(x,y) = {(x, y, 0, w)|w ∈ Rn}
and

(kerC)(x,y) = {(x, y, z,−zjykωijk(x))|z ∈ Rn}

In these coordinates the smooth local sections

(x, y, 0, ei), (x, y, z,−ykωlik(x)), i ∈ {1, ...,m}

form a basis of V(x,y), H(x,y), respectively. Here ei denotes the i-th unit vector
in Rm.
2. Since dimH(x,y) = dimV(x,y) = m it suffices to show

H(x,y) ∩ V(x,y) = {(x, y, 0, 0)}.

For (x, y, z, w) ∈ H(x,y) ∩ V(x,y) we have z=0 and thus w=0.
3. C and π∗ are linear by proposition 2.2 and isomorphisms since

H(x,y) ∩ V(x,y) = {(x, y, 0, 0)}.
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Remark 2.4. H and V are called horizontal and vertical distribution. Since the
double tangent bundle TTM splits we write for each Z ∈ TTM

Z = (X,Y ),

where X = π∗(Z) and Y = C(Z).

Figure 2.1: The splitting of the double tangent bundle.

Corollary 2.5. Let v ∈ TM and p = π(v).

1. A parallel vector field V along a curve γ : (−ε, ε)→M with γ(0) = p and
γ̇(0) = X satisfies V̇ (0) = (X, 0).

2. The curve V : (−ε, ε)→ TpM,V (s) = v+sY satisfies V̇ (0) = (0, Y ) where
Y ∈ TpM .

Proof. We compute

π∗V̇ (0) = γ̇(0) = X and C(V̇ (0)) = γ∇∂tV (0) = 0

for 1. and

π∗V̇ (0) =
d(π ◦ V (t))

dt |t=0
=
dp

dt |t=0
= 0 and C(V̇ (0)) = γ∇∂t(v + tY )t=0 = Y

for 2.

Notation 2.6. Let M be a smooth manifold, ∇ a connection on M, p ∈ M and
v ∈ TpM. We denote by γv : Iv → M the unique maximal geodesic such that
0 ∈ Iv, γv(0) = p and γ̇v(0) = v. We write Φ : G → TM for the geodesic flow.
Here G denotes the subset of R× TM , where Φ is defined. The vector field on
TM associated to the geodesic flow will be denoted by G.

Proposition 2.7. Let v ∈ TM . Then G(v) = (v, 0).

8



Proof. We compute

π∗ ◦G(v) = π∗ ◦G ◦ Φ0(v) = π∗
dΦt(v)

dt |t=0
=
dπ ◦ Φt(v)

dt |t=0
= γ̇v(0) = v and

C ◦G(v) = C ◦G ◦ Φ0(v) = C(
dΦt(v)

dt |t=0
) = γv∇∂t γ̇v = 0.

Lemma 2.8. Let F : N →M be smooth. Then F ∗(τ∇) = τ
F∇.

Proof. See [5, Satz 4.12] for more details.

Proposition 2.9. Let V : (−ε, ε)→ TM be a smooth curve in TM with V (0) =
v, V̇ (0) = (X,Y ) and t ∈ Iv. We consider the variation Γ(s, t) = γV (s)(t) with
Jacobi field J(t) = ∂sΓ(0, t). Then the differential of the geodesic flow is given
by

Φt∗(X,Y ) = (J(t), γv∇∂tJ(t) + τ∇(J(t), γ̇v(t))).

Proof. We compute

π∗Φ
t
∗V̇ (0) =

d

ds |s=0
(πΦtV (s)) = ∂sΓ(0, t) = J(t)

and using lemma 2.8 we obtain

CΦt∗V̇ (0) = C(
d

ds |s=0
(ΦtV (s))) = C(

d

ds |s=0
∂tΓ(s, t)) = (Γ∇∂s∂tΓ)(0, t)

= (Γ∇∂t∂sΓ)(0, t) + τ
Γ∇(∂s, ∂t)(0, t) = γv∇∂tJ(t) + Γ∗(τ∇)(∂s, ∂t)

= γv∇∂tJ(t) + τ∇(J(t), γ̇v(0)).

2.2 Symplectic Geometry

In this section we assemble some basic facts about symplectic manifolds follow-
ing [1].

Definition 2.10. Let V be a finite-dimensional vector space and ω an alternat-
ing covariant 2-tensor on V . ω is called nondegenerate or symplectic if for
each nonzero v ∈ V , there exists w ∈ V such that ω(v, w) 6= 0.

Definition 2.11. Let M be a smooth manifold. A nondegenerate 2-form ω on M
is a 2-form such that ωp is nondegenerate for each p ∈M . A symplectic form
on M is a closed nondegenerate 2-form. A tuple (M,ω) is called a symplectic
manifold if ω is a symplectic form on M .
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On the total space of the cotangent bundle π̄ : T ∗M →M there is a canonical
symplectic form ω. Let (q, φ) denote a point in T ∗M . The pointwise pullback
of π̄ is denoted by π̄∗(q,φ) : T ∗qM → T ∗(q,φ)T

∗M . The tautological 1-form

λ ∈ Ω1(T ∗M) is defined by λ(q,φ) = π̄∗(q,φ)φ. That is λ(q,φ)(v) = φ(π̄∗(q,φ)(v))
for v ∈ T(q,φ)T

∗M .

Proposition 2.12. Let M a smooth manifold. Then the 2-form ω ∈ Ω2(T ∗M)
defined by ω = −dλ is symplectic. ω is called the canonical symplectic form
on T ∗M .

Proof. See [1, Thm 22.11].

Definition 2.13. Let (M,ω) be a symplectic manifold. For any smooth function
f ∈ C∞(M) we define the Hamiltonian vector field of f to be the unique
vector field Xf on M that satisfies ιXfω = df .
A smooth vector field X on M is called symplectic if ω is invariant under the
flow of X, i.e. Φ∗Xω = ω. X is called Hamiltonian if there exists a function
f ∈ C∞(M) such that X = Xf . It is called locally Hamiltonian if each
p ∈M has a neighborhood on which X is Hamiltonian.

Proposition 2.14. Let (M,ω) be a symplectic manifold. A smooth vector field
on M is symplectic if and only if it is locally Hamiltonian.

Proof. See [1, Prop.22.17].

2.3 Legendre-Transformation

In this section we assume (M, g) to be a semi-Riemannian manifold.

Definition 2.15. The bundle-isomorphism L : TM → T ∗M defined by L(v)(w) =
g(v, w) is called Legendre-Transformation.

We now use the Legendre-Transformation to transport the canonical sym-
plectic structure of the cotangent bundle to the tangent bundle.

Definition 2.16. We denote by L∗ : T ∗T ∗M → T ∗TM the pullback of L and
define λg : TM → T ∗TM by λg(v) = L∗λL(v).

Proposition 2.17. λg ∈ Ω1(TM). For each v ∈ TM and Z ∈ TvTM we have

(λg)v(Z) = g(v, π∗Z).

Proof. We calculate

(λg)v = L∗λL(v) = L∗ ◦ π̄∗L(v)(L(v)) = (π̄ ◦ L)∗(L(v)) = π∗(L(v)) = g(v, π∗·).

Inserting Z we obtain the assertion.

From now on we assume ∇ to be a metric connection on M .
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Lemma 2.18. Let M be a smooth manifold, p ∈M,Z1, Z2 ∈ TpM . Then there
is a V : (−ε, ε)2 →M such that

V (0, 0) = p, ∂sV (0, 0) = Z1 and ∂tV (0, 0) = Z2.

For any 1-form η on M we have

dη(∂sV, ∂tV ) = ∂sη(∂tV )− ∂tη(∂sV ).

Proof. This is a local question. Choose coordinates (U, φ) around p and define
V (s, t) := φ−1(sφ∗,pZ1 + tφ∗,pZ2). The second statement can be checked by a
computation in coordinates.

Proposition 2.19. The 2-form ωg := −dλg on TM satisfies

ωg(Z1, Z2) = g(X1, Y2)− g(Y1, X2)− g(v, τ∇(X1, X2))

for each v ∈ TM and Z1 = (X1, Y1), Z2 = (X2, Y2) ∈ TvTM .

Proof. Replace in lemma 2.18 M,p, η by TM, v, λg, respectively. We obtain a
V : (−ε, ε)2 → TM such that V (0, 0) = v, ∂sV (0, 0) = Z1 and ∂tV (0, 0) = Z2

and writing Γ = π ◦ V we get:

dλg(∂sV, ∂tV )

= ∂sλg(∂tV )− ∂tλg(∂sV )

= ∂sg(V, ∂t(π ◦ V ))− ∂tg(V, ∂s(π ◦ V )) (2.17)

= g(Γ∇∂sV, ∂tΓ) + g(V, Γ∇∂s∂tΓ)− g(Γ∇∂tV, ∂sΓ)− g(V, Γ∇∂t∂sΓ)

= g(Γ∇∂sV, ∂tΓ)− g(Γ∇∂tV, ∂sΓ) + g(V, Γ∇∂s∂tΓ− Γ∇∂t∂sΓ)

= g(Γ∇∂sV, ∂tΓ)− g(Γ∇∂tV, ∂sΓ) + g(V, τ
Γ∇(∂s, ∂t))

= g(Γ∇∂sV, ∂tΓ)− g(Γ∇∂tV, ∂sΓ) + g(V, τ∇(∂sΓ, ∂tΓ). (2.8)

Evaluating at (s, t) = (0, 0) we obtain the formula for ωg.

Corollary 2.20. Let ∇ be a metric connection. Then ωg is symplectic.

Proof. We need to show the nondegeneracy of (ωg)v for each v ∈ TM . Write
Z1 = (X1, Y1) and assume ωg(Z1, Z2) = 0 for all Z2 = (X2, Y2) ∈ TvTM . This
implies

g(X1, Y2)− g(Y1, X2)− g(v, τ∇(X1, X2)) = 0

for all X2, Y2 ∈ Tπ(v)M . If we choose X2 = 0 we obtain

g(X1, Y2) = 0,∀Y2 ∈ Tπ(v)M

and since g is nondegenerate we infer X1 = 0. Hence

−g(Y1, X2) = 0,∀X2 ∈ Tπ(v)M

and again the nondegeneracy of g implies Y1 = 0.
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2.4 Densities and Integration on Riemannian Man-
ifolds

In the next chapters we want to integrate on Riemannian manifolds that are
not necessarily orientable. To do this, we introduce the concept of densities on
a manifold. Firstly we define densities on a vector space to be the objects that
transform in the right way. In our discussion we follow [1].

Definition 2.21. Let V be an m-dimensional vector space. A function µ :
V × · · · × V︸ ︷︷ ︸

m times

→ R is called a density if for every linear map T : V → V and

v1, . . . , vm ∈ V we have

µ(Tv1, . . . , T vm) = |detT |µ(v1, . . . , vm).

The next proposition summarizes some basic properties of densities.

Proposition 2.22. Let V be an m-dimensional vector space. Then

1. The set D(V ) of densities on V is a vector space.

2. Two densities on V agreeing on a basis are equal.

3. If ω ∈ Λm(V ∗) is an alternating covariant tensor, then the map

|ω| : V × · · · × V → R, |ω|(v1, . . . , vm) = |ω(v1, . . . , vm)|

is a density.

4. D(V ) is 1-dimensional.

Proof. See [1, Proposition 16.35].

We now turn to the case of manifolds.

Definition 2.23. If M is a smooth m-dimensional manifold, then a map

µ : M → D(M) :=
∐
p∈M
D(TpM) with µp ∈ D(TpM)

is called a density on M . D(M) is called the density bundle of M .

Proposition 2.24. If M is a smooth manifold, its density bundle is a smooth
line bundle.

Proof. See [1, Proposition 16.36].

As for differential forms we can define the pullback of a smooth map.

Definition 2.25. Let F : M → N be a smooth map between m-dimensional
manifolds. We define the pullback by

F ∗ : D(N)→ D(M), (F ∗µ)p(v1, ..., vn) := µF (p)(F∗pv1, ..., F∗pvn).
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Proposition 2.26. Let G : P → M and F : M → N be smooth maps between
m-dimensional manifolds and µ a density on N. Then

1. For functions f : N → R, F ∗(fµ) = (f ◦ F )F ∗µ.

2. If ω is an n-form on N, then F ∗|ω| = |F ∗ω|.

3. If µ is smooth, then F ∗µ is a smooth density on M .

4. (F ◦G)∗µ = G∗ ◦ F ∗µ.

Let us turn toward integration of densities.

Definition 2.27. Let U be an open subset of Rn and µ a density on U . We
call µ integrable if the unique function f : U → R with µ = f |dx1 ∧ · · · ∧ dxm|
is integrable. We call a compactly supported density µ on a manifold integrable
if for all charts (U, φ) on M the density (φ−1)∗µ is integrable.

Proposition 2.28. Let F : M → N be a smooth map between n-manifolds,
(U ; (xi)), (V, (yi)) charts on M,N respectively. Then for each function f : V →
R

F ∗(f |dy1 ∧ · · · ∧ dym|) = f ◦ F |detDF ||dx1 ∧ · · · ∧ dxm| on U ∩ F−1(V ),

where DF is the matrix of partial derivatives of F in these coordinates.

Proof. See [1, Proposition 16.40].

Here we see quite nicely why densities are the right objects to integrate on a
manifold. The transformation of densities under a change of coordinates involves
the absolute value of the Jacobian determinant, exactly as the transformation
rule for integration. If U ⊂ Rn is an open set and µ a compactly supported
density on U with µ = f |dx1 ∧ · · · ∧ dxn| such that f is Lebesque integrable on
U we define the integral of µ over U by∫

U

µ :=

∫
U

fdx,

where the right side is the Lebesque integral in Rn.

Proposition 2.29. Let U, f, µ be as above, V ⊂ Rn open and F : V → U a
diffeomorphism. Then ∫

U

µ =

∫
V

F ∗µ.

Proof. By the preceding proposition and the transformation rule we obtain∫
V

F ∗µ =

∫
V

(f ◦ F )F ∗(|dx1 ∧ · · · ∧ dxm|)

=

∫
V

(f ◦ F )|detDF ||dx1 ∧ · · · ∧ dxm|

=

∫
U

f |dx1 ∧ · · · ∧ dxm| =
∫
U

µ.
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Now let µ be a Lebesque integrable density on M with compact support in
some chart (U, φ) . We define the integral of µ over M by∫

M

µ :=

∫
φ(U)

(φ−1)∗µ.

This is well defined by the preceding proposition. Now we turn to the general
case, where suppµ is not necessarily contained in a single chart. Let µ be a
Lebesque integrable density on M with compact support. Let {Ui} be finitely
many charts covering suppµ and {ψi} a subordinate smooth partition of unity.
We define the integral of µ over M by∫

M

µ :=
∑
i

∫
M

ψiµ.

This is well defined. To see this we choose a different finite cover {Vj} and
subordinate smooth partition of unity {ρj}. Then∑

i

∫
M

ψiµ =
∑
i

∫
M

∑
j

ρjψiµ =
∑
j

∑
i

∫
M

ρjψiµ

=
∑
j

∫
M

∑
i

ρjψiµ =
∑
j

∫
M

ρjµ.

Proposition 2.30. Let M,N be smooth n-manifolds and µ, η compactly sup-
ported integrable densities on M .

1. For all a, b ∈ R: ∫
M

aµ+ bη = a

∫
M

µ+ b

∫
M

η.

2. If F : N →M is a diffeomorphism, then
∫
M
µ =

∫
N
F ∗µ.

Proposition 2.31. Let (M, g) be a Riemannian manifold. There is a unique
smooth positive density µg (or sometimes we denote it by µM ), called the Rie-
mannian density, on M such that

µg(E1, ..., Em) = 1

for each orthonormal frame (E1, ..., Em).

Proof. See [1, Proposition 16.45].

Proposition 2.32. Let (M, g) be a Riemannian manifold and (U ; (xi)) a chart.
Then the Riemannian density µg is given by

µg =
√
det(gij)|dx1 ∧ · · · ∧ dxm|.
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Proof. Since µg is positive, there exists a positive function f ∈ C∞(M) with
µg = f |dx1 ∧ · · · ∧ dxm|. Let p ∈ M, and (Ei) be a smooth orthonormal frame

around p. Denote by (E∗i ) its dual coframe. If we write ∂
∂xi = AjiEj , then

f = µg(
∂

∂x1
, . . . ,

∂

∂xm
) = |E∗1 ∧ · · · ∧ E∗m|(

∂

∂x1
, . . . ,

∂

∂xm
) = |det(A)|.

If we compute the metric in the coordinate frame, we get

gij = g(AkiEk, A
l
jEl) =

∑
k

AkiA
k
j

and hence
det(gij) = det(ATA) = det(A)2.

Thus f = |det(A)| =
√
det(gij).

Let (M, g) be a Riemannian manifold. We call a function f : M → R
integrable if fµg is integrable. If such a f is compactly supported, we define
the integral of f to be ∫

M

fµg.

Proposition 2.33. Let (M, g) be an oriented Riemannian manifold and f :
M → R a continuous compactly supported function. Then

µg = |volg| and

∫
M

fµg =

∫
M

fvolg,

where volg denotes the Riemannian volume form on (M, g).

Proof. Let (Ei) be a orthonormal basis of TpM . Then

µg(E1, . . . , Em) = 1 = |volg(E1, . . . , Em)|.

Since densities that agree on some basis are equal, µg = |volg|.
Without loss of generality we can assume that the support of f is contained

in a positively oriented chart (U, φ). Then∫
U

fµg =

∫
φ(U)

(φ−1)∗(fµg) =

∫
φ(U)

(f ◦ φ−1)
√
det(gij)dx =

∫
U

fvolg.

Because of the last proposition it doesn’t matter in the orientable case,
whether we integrate a function against the Riemannian density or against the
Riemannian volume form. Now we are able to provide the theorems of integra-
tion theory, specialized to Riemannian manifolds.
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Proposition 2.34. (Fubini) Let F : (M, g)→ (N,h) be a Riemannian submer-
sion and f : M → R an integrable function with compact support in M . Then
the function

f̄ : N → R, q 7→
∫
F−1(q)

fµF−1(q)

is integrable and ∫
M

fµg =

∫
N

∫
F−1(q)

fµF−1(q)µh(q).

Proof. See [15, Theorem 5.6].

Proposition 2.35. Let geuk denote the Euclidean metric on Rn. If A : Rn →
Rn is an endomorphism, then

1

n
tr(A) =

1

vol(Sn−1)

∫
Sn−1

geuk(Av, v)volSn−1 .

Proof. Let ι : Sn−1 → Rn denote the inclusion, A = (aij). For i 6= j we consider
the map

φ̃ij : Rn → Rn, (x1, ..., xi, ..., xj , ..., xn) 7→ (x1, ..., xj , ...,−xi, ..., xn),

which restricts to a map

φij := φ̃ij ◦ ι : Sn−1 → Sn−1.

The latter is an isometry since

φ∗ijgSn−1 = φ∗ijι
∗geuk = ι∗φ̃∗i,jgeuk = ι∗geuk = gSn−1 .

Thus∫
Sn−1

xixjvolSn−1 =

∫
Sn−1

φ∗ij(x
ixjvolSn−1) = −

∫
Sn−1

xixjvolSn−1 = 0.

On the other hand for all i = 1, ..., n

n

∫
Sn−1

(xi)2volSn−1 =

n∑
i=1

∫
Sn−1

(xi)2volSn−1 = vol(Sn−1).

Using the last two equalities we compute∫
Sn−1

geuk(Ax, x)volSn−1 =

n∑
i,j=1

∫
Sn−1

aijx
ixjvolSn−1

=

n∑
i=1

∫
Sn−1

aii(x
i)2volSn−1

=

n∑
i=1

aii
1

n
vol(Sn−1) =

1

n
tr(A)vol(Sn−1).
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In the transformation rule for integrals of functions in Rm the norm of the
Jacobian determinant is involved. On the other hand, if we consider a smooth
map F : M → N between m-dimensional manifolds, there is no meaningful way
to define the determinant of F∗ : TpM → TF (p)N . But if we require M and N
to be Riemannian manifolds, we can make the following definition.

Definition 2.36. Let (M, g) and (N,h) be Riemannian m-manifolds and ψ :
M → N a smooth map. We define the Jacobian of ψ as the smooth function
|ψ|∗ : M → [0,∞) that satisfies

ψ∗µh = |ψ|∗µg.

Proposition 2.37. (transformation rule) Let (M, g) and (N,h) be Riemannian
manifolds and ψ : M → N a diffeomorphism. If f : N → R is integrable and
compactly supported in N , then∫

ψ(M)

fµh =

∫
M

(f ◦ ψ)|ψ|∗µg.

Proof. This follows from

ψ∗(fµh) = (f ◦ ψ)ψ∗µh = (f ◦ ψ)|ψ|∗µg

and Proposition 2.30.

The following proposition shows how the Jacobian of a map ψ can be calcu-
lated if the differential ψ∗ is known.

Proposition 2.38. Let (M, g), (N,h) be m-dimensional Riemannian manifolds
and ψ : M → N a smooth map. Let p ∈ M and (b1, ..., bm) be a basis of TpM .
Then we have

|ψ∗|(p) =
|ψ∗pb1 ∧ ... ∧ ψ∗pbm|
|b1 ∧ ... ∧ bm|

,

where |b1 ∧ ... ∧ bm| := |det(g(bi, bj))|
1
2 .

Proof. By definition

µh(ψ∗pb1, . . . , ψ∗pbm) = |ψ|∗(p)µg(b1, . . . , bm).

If ψ∗p is no isomorphism, then the left hand side of the above equation is equal
to zero. Since µg(b1, . . . , bm) 6= 0, we must have |ψ|∗(p) = 0. On the other
hand, (ψ∗pbi) is linearly dependent, thus |ψ∗pb1 ∧ ... ∧ ψ∗pbm| = 0.
If ψ∗p is an isomorphism, then the same argument as in proposition 2.32 shows

µg(b1, . . . , bm) =
√
det(g(bi, bj)), µh(ψ∗pb1, . . . , ψ∗pbm) =

√
det(g(ψ∗pbi, ψ∗pbj)).

17



Proposition 2.39. Let π : M̃ → M be a smooth k-sheeted covering map and
µ an integrable density on M . Then∫

M̃

π∗µ = k ·
∫
M

µ.

Proof. Let {(Uα, φα)} be a finite cover of charts of suppµ, where the Uα are
evenly covered neighborhoods with

k∐
i=1

Uα,i = π−1(Uα).

Let {ψα} be a smooth partition of unity subordinate to {Uα}. Then {π∗|Uα,iψα}
is a smooth partition of unity subordinate to {Uα,i} and {(Uα,i, π∗|Uα,iφα)} is a

finite cover of charts of supp(π∗µ). Therefore∫
M̃

π∗µ =
∑
α,i

∫
Uα,i

π∗|Uα,iψαπ
∗µ =

∑
α,i

∫
Uα,i

π∗|Uα,i(ψαµ)

=
∑
α,i

∫
Uα

(ψαµ) = k ·
∫
M

µ.

Proposition 2.40. Let F : (M, g) → (N,h) be a local isometry between Rie-
mannian manifolds. Then

F ∗µh = µg.

Proof. Let (Ei) be an orthonormal frame around p ∈ M . Then (F∗Ei) is an
orthonormal frame around F (p) ∈ N . Hence

F ∗µh(E1, · · · , Em) = µh(F∗E1, · · · , F∗Em) = 1 = µg(E1, · · · , Em).

By uniqueness of the Riemannian density, F ∗µh = µg.

Now let (M, g) be a non-orientable Riemannian manifold. We want to show
that the Gauss-Bonnet theorem holds in the non-orientable case as well. To
see this, we use the orientation covering π : M̃ → M of M . Properties of the
orientation covering can be found in [1]. We just need the following two facts:

• π is a smooth 2-sheeted covering map and

• M̃ is orientable.

Proposition 2.41. Let (M, g) be a closed (not necessary orientable) Rieman-
nian manifold. Then ∫

M

Kµg = 2πχ(M),

where χ(M) is the Euler characteristic of M .
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Proof. We only have to consider the non-orientable case. We use the orientation
covering π : M̃ → M to pull the metric g back to a Riemannian metric π∗g
on M̃ . Then the Gauss-Bonnet theorem for the closed oriented Riemannian
manifold (M̃, π∗g) implies∫

M̃

K̃volπ∗g = 2πχ(M̃) = 4πχ(M).

By propositions 2.39 and 2.40∫
M̃

K̃volπ∗g =

∫
M̃

π∗Kµπ∗g =

∫
M̃

π∗Kπ∗µg =

∫
M̃

π∗(Kµg) = 2

∫
M

Kµg,

which proves the asserted equality.

2.5 The Sasaki Metric

Let (M, g) be a semi-Riemannian manifold and ∇ the Levi-Civita connection.
In this section we endow the total space of the tangent bundle with a natural
metric. In section 2.1 we saw that for v ∈ TM the fiber TvTM is isomorphic to
the direct sum of two copies of Tπ(v)M . This enables us to use the metric g to
define a metric on TM .

Definition 2.42. The Sasaki metric is the semi-Riemannian metric gS on
TM defined by

gSv (Z1, Z2) = gπ(v)(X1, X2) + gπ(v)(Y1, Y2),

for Z1 = (X1, Y1), Z2 = (X2, Y2) ∈ TvTM .

Proposition 2.43. Let v ∈ TpM .

1. The Sasaki metric is a semi-Riemannian metric.

2. H ⊥ V.

3. π∗, C : Hv → TpM are orthogonal transformations.

4. π : (TM, gS)→ (M, g) is a semi-Riemannian submersion.

Proof. 2),3) are clear from the definition. For 4) we note that π is a submer-
sion, for each p ∈ M the fiber π−1(p) = TpM is a semi-Riemannian subman-
ifold of TM and for each v ∈ TpM,Z1 = (X1, 0), Z2 = (X2, 0) ∈ Hv we have
gSv (Z1, Z2) = gp(π∗Z1, π∗Z2) + 0.

We now want to investigate how volume on the tangent bundle changes
under the geodesic flow. We will show that the geodesic flow preserves volume.

Proposition 2.44. Let (M, g) be a Riemannian manifold.
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1. The symplectic form ωg and the density µgS on TM are related by

|ωg ∧ · · · ∧ ωg︸ ︷︷ ︸
m times

| = m!µgS .

2. The geodesic flow Φ is Hamiltonian (i.e. Φ = ΦXh) with Hamiltonian

h : TM → R, h(v) =
1

2
gπ(v)(v, v).

3. The geodesic flow is symplectic, i.e. (Φt)∗ωg = ωg.

4. The geodesic flow preserves µgS .

Proof. 1. Let v ∈ TpM for some p ∈ M . Choose an orthonormal basis
(e1, · · · , em) of (TpM, gp). Define Zi = (ei, 0) and Zi+m = (0, ei) for i =
1, . . . ,m. (Z1, . . . , Z2m) is an orthonormal basis of (TvTM, gSv ). For j ∈ {1, . . . ,m}
proposition 2.19 implies

ωg(Zj , Zk) =

{
0, if k 6= j +m

1, k = j +m.

Thus, when we denote by (Z∗i ) the dual basis of (Zi) we have

ωg =

m∑
i=1

Z∗i ∧ Z∗i+m

and therefore

ωmg = m!
∑

1≤i1···≤im≤m

(Z∗i1 ∧ Z
∗
i1+m) ∧ · · · ∧ (Z∗im ∧ Z

∗
im+m)

= m!(Z∗1 ∧ Z∗1+m) ∧ · · · ∧ (Z∗m ∧ Z∗m+m).

Hence |ωmg | = µg.
2. Using proposition 2.7 it remains to show that Xh(v) = (v, 0). First, we
compute grad(h). Let V : (−ε, ε) → TM such that V (0) = v, V̇ (0) = Z ∈
TvTM .

g(Cgrad(h(v)), CZ) + g(π∗grad(h(v)), π∗Z) = gS(grad(h(v)), V̇ (0))

= dvhV̇ (0) =
d

dt |t=0
(h ◦ V (t)) =

d

dt |t=0

1

2
g(V (t), V (t))

= g(π◦V∇∂tV (0), V (0)) = g(CZ, v) = g(v, CZ).

First choosing Z = (X, 0) the nondegeneracy of g implies π∗grad(h(v)) = 0 and
inserting Z = (0, Y ) we obtain Cgrad(h(v)) = v. Together we get

grad(h(v)) = (0, v).

20



Finally proposition 2.19 implies

g(π∗Xh, CZ)− g(CXh, π∗Z) = ωg(Xh, Z) = dvhZ = g(v, CZ).

Choosing Z as above and again using the nondegeneracy of g we obtain Xh(v) =
(v, 0).
3. Hamiltonian flows are symplectic, see [1, 22.17].
4. By 1. and 3.

Definition 2.45. Let (M, g) be a Riemannian manifold. We define the unit
tangent bundle to be the subset SM ⊂ TM given by

SM = {(p, v) ∈ TM |gp(v, v) = 1}.

We denote by ι : SM → TM the inclusion.

Proposition 2.46. Let (M, g) be a Riemannian manifold. Then

1. SM is a smooth codimension-1 submanifold of TM .

2. M is connected iff SM is connected.

3. M is compact iff SM is compact.

Proof. See [2, Prop 2.9].

We can thus pull back the Sasaki metric via ι : SM → TM . Then gSM :=
ι∗gS is a Riemannian metric on the unit tangent bundle SM . Since every
geodesic has constant speed the geodesic flow Φt : TM → TM restricts to a
smooth map Φt : SM → SM(where it is defined). The geodesic flow is also
volume preserving if it is restricted to the unit tangent bundle. This is the
content of the following lemma.

Lemma 2.47. Let (M, g) be a Riemannian manifold.

1. For each p ∈M,v ∈ SpM the tangent space of the unit tangent bundle at
v is given by: TvSM = {(X,Y )|X,Y ∈ TpMand Y ⊥ v}.

2. We have |ι∗λg ∧ (ι∗ωg)
m−1| = (m − 1)!µι∗gS . In particular ι∗λg is a

contact form on SM and SM is orientable.

3. The geodesic flow on SM preserves ι∗λg and ι∗ωg.

4. The geodesic flow on SM preserves µSM .

Proof. 1. The tangent space of SM at v ∈ SM is given by

TvSM = {V̇ (0) | V : (−ε, ε)→ SM and V (0) = v}.

Take such a V, then

g(CV̇ (0), v) = g(π◦V∇∂tV (0), V (0)) =
1

2

d

dt |t=0
g(V (t), V (t))︸ ︷︷ ︸

1

= 0.
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Thus, we have shown the inclusion ⊂. Equality follows from dimensional rea-
sons. 2. We will show that ι∗λg ∧ (ι∗ωg)

m−1 is a nowhere vanishing form of
top degree on SM. This will imply orientability of SM . Let v ∈ SpM and us-
ing Gram-Schmidt we obtain a orthonormal basis (ei) of (TpM, gp) such that
em = v. Then (Z1, . . . , Z2m−1) is a orthonormal basis of (TvSM, (gSM )v), where
Zi = (ei, 0) for i ≤ m and Zi = (0, ei) for m+ 1 ≤ i ≤ 2m− 1. By proposition
2.17 we compute

ι∗λg(Zi) = g(v, π∗Zi) =

{
0, if i 6= m

1, i = m.

Therefore ι∗λg = Zm.By proposition 2.19 we compute for j ≤ m

ι∗ωg(Zj , Zk) =

{
0, if k 6= j +m

1, k = j +m.

Thus, we have ι∗ωg =
∑m−1
i=1 Z∗i ∧ Z∗i+m and

(ι∗ωg)
m−1 = ±(m− 1)!(Z∗1 ∧ Z∗1+m) ∧ · · · ∧ (Z∗m−1 ∧ Z∗m−1+m).

Finally, we get

ι∗λg ∧ (ι∗ωg)
m−1 = ±(m− 1)!Z∗m ∧ (Z∗1 ∧ Z∗1+m) ∧ · · · ∧ (Z∗m−1 ∧ Z∗m−1+m),

which proves both orientability of SM and the asserted equality.
3. We only need to show that ι∗λg is preserved by the geodesic flow, for then

Φt∗ι∗ωg = Φt∗ι∗ − dλg = −dΦt∗ι∗λg = −dι∗λg = ι∗ωg.

Let V : (−ε, ε)→ SM,V (0) = v ∈ SpM and Z = V̇ (0) ∈ TvSM . If we write J
for the Jacobi field as in proposition 2.9, we have

(Φt∗ι∗λg)(Z) = (λg)Φt(v)(Φ
t
∗Z)

2.17
= g(Φt(v), π∗Φ

t
∗Z)

2.9
= g(Φt(v), J(t)).

Now we show that (Φt∗ι∗λg)(Z) is independent of t.

d

dt
(Φt∗ι∗λg)(Z) =

d

dt
g(Φt(v), J(t)) = g(Φt(v), γv∇∂tJ(t)))

2.9
= g(Φt(v), CΦt∗,vZ) = 0,

where the last equality follows from 1. since Φt∗,vZ ∈ TΦt(v)SM .
4. This follows directly from 2. and 3.

Corollary 2.48. Let (M, g) be a complete Riemannian manifold. For all f ∈
C∞(SM) with compact support and t ∈ R we have∫

SM

f ◦ ΦtµSM =

∫
SM

fµSM .
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Proof. By the preceding Lemma the Jacobian |Φt|∗ of Φt : SM → SM is
identically equal to 1. The geodesic flow Φt : SM → SM is a diffeomorphism
for all t ∈ R since Φ−t ◦Φt = idSM for all t ∈ R. Now apply the transformation
rule 2.37.

In the next chapters we will see that it is useful to consider unit speed
geodesics on M as integral curves of the geodesic flow on SM , because these fill
up the whole unit tangent bundle and do not intersect.
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Chapter 3

Wiedersehen Manifolds

In this chapter we mainly follow [3] and always assume (M, g) to be a complete
and connected Riemannian manifold.

Definition 3.1. Let v ∈ SM . We define con(v) ∈ (0,∞] to be the first positive
time t such that γv(0) is conjugate to γv(t) along γv. If no such time exists,
we set con(v) = ∞. For p ∈ M we define the first conjugate locus of p by
Con(p) := {γv(con(v)) | v ∈ SpM and con(v) <∞}.

Notation 3.2. Let γ be a geodesic in M and V a vector field along γ. We
sometimes write V̇ for γ∇∂tV .

Proposition 3.3. For all v ∈ SM with con(v) finite we have

con(−γ̇v(con(v)) = con(v).

Proof. Let v ∈ SM such that con(v) is finite and set w := −γ̇v(con(v)).
First, we show con(w) ≤ con(v). Since γv(con(v)) is conjugate to γv(0) along
γv, there is a nontrivial Jacobi field J along γv with J(0) = 0 and J(con(v)) = 0.
We now define a vector field J−(t) := J(con(v)− t) along γw(t) = γv(con(v)− t)
and compute

J̈−(t) +R(J−(t), γ̇w(t))γw(t)

=J̈(con(v)− t) +R(J(con(v)− t), γ̇v(con(v)− t))γ̇v(con(v)− t) = 0.

Here R denotes the Riemannian curvature endomorphism of M . Thus J− is a
nontrivial Jacobi field along γw vanishing at γw(0) and γw(con(v)).
Now we show that con(v) ≤ con(w). Assume not, then con(v) > con(w). But
then γw|[0,con(v)] : [0, con(v)] → M has an interior conjugate point at time
con(w). By [2, Thm 10.26] there is a proper normal vector field X along
γw|[0,con(v)] such that the index form I(X,X) is strictly negative. Then the
vector field X−(t) = X(con(v) − t) along γv is proper, normal and satisfies
I(X−, X−) = I(X,X) < 0. But on the other hand γv : [0, con(v)]→M has no
interior conjugate points and therefore [2, Thm 10.28] implies 0 ≤ I(X−, X−),
which is a contradiction.
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Lemma 3.4. con : SM → (0,∞] is continuous.

Proof. Let v ∈ SM such that con(v) is finite and ε > 0. In this proof we
sometimes write (p, v) instead of v, where p = π(v). Without loss of generality
we assume ε < con(v). We consider the smooth map

F : TM →M ×M,F (v) := (π(v), expπ(v)(v))

and compute its differential in coordinates

d(p,v)F =

(
1 0
∗ dvexpp

)
.

We therefore have det(d(p,v)F ) = det(dvexpp).
For each t ≤ con(v)− ε we have det(d(p,tv)F ) = det(dtvexpp) 6= 0. Therefore we
can find, for each such t, an open neighborhood Ut ⊂ TM of (p, tv) such that
for each (p′, v′) ∈ Ut

det(d(p′,v′)F ) = det(dv′expp′) 6= 0.

The set U := ∪0≤t≤con(v)−εUt is thus an open neighborhood of

{(p, tv)|t ∈ [0, con(v)− ε]}.

We can thus find an open neighborhood V of (p, v) in SM such that (p′, tv′) ∈ U
for all (p′, v′) ∈ V, t ∈ [0, con(v)−ε]. Hence con is greater or equal than con(v)−ε
on V . (If con(v) =∞, the same argument shows that con is continuous at v.)
To finish the proof we have to show that there is a neighborhood of (p, v) in
SM on which con is smaller than con(v) + ε. By [2, Theorem 10.26] there is
a proper normal vector field X along γv|[0,con(v)+ε] such that the index form is
negative, i.e. I(X,X) < 0. The idea is then to transport this vector field X to
a proper normal vector field X ′ along the geodesic γv′|[0,con(v)+ε] with vanishing
index form, where (p′, v′) is close to (p, v). Then due to [2, Theorem 10.28],
γv′|[0,con(v)+ε] must have an interior conjugate point and we are done. Let’s do
this in detail.
We choose δ < 2inj(p,v)SM , let S ⊂ T(p,v)SM denote the sphere of radius 1
and define the smooth map

Γ : [0, con(v) + ε]× [0, δ]× S →M,Γ(t, s, w) := expMπ◦expSM
(p,v)

(sw)(texp
SM
(p,v)(sw)),

where π : SM → M is the projection of the unit tangent bundle. For fixed
w and t we can parallel transport X(t) along Γ(t, ·, w). By the differentiable
dependence theorem of parameters for initial value problems one infers that

X : [0, con(v) + ε]× [0, δ]× S → TM,X(t, s, w) := P
Γ(t,·,w)
0,s X(t)

is smooth. Hence X(·, s, w) is a smooth, proper vector field along γexpSM
(p,v)

(sw).

Now the index form I(X(·, s, w), X(·, s, w)) depends continuously on s and w.
We can therefore decrease δ such that

I(X(·, s, w), X(·, s, w)) < 0
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for all s ∈ [0, δ], w ∈ S. The vector fields X(·, s, w) are not necessarily normal
to the corresponding geodesic, but we can just take the normal part X(·, s, w)⊥

and obtain

I(X(·, s, w)⊥, X(·, s, w)⊥) ≤ I(X(·, s, w), X(·, s, w)) < 0

for all s ∈ [0, δ], w ∈ S. Let BSMδ ((p, v)) ⊂ SM denote the geodesic ball of
radius δ around (p, v). We have shown that for all (p′, v′) ∈ BSMδ ((p, v)) there
is a smooth, proper, normal vector field along γv′|[0,con(v)+ε] with negative index
form, hence con(v′) < con(v) + ε.

Definition 3.5. (M, g) is called wiedersehen manifold if Con(p) consists
of exactly one point for all p ∈ M . A wiedersehen manifold (M, g) is called
wiedersehen surface if in addition dimM = 2.

In the following we will first develop some geometric properties of wiederse-
hen manifolds and then prove the Blaschke conjecture for wiedersehen surfaces.
Firstly we show that con is constant and finite on SM . This is the content of
the following two lemmas.

Lemma 3.6. Let (M, g) be a wiedersehen manifold. For each p ∈ M the
restriction of con to SpM is constant and finite. Therefore the function

a : M → (0,∞), a(p) = con(v), where v ∈ SpM

is well defined.

Proof. Let p ∈M . The wiedersehen property says that p has a conjugate point,
hence there exists a v ∈ SpM such that con(v) is finite. By lemma 3.4 we can
find an open neighborhood B of v in SpM and ε > 0 such that con(w) is finite
and bigger than ε for all w ∈ B.
Now we show that con is smooth in a neighborhood of v in SpM . For that
we set q = Con(p) and take the above ε smaller than injqM . Let Sε be the
geodesic sphere of radius ε around q. Due to the choice of ε for all w ∈ B
we have γw(con(w) − ε) ∈ Sε. We now apply the Gauss lemma to show that
this intersection is perpendicular. We set ṽ = exp−1

q (γv(con(v)− ε)). For each

u ∈ TṽS
TqM
ε the Gauss lemma implies

0 = gqṽ(u, ṽ) = gexpq(ṽ)(dṽexpqu, dṽexpq ṽ). (3.1)

For the second argument we compute

expq(tṽ) = γṽ(t) = γ ṽ
|ṽ|

(t|ṽ|) = γv(con(v)− t|ṽ|).

And thus

dṽexpq ṽ =
d

dt |t=1
expq(tṽ) = −γ̇v(con(v)− |ṽ|) = −γ̇v(con(v)− ε).
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Since the left entry in (3.1) covers Tγv(con(v)−ε)Sε as u varies, the nondegeneracy
of g implies

γ̇v(con(v)− ε) ⊥ Tγv(con(v)−ε)Sε.

Since Sε is a codimension 1 submanifold of M there is some open neighborhood
U of γv(con(v)− ε) and smooth function smooth f : U → R such that

U ∩ Sε = {p′ ∈ U |f(p′) = 0}.

By the continuity of the geodesic flow and shrinking of B we can find a δ > 0
such that

π ◦ Φ(t, w) ∈ U for all (t, w) ∈ (con(v)− ε− δ, con(v)− ε+ δ)×B =: V.

We apply the implicit function theorem to the function

F : V → R, F (t, w) := f(π ◦ Φ(t, w)).

Since γv intersects Sε transversally at time con(v)− ε, we have

∂tF|(con(v)−ε,v) = f∗γv(con(v)−ε)γ̇v(con(v)− ε) = g(gradf, γ̇v(con(v)− ε)) 6= 0,

F (con(v)− ε, v) = 0.

The implicit function theorem implies that there is some open neighborhood A
of v in B and a unique smooth function g : A→ R such that F (g(w), w) = 0 for
each w ∈ A. For all w ∈ A we have F (con(w)− ε, w), hence g(w) = con(w)− ε.
Thus con is smooth on A.
Now we show that con is constant on A. For that we consider smooth curves
v : (−ε, ε) → A and the associated variations Γ : (−ε, ε) × R → M,Γ(s, t) :=
expp(tv(s)). We obtain a family of Jacobi fields J(s, t) = ∂sΓ(s, t) with

J(s, 0) = Γ(s, 0)(t
dv

ds
)|t=0 = 0 and

(Γ∇∂tJ)(s, 0) ⊥ ∂tΓ(s, 0), since

g((Γ∇∂tJ)(s, 0), ∂tΓ(s, 0)) =
1

2

d

ds
g(∂tΓ(s, 0), ∂tΓ(s, 0)) =

1

2

d

ds
1 = 0.

This implies that every Jacobi field J(s, ·) is normal, i.e. J(s, t) ⊥ ∂tΓ(s, t) for
all (s, t). Due to the definition of con and the wiedersehen property of M we
get

q = Γ(s, con(v(s))

and thus

0 =
d

ds
Γ(s, con(v(s)) = J(s, con(v(s))) + ∂tΓ(s, con(v(s)))

d

ds
con(v(s)).

Due to the perpendicularity of the two summands this equation yields

d

ds
con(v(s)) = 0.
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Therefore, con is locally constant at points v ∈ SpM where con(v) is finite.
Then con must be finite on SpM . Otherwise there would be a smooth curve
γ : [0, 1)→ SpM with con ◦ γ|[0,1) <∞ and con(γ(1)) =∞. Hence con ◦ γ|[0,1)

would be constant and finite by the preceding discussion, contradicting the
continuity of con. Consequently, con is locally constant on SpM . Since SpM is
connected and con is continuous, con is constant on SpM .

Lemma 3.7. Let (M, g) be a wiedersehen manifold. The function con is con-
stant and finite on SM. Let a be the value of con. All geodesics on M are periodic
with common period 2a.

Proof. Let p ∈ M and γ be a unit speed geodesic with γ(0) = p. Since con is
continuous, the function a from the above lemma is continuous. Therefore there
is some δ <

injpM
2 such that for each p′ ∈M with d(p, p′) < δ

|2a(p′)− 2a(p)| < injpM

2
.

We now show that γ is periodic and a(γ(ε)) = a(p) for all |ε| < δ. Let ε be fixed
and set p′ = γ(ε).
Case 1.1: ε > 0 and 2a(p) < 2a(p′) + ε. Then we have d(p, p′) = ε < δ. Using
the triangle inequality we obtain

|ε+ 2a(p′)− 2a(p)| < injpM.

We know that
Con(p′) = γ(ε+ a(p′))

and from proposition 3.3 we infer

p′ = Con(Con(p′)) = γ(ε+ 2a(p′)) and γ(2a(p)) = p.

We therefore conclude that γ|[2a(p),ε+2a(p′)] is the unique minimizing geodesic
from p to p′. But this is also true for γ|[0,ε]. Thus, we have γ̇(2a(p)) = γ̇(0) and
γ closes smoothly at p. Therefore, γ is periodic with period 2a(p).
Now we show that a is constant along γ. We know that

ε+ 2a(p′)− 2a(p) = Lg(γ|[2a(p),ε+2a(p′)]) = Lg(γ[0,ε]) = ε,

which implies a(p′) = a(p).
Case 1.2: ε > 0, 2a(p) ≥ 2a(p′) + ε. Then 2a(p′) < 2a(p) + ε. Using the same
argument as in case 1.1 for the geodesic γ(ε − ·) and changed roles of p and p′

we see that a(p) = a(p′) and γ(ε− ·) closes smootly at p′ and is hence periodic.
Thus, γ is periodic as well.
Case 2: ε < 0. As in cases 1.1 and 1.2 with γ(−·) instead of γ.

Thus a is locally constant along γ. By continuity a is constant along γ.
To prove the assertion that a is constant on the whole manifold M we note
that completeness implies that every two points on M can be connected by a
unit-speed geodesic.
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Lemma 3.8. Let (M, g) be a wiedersehen manifold. The map Con : M → M
is an isometry.

Proof. We use the Myers-Steenrod theorem, see [5, 3.31]. Con is a bijection
since it is involutive, that is Con ◦ Con = idM .
Now let p, q ∈ M be arbitrary and γ : [0, d(p, q)] → M be a minimizing unit-
speed geodesic with γ(0) = p and γ(d(p, q)) = q. By the preceding lemma we
have Con(γ(t)) = γ(a+ t). Setting t = 0 and t = d(p, q) we get Con(p) = γ(a)
and Con(q) = γ(a+ d(p, q)), respectively. We conclude that

d(Con(p), Con(q)) ≤ L(γ[a,a+d(p,q)]) = d(p, q)

for arbitrary p, q ∈M . Since Con2 = idM we get

d(p, q) = d(Con2(p), Con2(q)) ≤ d(Con(p), Con(q)).

These two inequalities imply

d(p, q) = d(Con(p), Con(q)).

Lemma 3.9. Let (M, g) be a wiedersehen manifold. For p ∈M we consider the
Euclidean sphere Smp (a/π) as the quotient of the closed Ball B̄(0p, a) of radius
a in TpM , where the boundary S(0p, a) is identified to the south pole Sp. Let
qp : B̄(0p, a) −→ Smp (a/π) denote the quotient map. Then there is a smooth
covering map Fp : Smp (a/π) −→M such that Fp ◦ q = expp.

Proof. The map Fp is well defined, since for v ∈ ∂B(0p, a) we have con( va ) = a
and thus

expp(v) = expp(a
v

a
) = Con(p).

Due to [1, 4.46] we only have to show that that Fp is a local diffeomorphism.
On Smp (a/π) \ {Sp} the map Fp is given by expp and hence smooth. A vector
v ∈ B(0p, a) can’t be a critical point of expp since conjugate points to p occur
not before time a. Thus Fp is a local diffeomorphism on Smp (a/π) \ {Sp}. It
remains to check that Fp is smooth and a local diffeomorphism at the collapsed
point Sp. Since Con is an isometry we have for all v ∈ SpM and t ≥ 0

expp(tv) = Con(expp((t− a)v)) = expCon(p)((t− a)Con∗v).

Let α : Smp (a/π)→ Smp (a/π) denote the antipodal map. For u ∈ B̄(0p, a) \ {0}
we set v = u

|u| and t = |u| and the above equality implies

Fp(qp(u)) = FCon(p)qCon(p)Con∗(|u| − a)
u

|u|
= FCon(p) ◦ qCon(p) ◦ Con∗ ◦ (qp|Smp (a/π)−Sp)−1 ◦ α(qp(u)).
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Thus, Fp is on Smp (a/π) \Np (Np is the north pole) given by

Smp (a/π) \ {Np}
α−→ Smp (a/π) \ {Sp}

q−1
p−→ B(0p, a)

Con∗−→ B(0Con(p), a)

qCon(p)−→ SCon(p)(a/π) \ {SCon(p)}
FCon(p)−→ M.

All involved maps are local diffeomorphisms. This concludes the proof.

Theorem 3.10. Let (M, g) be a simply connected wiedersehen manifold. Then

1. M is diffeomorphic to Sm.

2. injM = diamM = a.

3. For all p ∈M and v ∈ SpM we have γv(a) = Con(p).

4. All unit speed geodesics in M are periodic with (least) period 2a.

5. Con is an involutive isometry with d(p,Con(p))=a.

Proof. By the universal property of the universal cover the map F : Sm(a/π)→
M of lemma 3.9 is a diffeomorphism. Therefore expp restricted to B(0p, a) is
injective and expp = Con(p) on S(0p, a) for every p ∈M . From this everything
follows.

We now want to give an equivalent condition for the wiedersehen property.
To do that it is convenient to introduce Allamigeon-Warner manifolds.

Definition 3.11. Let k ∈ {1, ...,m − 1}, l > 0. A complete and connected
Riemannian manifold (M, g) is called Allamigeon-Warner manifold of type
(k, l) if con(v) = l for all v ∈ SM and if the multiplicity of γv(l) as a conjugate
point of γv(0) along γv is equal to k.

Proposition 3.12. An m-dimensional Riemannian manifold (M, g) is Allami-
geon Warner of type (m− 1, l) if and only if (M, g) is wiedersehen.

Proof. Let (M, g) be wiedersehen and take v ∈ SpM . Set l = con(v). We have
to show that the multiplicity of γv(l) along γv is equal to m − 1. Since the
multiplicity of a conjugate point never exceeds m − 1, it suffices to show that
there are m− 1 linearly independent Jacobi fields along γv vanishing at 0 and l.
Let v : (−ε, ε)→ SpM be a smooth curve with v(0) = v. Consider the variation
Γ : (−ε, ε) × R → M,Γ(s, t) := expp(tv(s)). Then the associated Jacobi field
J(t) = ∂sΓ(0, t) satisfies J(0) = 0. Since Γ(s, l) = 0 we have J(l) = 0. Moreover

J̇(0) = γv∇∂t∂sΓ|(s,t)=(0,0) = Γ∇∂t∂sΓ|(s,t)=(0,0) = Γ∇∂s∂tΓ|(s,t)=(0,0)

= π◦v∇∂sv(0) =
d

ds |s=0
v(s).
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In the last two equalities we used ∂tΓ(s, 0) = v(s) and π ◦ v ≡ p, respectively.
Since the dimension of SpM is m− 1, we are done.
Conversely let (M, g) be Allamigeon Warner of type (m− 1, l). For each p ∈M
we have to show that Con(p) consists of a single point, i.e. expp(lv) = expp(lw)
for all v, w ∈ SpM . Take a smooth curve v : [0, 1]→ SpM with v(0) = v, v(1) =
w. The Jacobi fields J(s, t) = ∂sΓ(s, t) associated to the variation Γ : [0, 1]×R→
M,Γ(s, t) := expp(tv(s)) satisfy J(s, 0) = 0 and J̇(s, 0) ⊥ ∂tΓ(s, 0). Since M
is Allamigeon Warner of type (m − 1, l), we must have 0 = J(s, l) = ∂sΓ(s, l).
Hence expp(lv) = Γ(0, l) = Γ(1, l) = expp(lw).

Corollary 3.13. A Riemannian surface (M, g) is wiedersehen if and only if
con is finite and constant.

Lemma 3.14. Let π : (M̃, g̃)→ (M, g) be a Riemannian covering. Then

(M̃, g̃) is Allamigeon Warner of type (k, l)

⇔ (M, g) is Allamigeon Warner of type (k, l).

Proof. Since π is a Riemannian covering, g is complete if and only if g̃ is com-
plete. For each unit speed geodesic γ̃ in M̃ , set γ = π ◦ γ̃. Let J be a Jacobi
field along γ. Denote by J̃ the unique vector field along γ̃ with π∗J̃ = J . [5,
6.17] implies that for every vector field V along γ̃

π∗
γ̃∇M̃∂t Ṽ = γ∇M∂t π∗Ṽ .

Applying this twice we obtain

π∗
γ̃∇M̃∂t

γ̃∇M̃∂t J̃ = γ∇M∂t π∗
γ̃∇M̃∂t J̃ = γ∇M∂t

γ∇M∂t J.

Consequently

g̃(γ̃∇M̃∂t
γ̃∇M̃∂t J̃ + R̃(J̃ , ˙̃γ) ˙̃γ, ·) = g(π∗

γ̃∇M̃∂t
γ̃∇M̃∂t J̃ + π∗R̃(J̃ , ˙̃γ) ˙̃γ, π∗·)

= g(γ∇M∂t
γ∇M∂t J +R(J, γ̇)γ̇, π∗·).

Thus J is a nontrivial Jacobi field vanishing at t = 0, l if and only if J̃ is a
nontrivial Jacobi field vanishing at t = 0, l. Hence the assertion holds.

Corollary 3.15. Let π : (M̃, g̃)→ (M, g) be a Riemannian covering. Then

(M̃, g̃) is wiedersehen ⇔ (M, g) is wiedersehen.
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Chapter 4

Blaschke Conjecture

In this chapter we follow [3] and present Green’s proof of the Blaschke con-
jecture. The key for the proof is the following theorem, which uses a volume
inequality to characterize whether a Riemannian manifold has constant positive
sectional curvature.

Theorem 4.1. Let (M, g) be a closed Riemannian manifold and a > 0 such
that every v ∈ SM satisfies con(v) ≥ a. Then

a2

π2

∫
M

scalµg ≤ m(m− 1)volg(M).

And equality holds if and only if M has constant sectional curvature π2

a2 . Here
scal : M → R denotes the scalar curvature.

Proof. First let γ : [0, a]→M be a unit speed geodesic and E ∈ γTM a parallel
normal unit vector field along γ . Then the vector field V (t) = sin(πta )E(t) is a
proper normal vector field along γ. Therefore [2, Thm 10.28] implies

0 ≤
∫ a

0

g(γ∇∂tV, γ∇∂tV )−R(V, γ̇, γ̇, V )dt, (4.1)

with equality if and only if V is a Jacobi field. With

γ∇∂tV = γ∇∂tsin(
πt

a
)E(t) =

π

a
cos(

πt

a
)E(t)

we can calculate the first term of the above inequality∫ a

0

g(γ∇∂tV, γ∇∂tV )dt =

∫ a

0

π2

a2
cos2(

πt

a
)dt =

π2

a2

a

2
=
π2

2a
.

Thus, we have ∫ a

0

sin2(
πt

a
)R(E, γ̇, γ̇, E)dt ≤ π2

2a
.
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V is a Jacobi field if and only if it solves the Jacobi equation, which is in this
case given by

−π
2

a2
sin(

πt

a
)E(t) + sin(

πt

a
)R(E, γ̇)γ̇ = 0.

This holds if and only if K(E, γ̇) = π2

a2 and R(E, γ̇)γ̇, E are colinear. Now we
choose a parallel orthonormal frame (E1, ..., Em) along γ such that E1 = γ̇.
Then∫ a

0

sin2(
πt

a
)Ric(γ̇)dt =

m∑
i=1

∫ a

0

sin2(
πt

a
)R(Ei, γ̇, γ̇, Ei)dt

=

m∑
i=2

∫ a

0

sin2(
πt

a
)R(Ei, γ̇, γ̇, Ei)dt ≤ (m− 1)

π2

2a
,

(4.2)

with equality if and only if K(Ei, γ̇) = π2

a2 and R(Ei, γ̇)γ̇, Ei are colinear for
i = 2, ...,m. Since the equation is independent of the chosen frame, we get that

equality holds iff K(E, γ̇) = π2

a2 and R(E, γ̇)γ̇, E are colinear for every normal
parallel unit vector field E along γ. Since M is compact and therefore SM is
compact, we can integrate (4.2) over the unit tangent bundle SM . For the right
side we compute∫

SM

µSM
2.34
=

∫
M

∫
SpM

µSpMµM

=

∫
M

vol(Sm−1)µM = vol(M)vol(Sm−1).

For the left side we compute∫
SM

∫ a

0

sin2(
πt

a
)Ric(γ̇v)dtµSM =

∫
SM

∫ a

0

sin2(
πt

a
)Ric(Φt(v))dtµSM

2.34
=

∫ a

0

sin2(
πt

a
)

∫
SM

Ric(Φt(v))µSMdt

2.48
=

∫ a

0

sin2(
πt

a
)

∫
SM

Ric(v)µSMdt

=
a

2

∫
SM

Ric(v)µSM

2.34
=

a

2

∫
M

∫
SpM

Ric(v)µSpMµM

2.35
=

a

2

∫
M

1

m
vol(Sm−1)scalµM

=
a

2

1

m
vol(Sm−1)

∫
M

scalµM .

Together we obtain the asserted inequality. Now equality holds iff for every unit
speed geodesic γ and normal parallel unit vector field E along γ the sectional
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curvature satisfies K(E, γ̇) = π2

a2 and R(E, γ̇)γ̇, E are colinear. But this is

equivalent to M having constant sectional curvature π2

a2 by [5, Satz 6.10].

If for a closed Riemannian manifold no conjugate points exist, let a go to
+∞ to obtain the following corollary.

Corollary 4.2. Let (M, g) be a closed Riemannian manifold without conjugate
points. Then ∫

M

scalµM ≤ 0.

Since we did this limit process, we don’t know what equality implies for the
sectional curvature. One would expect that in the case of equality the sectional
curvature vanishes identically. This is in fact true and is proved in [10]. Later
we will show a theorem due to Eberhard Hopf, which states this result for
Riemannian surfaces.
Let us now specialize the above theorem to the case of surfaces.

Corollary 4.3. Let (M, g) be a closed Riemannian surface and a > 0 such that
for all v ∈ SM, con(v) ≥ a. Then

vol(M) ≥ 2a2

π
χ(M).

And equality holds iff the sectional curvature is constant K = π2

a2 . Here χ(M)
denotes the Euler characteristic of M .

Proof. By the Gauss-Bonnet theorem∫
M

KµM = 2πχ(M).

On a surface we have scal = 2K, thus by the preceding theorem

vol(M) ≥ a2

2π2

∫
M

scalµM

=
a2

π2

∫
M

KµM =
2a2

π
χ(M).

We already know that a simply connected wiedersehen surface M is diffeo-
morphic to S2. Hence to prove the Blaschke conjecture in the simply connected
case, the preceding corollary shows that it is sufficient to show that the volume

of M is equal to 4a2

π . We will compute the volume of SM , because there the
integral curves of the geodesic flow Φt : SM → SM fill up SM and do not inter-
sect each other. This will allow us to parametrize SM by unit speed geodesics
starting at a hypersurface of M , namely one of the closed geodesics on M . The
technical tool for this is Santalo’s formula, which we shall prove in the following.
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Let Σ be a non-degenerate hypersurface in the Riemannian manifold (N, gN )
and X a vector field on N with complete flow ΦX : R ×N → N . We define a
smooth map

F : R× Σ→ N,F (t, x) = ΦtX(x).

We endow Σ with the induced Riemannian metric, R with the Euclidean metric
and R× Σ with the product metric.

Lemma 4.4. If (ΦtX)∗µN = µN for every t ∈ R, then the Jacobian |F |∗ is
independent of t and

|F |∗(t, x) = |gN (X⊥(x), X⊥(x)))| 12 ,

where X⊥ is the component of X perpendicular to Σ.

Proof. We define the map ψs : R× Σ→ R× Σ, ψ(t, x) := (t+ s, x). Then

ψ∗sµR×Σ = µR×Σ

and F ◦ ψs = ΦsX ◦ F by the flow property. We can now compute

|F |∗µR×Σ = F ∗µN = F ∗(ΦsX)∗µN

= (ΦsX ◦ F )∗µN

= ψ∗sF
∗µN

= ψ∗s (|F |∗µR×Σ)

= |F |∗ ◦ ψsψ∗sµR×Σ

= |F |∗ ◦ ψsµR×Σ.

But from this we obtain |F |∗(t, x) = |F |∗(t + s, x) for all t, s ∈ R, x ∈ Σ.
This proves the independence of t. Let (U, φ) be a Σ-adapted chart on N with
coordinate functions φ = (x1, ..., xn) such that the inclusion U ∩ Σ → U is in
coordinates given by (x2, ..., xn) 7→ (0, x2, ..., xn). For R× Σ we have the chart
(y1, ..., yn) = idR × φ|Σ. For all x ∈ U ∩ Σ

• d(0,x)F∂y1 = (∂t)|t=0ΦtX(x) = X(x)

• d(0,x)F∂yi = (∂yi)|(0,x)Φ
t
X(x) = ∂xi for i ≥ 2, thus d(0,x)F|TxΣ = idTxΣ.

Now let (v1, ..., vn) be an orthonormal basis of T(0,x)R× Σ with v1 = ∂t. Then
by proposition 2.38 we get

|F |∗(0, x) = |det(gN (d(0,x)Fvi, d(0,x)Fvj))|
1
2

= |det(



gN (X(x), X(x)) gN (X(x), v2) · · · · · · gN (X(x), vn)
gN (X(x), v2) 1 0 · · · 0

... 0 1
. . . 0

...
...

. . .
. . . 0

gN (X(x), vn) 0 · · · 0 1

)| 12

= (gN (X,X)−
n∑
i=2

gN (X, vi)
2)

1
2 .
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Using this we obtain the assertion, since

gN (X⊥, X⊥) = gN (X −
n∑
i=2

gN (X, vi)vi, X −
n∑
j=2

gN (X, vj)vj)

= gN (X,X)− 2

n∑
i=2

gN (X, vi)
2 +

n∑
i=2

gN (X, vi)
2 = |F |∗(0, x)2.

Let us apply this lemma to the geodesic flow.

Theorem 4.5. (Santalo’s formula) Let H be a hypersurface in the complete
Riemannian manifold (M, g) and Σ = SMH = {(p, v) ∈ SM | p ∈ H}. Let G
be the vector field of the geodesic flow Φt : SM → SM . With F defined as above

|F |∗(t, v) = sin(θ(v)),

where θ(v) ∈ [0, π/2] is the angle between Tπ(v)H and v.

Figure 4.1: Santalo’s formula: The red line is the hypersurface H, v ∈ SMH .
The arrows illustrate the directions taken by the geodesic flow.

Proof. By lemma 2.47 the geodesic flow preserves µSM , so we can apply the
preceding lemma with (N, gN ) = (SM, ι∗gS) and obtain

|F |∗(t, v) = |gS(G⊥(v), G⊥(v))| 12 .

Again, by lemma 2.47 we have TvSM = TpM
⊕
v⊥, where p = π(v). As in

proposition 2.7 one shows that G(v) = (v, 0). If v ∈ Σ, then TvΣ = TpH
⊕
v⊥,

which follows directly from corollary 2.5. Let νH ∈ TpM be the outer unit
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normal of H in M at p. Then νΣ := (νH , 0) is a unit normal of Σ in SM at v,
since gS(νΣ, νΣ) = 1 and for each Z = (X,Y ) ∈ TvΣ

gS(νΣ, Z) = g(νH , X) + g(0, Y ) = 0.

Thus
G⊥(v) = gS(G(v), νΣ)νΣ = (g(v, νH) + 0)νΣ

and finally

g(G⊥(v), G⊥(v)) =
g(v, νH)2

|v|2g|νH |2g
= cos2(

π

2
− θ(v)) = sin2θ(v).

We are now able to prove the Blaschke conjecture. Firstly, we treat the case
where M is simply connected and then use the theory of covering spaces to
obtain the general result.

Theorem 4.6. (Blaschke conjecture for simply connected wiedersehen surface)
Every simply connected wiedersehen surface (M, g) has constant positive sec-
tional curvature.

Proof. By theorem 3.10 M is diffeomorphic to the sphere S2. Hence the Euler
characteristic χ(M) is equal to 2. The idea is to show

vol(M) =
4a2

π
.

Then corollary 4.3 implies that K is equal to π2/a2. The formula for the volume
of M can be derived from Santalo’s formula as follows. Let H ⊂ M be one of
the closed geodesics of length 2a (where a is from theorem 3.10). Define F,Σ
as in Santalo’s formula. We will show that

F : [0, a)× (Σ− SH)→ SM − SH

is a diffeomorphism and therefore

vol(SM) = vol(SM − SH) =

∫
F ([0,a)×(Σ−SH))

volSM

=

∫
[0,a)×(Σ−SH)

sinθ(v)volR×Σ

=

∫
[0,a)×Σ

sinθ(v)volR×Σ

=

∫
[0,a)

volR

∫
Σ

sinθ(v)volΣ

= a

∫
Σ

sinθ(v)volΣ.
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By Fubini we have∫
Σ

sinθ(v)volΣ =

∫
H

∫
SpM

sinθ(v)volSpM (v)volH(p)

=

∫ 2π

0

|sinθ|dθ
∫
H

volH = 4 · 2a.

Therefore the volume of the unit tangent bundle is 8a2 and

8a2 = vol(SM) =

∫
M

∫
SpM

volSpMvolM = 2πvol(M),

which proves the formula for the volume of M .
We now show that F from above is a diffeomorphism. To see that F is surjective,
let (x, v) ∈ SM − SH.
Case 1: (x, v) ∈ SM|H .F (0, (x, v)) = (x, v).
Case 2: x ∈ M − H. Take any p ∈ H and a minimizing unit speed geodesic
γ that connects p and x such that γ(0) = p. By the Jordan curve theorem H
separates M into two disjoint components N and S. Without loss of generality
we assume x ∈ N . Since injM = a, γ won’t hit H in the time interval (0, a).
Moreover γ(a) = Con(p) ∈ H. Because x 6∈ H, γ intersects H transversally in
Con(p) and thus γ(a, 2a) ⊂ S. Since Con(p) lies on H and x doesn’t, we have
Con(p) 6= x. Therefore, there must be some positive real number tx < a with
γ(tx) = x. Consequently Con(x) = γ(tx +a) ∈ S. Let γ−v be the geodesic such
that γ−v(0) = x, γ̇−v(0) = −v. Then γ−v(a) = Con(x) ∈ S and thus there must
be a first positive time t0 < a such that γ−v(t0) ∈ H. Then−γ̇−v(t0) ∈ (Σ−SH)
and F (t0,−γ̇−v(t0)) = −γ̇−v(0) = (x, v).
For injectivity we take (t, (x, v)), (s, (y, w)) ∈ [0, a)× (Σ− SH) with s ≥ t such
that F (t, (x, v)) = F (s, (y, w)), i.e. Φt(v) = Φs(w). Thus Φs−t(w) = v, but
π ◦ Φ·(w) can only hit H after times that are multiples of a. Hence s − t = 0,
which proves (x, v) = (y, w).
Let (t, v) ∈ [0, a)× (Σ−SH), and (X1, ..., X2m−1) a positively oriented basis of
T(t,v)R× Σ, then

volSM (dFX1, ..., dFX2m−1) = F ∗volSM (X1, ..., X2m−1) = sinθ(v) 6= 0

implies that (dFX1, ..., dFX2m−1) is a basis of TF (t,v)SM . Thus, F is a local
diffeomorphism and we are done.

Corollary 4.7. Let (M, g) be a wiedersehen surface. Then (M, g) has constant
positive sectional curvature.

Proof. Let π : M̃ → M be the universal cover of M . By [1, 4.40] there is
a unique smooth structure on M̃ such that p is a smooth covering map. We
endow M̃ with the Riemannian metric g̃ := π∗g. By corollary 3.15, (M̃, g̃)
is a simply connected wiedersehen surface and has therefore constant positive
sectional curvature K̃. Since π is a local isometry, (M, g) has constant positive
sectional curvature.
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An even dimensional complete connected Riemannian manifold (Mm, g) with
constant positive curvature is isometric to the sphere Sm or the real projective
space RPm, both equipped with the canonical metric times some positive con-
stant (see [8, Chapter 8, Proposition 4.4]). Thus, the only wiedersehen surfaces
are S2 and RP2 with positive multiples of the canonical metrics.

In the proof of the Blaschke conjecture the fact that the wiedersehen mani-
fold is a surface is crucial, both in applying corollary 4.3 and Santalo’s formula.
In the first case we used the Gauss-Bonnet theorem and in the second we used
that a closed geodesic in a two-dimensional manifold is a hypersurface. Never-
theless, Berger was able to prove the following.

Theorem 4.8. Let g be a Riemannian metric on Sm with

inj(Sm, g) = diam(Sm, g).

Then (Sm, g) has constant positive sectional curvature.

For details see [6]. By our discussion of wiedersehen manifolds we know that
simply connected wiedersehen manifolds are exactly of this type, namely they
are diffeomorphic to the sphere and the injectivity radius equals the diameter.
Hence simply connected wiedersehen manifolds have constant positive sectional
curvature. By chapter 3 we obtain

Corollary 4.9. Every wiedersehen manifold has constant positive sectional cur-
vature.

But this isn’t the end of the story. One can even go farther and con-
sider Blaschke manifolds, i.e. Riemannian manifolds (M, g) with the property
injM = diamM . The generalized Blaschke conjecture is then: Up to isometry
the only Blaschke manifolds are the compact symmetric spaces of rank 1. This
problem is still not solved. For a summary of what is known see [13].
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Chapter 5

Closed Surfaces without
Conjugate Points

In this chapter we will prove the following theorem of E. Hopf [12].

Theorem 5.1. Let (M, g) be a closed Riemannian surface. If on M no conju-
gate points exist, then ∫

M

KµM ≤ 0

and equality holds if and only if the Gaussian curvature K is identically zero.

In this chapter we always assume (M, g) to satisfy the assumptions of this
theorem. First, we investigate how the non-existence of conjugate points affects
Jacobi fields on M .

Proposition 5.2. Let v ∈ SpM and E be a parallel vector field along γv such
that (γ̇v, E) is an orthonormal frame along γv. Then

1. J is a normal Jacobi field along γv if and only if J̈ + K ◦ γvJ = 0 and
J̇(0), J(0) ⊥ γ̇v(0).

2. Writing J = yE for a function y, the Jacobi equation from 1. becomes

ÿ +K ◦ γvy = 0. (5.1)

3. The solutions of (5.1) are defined on all of R.

4. Any nontrivial solution of (5.1) has at most one zero. Two non-identical
solutions intersect at most once. (intersection property)

5. For all a, b ∈ R there is a unique solution yv(·; a, b) of (5.1) such that

yv(a; a, b) = 1, yv(b; a, b) = 0. (5.2)
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Proof. 1. By [5, 6.10] and the fact that M is a surface, we have

R(J, γ̇v)γ̇v = K(γv)(g(γ̇v, γ̇v)J − g(J, γ̇v)γ̇v) = K(γv)(J − g(J, γ̇v)γ̇v).

If J is a normal Jacobi field along γv, then

0 = J̈ +R(J, γ̇v)γ̇v = J̈ +K(γv)J.

Together with

0 =
d

dt
g(J, γ̇v) = g(J̇ , γ̇v)

this shows the first implication.
Conversely assume J̈ +K(γv)J = 0 and J(0), J̇(0) ⊥ γ̇v(0). Then the function
g(J, γ̇v) and its derivative g(J̇ , γ̇v) vanish at t = 0. Moreover

d2

dt2
g(J, γ̇v) = g(J̈ , γ̇v) = −K(γv)g(J, γ̇v),

and by the uniqueness of such an initial value problem g(J, γ̇v) = 0. Then J is
a normal Jacobi field since

0 = J̈ +K(γv)J = J̈ +R(J, γ̇v)γ̇v.

2. Follows easily since E is parallel.
3. This follows from the theory of ordinary differential equations, see [11, 21.3].
4. If a nontrivial solution had more than one zero, there would exist conjugate
points on M . If there were two nonidentical solutions intersecting at two points,
we could subtract them and obtain a nontrivial solution with more than one zero.
5. See [8, Proposition 3.9, Chapter 5].

With the notation of the preceding proposition we are now going to prove
the theorem.

Proof. For α, β, a, b ∈ R with α 6= β, a 6= b the identity

yv(s; a, b) = yv(α; a, b)yv(s;α, β) + yv(β; a, b)yv(s;β, α) (5.3)

holds, since by linearity of (5.1) both sides are solutions of the Jacobi equation
and they are equal at s = α, β. If α = a′, β = b this becomes

yv(s; a, b) = yv(a
′; a, b)yv(s; a

′, b). (5.4)

We have
yv(s; a, b

′) > 0 for s < b′ and a < b′, (5.5)

because otherwise there would exists some s < b′ such that yv(s; a, b
′) ≤ 0. By

the intermediate value theorem there would exist s0 < b′ with yv(s0; a, b′) =
0 = yv(b

′; a, b′). By the intersection property yv(·; a, b′) = 0, which contradicts
yv(a, a, b

′) = 1.
For a < b < b′ we get yv(b; a, b) = 0 < yv(b; a, b

′). Hence the solutions

41



yv(s; a, b), yv(s; a, b
′) are different and by the intersection property they intersect

if and only if s = a. Therefore the function f(s) := yv(s; a, b)−yv(s; a, b′) solves
(5.1), f(a) = 0, f|(a,∞) > 0 and f ′(a) 6= 0, since otherwise f ≡ 0 by uniqueness
of the solutions of (5.1). Thus f|(−∞,a) < 0 or equivalently

yv(s; a, b) ≥ yv(s; a, b′) for s ≤ a < b < b′. (5.6)

By (5.5) and (5.6) for all s ≤ a the limit

yv(s; a) := lim
b→+∞

yv(s; a, b) (5.7)

exists. If we choose α, β ≤ a in (5.3), we see that the limit in (5.7) exists for
all s ∈ R and is a solution of (5.1) since it is a linear combination of solutions.
Furthermore, this limit commutes with differentiation by s

y′v(s; a) = lim
b→+∞

y′v(s; a, b) for s ∈ R. (5.8)

This can be shown as follows. Choose α, β ≤ a, then

y′v(s; a) =
d

ds
[ lim
b→+∞

yv(α; a, b)yv(s;α, β) + lim
b→+∞

yv(β; a, b)yv(s;β, α)]

= lim
b→+∞

yv(α; a, b)y′v(s;α, β) + lim
b→+∞

yv(β; a, b)y′v(s;β, α)

= lim
b→+∞

[yv(α; a, b)y′v(s;α, β) + yv(β; a, b)y′v(s;β, α)]

= lim
b→+∞

y′v(s; a, b).

From (5.2) and (5.5) we see that

yv(a; a) = 1, y(s; a) ≥ 0 for all s ∈ R.

Assume yv(s0; a) = 0. Then yv(·, a) has a minimum at yv(s0; a), hence y′v(s0; a) =
0. And since yv(s; a) solves the Jacobi equation (5.1), yv(s; a) = 0 for all s ∈ R.
This contradicts yv(a; a) = 1. Therefore yv(s; a) > 0 for all s ∈ R and we can
define a function uv : R→ R by

uv(s) :=
y′v(s; a)

yv(s; a)
.

As the notation suggests, this definition is independent of a. Let a, a′ ∈ R.
Then by (5.4)

yv(s; a) = lim
b→+∞

yv(s; a, b) = lim
b→+∞

yv(a
′; a, b)yv(s; a

′, b) = yv(a
′; a)yv(s; a

′)

and differentiating by s we obtain

y′v(s; a) = yv(a
′; a)y′v(s; a

′).
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Dividing these two equations implies that uv is independent of a. If we differ-
entiate uv and use that yv(s; a) solves the Jacobi equation we obtain

u′v(s) =
y′′v (s; a)yv(s; a)− y′v(s; a)2

y2
v(s; a)

= −K(γv(s)) · yv(s; a)2

yv(s; a)2
− u2(s)

and hence uv is a solution of the Riccati equation

u′v(s) + u2
v(s) +K(γv(s)). (5.9)

Let Yv(s; b) denote the solution of the Jacobi equation (5.1) such that Yv(b; b) =
0, Y ′v(b; b) = 1. We compute

d

ds
[yv(s; a, b)Y

′
v(s; b)− y′v(s; a, b)Yv(s; b)] = 0 and

yv(b; a, b)Y
′
v(b; b)− y′v(b; a, b)Yv(b; b) = 0.

Thus, for all s 6= b we get

y′v(s; a, b)

yv(s; a, b)
=
Y ′v(s; b)

Yv(s; b)
. (5.10)

Going to the limit we can thus write uv in terms of Yv

uv(s) = lim
n→+∞

y′v(s; a, s+ n)

yv(s; a, s+ n)
= lim
n→+∞

Y ′v(s; s+ n)

Yv(s; s+ n)
. (5.11)

We now show that there exists a constant A > 0 such that

|uv| ≤ A for all v ∈ SM. (5.12)

Since M is compact and the Gaussian curvature K is continuous, there exists
A > 0 such that K > −A2 on M . Let a 6= b. The function

z(s; a, b) =
sinh[A(b− s)]
sinh[A(b− a)]

is the solution of the initial value problem

z′′(s)−A2z(s) = 0, z(a; a, b) = 1, z(b; a, b) = 0.

If we write yv(s) = yv(s; a, b), z(s) = z(s; a, b), then

(zy′v − yvz′)′ = zy′′v + z′y′v − y′vz′ − yvz′′ = zyv(−K(γv))− yvzA2

= −(K(γv) +A2)yvz.

Now let a < b. If s < b, then yv(s), z(s) > 0 by (5.5) and hence (zy′v−yvz′)′ < 0.
Therefore, the function (zy′v − yvz′) is strictly decreasing on s < b and is equal
to 0 when s = b. Thus (zy′v − yvz′) > 0 for s < b. Going to the limit we get

uv(s) = lim
b→∞

y′v(s; a, b)

yv(s; a, b)
≥ lim
b→∞

z′(s; a, b)

z(s; a, b)
= lim
b→∞

−Acosh(A(b− s))
sinh(A(b− a))

= −A.
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Now let a > b. Then the functions yv(s) = yv(s; a) and z(s) = z(s; a, b) are
positive for s > b. The same reasoning as above shows (zy′v − yvz′)′ < 0 for
s > b and hence we get

(zy′v − yvz′)(s) < (zy′v − yvz′)(b) = −yv(b)z′(b) < 0 if s > b.

Hence, we obtain

uv(s) =
y′v(s; a)

yv(s; a)
<
z′(s; a, b)

z(s; a, b)

for s > b and going to the limit b→ −∞ implies

uv(s) ≤ A

for all s ∈ R.
We now consider u as a function u : SM × R→ R. We have

u(Φt(v), s) = u(v, s+ t) for all s, t ∈ R, v ∈ SM. (5.13)

To see this we consider the function f : R→ R, f(s) := yv(s+ t; a, b). Then

f ′′(s) = −K(π ◦ Φs ◦ Φt(v))f(s), f(a− t) = 1, f(b− t) = 0.

By the intersection property we obtain yv(s+ t; a, b) = yΦt(v)(s; a− t, b− t) and
hence

u(Φt(v), s) = lim
b→∞

y′Φt(v)(s; a− t, b− t)
yΦt(v)(s; a− t, b− t)

= lim
b→∞

y′(v)(s+ t; a, b)

yv(s+ t; a, b)
= u(v, s+ t).

If we set s = 0 in (5.13) we get u(Φt(v), 0) = u(v, t) and inserting this into (5.9)
we conclude

d

dt
u(Φt(v), 0) + u2(Φt(v), 0) +K(π ◦ Φt(v)) = 0. (5.14)

We now show that the function u(·, 0) is measurable. Using (5.10) we obtain

u(v, 0) = lim
n→∞

Y ′v(0;n)

Yv(0;n)
,

where Yv(s;n) is a solution of the Jacobi equation with Yv(n;n) = 0, Y ′v(n;n) =
1. From the theory of ordinary differential equations one infers that for n ∈ N
fixed, Yv(0;n) and Y ′v(0;n) depend continuously on v ∈ SM .(See [14, 4.1.2])

Thus
Y ′v(0;n)
Yv(0;n) is continuous in v ∈ SM and hence u(·, 0) is measurable as the

limit of continuous functions. We have already shown that u(·, 0) is bounded
on SM , together we conclude that it is integrable over SM .
Integrating (5.14) with respect to t implies

u(Φ1(v), 0)− u(v, 0) +

∫ 1

0

K(π ◦ Φt(v))dt = −
∫ 1

0

u2(Φt(v), 0)dt. (5.15)
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By the preceding discussion, we can integrate the left side of this equality over
SM . Using corollary 2.48 we obtain∫

SM

u(Φ1(v), 0)− u(v, 0)µSM = 0.

Moreover∫
SM

∫ 1

0

K(π ◦ Φt(v))dtµSM
2.34
=

∫ 1

0

∫
SM

K(π ◦ Φt(v))µSMdt

2.48
=

∫
SM

K(π(v))µSM

2.34
=

∫
M

∫
SpM

K(π(v))µSpM (v)µM (p)

=

∫
M

K(p)vol(SpM)µM (p)

= 2π

∫
M

KµM .

Together we conclude

2π

∫
M

KµM = −
∫
SM

∫ 1

0

u2(Φt(v), 0)dtµSM .

Therefore, the total curvature is non positive. If the total curvature is equal to
zero, then ∫

SM

∫ 1

0

u2(Φt(v), 0)dtµSM = 0.

Thus, for almost all v ∈ SM,
∫ 1

0
u2(Φt(v), 0)dt = 0. For such a v, since

u(Φt(v), 0) = uv(t) is continuous in t, one infers that u(Φt(v), 0) = 0 for all
t ∈ [0, 1]. By (5.14) we get K(π(v)) = 0. Thus K ◦ π is a continuous func-
tion on SM that vanishes almost everywhere, hence it is equal to zero on SM .
Therefore K ≡ 0.

Corollary 5.3. Let M be the two-dimensional torus or the Klein bottle. Let g
be a Riemannian metric on M without conjugate points. Then (M, g) is flat.

Proof. The Gauss-Bonnet theorem implies∫
M

KµM = 0,

and the preceding theorem implies that K ≡ 0. Hence (M, g) is flat.

One can then ask whether the same conclusion holds for higher dimensional
tori. This was an almost 50 years standing conjecture, which was finally solved
by Burago and Ivanov [7]. They showed that higher dimensional tori without
conjugate points are flat.
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[11] Harro Heuser, Gewöhnliche Differentialgleichungen: Einführung in
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Notation Index

π : TM →M, tangent bundle
F∇, pullback of the connection under map

F∗, differential of a smooth map

τ∇, torsion of a connection

C : TTM → TM, connection map

γv, geodesic with initial velocity v

Φ : G → TM, geodesic flow

G, vector field of the geodesic flow

π̄ : T ∗M →M, cotangent bundle

ιXω, interior product

L, Legendre-Transformation

λg, tautological one-form on tangent bundle

ωg, canonical symplectic form on tangent bundle

D(M), density bundle

µg, µM , Riemannian density

volg, volM , Riemannian volume form

|ψ|∗, Jacobian of smooth map ψ

K, sectional curvature

gS , Sasaki metric on TM

SM, unit tangent bundle

gSM , ι
∗gS , Sasaki metric on SM

C∞(M), smooth real valued functions on M

con(v), first conjugate time along γv

Con(p), first conjugate locus of p

I(·, ·), index form

R, Riemannian curvature endomorphism

injpM, injectivity radius of p in M

diam(M), diameter of M

scal, scalar curvature
γTM, set of vector fields along the curve γ

χ(M), Euler characteristic of M
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