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Abstract. In this thesis, we investigate which approximation schemes are suitable to
achieve periodic bounce orbits of prescribed energy on a bounded domain in RN .

Zusammenfassung. In dieser Arbeit untersuchen wir welche Approximationsschemata
geeignet sind, um

”
periodic bounce orbits“ auf einer beschränkten Domäne in RN unter

vorgegebener Energie zu erhalten. Periodic bounce orbits sind periodische Trajektorien,
die am Rand der Domäne mit Reflexionsgesetz abprallen.
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1. Introduction

Throughout this thesis, let Ω ⊂ RN be an open, bounded domain, satisfying the
following: Ω̄ is a smooth manifold with manifold boundary that coincides with ∂Ω, the
topological boundary of Ω,1 and let V ∈ C∞(Ω̄). We interpret V as a potential energy,
and consider the Lagrangian system for a particle of normalized mass given by

L : T Ω̄ = Ω̄× RN → R

(q, v) 7→ 1

2
|v|2 − V (q).

(1.1)

It is a fact that on Ω̄ there exists a non-constant periodic bounce orbit with at most
dimΩ+1 bounce points. Indeed, Benci and Giannoni show that there exists a nonconstant
periodic bounce orbit of prescribed period, for small enough periods [BG89, Theorem 1.7].
Albers and Mazzucchelli expand on this result by showing that there exists a nonconstant
periodic bounce orbit of prescribed energy, for any energy E > maxΩ̄ V and they give a
bound for the period [AM11, Theorem 1.2].

Both papers define a periodic bounce orbit the following way.

Definition 1.1. (cf. [AM11, Section 1]) Let τ > 0. A continuous, piecewise smooth2 map
γ : R/τZ → Ω̄, is called a periodic bounce orbit if there exits a (possibly empty) finite
subset B ⊂ [0, τ) such that

(i) γ solves the Euler-Lagrange equation

(1.2) γ′′(t) +∇V (γ(t)) = 0 for all t /∈ B

(ii) for each t ∈ B we have γ(t) ∈ ∂Ω, the left, respectively right derivatives

γ′(t±) := lim
s→t±

γ′(s)

exist and γ satisfies the law of reflection〈
γ′(t+), ν(γ(t))

〉
= −

〈
γ′(t−), ν(γ(t))

〉
̸= 0,

γ′(t+)−
〈
γ′(t+), ν(γ(t))

〉
· ν(γ(t)) = γ′(t−)−

〈
γ′(t−), ν(γ(t))

〉
· ν(γ(t)),

(1.3)

where ν is the outer normal of ∂Ω.

Remark 1.2. (cf. [AM11, Remark 1.1])

• The times t ∈ B are called bounce times and γ(t) bounce points. In case V is a
constant funciton bounce orbits are billiard trajectories.

• A periodic bounce orbit with B = ∅ is a smooth periodic solution of (1.2).

1This guarantees that ∂Ω has a outer normal, excluding cases like Ω = B2(0) \ S1 ⊂ R2.
2In particular the differentiability in 0 ≡ τ can be assessed by considering γ(· mod τ) : R → R
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• For a periodic bounce orbit γ the energy

E(γ) :=
1

2
|γ′(t)|2 + V (γ(t))

is an integral of motion, namely it is independent of t /∈ B.

A physical interpretation of the result from Benci and Giannoni, respectively Albers
and Mazzucchelli about periodic bounce orbits is the following: When neglecting friction,
one can throw a bouncy ball inside a closed hollow of smooth shape, such that it is on
a periodic trajectory with at most 4 bounce points. Similarly, one can put a ball on any
minigolf course on a periodic trajectory with at most 3 bounce points. The minigolf course
can be arbitrarily hilly, however the ball would have to be constrained not to lift off the
ground.

In order to get smooth approximations of a periodic bounce orbit, the reflection property
is imitated by adding a potential U , which is only non-constant near the boundary and
may be interpreted as a repelling force. In both papers [BG89] and [AM11] the authors fix
a potential U which is constant if not near the boundary and which fulfills U = (dist∂Ω)

−2

near ∂Ω. Then they consider the series of approximating models, given by the modified
Lagrangians Lε := L− εU and show that given a series of smooth solutions of the Euler-
Lagrange equations in the respective approximating models, taking the limit of these yields
a periodic bounce orbit.

In this thesis this result is generalised. We show that U may be replaced in such a way
that U = u(dist∂Ω) near ∂Ω, where u ∈ C∞((0, 1]) with limx→0 u(x) = ∞ and the derivative
u′ is monotone. An interpretation of such a function u is that since the potential near the
boundary is unbounded,3 no trajectory can escape the domain Ω, and the repelling force
gets monotonically stronger, if the particle moves closer to its boundary.

The new result here is that there is a whole class of approximation schemes suitable to
achieve periodic bounce orbits. The papers above attest the existence of a nonconstant
periodic bounce orbit. In addition to that, it would be interesting to find explicit solutions
as well. The Euler-Lagrange equation provides ordinary differential equations for orbits in
the respective approximating models, and using different approximation schemes, we get a
larger array of ordinary differential equations, whose solutions converge to periodic bounce
orbits (up to a subsequence). Hence, this thesis contributes to the search for explicit
periodic bounce orbits.

Additionally, we will consider a special choice of approximating models, using the modified
Lagrangians Lε := L−Uε, where Uε is a specific function we will define, which among other
things fulfills Uε = 1 on ∂Ω and Uε = 0 on {dist∂Ω ≥ ε}. In this case we cap the energy of
solutions to the Euler-Lagrange equations by the value 1.

3In fact, since we prescribe u′ to be monotone, the property limx→0 u(x) = ∞ is equivalent to u being
unbounded. Indeed, u′ monotone implies that u is monotone on (0, d) for some d > 0. We choose to
continue using the former, to avoid repeating or repeatedly referencing this argument.
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2. On the condition: u′ monotone

The objective of this thesis is to find out what criteria towards the potential, used for
approximating the bounce orbits, are necessary so that the result of the approximation is
indeed a bounce orbit. Going through the proof of [AM11, Proposition 2.1], we find that

instead of using u(x) = 1
x2 , we could also use u ∈ C∞((0, 1]) with lim

x→0
|u

′(x)
u(x)

| = ∞. In

this section we will show that if we have lim
x→0

u(x) = ∞ and u′ monotone, the property

lim
x→0

|u
′(x)
u(x)

| = ∞ holds. We will use this to state the analogue to [AM11, Proposition 2.1]

with u ∈ C∞((0, 1]) with lim
x→0

u(x) = ∞ and u′ monotone, instead of stating it with the

(by Lemma 2.4 more general) property lim
x→0

|u
′(x)
u(x)

| = ∞. We prefer this because for u′

monotone we have the interpretation that in the approximating models, the repelling force
near the boundary is antitone to the (/falls monotonically with) distance to the boundary.
The property lim

x→0
u(x) = ∞ means that if we start a trajectory in Ω with arbitrarily high

kinetic energy, it can not shoot out of Ω.
To justify the upcoming rather complicated proof, we give the Example 2.1 of a quotient

of two monotone functions of definite divergence, which does not converge nor diverges to
infinity, to show that the result is not trivial. See also Example 2.5 for a function u with

u(x)
x→0−−→ ∞ and u′ monotone which by Lemma 2.4 does satisfy

∣∣u′(x)
u(x)

| x→0−−→ ∞, but for

which u′

u
is not monotone on any interval (0, x0].

Example 2.1. Let u, v : (0, 1) → R with

u|[ 1

n+3
2

, 1

n+1
2

) = n! and v|[ 1
n+1

, 1
n
) = −n!.

Then we have that u(x)
x→0−−→ ∞ and u is monotonically decreasing. Further v(x)

x→0−−→ −∞,
and v is monotonically increasing. However, we evaluate

v

u

∣∣∣
[ 1

n+1
2

, 1
n
)
=

−n!
(n− 1)!

= −n and
v

u

∣∣∣
[ 1
n+1

, 1

n+1
2

)
=

−n!
n!

= −1.

Hence, v
u
is unbounded, but v

u
(x) does not diverge to −∞ as x → 0. In particular, the

quotient of two monotone functions is not necessarily monotone itself.

Lemma 2.2. Let u ∈ C∞((0, 1]) such that lim
x→0

u(x) = +∞ and u′ monotonic. Then

lim
x→0

u′(x) = −∞.

Proof. We assume that u′ is bounded. By the fundamental theorem of calculus we have

lim sup
x→0

u(x) = lim sup
x→0

(
u(1)−

∫ 1

x

u′(t) dt

)
≤ |u(1)|+lim sup

x→0
∥u′∥∞|1−x| ≤ |u(1)|+∥u′∥∞.

This contradicts lim
x→0

u(x) = +∞. Now since u′ unbounded towards 0 and monotonically

increasing, we have definite divergence towards −∞. □
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Seeking a simpler proof of Lemma 2.4, one might try to argue that u′

u
= (ln(u))′,

ln(u(x))
x→0−−→ ∞ if u(x)

x→0−−→ ∞, and (ln(u))′ unbounded by the same argument as in
the proof of Lemma 2.2. The problem is that in general, (ln(u))′ = u′

u
is not monotone!

See Example 2.5. So we cannot immediately apply Lemma 2.2 to ln(u) in order to conclude

that lim
x→0

|u
′(x)
u(x)

| = lim
x→0

|(ln(u))′(x)| = ∞.

Lemma 2.3. Let (xn)n∈N be a monotonic sequence in R>0 of definite divergence,
i.e. lim

n→∞
xn = ∞. Then

An :=

∑n
k=1

xk

k2

xn
→ 0 as n→ ∞

holds true.

Proof. Since lim
n→∞

xn = ∞, we find a subsequence xnl
satisfying

(2.1) xnl
≥ lxnl−1

for all l ≥ 2.

By monotony of (xn)n∈N we have

Anl
=

∑nl

k=1
xk

k2

xnl

=

∑nl−1

k=1
xk

k2

xnl

+

∑nl

k=nl−1+1
xk

k2

xnl

≤
xnl−1

xnl

nl−1∑
k=1

1

k2
+
xnl

xnl

nl∑
k=nl−1+1

1

k2
.

With (2.1) and C := π2

6
=
∑∞

k=1
1
k2

furthermore

Anl
≤ C

l
+

∞∑
k=nl−1

1

k2
→ 0 as l → ∞.

Moreover, by monotony we have

An =

∑n
k=1

xk

k2

xn
=

∑n−1
k=1

xk

k2

xn
+

1

n2
≤
∑n−1

k=1
xk

k2

xn−1

+
1

n2
= An−1 +

1

n2
.

We set ϕ(n) := max{l ∈ N|nl ≤ n}. In particular holds nϕ(n) ≤ n and lim
n→∞

ϕ(n) = ∞.

Recursively, we get

An ≤ An−1 +
1

n2
≤ An−2 +

1

(n− 1)2
+

1

n2
≤ · · · ≤ Anϕ(n)

+
n∑

k=nϕ(n)+1

1

k2
→ 0 as n→ ∞

as both terms converge to 0 and since An is positive.
□

Lemma 2.4. Let u ∈ C∞((0, 1]) such that lim
x→0

u(x) = ∞ and u′ monotonic. Then

lim
x→0

∣∣∣u′(x)
u(x)

∣∣∣ = ∞

holds true.
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Proof. From Lemma 2.2 we get lim
x→0

u′(x) = −∞. In particular, we get d ∈ (0, 1] such that

u′(x) < 0 for all x ≤ d, allowing the following equivalence:

lim
x→0

∣∣∣u′(x)
u(x)

∣∣∣ = ∞ ⇐⇒ lim
x→∞

∣∣∣u′( 1x)
u( 1

x
)

∣∣∣ = ∞ ⇐⇒ lim
x→∞

∣∣∣ u( 1x)
u′( 1

x
)

∣∣∣ = 0.

W.l.o.g. assume d = 1. Set g(x) := 1
x
. By the fundamental theorem of calculus we have

u( 1
x
) = u(g(x)) = u(1)−

∫ 1=g(1)

g(x)

u′(t) dt

and integration by substitution gives

u( 1
x
) = u(1)−

∫ 1

x

u′(g(s))g′(s) ds = u(1) +

∫ 1

x

u′(1
s
) 1
s2
ds = u(1)−

∫ x

1

u′(1
s
) 1
s2
ds.

We establish an upper bound for the second term:∣∣∣ ∫ x

1

u′(1
s
) 1
s2
ds
∣∣∣ ≤ ⌊x⌋−1∑

k=1

∫ k+1

k

|u′(1
s
)| 1

s2
ds+

∫ x

⌊x⌋
|u′(1

s
)| 1

s2
ds.

Since u′ < 0 is monotonic we have |u′(1
s
)| ≤ |u′(1

b
)| and 1

s2
≤ 1

a2
on [a, b] ⊂ [1,∞). Hence

· · · ≤
⌊x⌋−1∑
k=1

|u′
(

1
k+1

)
| 1
k2

+
|u′( 1

x
)|(x− ⌊x⌋)
⌊x⌋2

≤
⌊x⌋−1∑
k=1

|u′
(

1
k+1

)
| 1
k2

+
|u′( 1

x
)|

⌊x⌋2
.

By monotony we have |u′( 1
x
)| ≥ |u′( 1

⌊x⌋)|, i.e.
1

|u′( 1
x
)| ≤

1
|u′( 1

⌊x⌋ )|
, therefore altogether we get

the majorant ∣∣∣ u( 1x)
u′( 1

x
)

∣∣∣ ≤ ∣∣∣ u(1)
u′( 1

x
)

∣∣∣+ ∑⌊x⌋−1
k=1 |u′

(
1

k+1

)
| 1
k2

|u′
(

1
⌊x⌋

)
|

+
1

⌊x⌋2
→ 0 as x→ ∞,

where the convergence of the second term follows from Lemma 2.3 with the sequence(
|u′
(

1
k+1

)
|
)
k∈N. With the equivalence at the top we conclude lim

x→0
|u

′(x)
u(x)

| = ∞. □

Example 2.5. We want to give an example of a function u ∈ C∞((0, 1]) with u(x)
x→0−−→ ∞,

u monotone and u′ monotone where u′

u
is not monotone on any (0, x0]. Similar to the

proof of Lemma 2.4, we prefer to work in the interval [1,∞) instead of (0, 1]. To simplify
notation we may sometimes mean “f” when we write “f(x)”.
Fix

w ∈ C∞([1,∞)) monotonic with w = 2n on [n, n+ 3
4
).

In particular, w(x) = 2n for all x ∈ [n, n+ 3
4
) and on [n+ 3

4
, n+1), w is a smooth monotone

connection from 2n to 2n+1, so 2n ≤ w(x) ≤ 2n+1 for all x ∈ [n+ 3
4
, n+ 1).

Now set v ∈ C∞([1,∞)) with

v(x) :=

∫ x

1

w(s) ds.
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Finally set u ∈ C∞((0, 1]) with
u(x) := v

(
1
x

)
.

We will show below that η(x) := x2w(x)
v(x)

is not monotone on any [x0,∞). Then

−η(x) = −x2w(x)
v(x)

=
−x2v′(x)
v(x)

=
−x2(u( 1

x
))′

u( 1
x
)

=
u′( 1

x
)

u( 1
x
)

is not monotone on any [x0,∞) and hence u′(x)
u(x)

is not monotone on any (0, x0]. For n ∈ N
we estimate

v(n) =

∫ n

1

w(s) ds =
n−1∑
k=1

(∫ k+ 3
4

k

2k ds+

∫ k+1

k+ 3
4

w(s) ds

)

≤
n−1∑
k=1

(
3

4
2k +

1

4
2k+1

)
=

n−1∑
k=1

5

4
2k =

5

4
(2n − 2) ≤ 5

4
2n.

(2.2)

We get

(2.3) η(n) =
n2w(n)

v(n)
=
n22n

v(n)
≥ 4

5
n2.

Further,

v(n+ 1
2
) =

∫ n+ 1
2

1

w(s) ds =
n−1∑
k=1

(∫ k+ 3
4

k

2k ds+

∫ k+1

k+ 3
4

w(s) ds

)
+

∫ n+ 1
2

n

2n ds

≥
n−1∑
k=1

∫ k+1

k

2k ds+

∫ n+ 1
2

n

2n ds =
n−1∑
k=1

2k +
1

2
2n = 2n − 2 +

1

2
2n =

3

2
2n − 2,

so

η(n+
1

2
) =

(n+ 1
2
)2w(n+ 1

2
)

v(n+ 1
2
)

=
(n2 + n+ 1

4
)2n

v(n+ 1
2
)

≤
(n2 + n+ 1

4
)2n

3
2
2n − 2

=
2

3

(
n2 + n+

1

4

) 2n

2n − 4
3

=
2

3

(
n2 + n+

1

4

) 1

1− 4
3
2−n

=
2

3

(
n2 + n+

1

4

)(
1 +

1
3
4
2n − 1

)
.

(2.4)

Now by (2.3) and (2.4), for any big enough n ∈ N we have

η(n) > η(n+
1

2
).

We further estimate

v(x) = v(⌊x⌋) +
∫ x

⌊x⌋
w(s) ds ≤ v(⌊x⌋) +

∫ ⌊x⌋+1

⌊x⌋
2⌊x⌋+1 ds

= v(⌊x⌋) + 2⌊x⌋+1 ≤ 5

4
2⌊x⌋ + 2⌊x⌋+1 =

13

4
2⌊x⌋,
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where the last inequality follows from (2.2).
So we have

η(x) =
x2w(x)

v(x)
≥ x22⌊x⌋

v(x)
≥ x22⌊x⌋

13
4
2⌊x⌋

=
4

13
x2.

To summarize, we have

lim
x→∞

η(x) = ∞ and η(n) > η(n+
1

2
) for all n ∈ N.

We conclude that η(x) = x2w(x)
v(x)

is not monotone on any [x0,∞) and so u′

u
is not monotone

on any (0, x0], as argued above.
However, limx→0 u(x) = ∞ because limx→∞ v(x) = ∞. Lastly, we show u′ is monotone.

Indeed: x2w(x) is monotone as (x2w(x))′ = 2xw(x) + x2w′(x) is positive because w is
monotonically increasing, so u′( 1

x
) = −x2v′(x) = −x2w(x) is monotone and hence u′ is

monotone as well. The last equality we get from calculating v′(x) = (u( 1
x
))′ = − 1

x2u
′( 1

x
).

Additionally, note that we can verify the statement of Lemma 2.4 for our choice of u: The

fact that lim
x→∞

η(x) = ∞ implies lim
x→0

|u
′(x)
u(x)

| = ∞.

3. Relevant function spaces

In this section, we introduce the function spaces that we will use. The properties of
these we derive from function spaces that are treated in undergraduate studies. These
involve spaces of real-valued functions on domains that are suitable subsets of RN , such as
continuous or smooth functions, and spaces of equivalence classes of real-valued functions
on domains that are suitable subsets of RN , such as Lebesgue- and Sobolev-spaces.

Since we are interested in periodic orbits, we define analogue spaces to some of those
listed above, with R/τZ as a domain, where τ > 0 is the period. We may always identify a

function f : R/τZ → R with f̃ : [0, τ) → R, and if we pluck any time t ∈ R into f , we mean

f̃(t) = f(t mod τ). We will drop this distinction, for instance we might write f(t mod 1)

when we really mean f̃(t− ⌊t⌋). To ensure that properties like continuity, differentiability
or weak differentiability are met across 0 ≡ τ , for a function f : R/τZ → R, we consider

f̃ : R → R defined by f̃ = f(· mod τ) and check if this function meets the condition at
the time τ .

We define

C0(R/τZ ) := {f : [0, τ) → R | f̃ = f( · mod τ) ∈ C0(R)}
and

C∞(R/τZ ) := {f : [0, τ) → R | f̃ = f( · mod τ) ∈ C∞(R)}.
For Sobolev-functions we need to be more careful. Since periodic functions in general

are not integrable on R, for instance f ≡ 1, we define spaces of locally integrable Sobolev-
functions:

Wm,p
loc (R) := {f : R → R| f ∈ Wm,p((−K,K)) for all K ∈ N}.
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Now we define spaces of τ -periodic Sobolev-funcitons:

Wm,p(R/τZ ) := Wm,p(R/τZ ,R) := {f ∈ Wm,p((0, τ))| f̃ = f( · mod τ) ∈ Wm,p
loc (R)}.

The spaces C0(R/τZ ) and Wm,p(R/τZ ) inherit the respective norms, i.e.

∥ · ∥C0(R/τZ) = ∥ · ∥∞ and ∥ · ∥Wm,p(R/τZ) = ∥ · ∥W 1,2((0,τ)).

Now since our particle moves in RN , we define spaces of RN valued functions. For a
RN valued function it comes down to whether all of the component functions are in the
respective function spaces. For instance,

Γ ∈ C0(R/τZ ,RN) :⇔ Γi ∈ C0(R/τZ ) for all i = 1, ..., N

or
Γ ∈ Lp((0, 1),RN) :⇔ Γi ∈ Lp((0, 1)) for all i = 1, ..., N.

In the cases of normed vector spaces, we equip these new function spaces with the norm
that is the sum of the norms of the component functions, for instance

∥Γ∥m,p = ∥Γ∥Wm,p(R/τZ,RN ) :=
N∑
i=1

∥Γi∥Wm,p(R/τZ),

using such abbreviations when it is clear which norm is meant or which is the underlying
space.

Actually, we want our particle to move only in Ω ⊂ RN or in Ω̄ ⊂ RN . By Lemma 3.4
our Sobolev functions have concrete values, namely those of the continuous representatives.
Hence, we can define

W 1,2(R/τZ ,Ω) := {f ∈ W 1,2(R/τZ ,RN)|f(R/τZ ) ⊂ Ω},
respectively

W 1,2(R/τZ , Ω̄) := {f ∈ W 1,2(R/τZ ,RN)|f(R/τZ ) ⊂ Ω̄}.
Throughout we will write S1 := R/Z interchangeably.

Lemma 3.1. Wm,p(R/τZ ) is a Banach space, in particular it is a closed subspace of
Wm,p((0, τ)).

Proof. We show this for only for τ = 1 as it conveys the main point and avoids unnecessary
trickiness. Let (fn)n∈N ⊂ Wm,p(S1) be a Cauchy sequence. Since Wm,p((0, 1)) is a Banach
space, we have f ∈ Wm,p((0, 1)) such that ∥∂kf − ∂kfn∥p → 0 for all k ≤ m. We need

to establish the weak derivative of f̃ = f( · mod 1) on (−K,K) for K ∈ N. Let ψ ∈
C∞

c ((−K,K)), we want to show∫
(−K,K)

∂kψf̃ dλ = (−1)k
∫
(−K,K)

ψ∂̃kf dλ.

Indeed, since for the elements of the sequence holds∫
(−K,K)

∂kψf̃n dλ− (−1)k
∫
(−K,K)

ψ∂̃kfn dλ = 0 for all n ∈ N,
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we have

|
∫
(−K,K)

∂kψf̃ dλ− (−1)k
∫
(−K,K)

ψ∂̃kf dλ|

≤|
∫
(−K,K)

∂kψ(f̃ − f̃n) dλ|+ |(−1)k
∫
(−K,K)

ψ(∂̃kfn − ∂̃kf) dλ|

≤∥∂kψ∥q∥f̃ − f̃n∥p,(−K,K) + ∥ψ∥q∥∂̃kfn − ∂̃kf∥p,(−K,K)

≤(2K)
1
p∥∂kψ∥q∥f − fn∥p,(0,1) + (2K)

1
p∥ψ∥q∥∂kfn − ∂kf∥p,(0,1)

n→∞−−−→ 0

using the Hölder inequality with conjugated Hölder exponent q and then splitting the

integral into intervals of length 1. Hence, we have the weak derivatives ∂kf̃ = ∂̃kf , which
are in Lp((−K,K), so f̃ ∈ Wm,p

loc (R) and f ∈ Wm,p(S1). □

Lemma 3.2. C0(R/τZ ) is a Banach space.

Proof. Let (fn)n∈N ⊂ C0(R/τZ ) be a Cauchy sequence. In particular with fn(τ) = fn(0) we
have (fn)n∈N is a Cauchy sequence in C0([0, τ ]). Since this is a Banach space we have f ∈
C0([0, τ ]) such that fn

C0([0,τ ])−−−−−→ f . Further f(0) = limn→∞ fn(0) = limn→∞ fn(τ) = f(τ),
so f ∈ C0(R/τZ ). □

We adopt the language of Adams and Fournier:

Remark 3.3. (cf. [AF03, 1.25]) We say the normed vector space X is imbedded in the
normed space Y , and write X ↪→ Y to designate this imbedding, provided that

(i) X is a vector subspace of Y , and
(ii) the identity operator I defined on X into Y by Ix = x for all x ∈ X is continuous.

Since I is linear, (ii) is equivalent to the existence of a constant C such that

∥Ix∥Y ≤ C∥x∥X , x ∈ X.

Sometimes the requirement that X be a subspace of Y and I be the identity map is
weakened to allow as imbeddings certain canonical transformations of X into Y , such as
imbeddings of Sobolev spaces into spaces of continuous functions.

Let X and Y be Banach spaces. We say that X is compactly imbedded in Y , and
write X ⊂⊂ Y , if the imbedding operator I is compact.

Lemma 3.4. W 1,2(R/τZ ) is compactly imbedded into C0(R/τZ ).

Proof. By the Rellich-Kondrachov Theorem [AF03, 6.3 PART III] we have the compact

imbeddings W 1,2((a, b)) ⊂⊂ C0([a, b]) for a < b ∈ R. Let f ∈ W 1,2(R/τZ ). Then f̃ ∈
W 1,2((−K,K)) and we find a continuous representative i.e. f̃ ∈ C0([−K,K]) for any

K ∈ N, hence f̃ ∈ C0(R). Now by definition, f ∈ C0(R/τZ ). Furthermore we have
∥f∥∞ ≤ C∥f∥1,2,(0,τ) for some C > 0 by the imbedding above. This proves the imbedding
W 1,2(R/τZ ) ↪→ C0(R/τZ ).
Now denote by B the unit ball in W 1,2(R/τZ ) and by B̃ the unit ball in W 1,2((0, τ)). B̃

is a precompact subset of C0([0, τ ]) by the above imbedding, so the subset B is, too. From
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a finite covering with ε
4
-balls of B in C0([0, τ ]) we get a finite covering with ε-balls of B in

C0(R/τZ ). Hence, B is a precompact subset of C0(R/τZ ) which proves that the imbedding
W 1,2(R/τZ ) ↪→ C0(R/τZ ) is compact.4 □

Lemma 3.5. W 2,1(R/τZ ) is compactly imbedded into W 1,2(R/τZ ).

Proof. By the Rellich-Kondrachov Theorem [AF03, 6.3 PART I] we have the compact
imbedding W 2,1((a, b)) ⊂⊂ W 1,2((a, b)) for a < b ∈ R.
Let f ∈ W 2,1(R/τZ ). Then f̃ ∈ W 2,1((−K,K)) ⊂ W 1,2((−K,K)) for any K ∈ N, so

f̃ ∈ W 1,2
loc (R) and f ∈ W 1,2(R/τZ ). Furthermore we have ∥f∥1,2,(0,τ) ≤ C∥f∥2,1,(0,τ) for some

C > 0 by the imbedding above. The compactness of the imbedding follows analogously to
the proof of Lemma 3.4

□

Remark 3.6. Certainly we have

(1) Wm,p(R/τZ ,RN) is a Banach space.
(2) W 1,2(R/τZ ,RN) is compactly imbedded in C0(R/τZ ,RN).
(3) W 2,1(R/τZ ,RN) is compactly imbedded into W 1,2(R/τZ ,RN).

Lemma 3.7. Let Γ ∈ Lp((0, 1),RN) and Ψ ∈ Lq((0, 1),RN), where p and q are conjugated
Hölder exponents. Then ∫

(0,1)

|⟨Γ,Ψ⟩| dλ ≤ ∥Γ∥p∥Ψ∥q

holds true.

Proof. By applying the Hölder inequality to the component functions we get

∫
(0,1)

|⟨Γ,Ψ⟩| dλ ≤
N∑
i=1

∫
(0,1)

|ΓiΨi| dλ ≤
N∑
i=1

∥Γi∥p∥Ψi∥q ≤
N∑
i=1

N∑
j=1

∥Γi∥p∥Ψj∥q = ∥Γ∥p∥Ψ∥q.

□

We may later simply refer to this result with “by Hölder inequality” or in case p = 2
“by Cauchy-Schwartz inequality”.

4. Differentiation on Banach spaces

In this section, we list the definitions and properties of differentiation on Banach spaces
that we will use when working with the action-functionals that correspond to our respective
dynamical systems.

In the following, let E be a (real) banach space and U an open subset. Let f : U → R
be a map.

4Note that by the lemmata above, both are Banach spaces.
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Definition 4.1. (cf. [Lan93, XIII §2]) Let x ∈ U . We shall say that f is Fréchet
differentiable at x if there exists a continuous linear functional Tx : E → R and a map ψ
defined for all sufficiently small h in E, with values in R, such that

lim
h→0

ψ(0) = 0,

and such that
f(x+ h) = f(x) + Txh+ ∥h∥Eψ(h).

If f is Fréchet differentiable at every point x of U , we say that f is Fréchet differentiable
on U . In that case, the Fréchet derivative Df defined by Df(x) = Tx is a map

Df : U → E∗

from U into the space of continuous linear functionals E∗. If Df is continuous, we say
that f is of class C1.

Definition 4.2. (cf. [AH10, Appendix A]) Let x ∈ U . We shall say that f is Gâteaux
differentiable at x if there exists a continuous linear functional Tx : E → R, such that

∀v ∈ E, lim
t→0

f(x+ tv)− f(x)

t
= Txv.

If f is Gâteaux differentiable at every point x of U , then we say that f is Gâteaux
differentiable on U . In that case, the Gâteaux derivative DGf defined by DGf(x) = Tx
is a map

DGf : U → E∗

from U into the space of continuous linear functionals E∗.

Both derivatives are unique if they exist, as shown in [Lan93, XIII §2], respectively
[AH10, Appendix A].

Lemma 4.3. (cf. [AH10, Proposition A.3.]) If f is Gâteaux differentiable on U , and DGf :
U → E∗ is continuous, then f is also Fréchet differentiable on U and DGf = Df . In
particular holds f is of class C1.

Proof. Reviewing the proof of [AH10, Proposition A.3.], for a point x ∈ U , the linear
operator used to prove the Fréchet differentiability at x, is the Gâteax derivative at x. □

(cf. [Lan93, XIII §7]) Now consider a product E = E1 × E2 of two banach spaces. Let
Ui be open in Ei and let f : U1 × U2 → R be a map. We write an element x ∈ U1 × U2

in terms of ”coordinates”, namely x = (x1, x2) with xi ∈ Ui. For x1 fixed, (respectively
analogously for x2 fixed,) we consider the partial map x2 7→ f(x1, x2) of U2 into R. If this
map is Fréchet differentiable, we call its derivative the partial derivative of f and denote
it by Dif(x) at the point x.

Lemma 4.4. (cf. [Lan93, XIII Theorem 7.1.]) The map f : U1 × U2 → R is of class C1 if
and only if each partial derivative Dif : U1 × U2 → E∗

i is continuous. If this is the case,
and v = (v1, v2) ∈ E1 × E2, then

Df(x)v = D1f(x)v1 +D2f(x)v2.
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Proof. See [Lan93, XIII Theorem 7.1]. □

In order to differentiate under the integral sign, we use the notion of integrating a Banach
space valued curve, which is defined on the space of regulated maps. This is the closure
with respect to the sup norm of the space of step maps. For this we refer to [Lan93, XIII
§1]. In particular, for a Banach space F and a continuous map h : [0, 1] → F , the integral∫ 1

0
h(t) dt is defined.

Lemma 4.5. (cf. [Lan93, XIII Theorem 8.1.]) Let U be open in E and let f : [0, 1]×U → R
be a continuous map such that the partial derivative D2f exists and is continuous. Let

g(x) =

∫ 1

0

f(t, x) dt.

Then g is Fréchet differentiable on U and

Dg(x) =

∫ 1

0

D2f(t, x) dt.

Proof. See [Lan93, XIII Theorem 8.1]. □

5. The approximating models and the free-time action functional

For introducing the approximating models, we distinguish between the cases (I) and (II).
First, we introduce the case (I) approximating models following [AM11, Section 2] and
generalizing the definition of the potential U . Recall that Ω ⊂ RN is an open, bounded
domain, such that Ω̄ is a smooth manifold whose manifold boundary coincides with the
topological boundary ∂Ω of Ω, and V ∈ C∞(Ω̄). We fix d0 ∈ (0, 1

2
) sufficiently small, such

that the distance function dist∂Ω(q) is smooth at all points q ∈ Ω with dist∂Ω(q) ≤ 2d0.
The existence of such a d0 is guaranteed by [GT83, Lemma 14.16].
Let k : [0,∞) → [0, 2d0] be a smooth function such that 0 ≤ k′ ≤ 1, k(x) = x on [0, d0],

and k constant on [2d0,∞). We define h ∈ C∞(Ω̄) through

h(q) := k(dist∂Ω(q)).

Note that h satisfies the following properties.

• h(q) = dist∂Ω(q) for all q ∈ Ω̄ with dist∂Ω ≤ d0,
• h(q) > d0 for all q ∈ Ω̄ with dist∂Ω(q) > d0,
• 0 ≤ h ≤ 1 and h constant on {dist∂Ω ≥ 2d0} ⊂ Ω,
• |∇h| ≤ 1.

In case (I), we consider any choice of u ∈ C∞((0, 1]) with lim
x→0

u(x) = ∞ and u′ monotonic.

For the pending choice of u, we fix

U := u ◦ h ∈ C∞(Ω).

Thus, U = u(dist∂Ω) near ∂Ω and U is constant on {dist∂Ω ≥ 2d0}. For a visualisation, see
Figure 1, which has been copied from [AM11].
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Figure 1. The functions U and h, from [AM11].

For ε > 0, the Lagrangian of our approximating model has the form

Lε : TΩ = Ω× RN → R
(q, v) 7→ 1

2
|v|2 − V (q)− εU(q).

We now define the free-time action functional, whose purpose becomes clear in Lemma
5.2 – the critical points are precisely the solutions of the corresponding Euler-Lagrange
equation. It is called the free-time action functional, because opposed to the approach of
Benci and Giannoni [BG89, Section 2], this approach by Albers and Mazzucchelli [AM11,
Section 2] allows to prescribe the energy of the particle and leave the period flexible.

For an energy value E ∈ R we define the free-time action functional LE
ε : W 1,2(S1,Ω)×

R>0 → R by

LE
ε (Γ, τ) := τ

∫ 1

0

[Lε

(
Γ(t),

1

τ
Γ′(t)

)
+ E] dt =

∫ τ

0

[Lε(γ(t), γ
′(t)) + E] dt

where γ(t) := Γ(t/τ).
As explained by Abbondandolo [Abb13, Section 3], the idea here is that we want to

study the Lagrangian action on a space of periodic curves, with arbitrary period. In order
to do so, we re-parameterise a τ -periodic curve γ as above and identify it with the pair
(Γ, τ), keeping track of the actual period.
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This functional is well-defined. Indeed:∣∣∣ ∫ 1

0

Lε

(
Γ(t),

1

τ
Γ′(t)

)
dt
∣∣∣

≤
∫ 1

0

∣∣Lε

(
Γ(t),

1

τ
Γ′(t)

)∣∣ dt
≤
∫ 1

0

1

2τ 2
|Γ′(t)|2 dt+ ∥V ∥∞ + ε

∫ 1

0

|U(Γ(t))| dt

≤ 1

2τ 2
∥Γ∥21,2 + ∥V ∥∞ + εC,

where C is some constant, since inft∈S1 dist∂Ω(Γ(t)) > 0 as Γ is continuous by Lemma 3.4,
and ∥V ∥∞ is finite because Ω̄ is compact by Heine-Borel.

Proposition 5.1. LE
ε is of class C1 and for any (Γ, τ) ∈ W 1,2(S1,Ω)× R>0 and

(Ψ, σ) ∈ W 1,2(S1,RN)× R holds

DLE
ε (Γ, τ)(Ψ, σ) =

1

τ

∫ 1

0

〈
Γ′(t),Ψ′(t)

〉
dt− τ

∫ 1

0

〈
∇V (Γ(t)),Ψ(t)

〉
dt

− τ

∫ 1

0

〈
ε∇U(Γ(t)),Ψ(t)

〉
dt+ σ

∫ 1

0

[
− 1

2τ 2
|Γ′(t)|2 − V (Γ(t))− εU(Γ(t)) + E

]
dt.

(5.1)

Proof. First of all we have that W 1,2(S1,Ω) is an open subset of W 1,2(S1,RN) with the
C0-norm, so by Lemma 3.4 it is an open subset with respect to ∥ · ∥W 1,2(S1,RN ) as well, and
R>0 is an open subset of R. The Cartesian product is open with respect to the product
norm (∥(·, ·)∥X×Y = ∥ · ∥X + ∥ · ∥Y ). We want to use Lemma 4.4 and show that

(i) the partial derivative D1LE
ε exists and is of class C0, and

(ii) the partial derivative D2LE
ε exists and is of class C0.

Fix L := LE
ε and V := V + εU .

On (i): We proceed similarly to [AS09]. Let Γ ∈ W 1,2(S1,Ω),Ψ ∈ W 1,2(S1,RN), τ > 0

and s ̸= 0 small enough that Γ + sΨ ∈ W 1,2(S1,Ω). Then

L(Γ + sΨ, τ)− L(Γ, τ)
s

= τ

∫ 1

0

1

τ 2
〈
Γ′(t),Ψ′(t)

〉
dt+ sτ

∫ 1

0

1

2τ 2
|Ψ′(t)|2 dt

− τ

s

∫ 1

0

[V(Γ(t) + sΨ(t))− V(Γ(t))] dt.
(5.2)

In order to use Lemma 4.5 on g(Γ) :=
∫ 1

0
f(t,Γ) dt with f(t,Γ) = V(Γ(t)) we show that

f is continuous, and that the partial derivative D2f exists and is continuous as well. Let
(tn,Γn) → (t,Γ). Then |Γn(tn)− Γ(t)| ≤ |Γn(tn)− Γ(tn)|+ |Γ(tn)− Γ(t)| n→∞−−−→ 0 since the
first term converges to 0, by the uniform convergence of Γn to Γ by Lemma 3.4, and the
second term converges to 0 by the continuity of Γ. By the continuity of V and U we get
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that f is continuous. Since V, U ∈ C∞(Ω), we get the partial derivative D2f with

(5.3) D2f(t,Γ)Ψ = lim
s→0

1

s
[V(Γ(t) + sΨ(t))− V(Γ(t))] =

〈
∇V(Γ(t)),Ψ(t)

〉
.

Now we show that D2f is continuous. Let (tn,Γn) → (t,Γ).

∥D2f(tn,Γn)−D2f(t,Γ)∥W 1,2(S1,RN )∗

= sup
∥Ψ∥≤1

|
〈
∇V(Γn(tn)),Ψ(tn)

〉
−
〈
∇V(Γ(t)),Ψ(t)

〉
|

≤ sup
∥Ψ∥≤1

|
〈
∇V(Γn(tn)),Ψ(tn)

〉
−
〈
∇V(Γ(t)),Ψ(tn)

〉
|

+ sup
∥Ψ∥≤1

|
〈
∇V(Γ(t)),Ψ(tn)

〉
−
〈
∇V(Γ(t)),Ψ(t)

〉
|

≤ sup
∥Ψ∥≤1

|
〈
∇V(Γn(tn))−∇V(Γ(t)),Ψ(tn)

〉
|+ sup

∥Ψ∥≤1

|
〈
∇V(Γ(t),Ψ(tn)−Ψ(t)

〉
|

≤ |∇V(Γn(tn)−∇V(Γ(t))| sup
∥Ψ∥≤1

|Ψ(tn)|+ |∇V(Γ(t))| sup
∥Ψ∥≤1

|Ψ(tn)−Ψ(t)|

→ 0 as n→ ∞,

where the first term converges to 0 analogously to the proof of f being continuous and
because |Ψ(tn)| ≤ ∥Ψ∥∞ ≤ C∥Ψ∥W 1,2 ≤ C for some C > 0 by Lemma 3.4. For the
convergence of the second term we note that by Lemma 3.4 we have that the closed unit
ball of W 1,2(S1) is a compact subset of C0(S1). By the Arzelà-Ascoli Theorem [Alt16,
4.12] it is equicontinuous, implying the desired convergence.

By Lemma 4.5 we get that g is Fréchet differentiable with Dg(Γ) =
∫ 1

0
D2f(t,Γ) dt.

Let Ψ ∈ W 1,2(S1,RN). Set λ ∈ W 1,2(S1,RN)∗∗ with T 7→ TΨ. Then by [Lan93, XIII
Proposition 1.1] we get

Dg(Γ)Ψ = λ(Dg(Γ)) =

∫ 1

0

λ(D2f(Γ(t)) dt =

∫ 1

0

D2f(Γ(t))Ψdt =

∫ 1

0

〈
∇V(Γ(t)),Ψ(t)

〉
dt,

using (5.3). So by taking the limit in equation (5.2) we get

D1,GL(Γ, τ)Ψ := lim
s→0

L(Γ + sΨ, τ)− L(Γ, τ)
s

=
1

τ

∫ 1

0

〈
Γ′(t),Ψ′(t)

〉
dt− τ

∫ 1

0

〈
∇V(Γ(t)),Ψ(t)

〉
dt.

Now D1,GL(Γ, τ) : W 1,2(S1,RN) → R is the Gâteaux-differential as it is a bounded linear
functional: |D1,G(Γ, τ)Ψ| ≤ C∥Ψ∥W 1,2(S1,RN ) with some C > 0 by using the Cauchy-

Schwartz inequality.5

In order to use Lemma 4.3 we show that D1,GL : W 1,2(S1,Ω) × R>0 → W 1,2(S1,RN)∗

is continuous at (Γ, τ). Let (Γn, τn) → (Γ, τ) in W 1,2(S1,Ω) × R>0. Again using the

5Note that U(Γ) ∈ L∞((0, 1),RN ) ⊂ L2((0, 1),RN ) as Γ is continuous and stays away from the boundary.
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Cauchy-Schwartz inequality we get

∥D1,GL(Γn, τn)−D1,GL(Γ, τ)∥W 1,2(S1,RN )∗

= sup
∥Ψ∥1,2≤1

∣∣∣ 1
τn

∫ 1

0

〈
Γ′
n(t),Ψ

′(t)
〉
dt− τn

∫ 1

0

〈
∇V(Γn(t)),Ψ(t)

〉
dt

−
(1
τ

∫ 1

0

〈
Γ′(t),Ψ′(t)

〉
dt− τ

∫ 1

0

〈
∇V(Γ(t)),Ψ(t)

〉
dt
)∣∣∣

≤ sup
∥Ψ∥1,2≤1

(∣∣∣( 1

τn
− 1

τ

)∫ 1

0

〈
Γ′
n(t),Ψ

′(t)
〉
dt
∣∣∣+ ∣∣∣1

τ

∫ 1

0

〈
Γ′
n(t)− Γ′(t),Ψ′(t)

〉
dt
∣∣∣

+
∣∣∣(τn − τ)

∫ 1

0

〈
∇V(Γn(t)),Ψ(t)

〉
dt
∣∣∣+ ∣∣∣τ ∫ 1

0

〈
∇V(Γn(t))−∇V(Γ(t)),Ψ(t)

〉
dt
∣∣∣),

and using the Hölder inequality, we further estimate

. . . ≤ sup
∥Ψ∥1,2≤1

(∣∣∣ 1
τn

− 1

τ

∣∣∣∥Γ′
n∥2∥Ψ′∥2 +

1

τ
∥Γ′

n − Γ′∥2∥Ψ′∥2

+ |τn − τ |∥∇V(Γn)∥2∥Ψ∥2 + τ∥∇V(Γn)−∇V(Γ)∥2∥Ψ∥2
)

≤
∣∣∣ 1
τn

− 1

τ

∣∣∣∥Γ′
n∥2 +

1

τ
∥Γ′

n − Γ′∥2

+ |τn − τ |∥∇V(Γn)∥2 + τ∥∇V(Γn)−∇V(Γ)∥2 → 0 as n→ ∞,

where the convergence of the fourth term follows from dominated convergence.6 The first
term converges because the convergence of Γn → Γ inW 1,2(S1,RN) implies that (∥Γ′

n∥2)n∈N
is uniformly bounded. The third term converges because (∇V(Γn(·)))n∈N is uniformly
bounded7 and the second term converges simply because of Γn → Γ in W 1,2(S1,RN).
Finally, by Lemma 4.3 we get the partial derivative D1L = D1,GL ∈ C0.

On (ii): Let Γ ∈ W 1,2(S1,Ω). We set f : [0, 1]× R>0 → R with

f(t, τ) = τ(
1

2τ 2
|Γ′(t)|2 − V(Γ(t)) + E =

1

2τ
|Γ′(t)|2 − τV(Γ(t)) + τE.

Note that f is continuous and continuously differentiable in τ :

∂2f(t, τ) = − 1

2τ 2
|Γ′(t)|2 − V(Γ(t)) + E,

i.e. D2f(t, τ)σ = − σ
2τ2

|Γ′(t)|2−σV(Γ(t))+σE for σ ∈ R.We may again differentiate under
the integral sign and get D2L with

D2L(Γ, τ)σ = σ

∫ 1

0

[
− 1

2τ 2
|Γ′(t)|2 − V(Γ(t)) + E

]
dt.

6
(
∇U(Γn) − ∇U(Γ)

)
n∈N is uniformly bounded in L∞((0, 1),RN ) as inft∈(0,1),n∈N dist∂Ω(Γn(t)) > 0

because Γn → Γ in C0 by Lemma 3.4.
7As in the last footnote.
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It remains to be shown that D2L is continuous. Let (Γn, τn) → (Γ, τ) inW 1,2(S1,RN)×R>0.
We have

∥D2L(Γn, τn)−D2L(Γ, τ)∥R∗

= sup
|σ|≤1

∣∣σ ∫ 1

0

[
− 1

2τ 2n
|Γ′

n(t)|2 − V(Γn(t)) + E
]
dt− σ

∫ 1

0

[
− 1

2τ 2
|Γ′(t)|2 − V(Γ(t)) + E

]
dt
∣∣

≤
∫ 1

0

∣∣∣ 1

2τ 2
|Γ′(t)|2 − 1

2τ 2n
|Γ′

n(t)|2 + V(Γ(t))− V(Γn(t)) + E
∣∣∣ dt→ 0 as n→ ∞,

by dominated convergence because (Γ′
n)n∈N is uniformly bounded in L2 and more of the

same arguments from above.
With Lemma 4.4 we conclude that LE

ε is of class C1 with

DL(Γ, τ)(Ψ, σ) = D1L(Γ, τ)Ψ + D2L(Γ, τ)σ =
1

τ

∫ 1

0

〈
Γ′(t),Ψ′(t)

〉
dt

− τ

∫ 1

0

〈
∇V(Γ(t)),Ψ(t)

〉
dt+ σ

∫ 1

0

[
− 1

2τ 2
|Γ′(t)|2 − V(Γ(t)) + E

]
dt.

□

Now we will show that we can identify physically possible trajectories, i.e. solutions of
the Euler Lagrange equation, with critical points of LE

ε . The upcoming proof was compiled
using the lecture notes of Hans Joachim Oberle on calculus of variations and optimal control
[Obe].

Lemma 5.2. (Γ, τ) ∈ W 1,2(S1,Ω) × R>0 is a critical point of LE
ε , i.e. DLE

ε (Γ, τ) = 0,
if and only if for the corresponding curve γ : R/τZ → Ω with γ(t) = Γ(t/τ) holds that
γ ∈ C∞(R/τZ ,RN) and that γ is a solution of the Euler-Lagrange system

γ′′ +∇V (γ) + ε∇U(γ) = 0,

with energy
E ≡ 1

2
|γ′(t)|2 + V (γ(t)) + εU(γ(t)).

Proof. ”⇒” Let DLE
ε (Γ, τ)(Ψ, σ) = 0 for all (Ψ, σ) ∈ W 1,2(S1,RN)×R. Especially for ei a

canonical basis vector of RN , ψ ∈ C1
0([0, 1]) := {f ∈ C1([0, 1])|0 = f(0) = f(1) = f ′(0) =

f ′(1)}, Ψ = ψei
8 and σ = 0, by (5.1) we have

1

τ 2

∫ 1

0

Γ′
i(t)ψ

′ dt−
∫ 1

0

[
∂iV (Γ(t)) + ε∂iU(Γ(t))

]
ψ(t) dt = 0.

We use partial integration9 on the second term and with F (t) :=
∫ t

0
∂i(V + εU)(Γ(s)) ds

we get ∫ 1

0

( 1

τ 2
Γ′
i(t) + F (t)

)
ψ′(t) dt = 0.

8Indeed ψ ∈W 1,2(S1) because ψ(· mod 1) ∈ C1(R)
9Note that the term

[
F (t)ψ(t)

]1
0
vanishes.
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Applying the Du Bois-Reymond Lemma [Obe, Theorem 4.1] to this we get that the first
factor is a constant polynomial, i.e.

(5.4)
1

τ 2
Γ′
i(t) = −F (t) + C

for some C ∈ R. Since F is continuously differentiable, we get Γ′
i ∈ C1([0, 1]) with

1

τ 2
Γ′′
i (t) = −F ′(t) = −∂i(V + εU)(Γ(t)).

In particular, with γ(t) = Γ(t/τ) for t ∈ [0, τ ] we get

γ′′(t) =
1

τ 2
Γ′′(t/τ) = −∇(V + εU)(Γ(t/τ)) = −∇V (γ(t))− ε∇U(γ(t)),

i.e.

(5.5) γ′′ +∇V (γ) + ε∇U(γ) = 0.

This also implies that the antiderivative 1
2
|γ′|2 + V (γ) + εU(γ) is constant. With (5.1),

from DLE
ε (Γ, τ)(Ψ, σ) = 0 with Ψ = 0 and σ = 1 we get that this constant must be E, i.e.

1
2
|γ′(t)|2 + V (γ(t)) + εU(γ(t)) ≡ E.

The C∞ property remains to be shown. We have already shown γ ∈ C2([0, τ ],RN).
Applying this and U, V ∈ C∞(Ω) to (5.5), we get that γ′′ as well is twice continuously
differentiable, i.e. γ ∈ C4([0, τ ],RN). This however, by the same argument as above,
implies that γ′′ is four times continuously differentiable so γ ∈ C6([0, τ ],RN) and so on.
By repeating this bootstrap argument, we get γ ∈ C∞([0, τ ],RN).

We revisit (5.4) and get Γ′
i(0

+) = Γ′
i(1

−), denoting the left and right derivative, because
F (0) = 0 = ∂i(V + εU)(Γ(1)) − ∂(Γ(0)) = F (1). So γ( · mod τ) ∈ C1(R,RN). Now
since γ(0) = γ(τ), using (5.5) we may also conclude that the right second derivative of
γ in 0 and the left second derivative of γ in τ coincide. Differentiating both sides of the
differential equation (5.5) yields that also the higher derivatives coincide, since by chain
rule we get that the left and right derivatives always depend on the lower derivatives that
already coincide. We conclude γ ∈ C∞(R/τZ ,RN).
”⇐” Let τ > 0 and let γ : R/τZ → Ω satisfy γ ∈ C∞(R/τZ ,RN) and be a solution to
the Euler-Lagrange system with energy E. Certainly we have Γ ∈ W 1,2(S1,Ω). The
energy property immediately implies that the third term of DLE

ε (Γ, τ)(Ψ, σ) is 0 for all
(Ψ, σ) ∈ W 1,2(S1,RN)× R, i.e.

DLE
ε (Γ, τ)(Ψ, σ) =

1

τ

∫ 1

0

〈
Γ′(t),Ψ′(t)

〉
dt− τ

∫ 1

0

〈
∇V (Γ(t)) + ε∇U(Γ(t)),Ψ(t)

〉
dt.
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This time we use partial integration on the first term10 and get

DLE
ε (Γ, τ)(Ψ, σ) = τ

∫ 1

0

〈
1
τ2
Γ′′(t)−∇(V + εU)(Γ(t)),Ψ(t)

〉
dt.

This is equal to 0 by the Euler-Lagrange equation, i.e. (Γ, τ) is a critical point of DLE
ε . □

We now introduce the approximating models of case (II). For ε > 0, consider the function

(5.6) uε(x) :=

{
exp(1

ε
) exp( 1

x−ε
) x < ε

0 x ≥ ε.

It is well-known that 1(0,∞)(x) exp(− 1
x
) ∈ C∞(R), so uε ∈ C∞(R) as well. Note that

uε(0) = 1.
In the case (II) approximating models, instead of adding the potential εU = εu ◦ h,

we add Uε = uε ◦ h. We only consider trajectories of energy E = 1, and we also restrict
the choice of V to be compactly supported, to ensure that trajectories which solve the
Euler-Lagrange equation may not escape Ω̄.

We specify this below, but first we thicken up our set Ω, to define an action functional
which we can differentiate in trajectories that hit the boundary ∂Ω. Consider the signed
distance function

S(q) :=

{
dist∂Ω(q) q ∈ Ω̄

− dist∂Ω(q) q ∈ RN \ Ω̄.
Similar to the choice of d0 above, now choose d0 ∈ (0, 1

2
), such that the signed distance

function S is smooth at all points q ∈ RN with dist∂Ω(q) ≤ 2d0. Set

Ξ := {q ∈ RN | dist
∂Ω

(q) < d0} ∪ Ω.

Recall k from above and extend it onto [−d0,∞), i.e. k : [−d0,∞) → [−d0, 2d0] be a
smooth function such that 0 ≤ k′ ≤ 1, k(x) = x on [−d0, d0], and k constant on [2d0,∞).
We extend h to h ∈ C∞(Ξ) through

h(q) := k(S(q)).

Note that h still satisfies all properties that where stated in case (I).
Now fix V ∈ C∞

c (Ω) and
Uε := uε ◦ h ∈ C∞(Ξ).

Thus, Uε = 1 on ∂Ω and Uε = 0 on {q ∈ Ω| dist∂Ω(q) ≥ ε}. For ε > 0, the Lagrangian of
our approximating model is

L(II)
ε : TΞ = Ξ× RN → R

(q, v) 7→ 1
2
|v|2 − V (q)− Uε(q).

10Note that now with Γ twice continuously differentiable this is possible, opposed to above where we
needed to use partial integration on the second term because a priori we did not know if Γ had a second

(weak) derivative. Also note that the terms
[
Γ′
i(t)Ψi(t)

]1
0
vanish because Ψi(0) = Ψi(1) and Γ′(0) = Γ′(1)

as γ ∈ C∞(R/τZ ,RN ).

19



Fixing the energy value to be 1, we define the free-time action functional

L(II)
ε : W 1,2(S1,Ξ)× R>0 → R by

L(II)
ε (Γ, τ) := τ

∫ 1

0

[L(II)
ε

(
Γ(t),

1

τ
Γ′(t)

)
+ 1] dt =

∫ τ

0

[L(II)
ε (γ(t), γ′(t)) + 1] dt,

where γ(t) = Γ(t/τ).
For case (II), we get the analogous statements to those above in case (I):

Corollary 5.3. L(II)
ε is of class C1 and

DL(II)
ε (Γ, τ)(Ψ, σ) =

1

τ

∫ 1

0

〈
Γ′(t),Ψ′(t)

〉
dt− τ

∫ 1

0

〈
∇V (Γ(t)) +∇Uε(Γ(t)),Ψ(t)

〉
dt

+ σ

∫ 1

0

[
− 1

2τ 2
|Γ′(t)|2 − V (Γ(t))− Uε(Γ(t)) + 1

]
dt,

for all (Γ, τ) ∈ W 1,2(S1,Ξ)× R>0 and (Ψ, σ) ∈ W 1,2(S1,RN)× R.

Proof. This follows from Proposition 5.1, by choosing Ω as Ξ, V as V + Uε, E = 1 and U
as 0. □

Corollary 5.4. (Γ, τ) ∈ W 1,2(S1,Ξ)×R>0 is a critical point of L(II)
ε , i.e. DL(II)

ε (Γ, τ) = 0,
if and only if for the corresponding curve γ : R/τZ → Ξ with γ(t) = Γ(t/τ) holds that
γ ∈ C∞(R/τZ ,RN) and that γ is a solution of the Euler-Lagrange system

γ′′ +∇V (γ) +∇Uε(γ) = 0

with energy
1 = E ≡ 1

2
|γ′(t)|2 + V (γ(t)) + Uε(γ(t)).

Proof. This follows from Lemma 5.2, by choosing Ω as Ξ, V as V + Uε, E = 1 and U as
0. □

6. Main result

In this section we prove that periodic bounce orbits can be obtained as limits of periodic
orbits in the approximating models that have been introduced in the previous section. In
particular, in this section let u ∈ C∞((0, 1]) with limx→0 u(x) = ∞ and u′ monotone for
case (I) and in case (II) let uε as in (5.6).

We carry out the proofs for the cases (I) and (II) simultaneously, because they have the
same structure. By default, we refer to case (I), and whenever the arguments or details for

case (II) alter from those of case (I), we add them in the format ...special in case (II)... .

To facilitate this, in case (I) we denote

(6.1) Uε := εU and uε := εu.

In this notation, in case (I) we have the free-time action functional

LE
ε (Γ, τ) := τ

∫ 1

0

[
1

2τ 2
|Γ′(t)|2 − V (Γ(t))− Uε(Γ(t)) + E] dt,
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and in case (II) we have the free-time action functional

L(II)
ε (Γ, τ) := τ

∫ 1

0

[
1

2τ 2
|Γ′(t)|2 − V (Γ(t))− Uε(Γ(t)) + 1] dt.

We note with caution that Uε differs for the cases (I) and (II).
To simplify the notation we may sometimes omit the integration variable and write

“
∫
f dt” instead of “

∫
f(t) dt”.

Set Emin = min{inf
q∈Ω

U(q), 0}+ V (q).11 For E < Emin, there are no critical points of LE
ε ,

by Lemma 5.2.

Theorem 6.1. (cf. [AM11, Proposition 2.1]) Let K > 0 and T2 > T1 > 0. For each

ε > 0,12 let T1 ≤ τε ≤ T2, Emin ≤ Eε ≤ K in case (II), Eε ≡ 1 and let (Γε, τε) be a

critical point of LEε
ε , i.e. (Γε, τε) ∈ W 1,2(S1,Ω)× R>0 and DLEε

ε (Γε, τε) = 0.

(Γε, τε) be a critical point13of L(II)
ε , i.e. (Γε, τε) ∈ W 1,2(S1, Ω̄)×R>0 and DL(II)

ε (Γε, τε) = 0.

Then, up to a subsequence, (Γε, τε) converges to (Γ, τ) ∈ W 1,2(S1, Ω̄) × R>0 as ε → 0.
Moreover, if we define the curve γ(t) := Γ(t/τ), there exists a finite Borel meausure µ on
C = {t ∈ R/τZ |γ(t) ∈ ∂Ω} such that

(i)
∫ τ

0
[
〈
γ′, ψ′〉− 〈∇V (γ), ψ

〉
] dt =

∫
C

〈
ν(γ), ψ

〉
dµ for all ψ ∈ W 1,2(R/τZ ,RN)

(ii) Outside of supp(µ), γ is a smooth solution of the Euler-Lagrange system of L as in
(1.1), with energy E(γ) = 1

2
|γ′(t)|2 + V (γ(t)) = lim

ε→0
Eε.

(iii) γ has left and right derivatives that are left and right continuous on R/τZ , respectively.
Moreover, γ satisfies the law of reflection (1.3) at each time t which is an isolated
point of supp(µ).

In particular, if supp(µ) is a finite set, then γ is a periodic bounce orbit of the Lagrangian
system given by L and B := supp(µ) is its set of bouncing times.

Proof. We proceed as in [AM11, Proposition 2.1], with generalizations to account for the
more general choice of u.

Since the families (τε)ε>0 and (Eε)ε>0 are bounded, up to a subsequence for ε → 0, we
have τε → τ and Eε → E with T1 ≤ τ ≤ T2 and Emin ≤ E ≤ K.

We want to show that up to further passing to a subsequence, Γε also converges in
W 1,2(S1,RN). Planing to use the compact imbedding from Lemma 3.5, we now show that
(Γε)ε>0 is uniformly bounded in W 2,1(S1,RN).

11The value of Emin is finite because U diverges to +∞ on ∂Ω, so it is bounded from below.
12Sometimes for uniform boundedness in ε we need ε bounded. We mean ε ∈ (0, d0] when we write

ε > 0 to enhance readability. We use d0 from the definition of h as a bound, because this makes one
argument a little easier for case (II).

13The image of a critical point is contained in Ω̄ by Corollary 5.4, because Uε > 1 outside of Ω̄, and the
energy of a curve corresponding to a critical point is equal to 1.
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Let γε(t) = Γε(t/τε) be the periodic orbit corresponding to (Γε, τε). By Lemma 5.2 we
get that the energy of γε is equal to Eε, written in terms of (Γε, τε):

14

(6.2)
1

2τε
|Γ′

ε|2 + V (Γε) + Uε(Γε) ≡ Eε.

Since γε is a solution of the Euler-Lagrange Equation associated with Lε by Lemma 5.2,
in terms of (Γε, τε) we have

(6.3)
1

τ 2ε
Γ′′
ε +∇V (Γε) +∇Uε(Γε) = 0.

Since (Γε, τε) is a critical point of LEε
ε , for each (Ψ, σ) ∈ W 1,2(S1,RN) × R we have

DLEε
ε (Γε, τε)(Ψ, σ) = 0 and choosing σ = 0 in equation (5.1) since∇Uε(p) = u′ε(h(p))∇h(p)

for all p ∈ Ω, we get
(6.4)∫ 1

0

[τ−2
ε

〈
Γ′
ε,Ψ

′〉− 〈∇V (Γε),Ψ
〉
] dt =

∫ 1

0

〈
∇Uε(Γε),Ψ

〉
dt =

∫ 1

0

〈
u′ε(h(Γε))∇h(Γε),Ψ

〉
dt.

We fix Ψ = Ψε = −∇h(Γε) which is in W 1,2(S1,RN) (actually in C∞(R/Z ,RN) by chain
rule and Lemma 5.2).15 The sequence (Γ′

ε)ε∈(0,1] is uniformly bounded in L∞. Indeed, by
equation (6.2) we have

|Γ′
ε|2 = 2τε(Eε − V (Γε)− Uε(Γε)) ≤ 2T2(K + Emin) <∞.

By chain rule we have Ψ′
ε = −D2h(Γε)Γ

′
ε, so as h ∈ C∞(Ω̄), (Ψ′

ε)ε>0 is uniformly bounded
in L∞ as well. Hence, with our choice of Ψ the first two summands on the left-hand side
of (6.4) are uniformly bounded in ε. Indeed,

|
∫ 1

0

[τ−2
ε

〈
Γ′
ε,Ψ

′
ε

〉
−
〈
∇V (Γε),Ψε

〉
] dt|

≤ T−2
1

∫ 1

0

|
〈
Γ′
ε,Ψ

′
ε

〉
| dt+

∫ 1

0

|
〈
∇V (Γε),Ψε

〉
| dt

≤ T−2
1 ∥Γ′

ε∥∞∥Ψ′
ε∥∞ + ∥V ∥∞∥∇h∥∞ ≤ C for all ε > 0

for some C ∈ R. Thus, we get

(6.5)

∫ 1

0

〈
ε∇U(Γε),Ψε

〉
dt = −

∫ 1

0

εu′(h(Γε)|∇h(Γε)|2 dt ≤ C for all ε > 0.

Let Ω′ ⊂ Ω be the compact neighborhood of ∂Ω given by Ω′ = {q ∈ Ω|h(q) ≤ d0}, where
d0 is the positive constant that enters the definition of the function h.

In order to show that (∇Uε(Γε))ε>0 = (u′ε(h(Γε))∇h(Γε))ε>0 is uniformly bounded in L1,
we calculate the following upper bound∫ 1

0

|εu′(h(Γε))| dt =
∫ 1

0

|εu′(h(Γε))|1{Γε∈Ω′} dt+

∫ 1

0

|εu′(h(Γε))|1{Γε∈Ω\Ω′} dt.

14Recall that in case (I) we denote Uε := εU, see (6.1).
15Note that the integrabilities are satisfied because R/Z or rather [0,1] is compact.
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Now as |∇h| ≡ 1 on Ω′ and u ∈ C∞ i.e. u′|[d0,1] ∈ C0([d0, 1]) bounded, we have∫ 1

0

|εu′(h(Γε))| dt ≤
∫ 1

0

|εu′(h(Γε))||∇h(Γε)|2 dt+ ε∥u′|[d0,1]∥∞.

The first term splits into

−
∫ 1

0

εu′(h(Γε))|∇h(Γε)|2 dt+ 2

∫ 1

0

εu′(h(Γε))|∇h(Γε)|21{u′(h(Γε))≥0} dt

where the first term is bounded by equation (6.5) and since u′ < 0 on some (0, d), the
second term is bounded by 2ε∥u′|[d,1]∥∞. Hence

(6.6)

∫ 1

0

|εu′(h(Γε))| dt ≤ C + 3ε∥u′|[min{d0,d},1]∥∞.

This proves that (∇Uε(Γε))ε>0 = (u′ε(h(Γε))∇h(Γε))ε>0 is uniformly bounded in L1, since
∇h ∈ L∞.

We show that ∇(Uε(Γε))ε>0 is uniformly bounded in L1. Since the first two summands

in (6.4) are uniformly bounded, so is the third, that is −
∫ 1

0
u′ε(h(Γε))|∇h(Γε)|2 dt =∫ 1

0

〈
∇Uε(Γε),Ψε

〉
dt ≤ C. We now write Ω′ = {q ∈ Ω̄|h(q) ≤ d0}, and calculate∫ 1

0

|u′ε(h(Γε))| dt =
∫ 1

0

|u′ε(h(Γε))|1{Γε∈Ω′} dt =

∫ 1

0

|u′ε(h(Γε))||∇h(Γε)|21{Γε∈Ω′} dt

≤
∫ 1

0

|u′ε(h(Γε))||∇h(Γε)|2 dt = −
∫ 1

0

u′ε(h(Γε))|∇h(Γε)|2 dt ≤ C

for any 0 < ε < d0 since u′ε = 0 on [ε,∞) and because u′ε ≤ 0. This proves that
(∇Uε(Γε))ε>0 = (u′ε(h(Γε))∇h(Γε))ε>0 is uniformly bounded in L1, since |∇h| ≤ 1.

Together with the Euler-Lagrange equation (6.3) and τε ≤ T2 this implies that (Γ′′
ε)ε>0

is uniformly bounded in L1, since ∇V ∈ L∞. Indeed, from (6.3) we get

∥Γ′′
ε∥L1 = τ 2ε ∥∇V (Γε) +∇Uε(Γε)∥L1

≤ T 2
2 ∥∇V (Γε)∥L1 + T 2

2 ∥∇Uε(Γε)∥L1 ≤ T 2
2 ∥∇V ∥∞ + T 2

2 ∥∇Uε(Γε)∥L1 ,

where the last term is uniformly bounded by the previous statement.
We conclude that (Γε)ε>0 is uniformly bounded inW 2,1(S1,RN). Hence, by compactness

of the embedding W 2,1(S1,RN) ⊂⊂ W 1,2(S1,RN), see Lemma 3.5, up to further passing
to a subsequence for ε→ 0, we have Γε converges to some Γ ∈ W 1,2(S1,RN). Actually, by
Lemma 3.4 we have Γ ∈ W 1,2(S1, Ω̄). Mind that the image of Γ may contain points in ∂Ω.

Points (i) - (iii) remain to be shown. Set µ̃ε := −u′ε(h(Γε)). (µ̃ε)ε>0 is uniformly bounded

in L1 by (6.6). For f ∈ C0([0, 1]) and µ̃ε(f) :=
∫ 1

0
fµ̃ε dt holds |µ̃ε| ≤ ∥f∥∞∥µ̃ε∥L1 so by

linearity of the integral we have µ̃ε ∈ (C0([0, 1]))∗. Since the µ̃ε are uniformly bounded in
L1, the corresponding functionals are uniformly bounded in (C0([0, 1]))∗. Since C0([0, 1])
is separable [Alt16, 4.18], by [Alt16, Theorem 8.5] the closed unit ball in (C0([0, 1]))∗ is
weakly* sequentially compact. We conclude that up to a subsequence, µ̃ε converges to µ̃ ∈
(C0([0, 1]))∗ weak*. Using the linear isometric isomorphism from the Riesz-Radon Theorem

23



[Alt16, 6.23] we identify µ̃ with a regular, finite, signed Borel measure, i.e. µ̃(f) =
∫ 1

0
f dµ̃

for all f ∈ C0([0, 1]). We set

C ′ := {t ∈ S1|Γ(t) ∈ ∂Ω}.
We show that for t /∈ C ′, there is a neighborhood Ot of t such that µ̃ε|Ot converges

uniformly to 0. Indeed, let Ot = [t − δ, t + δ] for some δ > 0 such that Ot ∩ C ′ = ∅.
This exists since ∂Ω is closed and Γ is continuous by Lemma 3.4, which also implies that
Γε → Γ in C0, so there is an ε′ > 0 such that for all ε < ε′ : infs∈Ot dist∂Ω(Γε(s)) ≥
1
2
mins∈Ot dist∂Ω(Γ(s)) > 0. This implies that µ̃ε|Ot = −u′ε(h(Γε))|Ot converges uniformly

to 0. We conclude that the support of µ̃ is contained in C ′.
We want to obtain (i) by taking the limit in (6.4). Therefore we evaluate the limits of

the individual terms. For any Ψ ∈ W 1,2(S1,RN) we have

lim
ε→0

∫ 1

0

τ−2
ε

〈
Γ′
ε,Ψ
〉
dt =

∫ 1

0

τ−2
〈
Γ′,Ψ′〉 dt.

Indeed,∣∣∣τ−2
ε

∫ 1

0

〈
Γ′
ε,Ψ

′〉 dt− τ−2

∫ 1

0

〈
Γ′,Ψ′〉 dt∣∣∣

≤
∣∣∣τ−2

ε

∫ 1

0

〈
Γ′
ε,Ψ

′〉 dt− τ−2
ε

∫ 1

0

〈
Γ′,Ψ′〉 dt∣∣∣+ ∣∣∣τ−2

ε

∫ 1

0

〈
Γ′,Ψ′〉− τ−2

∫ 1

0

〈
Γ′,Ψ′〉 dt∣∣∣

=
∣∣∣τ−2

ε

∫ 1

0

〈
Γ′
ε − Γ′,Ψ′〉 dt∣∣∣+ |τ−2

ε − τ−2|
∣∣∣ ∫ 1

0

〈
Γ′,Ψ′〉 dt∣∣∣

≤ T−2
1 ∥Γ′

ε − Γ′∥2∥Ψ′∥2 + |τ−2
ε − τ−2|

∣∣∣ ∫ 1

0

〈
Γ′,Ψ′〉 dt∣∣∣ ε→0−−→ 0,

using the Cauchy-Schwartz inequality. Furthermore we have

lim
ε→0

∫ 1

0

〈
∇V (Γε),Ψ

〉
dt =

∫ 1

0

〈
∇V (Γ),Ψ

〉
dt,

again applying the Cauchy-Schwartz inequality:∣∣∣ ∫ 1

0

〈
∇V (Γε)−∇V (Γ),Ψ

〉
dt
∣∣∣ ≤ ∥∇V (Γε)−∇V (Γ)∥2∥Ψ∥2

ε→0−−→ 0,

using dominated convergence on the first factor with the majorant 2∥∇V ∥∞. Concerning
the third term in (6.4), we note that

〈
∇h(Γε),Ψ

〉
→
〈
∇h(Γ),Ψ

〉
in C0. Indeed, for each

component i we have

sup
t∈[0,1]

|∇h(Γε(t))iΨi(t)−∇h(Γ(t))iΨi(t)| ≤ sup
t∈[0,1]

|∇h(Γε(t))i −∇h(Γ(t))i|∥Ψi∥∞ → 0,

since Ψ ∈ W 1,2 ⊂ C0, Γε → Γ in C0 and ∇h equicontinuous. Now note that ∇h(Γ) =
−ν(Γ) on C ′. Using supp(µ̃) ⊆ C ′ and applying [Alt16, Remark 8.3 (6)], we conclude from
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the convergence
〈
∇h(Γε),Ψ

〉
→
〈
∇h(Γ),Ψ

〉
in C0 that

lim
ε→0

∫ 1

0

u′ε(h(Γε))
〈
∇h(Γε),Ψ

〉
dt = − lim

ε→0

∫ 1

0

µ̃ε

〈
∇h(Γε),Ψ

〉
dt

= −µ̃(
〈
∇h(Γ),Ψ

〉
) = −

∫
C′

〈
∇h(Γ),Ψ

〉
dµ̃ =

∫
C′

〈
ν(Γ),Ψ

〉
dµ̃.

Hence, taking the limit in (6.4) yields∫ 1

0

τ−2
〈
Γ′,Ψ′〉 dt+ ∫ 1

0

〈
∇V (Γ),Ψ

〉
dt =

∫
C′

〈
ν(Γ),Ψ

〉
dµ̃.

By the reparameterisation R/τZ → S1 given by t 7→ t/τ the measure µ̃ is pulled back to a
measure µ on C := {t ∈ R/τZ |γ(t) ∈ ∂Ω} and the above equation can be rewritten as in
point (i) of the statement.

Now, let t /∈ supp(µ) and δ > 0 small enough that [t−δ, t+δ]∩ supp(µ) = ∅. This exists
because the support is closed by definition. For a ψ ∈ W 1,2(R/τZ ,RN) that is supported
in [t− δ, t+ δ], from (i) we get∫ t+δ

t−δ

[
〈
γ′, ψ′〉− 〈∇V (γ), ψ

〉
] dt = 0.

Analogously to the proof of Lemma 5.2, we get that γ is a smooth solution to the Euler-
Lagrange equation of L on [t− δ, t+ δ].
We need to show that the energy is E. For that, first we will show that Uε(γε) → 0

almost everywhere for the subsequence from above. Set

(6.7) I = {t ∈ R/τZ |Uε(γε(t)) = uε(h(γε(t))) does not converge to zero}

Note that for each t ∈ I we have h(γε(t)) → 0 since γε → γ in C0 implies γε(t) → γ(t),

uε = εu and u is bounded on any [d, 1] for d > 0. h(γε(t)) → 0 since uε = 0 on [ε,∞).

Hence, for t ∈ I we have

ε∇U(γε(t)) = εu′(h(γε(t)))∇h(γε(t)) = εu(h(γε(t))
u′(h(γε(t)))

u(h(γε(t)))
∇h(γε(t))

for ε small enough that U(γε(t)) ̸= 0. Since lim
x→0

u(x) = ∞ and u′ monotone, by Lemma

2.4 we have |u
′(h(γε))
u(h(γε))

| → ∞ pointwise on I as h(γε) → 0 pointwise on I. We conclude that

|ε∇U(γε)| = |εu(h(γε))|
∣∣∣u′(h(γε))
u(h(γε))

∣∣∣|∇h(γε)| → ∞ pointwise on I,

as the first factor does not converge to zero, nor does a subsequence converge to zero since
γε(t) does converge, and the last factor converges to 1 pointwise on I.
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For t ∈ I we have

∇Uε(γε(t)) = u′ε(h(γε(t))∇h(γε(t)) = uε(h(γε(t)))
u′ε(h(γε(t)))

uε(h(γε(t)))
∇h(γε(t))

for ε small enough that Uε(γε(t)) ̸= 0. Calculate

u′ε(x) =

{
− exp(1

ε
) exp( 1

x−ε
) 1
(x−ε)2

, x < ε

0 , x ≥ ε.

Hence ∣∣∣u′ε(h(γε(t)))
uε(h(γε(t)))

∣∣∣ = 1

(h(γε(t))− ε)2
→ ∞ as ε→ 0,

remembering that since t ∈ I, 0 ≤ h(γε(t)) < ε. We conclude that

|∇Uε(γε)| = |uε(h(γε))|
∣∣∣u′ε(h(γε))
uε(h(γε))

∣∣∣|∇h(γε)| → ∞ pointwise on I.

considering the other factors the same way as above.

Now, assume that I has a positive Lebesgue measure. By Fatou’s Lemma we get

lim inf
ε→0

∫
I

|∇Uε(γε)| dt ≥
∫
I

lim inf
ε→0

|∇Uε(γε)| dt = ∞,

which contradicts the fact that (∇Uε(γε))ε>0 is uniformly bounded in L1 which has been
established above. Our claim that Uε(γε) → 0 almost everywhere, holds true.
We apply this to take the limit in (6.2) which we rewrite to

|Γ′
ε|2 = 2τε(Eε − V (Γε)− Uε(Γε)).

The right-hand side of the equation converges almost everywhere to 2τ(E−V (Γ)). Hence,
the left-hand side converges almost everywhere as well, and since |Γ′

ε| → |Γ′| in L2, we get
|Γ′

ε|2 → |Γ′|2 almost everywhere. We conclude

(6.8)
1

2
|γ′|2 + V (γ) = E almost everywhere.

This establishes point (ii).
From point (i) we deduce that the components of the weak derivative γ′ are functions

of bounded variation. This follows immediately from the the definition as in [AFP00,
Definition 3.1.]. For these it is well known that the components are differences of two
monotone functions by Jordan decomposition, and that therefore they possess left and
right limits. We conclude that γ has left and right derivatives and that they are left and
right continuous, respectively.

This allows to deduce from (6.8) that

(6.9)
1

2
|γ′(t±)|2 + V (γ(t)) = E for all t ∈ R/τZ .

Now let us consider a time t which is an isolated point in supp(µ). In order to complete
the proof, we only need to establish that the reflection rule is satisfied in t. Since t is an
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isolated point, we may choose δ > 0 sufficiently small such that [t−δ, t+δ]∩supp(µ) = {t}.
In point (i) of the statement, let us choose ψ to be supported in the interval [t− δ, t+ δ].
Then point (i) reduces to

(6.10)

∫ t+δ

t−δ

〈
γ′, ψ′〉 ds− ∫ t+δ

t−δ

〈
∇V (γ), ψ

〉
ds =

〈
ν(γ(t)), ψ(t)

〉
µ({t}).

Note that outside of {t}, γ′′ exists. We use partial integration to rearrange the first term:
For each component i and a null sequence (an)n∈N ⊂ (0, δ) we have∫ t+δ

t−δ

γ′iψ
′
i ds =

∫ t−an

t−δ

γ′iψ
′
i ds+

∫ t+an

t−an

γ′iψ
′
i ds+

∫ t+δ

t+an

γ′iψ
′
i ds

= [γ′iψi]
t−an
t−δ −

∫ t−an

t−δ

γ′′i ψi ds+

∫ t+an

t−an

γ′iψ
′
i ds+ [γ′iψi]

t+δ
t+an −

∫ t+δ

t+an

γ′′i ψi ds

n→∞−−−→ γ′i(t
−)ψ(t)−

∫
(t−δ,t)

γ′′i ψ ds− γ′i(t
+)ψ(t)−

∫
(t,t+δ)

γ′′i ψ ds.

Inserting this result into (6.10) and using that by (ii), outside of {t} the Euler Lagrange
equation corresponding to L is satisfied, we get〈

γ′(t−)− γ′(t+), ψ(t)
〉
=
〈
ν(γ(t)), ψ(t)

〉
µ({t}),

and by varying the choice of ψ we get

(6.11)
〈
γ′(t−)− γ′(t+), v

〉
=
〈
ν(γ(t)), v

〉
µ({t}) for all v ∈ RN .

We observe that
〈
γ′(t−)−γ′(t+), v

〉
= 0 for all v ∈ Tγ(t)∂Ω, so γ

′(t−)−γ′(t+) ∈ span(ν(γ(t))).
Hence, γ′(t−)− γ′(t+) must coincide with its projection onto span(ν(γ(t))), i.e.

γ′(t−)− γ′(t+) = ν(γ(t)) ·
〈
ν(γ(t)), γ′(t−)− γ′(t+)

〉
,

which can be rearranged to

(6.12) γ′(t−)−
〈
γ′(t−), ν(γ(t))

〉
· ν(γ(t)) = γ′(t+)−

〈
γ′(t+), ν(γ(t))

〉
· ν(γ(t)),

which is the second equation of (1.3). Using the pythagorean theorem we decompose

|γ(t−)|2 = |γ′(t−)−
〈
γ′(t−), ν(γ(t))

〉
· ν(γ(t))|2 + |

〈
γ′(t−), ν(γ(t))

〉
· ν(γ(t))|2

= |γ′(t−)−
〈
γ′(t−), ν(γ(t))

〉
· ν(γ(t))|2 + |

〈
γ′(t−), ν(γ(t))

〉
|2;

and

|γ′(t+)|2 = |γ′(t+)−
〈
γ′(t+), ν(γ(t))

〉
· ν(γ(t))|2 + |

〈
γ′(t+), ν(γ(t))

〉
|2.

By the conservation of energy (6.9), we have |γ′(t−)|2 = |γ′(t+)|2, so using (6.12) we get

|
〈
γ′(t−), ν(γ(t))

〉
| = |

〈
γ′(t+), ν(γ(t))

〉
|.

If we now insert v = ν(γ(t)) in (6.11), we get〈
γ′(t−), ν(γ(t))

〉
−
〈
γ′(t+), ν(γ(t))

〉
= µ({t}) ̸= 0.
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Since the absolute values of both terms on the left-hand side coincide, one must be positive
and the other negative, i.e.〈

γ′(t−), ν(γ(t))
〉
= −

〈
γ′(t+), ν(γ(t))

〉
̸= 0.

This concludes the proof of point (iii). □

A limit of the approximation above does not necessarily have any bounce points. In fact,
it is possible that the orbit of the limit is contained in ∂Ω, but that there are no bounce
times as in the following Example 6.2. This is also an example where the limit γ does
not solve the Euler-Lagrange equation corresponding to L from (1.1) at any time t. The
statement of Theorem 6.1 still holds true however.

Example 6.2. Consider the unit disc Ω = B1(0) ⊂ R2 and the approximation scheme of
case (I) with u(x) = 1

x
. Set V = 0. We can choose d0 = 1

4
. Periodic trajectories in the

approximating models are

γε(t) = rε

(
sin(t/τε)
cos(t/τε)

)
,

for ε ≤ 1
16

= d20, rε = 1−
√
ε and τε =

√
1−

√
ε. Indeed, the relevant derivatives are

γ′ε(t) = rε/τε

(
cos(t/τε)
− sin(t/τε)

)
and γ′′ε (t) = rε/τ

2
ε

(
− sin(t/τε)
− cos(t/τε)

)
= − 1

τ 2ε
γε(t).

The Euler-Lagrange equation is satisfied:

ε∇U(γε(t)) = εu′(γε(t))∇h(γε(t)) = − ε

dist∂Ω(γε(t))2

(
− γε(t)

rε

)
=

ε

(1− rε)2
γε(t)

rε

=
1

1−
√
ε
γε(t) =

1

τ 2ε
γε(t) = −γ′′ε (t).

The energy of γε is:

E(γε) =
1

2
|γ′ε(t)|2 + εU(γε)) =

1

2
|γ′ε(t)|2 + εu(h(γε)) =

r2ε
2τ 2ε

+
ε

dist∂Ω(γε(t))

=
r2ε
2τ 2ε

+
ε

1− rε
=

(1−
√
ε)2

2(1−
√
ε)

+
√
ε =

1−
√
ε

2
+
√
ε = Eε.

Both the energy and the period are uniformly bounded. We can verify the convergence to

γ(t) =

(
sin(t)
cos(t)

)
of Theorem 6.1 by hand: We have

Γε(t) = rε

(
sin(t)
cos(t)

)
and Γ′

ε(t) = rε

(
cos(t)
− sin(t)

)
.

Now for Γ = γ we evaluate the L2 convergence of the first component∫ 1

0

(rεsin(t)− sin(t))2 dt = ε

∫ 1

0

sin(t)2 dt ≤ ε
ε→0−−→ 0,
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and analogously for the other component and the components of the first derivative. Hence
(Γε, τε) → (Γ, 1) in W 1,2(S1,R2)×R. Note that γ(t) ∈ ∂Ω for all t and that none of these
are bounce times. Also note that γ does not solve the Euler-Lagrange equation γ′′ = 0.
This is no contradiction to point (ii) of Theorem 6.1, since the measure µ is supported

at any time t. Indeed µ̃ε = −u′(h(Γε)) = 1
(dist∂ Ω(Γε))2

= 1
(1−rε)2

ε→0−−→ 1. I.e. point (i)

of Theorem 6.1 holds with µ being the Lebesgue measure and point (ii) and (iii) become
empty statements in this case, since there is no “outside supp(µ)” and there are no isolated
points of supp(µ).

Remark 6.3. In case (I) we prescribed that limx→0 u(x) = ∞. In fact, the statement of
Theorem 6.1 still holds if we omit this condition. Indeed, the only time this condition
appeared in the proof was to show that the set I from (6.7) had Lebesgue measure 0.16

Now if u(x) does not diverge to ∞, u must be bounded, since u′ monotone implies that u
is monotone on (0, d) for some d > 0. Hence, in this case the set I is already empty.
If u′ is bounded as well, then µ̃ε = −εu′(h(Γε)) converges uniformly to 0, so µ = 0 and

the limit γ solves the Euler-Lagrange equation corresponding to L from (1.1) at any time
t. In particular there are no bounce times in this case.
If u is bounded but u′ is not bounded, as for instance if u(x) = 1−

√
x and u′(x) = − 1

2
√
x
,

there still might be bounce points, because in this case µ̃ε = −εu′(h(Γε)) =
ε

2
√

h(Γε)
might

still diverge to ∞ at some times t. This has not been further investigated for this thesis.
The choice to investigate only the case limx→0 u(x) = ∞ was made, because then

trajectories in the approximating models can not escape the domain Ω.

16Actually, if we omit the condition limx→0 u(x) = ∞, then u′ is not necessarily negative near 0.
However it is either non-negative or non-positive near 0. For the discussion leading up to (6.6), we might
have to replace our choice of Ψε by −Ψε. However the arguments stay completely analogous.
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