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Abstract

The saddle connection graph of a translation surface is a graph with saddle
connections as vertices and sets of two disjoint saddle connections as edges. It
characterizes translation surfaces up to affine equivalence. The graph of slopes
summarizes saddle connections with the same slope in equivalence classes.
With the help of an algorithm that generates all directions of saddle connections
and some findings that reduce the number of pairwise comparisons to find the
edges of the graph, we construct a finite approximation of the graph of slopes
of a finite translation surface, which is called the golden L.

Zusammenfassung

Der Sattelverbindungsgraph einer Translationsfläche ist ein Graph mit Sat-
telverbindungen als Ecken und Mengen von je zwei disjunkten Sattelverbindun-
gen als Kanten. Er charakterisiert Translationsflächen bis auf affine Äquivalenz.
Der Graph der Richtungen fasst Sattelverbindungen mit der gleichen Richtung
in Äquivalenzklassen zusammen.
Mithilfe eines Algorithmus, der alle Richtungen von Sattelverbindungen gener-
iert, und einigen Erkenntnissen, die die Anzahl der paarweisen Vergleiche re-
duziert, um die Kanten des Graphen zu bestimmen, konstruieren wir eine endliche
Annäherung des Graphen der Richtungen einer endlichen Translationsfläche, die
das goldene L genannt wird.
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1 Introduction

The goal for this bachelor thesis is to understand the saddle connection graph of a
special translation surface, the so called “golden L”. What makes it special is that
it consists of one 1× 1-square, one 1× 1

ϕ
- and one 1

ϕ
× 1-rectangle, with ϕ being the

golden ratio. The golden ratio is the positive solution of the equation x2−x−1 = 0.
The saddle connection graph of a translation surface is a graph whose vertices are
saddle connections and whose edges are sets of two disjoint saddle connections. It is a
tool to study equivalence classes of translation surfaces. This is because its combina-
torial structure completely describes the translation surface up to affine equivalence.
The graph of slopes is (2, 1)−quasi-isometric to the saddle connection graph and its
vertices are equivalence classes of saddle connections that have the same slope. There
is an edge between two equivalence classes if there exists at least one edge between
two saddle connections from each class.
The once-punctured torus carries the structure of a translation surface, that is built
of the unit square. Here the saddle connection graph can be constructed with the
help of two general criteria that determine vertices and edges of the graph. This
graph can be visualized in the unit circle, as pictured below, and is called the Farey
graph.

Figure 1: The Farey graph [7]

Apparently for the golden L such general criteria are not known. In [2], an algorithm
is introduced that generates all saddle connections. From this we get all directions of
saddle connections on the golden L and construct the graph of slopes. Since quasi-
isometries respect large-scale geometry, the structure of the saddle connections graph
is comparable to the structure of the graph of slopes.
The mentioned terms and other background is introduced in the first few pages.
Subsequently we study the relation of the golden L to the double pentagon translation
surface and find their Veech groups. The Veech group is a subgroup of SL(2,R) and is
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defined as the stabilizer of GL(2,R) acting on the translation surface. We introduce
the algorithm [2] that generates all long saddle connections with positive slope and
extend it to the saddle connections with negative slope. These are all directions that
admit a saddle connection and form the vertices of the graph. Since the computation
of all pairwise comparisons for the edges is laborious, we only construct the graph
with the first 16 saddle connections that the algorithm generates, to get an idea of
how the graph looks like.

2 Background

2.1 Translation surfaces

This section is based on [8] (chapter 1.2).

Definition 2.1 (Surface). A surface is a compact Hausdorff space where every
point has an open neighbourhood which is homeomorphic to an open subset of R2.

Definition 2.2 (Simple closed curve). Let M be a surface. A simple closed curve
in M is a continuous injective map S1 → M .

Definition 2.3 (Genus). Let M be a connected surface. The genus g of M is defined
to be the maximum number of disjoint and simple closed curves in M such that M
without the images of those curves is still connected.
Intuitively the genus can be understood as the number of “holes” of a surface.

Definition 2.4 (Chart). Let M be a surface.
A chart on M is a pair (U,φ), where U is an open subset of M and φ : U → V is a
homeomorphism on an open subset V of R2.

Definition 2.5 (Translation atlas). Let M be a surface.
A translation atlas of M is a set of charts {(Ui, φi)}i∈I with M =

⋃
i∈I Ui and

transition maps φj ◦ φ−1
i : φi(Ui ∩ Uj) → φj(Ui ∩ Uj) that are translations in R2 for

all charts (Ui, φi), (Uj, φj) with Ui ∩ Uj ̸= ∅.

Definition 2.6 (Translation structure). A translation structure ω is the equiva-
lence class of a translation atlas, where two atlases are said to be equivalent if there
are transition maps between all charts of the two atlases and these transition maps
are translations.

There are quite a few equivalent definitions of translation surfaces, but for our pur-
poses the following definition will be sufficient.
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Definition 2.7 (Finite translation surface). Let P1, ..., Pn be finitely many disjoint
polygons in the plane R2, P ∗

i each of the polygons without its vertices and D the union
of all edges of the polygons without the vertices. Furthermore choose an orientation
of the plane. Let T be an involution (a self-inverse map) on D such that T restricted
to the interior of any edge is a translation to an oppositely oriented edge.

If the surface X :=
(⋃n

i=1 P
∗
i

)
/T is connected and oriented and ω is the translation

structure given by the edge identifications via T, we call (X,ω) a finite translation
surface.

Remark 2.8. In the following, let X := (X,ω) be a translation surface.

Remark 2.9. Visually, one can imagine a finite translation surface as a finite union
of polygons in the plane that are glued together pairwise on parallel edges with the
same length via translations.

Definition 2.10 (Isomorphism of translation surfaces). Two translation surfaces
(X,ω) and (Y, ω̄) are said to be isomorphic (X,ω) ∼= (Y, ω̄) if there is a bijective
translation between them.

Remark 2.11. The Euclidian metric on R2 induces a flat metric on X:

dX(x, y) := inf{dR2(x, x1) +
m−1∑
i=1

(dR2(T (xi), xi+1)) + dR2(T (xm), y),m ∈ N :

x1, ..., xm on the boundary of the polygons}
In general a translation surface X is not complete regarding the flat metric and not
compact. We denote the metric completion of X by X.

Definition 2.12 (Singularities). The elements of X \X are called singularities.

Remark 2.13. In the above definition of a translation surface singularities only
arise in the corners of the polygons. The total interior angle around a singularity is
always a conical angle of k2π, k ∈ N. We call k the multiplicity of the singularity
and if k = 1 we call the singularity removable.

Definition 2.14 (Saddle connection). A saddle connection on a translation sur-
face X is a geodesic segment between two not necessarily different singularities that
does not contain any other singularities. We denote the set of saddle connections of
X by SC(X).

Remark 2.15. If a translation surface has s singularities with angles

(1 + k1)2π, (1 + k2)2π, ..., (1 + ks)2π,

then the genus g satisfies 2g − 2 =
∑

ki.[10]
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One particular interest when studying saddle connections is their direction. Two
saddle connections have the same direction if their holonomy vector has the same
direction.

Definition 2.16 (Holonomy vector). Let X be a translation surface and γ ∈ SC(X).
Now choose points ..., x−2, x−1, x0, x1, x2, ... on γ such that there are charts (Ui, φi)
with xi, xi+1 ∈ Ui, the union of all Ui covers γ and each γ ∩ Ui is connected.

Transform the φi(Ui) in R2 by transition maps such that φi−1(xi) and φi(xi) coincide.
The resulting image of γ is an open geodesic in R2. The difference vector between
starting and ending point of the geodesic completion is called the holonomy vector
of γ.

Denote by VSC(X) the set of all holonomy vectors of saddle connections.

Remark 2.17. The set VSC(X) is discrete. See [6] (chapter 1.3) for more explana-
tion.

Definition 2.18 (Cylinder). A cylinder in X of circumference w > 0 and height
h > 0 is a maximal open subset of X which is isometric to an Euclidean cylinder
R/wZ× (0, h).
The modulus of a cylinder is the ratio of its circumference to its height.
A cylinder decomposition of X is a collection of cylinders in X so that the
closures of these cylinders cover X and so that each two cylinders are disjoint.

Remark 2.19. The boundary of a cylinder consists of a union of saddle connec-
tions and singularities.

The following example of a translation surface was already mentioned in the intro-
duction:

Example 2.20 (The torus with one marked point). The torus with one marked
point carries the structure of a translation surface. It can be built of the unit square
with opposite edges identified by translations. Since the angles in the corners add up
to 2π, the singularity is removable. By marking one point on the torus, which will
correspond to the corners of the square surface, we study saddle connections with this
singularity leading to the Farey graph.

2.2 The golden L

Our object of interest is a particular translation surface which is called “The golden
L”. Its name originates from the golden ratio ϕ, which is defined to be the positive
solution to the equation x2 − x − 1 = 0. This also implies the interesting property
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ϕ2 = ϕ + 1. The golden L consists of three rectangles of edge lengths 1
ϕ
× 1, 1 × 1

ϕ

and 1× 1. The edge identifications are pictured in Figure 2. Note that there is only
one singularity with multiplicity 3 and with the equation from 2.15 we determine the
genus to be 2.

Figure 2: The golden L with edge identifications

2.3 The double pentagon

There is a close relation between the golden L and the regular double pentagon,
which is discussed in chapter 3. This translation surface consists of two regular pen-
tagons glued together in a certain way:

Identify two arbitrary edges of the two pentagons. The result is
an 8-gon and each edge has a unique parallel edge. We glue these
edges pairwise and obtain a compact orientable surface of genus 2,
the double pentagon translation surface. Just like on the golden L,
there is one singularity with conical angle 3 · 2π.

Remark 2.21. Let n ∈ N be odd. In general for two n-gons one gets a 2(n−1)-gon.
The translation surface has genus g = n−1

2
and one singularity with conical angle

(n− 2) · 2π. Regular double-n-gons including the statements above are treated in [5]
(originally in [9]).

2.4 The Veech group

In this chapter let X be a translation surface.

Definition 2.22 (Veech group).
The group GL+(2,R) := {A ∈ GL(2,R)| det(A) > 0} acts on X by linear transfor-

mations. For B ∈ GL+(2,R) this means that B(X) =
(⋃n

i=1 B(P ∗
i )
)
/B ◦ T ◦ B−1.

The stabilizer of this action is denoted by SL(X) and is called the Veech Group.

Remark 2.23. This action changes the translation structure ω in the following way:
Let (U,φ) be a chart in ω. Then B ·φ : U → B ·V, z 7→ B ·φ(z) is the corresponding
chart in B · ω.
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Remark 2.24. For A ∈ SL(X) holds (X,A · ω) ∼= (X,ω).

Example 2.25 (Veech group of a torus). We continue with a generalization of Ex-
ample 2.20, a translation surface that is topologically a torus, i.e., has genus 1. We
can imagine X as a parallelogram (instead of the unit square) with opposite and par-
allel edges identified. The Veech group of X is given by SL(X) := B ·SL(2,Z) ·B−1.
The map B ∈ GL(2,R) is given by the linear independent vectors ( a

b ) and ( c
d ) that

span the parallelogram. ([8], Ex.4.9)

The next lemma shows that saddle connections are sent to saddle connections by
elements of the Veech group. More generally, this holds for elements of GL+(2,R):

Lemma 2.26. The GL+(2,R) action on X induces an action on the set of saddle
connections, i.e., every A ∈ GL+(2,R) induces a bijection
A∗ : SC(X) → SC(A(X)).

Proof. The holonomy vector of a saddle connection γ ∈ SC(X) is a straight line
segment in R2, then A(γ) for A ∈ GL+(2,R) is still a straight line segment and
hence a geodesic. Singularities are defined to be the elements of X \X. When A ∈
GL+(2,R) acts on γ ∈ SC(X), the linear transformation only applies on the points
of the saddle connection, that lie in X, i.e., in particular not on the singularities.
Hence the resulting geodesic A∗(γ) is still a saddle connection.

Proposition 2.27 (Properties of the Veech group). SL(X) has the following prop-
erties:

(i) SL(X) is a subgroup of SL(2,R).

(ii) SL(X) is discrete.

(iii) SL(X) is never cocompact.

Proof. (i) Let A ∈ SL(X). The area of A(X) equals to det(A) · A(X) = A(X).
This implies det(A) = 1 and therefore A ∈ SL(2,R).

(ii) This proof follows [8]. By Example 2.25 the Veech group of translation surfaces
of genus 1 is discrete.
For a translation surface X of higher genus, there has to be at least one non-
removable singularity (see the equation in Remark 2.15). Furthermore X is
not simply connected, therefore there must exist non-trivial geodesics in X
that connect this singularity with itself. These consist of finitely many saddle
connections. Because we set the genus to be > 1 there are at least two disjoint
and simple closed curves in X and therefore at least two directions admitting
saddle connections.
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By Lemma 2.26, saddle connections are sent to saddle connections by A ∈
SL(X) as subgroup of GL+(2,R).
Let {An}n∈N ⊂ SL(X) be a sequence approaching the identity I ∈ SL(2,R).
Furthermore, let u, v ∈ VSC(X) be linearly independent. Anu → u and Anv →
v for n → ∞. Since VSC(X) is discrete, for n ∈ N sufficiently large on gets
Anu = u and Anv = v.
The saddle connections u and v are linearly independent, so they form a basis
for R2.
⇒ ∀N ≥ n,N ∈ N we have that AN = I. ⇒ SL(X) is discrete.

(iii) [6].

2.5 The saddle connection graph and the graph of slopes

In this section, letX be a translation surface. In [4] it is shown that the combinatorial
structure of the saddle connection graph completely describes the translation surface
up to affine equivalence. Hence we can characterize affine equivalence classes of
translation surfaces by their saddle connection graph. In this thesis, we study the
saddle connection graph, respectively the graph of slopes, which will be introduced
in this section.

Definition 2.28 (Graph). A graph consists of a set of vertices and a set of edges
together with a map that assigns every edge exactly two not necessarily different
vertices. A sequence of vertices σ0, ..., σn is called a path if σi and σi+1 form an edge
that is contained in the graph ∀ i ∈ {0, ..., n− 1}.
The distance between two vertices σ and σ′ is defined to be the number of edges of
the shortest path from σ to σ′.

Definition 2.29 (The saddle connection graph). The saddle connection graph
A(X) is a graph, whose vertices are saddle connections on X and edges are pairs of
disjoint saddle connections.

Example 2.30 (The Farey graph). We continue Example 2.20. As already men-
tioned in the introduction, the saddle connection graph of this translation surface,
that is a unit square with opposite edges identified, is the Farey Graph.
One can prove a short criterion to determine whether a vector in R2 is a saddle
connection on the translation surface.

( a
b ) is a saddle connection ⇔ a

b
is a rational number in lowest terms or ( a

b ) = ( 1
0 ) (1)
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Furthermore there is a criterion to check whether two saddle connections form an
edge in the graph:

{(
a
b

)
,

(
c
d

)}
∈ G ⇔ det

((
a c
b d

))
= ±1 (2)

We present the Farey graph with vertices on the unit circle. Saddle connections with
positive slope are in the upper half circle and those with negative slope in the bottom
half. The saddle connection ( a

b ) is the same as
( −a
−b

)
and ( −a

b ) is the same as ( a
−b ),

so they are represented by one vertex. By normalizing all the vectors and drawing
the edges not as straight lines but as circle segments, we get to Figure 1.

Definition 2.31 (The graph of slopes (Def. 4.1 in [3]). The graph of slopes G(X)
associated to a translation surface X has as vertices slopes θ ∈ RP 1 (i.e., directions
in R2) admitting a saddle connection on X, with two slopes declared adjacent (there
is an edge between the vertices) if they can be realised by a pair of disjoint saddle
connections.

Definition 2.32 ((C,K)-quasi-isometry). Let f : X → Y be a map between metric
spaces (X, dX) and (Y, dY ). The map f is called a (C,K)-quasi-isometry if

1

C
· dX(a, b)−K ≤ dY (f(a), f(b)) ≤ C · dX(a, b) +K ∀a, b ∈ X

and there is a constant M ≥ 0 such that ∀ y ∈ Y ∃x ∈ X : dY (y, f(x)) ≤ M.

In this case X and Y are said to be (C,K)-quasi-isometric.

Quasi-isometries respect large-scale geometry and ignore local details. With the
following lemma we can consider the graph of slopes instead of the saddle connection
graph for our purposes.

Lemma 2.33. The quotient map Θ : A(X) → G(X) sending a saddle connection to
its slope is a (2, 1)-quasi-isometry.

Proof. Let u, v ∈ A(X) be two saddle connections. Recall that distance between two
vertices a and b of a graph is defined to be the number of edges of the shortest path
from a to b.
In case u = v, one gets dA(X)(u, v) = 0 and dG(X)(u, v) = 0 because there is no edge
between u and v in A(X) and they are in the same equivalence class in G(X). Hence
the inequality from Definition 2.32 is satisfied.
Let now u ̸= v. We distinguish two cases:
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1. There is an edge between u and v, i.e., the saddle connections do not intersect.
Then dA(X)(u, v) = 1.
If u and v have the same slope, they are in the same equivalence class in G(x).
Hence dG(X)(u, v) = 0.
If u and v do not have the same slope, their slopes are adjacent because u and
v are disjoint. Then dG(X)(u, v) = 1.
In both cases the inequality from Definition 2.32 is satisfied for C = 2 and
K = 1.

2. The saddle connections u and v intersect.
In particular this means that dA(X)(u, v) ≥ 2 and u and v have different slopes
because u ̸= v.
Let u, r1, ...rn, v be a shortest path between u and v. The distance that ri has to
the first rj in the adjacent equivalence class is at most 2. This is because a path
between two vertices of the same equivalence class has length 1 and there is only
one more edge to connect ri (⇒ dA(X)(ri, rj) = 1) or the to ri parallel saddle
connection r′i (⇒ dA(X)(r

′
i, rj) = 2) with rj, because the equivalence classes are

adjacent. The distance between Θ(ri) and Θ(rj) remains always 1.
This implies 1

2
· dA(X)(u, rn) ≤ dG(X)(Θ(u),Θ(rn)) ≤ 2 · dA(X)(u, rn) (1)

The saddle connection v was excluded before because we have to distinguish
two cases.
If Θ(rn) ̸= Θ(v), (1) applies equally. If Θ(rn) = Θ(v), we subtract/add 1 to
make the inequality valid.
⇒ 1

2
· dA(X)(u, rn)− 1 ≤ dG(X)(Θ(u),Θ(rn)) ≤ 2 · dA(X)(u, rn) + 1.

⇒ Θ is a (2, 1)-quasi-isometry.

3 The Veech group of the golden L

The Veech Group preserves the area of the translation surface it acts on. We will
use this property for the construction of the saddle connection graph of the golden
L later.
We have an affine equivalence between the golden L and the double pentagon which
is given by

P =

(
1 cos π

5
0 sin π

5

)
.
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Lemma 3.1. The matrix P is a shear on the golden L composed with a vertical
scaling. It takes the golden L to the double pentagon and its inverse vice versa.

Proof. Visually this becomes clear in Figure 3.
The matrix P preserves the bottom line (green and orange) and shifts all line seg-
ments, that are parallel to it, by a factor of cos(π

5
), depending on the distance from

the bottom line. The vertical line segments get rotated by an angle of π
5
. Then the

length l of the red and orange line segments and the shorter diagonal of the small
rectangles equals to l =

√
12 + ϕ2 − 2ϕ cos(π

5
) = ϕ− 1 and corresponds to the edge

lengths of the double pentagon. The matrix P doesn’t preserve the area and scales
the height of the parallelograms the golden L consists of. Cutting off triangles and
gluing them like in Figure 3 shows the statement.

Figure 3: Visualization of the transformation from the golden L to the double pentagon

Let Γ be the Veech group of the golden L and Γ′ the Veech group of the double
pentagon. Γ′ is generated by

R =

(
cos(π

5
) − sin(π

5
)

sin(π
5
) cos(π

5
)

)
and T =

(
1 2 cot(π

5
)

0 1

)
. [5]

Define

σ0 :=

(
1 ϕ
0 1

)
, σ1 :=

(
ϕ ϕ
1 ϕ

)
, σ2 :=

(
ϕ 1
ϕ ϕ

)
, σ3 :=

(
1 0
ϕ 1

)
. [2]

Proposition 3.2. The σi, i ∈ {0, 1, 2, 3} generate the Veech group Γ of the golden L.

Proof. We use the shear matrix P from Lemma 3.1. First we define τ as

τ = σ0 · σ−1
3 · σ0 · σ−1

3 · σ0 · σ0 =

(
0 −1
1 ϕ

)
with σ−1

3 =

(
1 0
−ϕ 1

)
.

Conjugating σ0, respectively τ with P i.e.,

P · σ0 · P−1 = T and P · τ · P−1 = R.

delivers the generators of Γ′. Γ and Γ′ are conjugated groups1, because by Proposition
2.27 the Veech Group is a subgroup of GL(2,R), P ∈ GL(2,R) and PΓP−1 = Γ′.

1Two subgroups U, V of G are said to be conjugated, if there is g ∈ G, such that gUg−1 = V .
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Therefore, σ0 and τ respectively

σ0 and ρ = τ · σ−1
0 =

(
0 −1
1 0

)
generate the Veech group Γ of the golden L. Furthermore, σi ∈ Γ, i ∈ {1, 2, 3},
because

σ1 = σ0 · ρ · σ0

σ2 = σ0 · ρ · σ0 · ρ · σ0

σ3 = σ0 · ρ · σ0 · ρ · σ0 · ρ · σ0

You can find these calculations in more detail in the Appendix A.

4 The tree of saddle connections

In [2] (chapter 2.2) an algorithm to construct all directions of saddle connections of
the golden L is presented, which shall be explained in detail in this section.
We start with the matrices from last section

σ0 =

(
1 ϕ
0 1

)
, σ1 =

(
ϕ ϕ
1 ϕ

)
, σ2 =

(
ϕ 1
ϕ ϕ

)
, σ3 =

(
1 0
ϕ 1

)
.

They divide the first quadrant Σ in R2 into four parts:

σ0Σ = Σ0 := {( x
y ) : 0 ≤ y < 1

ϕ
x}

σ1Σ = Σ1 := {( x
y ) :

1
ϕ
x ≤ y < x}

σ2Σ = Σ2 := {( x
y ) : x ≤ y < ϕx}

σ3Σ = Σ3 := {( x
y ) : ϕx ≤ y}

Remark 4.1. A saddle connection on the golden L has its slope in Q[
√
5] (this is

covered in [1]).

In each direction that admits a saddle connection there exists one short and one long
cylinder which are at a circumference ratio of ϕ. They form a cylinder decomposition
and have the same modulus.
Furthermore there are always one short and two long saddle connections. The easiest
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direction to see this is the horizontal direction. One long saddle connection connects
the left bottom corner with the right bottom corner of the 1× 1-square. The second
long saddle connection connects the two upper corners of the 1 × 1-square. The
short saddle connection connects the two bottom corners of the right small rectangle
(respectively the two upper corners, this is the same saddle connection). The long
and the short saddle connection are also at a ratio of ϕ.

Lemma 4.2 (2.4. in [2]). A vector v is a saddle connection on the double pentagon
⇔ P−1v is a saddle connection on the golden L.

Proof. Let v be a saddle connection on the double pentagon. By Lemma 2.26, P−1v
is still a saddle connection on the golden L because P ∈ GL+(2,R). See the mapping
in Figure 3.

Figure 4: Two examples of a periodic direction with the long cylinder (dark grey) and the short
cylinder (light grey).

Now let Λ (resp. Λi) be the intersection of the set of long saddle connections with
Σ (resp. Σi). Let moreover be A = {σ0, σ1, σ2, σ3} and A∗ be the set of all finite words
in A including the empty word. For σ ∈ A∗, σ = σk1 , σk2 , ..., σkn , ki ∈ {1, 2, 3, 4} we
set m(σ) = σkn · σkn−1 · ... · σk1 as the matrix product.

Theorem 4.3 (Tree Theorem [2]). The set of all vectors m(σ) ( 1
0 ) for σ ∈ A∗ gives

the entire set Λ. Furthermore, leaving out the words that start with σ0, we get a
bijection between the set M := {m(σ) ( 1

0 ) : σ ∈ A∗} and Λ.

Proof. The shortest short saddle connection lies in the horizontal direction and the
long and the short saddle connections are always at a ratio of ϕ. Then the shortest
long saddle connection also has to be ( 1

0 ).
σ0 sends ( 1

0 ) to itself and σ0, σ1, σ2 and σ3 send any other vector in Σ to a longer
vector in Σ. In particular σi, i ∈ {1, 2, 3, 4} sends any vector in Σ into Λi. Thus the
σ−1
i send any vector in Σi to a shorter vector in Σ.

By Lemma 2.26 saddle connections are sent to saddle connections by σi or σ
−1
i and

Λ is discrete. If we start with any long saddle connection in Λi and apply σ−1
i , we

get a shorter long saddle connection in Σ. Eventually we’ll get to the shortest long
saddle connection ( 1

0 ). If we start the other way around with ( 1
0 ) and apply the σi

14



this generates the entire set Λ. Since σ0 sends ( 1
0 ) to itself, leaving out all the words

that start with σ0, we get the last statement.

For every direction that admits a saddle connection on the golden L, this algorithm
delivers one of the two long saddle connections. These can be presented in a tree
structure. We start with ( 1

0 ) as root and apply σi, i ∈ {1, 2, 3}, because σ0 ( 1
0 ) = ( 1

0 ).
From there on we apply all σi, hence from every saddle connection we get four saddle
connections in the next level of the tree. The first eight saddle connections in this
tree are pictured in Figure 5.

σ1 σ2 σ3

σ0 σ1 σ2 σ3

Figure 5: The tree of long saddle connections

Remark 4.4. We could also start with the saddle connection ( 0
1 ), which delivers the

same saddle connections and from the third level on results in the same tree. That
is because

σ3 ( 0
1 ) = ( 0

1 ) , σ0 ( 0
1 ) =

(
ϕ
1

)
, σ1 ( 0

1 ) =
(
ϕ
ϕ

)
, σ2 ( 0

1 ) =
(
1
ϕ

)
.

Then the first node is a saddle connection in the direction ( 0
1 ) and further instead

of σ1, σ2 and σ3, we apply σ0, σ1, and σ2. From the third level on, the tree looks the
same as in Figure 5.

4.1 The expanded tree of saddle connections

The above tree only delivers vectors with positive slope in the first quadrant. We
can expand the above tree by using the inverse matrices σ−1

i , which divide
Σ−1 := {(x, y) ∈ R2 : x > 0 and y ≤ 0} (the fourth quadrant) into four parts:

15



σ−1
0 Σ = Σ−1

0 := {( x
y ) : − 1

ϕ
x < y ≤ 0}

σ−1
1 Σ = Σ−1

1 := {( x
y ) : −x < y ≤ − 1

ϕ
x}

σ−1
2 Σ = Σ−1

2 := {( x
y ) : −ϕx < y ≤ −x}

σ−1
3 Σ = Σ−1

3 := {( x
y ) : y ≤ −ϕx}

We proceed like before in order to expand the tree by the negative slopes in the
fourth quadrant. Let Ā = {σ−1

0 , σ−1
1 , σ−1

2 , σ−1
3 } and Ā∗ be the set of all finite words

in Ā including the empty word. In an analogous way, denote by m(σ) the matrix
product for a word σ ∈ Ā∗. Furthermore, let Λ′ be the intersection of the long saddle
connections with Σ−1.

Theorem 4.5 (Expanded tree). The set of all vectors m(σ) ( 1
0 ) for σ ∈ Ā∗ gives the

entire set Λ′. Leaving out the words, that start with σ−1
0 , we get a bijection between

the set M := {m(σ) ( 1
0 ) : σ ∈ Ā∗} and Λ′.

Proof. The proof follows the same argumentation as in 4.3.

σ−1
1 σ−1

2 σ−1
3

σ−1
0 σ−1

1 σ−1
2 σ−1

3

Figure 6: The tree of long saddle connections with negative slope

Remark 4.6. The saddle connections in Figure 6 differ from the ones in Figure 5,
but their holonomy vectors in R2 are symmetric to the x-axis.

Remark 4.7. There is a way to generate the saddle connections in the second and
third quadrant, too.
For the third quadrant, put ρ2 = ( 0 −1

1 0 ) ( 0 −1
1 0 ) =

( −1 0
0 −1

)
defined in the proof of

Proposition 3.2 in front of every word and apply Theorem 4.3. The matrix ρ2 is

16



a rotation by the angle π. This mirrors all vectors from the first quadrant point-
symmetrically around the origin into the third quadrant. We get

ρ2σ0 ( 1
0 ) =

(
−1
0

)
, ρ2σ1 ( 1

0 ) =

(
−ϕ
−1

)
, ρ2σ2 ( 1

0 ) =

(
−ϕ
−ϕ

)
, ρ2σ3 ( 1

0 ) =

(
−1
−ϕ

)
.

This works similarly for the second quadrant, with the same matrix ρ2 and Theo-
rem 4.5. This rotates all vectors from the fourth quadrant point-symmetrically around
the origin by the angle π, i.e.,

ρ2σ−1
0 ( 1

0 ) =

(
−1
0

)
, ρ2σ−1

1 ( 1
0 ) =

(
−ϕ
1

)
, ρ2σ−1

2 ( 1
0 ) =

(
−ϕ
ϕ

)
, ρ2σ−1

3 ( 1
0 ) =

(
−1
ϕ

)
.

5 The graph of slopes

In this section, all previous findings are put together to construct a part of the graph
of slopes.
The vertices of the graph are equivalence classes of parallel saddle connections. The
algorithm from section 4 delivers one of the two long saddle connections in each
direction that admits a saddle connection. Its slope presents one vertex in the graph
of slopes.

Proposition 5.1. The tree of saddle connections and the expanded tree with the
inverse matrices determine all directions of saddle connections.

Proof. By Theorem 4.5 and 4.3, we find all long saddle connections in the first and
fourth quadrant, i.e., all directions of saddle connections. In Remark 4.7 is explained
how the saddle connections in the second and third quadrant can be generated.
However, this doesn’t deliver any new saddle connections, they have the same length
and direction.

There is an edge between two different equivalence classes θ and θ̄ if there is a saddle
connection with slope θ that doesn’t intersect a saddle connection with slope θ̄.
Recall that the matrices σi, i ∈ {0, 1, 2, 3} not only generate the tree of long saddle
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connections, but also they generate the Veech group. Its properties help us to reduce
the problem in the following way:

Proposition 5.2. If two saddle connections in the tree don’t intersect, they still
don’t intersect after applying the same matrix σi, i ∈ {1, 2, 3, 4}, on both. In other
words: If m(σ) ( 1

0 ) and m(σ′) ( 1
0 ) for σ, σ′ ∈ A∗ or Ā∗ don’t intersect, m(σ, σi) ( 1

0 )
and m(σ′, σi) ( 1

0 ), respectively m(σ, σ−1
i ) ( 1

0 ) and m(σ′, σ−1
i ) ( 1

0 ), don’t intersect for
σi ∈ {σ0, σ1, σ2, σ3} and σ−1

i ∈ {σ−1
0 , σ−1

1 , σ−1
2 , σ−1

3 }.

Proof. The Veech group Γ is defined to be the stabilizer of the group action of
GL+(2,R) on the golden L. Furthermore, by Lemma 2.26 saddle connections are
sent to saddle connections by GL+(2,R) and because SL(2,R) is a subgroup of
GL+(2,R), by Proposition 2.27 this also applies to Γ.
This means that for A ∈ Γ and two non intersecting saddle connections u and
v ∈ SC(X), A(u) and A(v) are again saddle connections. The translation surface
A(X) is isomorphic to X and can be transformed into X by cutting and gluing.
Then A(u) and A(v) don’t intersect in X.

Figure 7: On the left: σ3

(
1
0

)
(green) and σ1

(
1
0

)
(red). Application of σ3 to both saddle

connection vectors and the golden L illustrates that the vectors still connect corners. On the right:

σ3σ3

(
1
0

)
(green) and σ3σ1

(
1
0

)
(red) back don’t intersect in golden L.

The σi divide the first quadrant into four parts, Σ0,Σ1,Σ2 and Σ3 (see previous
section). This means that a vector resulting from a tree word σ = σk1 , ..., σkn ∈ A∗

lies in section Σkn . This leads to the following results and we can further reduce the
problem.
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Proposition 5.3. Saddle connections corresponding to a tree word ending with σ3

intersect with those that correspond to a word ending with σ0 (except for the saddle
connections σ = σ0 and σ′ = σ3, which don’t intersect).

Proof. A saddle connection u of the form σ = σ̂, σ3 with an arbitrary σ̂ ∈ A∗ and
word length > 1 has a slope > ϕ.
A saddle connection v of the form σ′ = σ̂, σ0 with an arbitrary σ̂ ∈ A∗ has a slope
< 1

ϕ
.

For both, there are three possible “starting corners”: the left bottom corner of the
1×1-square, the left bottom corner of the upper small rectangle and the left bottom
corner of the right small rectangle.
If u starts from the left bottom corner of the 1× 1-square or the left bottom corner
of the the upper small rectangle, it will meet the upper edge of the upper small
rectangle and continue from the bottom edge of the 1 × 1-square. If u starts from
the left bottom corner of the 1×1-square or the left bottom corner of the right small
rectangle, it will meet the right edge of the right small rectangle and continue from
the left edge of the 1× 1-square. Then v and u intersect.
Notice the symmetry with respect to the axis x = y of σ0 and σ3 in R2. Then
the above argumentation holds for all other cases, since the comparison of saddle
connections u with slope 1

ϕ
“starting” from the left bottom corner of the upper small

rectangle and v with slope ϕ “starting” from the left bottom corner of the right
small rectangle is symmetric to the comparison of the same saddle connections with
switched “starting” corners.
This applies for long saddle connections as well as short saddle connections.
In the case that the saddle connections lie entirely in one small rectangle each and
therefore don’t intersect, these can only be short saddle connections. This is because
saddle connections are contained in the boundary of a cylinder, and only the short
cylinder can fit entirely into the small rectangles. Then the long saddle connection
in one direction intersects the short saddle connection in the other direction.

For the first three levels of the tree, the pairwise comparisons, whether two saddle
connections intersect, can be calculated manually with the help of Geogebra and
Python, which delivers the following picture:
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1 2 3 4 5

1

2

3

4

5

Figure 8: The first three levels of the tree of saddle connections in the graph of slopes

Figure 10 shows only the edges that result from the non intersecting long saddle
connections from Figure 5. It is possible that edges are missing because in each
direction there is one other long saddle connection and one short saddle connection
that might not intersect a saddle connection from another equivalence class.
You can find a version of the graph with labeled vertices in the Appendix B.
Analogously to the Farey Graph we can project the holonomy vectors onto the unit
circle and picture the edges of the graph as circle segments. The result is Figure 9.

Figure 9: The graph of slopes visualized in the unit circle with circle segments as edges.
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Remark 5.4. We want to expand the graph by the saddle connections with negative
slope, that we get with Theorem 4.5. These have the same slope although with negative
sign, but we can’t simply mirror the above graph along the horizontal axis. This is
because the saddle connections with positive slope are not symmetric to the ones with
negative slope as Figure 6 shows. The saddle connection σ1 ( 1

0 ) doesn’t intersect
σ3 ( 1

0 ), but σ
−1
1 ( 1

0 ) intersects σ−1
3 ( 1

0 ) for example.
Furthermore it remains to determine the edges between the positive and the negative
slopes to complete the picture.

Remark 5.5. The presentation of the graph is different to the Farey Graph in figure
1. The latter shows the saddle connection ( 1

0 ) with slope ∞ on the left in the circle
and the saddle connection ( 1

1 ) with slope 1 on top of the circle. Then the saddle
connections with positive slope are in the upper half circle and the ones with negative
slope are in lower half. With our approach, we only get one half circle with all slopes
of saddle connections.

6 Outlook

Since the graph we constructed is relatively small, it might be interesting to see what
happens if we add more vertices and edges to the picture. It requires 120 pairwise
comparisons to construct the graph of slopes as pictured above and already 2016
pairwise comparisons for the next level in the tree. Calculating this manually is
inefficient. In order to extend the graph with more vertices, we need an algorithm
that first generates the saddle connections until a certain level N ∈ N in Figure 5
and Figure 6. Then the algorithm has to understand the translation surface, such
that it recognizes identified edges. According to these edge identifications, it knows
how a saddle connection and its associated cylinder look like on the golden L and is
able to search for disjoint directions. Here we can rule out the comparisons, whose
slope is too different, see Proposition 5.3, because they intersect. By Proposition
5.2, we can exclude whole paths of non-intersecting directions in the tree.
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A Auxiliary calculations from Proposition 3.2

Let ϕ be the golden ratio, i.e., the positive solution to the equation x2 − x− 1 = 0.
Recall the matrices from section 3 with its inverses:

σ0 =

(
1 ϕ
0 1

)
, σ1 =

(
ϕ ϕ
1 ϕ

)
, σ2 =

(
ϕ 1
ϕ ϕ

)
, σ3 =

(
1 0
ϕ 1

)
,

σ−1
0 =

(
1 −ϕ
0 1

)
, σ−1

1 =

(
ϕ −ϕ
−1 ϕ

)
, σ−1

2 =

(
ϕ −1
−ϕ ϕ

)
, σ−1

3 =

(
1 0
−ϕ 1

)

Recall also the matrix P from Lemma 3.1:

P =

(
1 cos(π

5
)

0 sin(π
5
)

)
The matrices τ and σ0 are the generators of the Veech group of the golden L. This
is because conjugating σ0, respectively τ with P , delivers the generators R and T of
the Veech group of the double pentagon:

τ =σ0σ
−1
3 σ0σ

−1
3 σ0σ0

=

(
1 ϕ
0 1

)(
1 0
−ϕ 1

)(
1 ϕ
0 1

)(
1 0
−ϕ 1

)(
1 ϕ
0 1

)(
1 ϕ
0 1

)

=

(
−ϕ ϕ
−ϕ 1

)(
1 ϕ
0 1

)(
1 0
−ϕ 1

)(
1 ϕ
0 1

)(
1 ϕ
0 1

)

=

(
−ϕ −1
−ϕ −ϕ

)(
1 0
−ϕ 1

)(
1 ϕ
0 1

)(
1 ϕ
0 1

)

=

(
0 −1
1 −ϕ

)(
1 ϕ
0 1

)(
1 ϕ
0 1

)
=

(
0 −1
1 0

)(
1 ϕ
0 1

)
=

(
0 −1
1 ϕ

)
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PτP−1 =

(
1 cos(π

5
)

0 sin(π
5
)

)(
0 −1
1 ϕ

)(
1 − cos(π

5
)

sin(π
5
)

0 1
sin(π

5
)

)

=

(
cos(π

5
) −1 + 2 cos2(π

5
)

sin(π
5
) 2 cos(π

5
) sin(π

5
)

)(
1 − cos(π

5
)

sin(π
5
)

0 1
sin(π

5
)

)
=

(
cos(π

5
) − sin(π

5
)

sin(π
5
) cos(π

5
)

)
= R

Pσ0P
−1 =

(
1 cos(π

5
)

0 sin(π
5
)

)(
1 ϕ
0 1

)(
1 − cos(π

5
)

sin(π
5
)

0 1
sin(π

5
)

)

=

(
1 3 cos(π

5
)

0 sin(π
5
)

)(
1 − cos(π

5
)

sin(π
5
)

0 1
sin(π

5
)

)
=

(
1 2 cot(π

5
)

0 1

)
= T

We can reduce τ by one σ0 and call this matrix ρ:

ρ =τσ−1
0 =

(
0 −1
1 ϕ

)(
1 −ϕ
0 1

)
=

(
0 −1
1 0

)

We find products of σ0 and ρ to show that σ1, σ2 and σ3 are in the Veech group of
the golden L:

σ0ρσ0 =

(
1 ϕ
0 1

)(
0 −1
1 0

)(
1 ϕ
0 1

)
=

(
ϕ −1
1 0

)(
1 ϕ
0 1

)
=

(
ϕ ϕ
1 ϕ

)
= σ1

σ0ρσ0ρσ0 =σ1ρσ0

=

(
ϕ ϕ
1 ϕ

)(
0 −1
1 0

)(
1 ϕ
0 1

)
=

(
ϕ −ϕ
ϕ −1

)(
1 ϕ
0 1

)
=

(
ϕ 1
ϕ ϕ

)
= σ2
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σ0ρσ0ρσ0ρσ0 =σ2ρσ0

=

(
ϕ 1
ϕ ϕ

)(
0 −1
1 0

)(
1 ϕ
0 1

)

=

(
1 −ϕ
ϕ −ϕ

)(
1 ϕ
0 1

)
=

(
1 0
ϕ 1

)
= σ3

B The graph of slopes with labeled saddle connections

In section 5, we have constructed a part of the graph of slopes of the golden L. In
this figure, the saddle connections are labeled with the words that they result from.

For example, the word 13 refers to the saddle connection σ3σ1 ( 1
0 ) =

(
ϕ

ϕ2+1

)
.

0

1

2
3

10

11

12

13

20

21

22

23

30

31

32

33

Figure 10: The first three levels of the tree of saddle connections in the graph of slopes with labels
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